1
|
Insight into Glyproline Peptides' Activity through the Modulation of the Inflammatory and Neurosignaling Genetic Response Following Cerebral Ischemia-Reperfusion. Genes (Basel) 2022; 13:genes13122380. [PMID: 36553646 PMCID: PMC9777888 DOI: 10.3390/genes13122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glyprolines are Gly-Pro (GP)- or Pro-Gly (PG)-containing biogenic peptides. These peptides can act as neutrophil chemoattractants, or atheroprotective, anticoagulant, and neuroprotective agents. The Pro-Gly-Pro (PGP) tripeptide is an active factor of resistance to the biodegradation of peptide drugs. The synthetic Semax peptide, which includes Met-Glu-His-Phe (MEHF) fragments of adrenocorticotropic hormone and the C-terminal tripeptide PGP, serves as a neuroprotective drug for the treatment of ischemic stroke. Previously, we revealed that Semax mostly prevented the disruption of the gene expression pattern 24 h after a transient middle cerebral artery occlusion (tMCAO) in a rat brain model. The genes of this pattern were grouped into an inflammatory cluster (IC) and a neurotransmitter cluster (NC). Here, using real-time RT-PCR, the effect of other PGP-containing peptides, PGP and Pro-Gly-Pro-Leu (PGPL), on the expression of a number of genes in the IC and NC was studied 24 h after tMCAO. Both the PGP and PGPL peptides showed Semax-unlike effects, predominantly without changing gene expression 24 h after tMCAO. Moreover, there were IC genes (iL1b, iL6, and Socs3) for PGP, as well as IC (iL6, Ccl3, Socs3, and Fos) and NC genes (Cplx2, Neurod6, and Ptk2b) for PGPL, that significantly changed in expression levels after peptide administration compared to Semax treatment under tMCAO conditions. Furthermore, gene enrichment analysis was carried out, and a regulatory gene network was constructed. Thus, the spectra of the common and unique effects of the PGP, PGPL, and Semax peptides under ischemia-reperfusion were distinguished.
Collapse
|
2
|
Neuropeptidergic control of neurosteroids biosynthesis. Front Neuroendocrinol 2022; 65:100976. [PMID: 34999057 DOI: 10.1016/j.yfrne.2021.100976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023]
Abstract
Neurosteroids are steroids synthesized within the central nervous system either from cholesterol or by metabolic reactions of circulating steroid hormone precursors. It has been suggested that neurosteroids exert pleiotropic activities within the central nervous system, such as organization and activation of the central nervous system and behavioral regulation. It is also increasingly becoming clear that neuropeptides exert pleiotropic activities within the central nervous system, such as modulation of neuronal functions and regulation of behavior, besides traditional neuroendocrinological functions. It was hypothesized that some of the physiological functions of neuropeptides acting within the central nervous system may be through the regulation of neurosteroids biosynthesis. Various neuropeptides reviewed in this study possibly regulate neurosteroids biosynthesis by controlling the activities of enzymes that catalyze the production of neurosteroids. It is now required to thoroughly investigate the neuropeptidergic control mechanisms of neurosteroids biosynthesis to characterize the physiological significance of this new neuroendocrinological phenomenon.
Collapse
|
3
|
Dergunova LV, Dmitrieva VG, Filippenkov IB, Stavchansky VV, Denisova AE, Yuzhakov VV, Sevan’kaeva LE, Valieva LV, Sudarkina OY, Gubsky LV, Myasoedov NF, Limborska SA. The Peptide Drug ACTH(4–7)PGP (Semax) Suppresses mRNA Transcripts Encoding Proinflammatory Mediators Induced by Reversible Ischemia of the Rat Brain. Mol Biol 2021. [DOI: 10.1134/s0026893321010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Akimov MG, Fomina-Ageeva EV, Dudina PV, Andreeva LA, Myasoyedov NF, Bezuglov VV. ACTH(6-9)PGP Peptide Protects SH-SY5Y Cells from H 2O 2, tert-Butyl Hydroperoxide, and Cyanide Cytotoxicity via Stimulation of Proliferation and Induction of Prosurvival-Related Genes. Molecules 2021; 26:1878. [PMID: 33810344 PMCID: PMC8036943 DOI: 10.3390/molecules26071878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Stabilized melanocortin analog peptide ACTH(6-9)PGP (HFRWPGP) possesses a wide range of neuroprotective activities. However, its mechanism of action remains poorly understood. In this paper, we present a study of the proproliferative and cytoprotective activity of the adrenocorticotropic hormone fragment 6-9 (HFRW) linked with the peptide prolyine-glycyl-proline on the SH-SY5Y cells in the model of oxidative stress-related toxicity. The peptide dose-dependently protected cells from H2O2, tert-butyl hydroperoxide, and KCN and demonstrated proproliferative activity. The mechanism of its action was the modulation of proliferation-related NF-κB genes and stimulation of prosurvival NRF2-gene-related pathway, as well as a decrease in apoptosis.
Collapse
Affiliation(s)
- Mikhail G. Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Elena V. Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Polina V. Dudina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Ludmila A. Andreeva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, Ploshchad’ Akademika Kurchatova 2, 123182 Moscow, Russia; (L.A.A.); (N.F.M.)
| | - Nikolay F. Myasoyedov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, Ploshchad’ Akademika Kurchatova 2, 123182 Moscow, Russia; (L.A.A.); (N.F.M.)
| | - Vladimir V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| |
Collapse
|
5
|
Filippenkov IB, Dergunova LV, Limborska SA, Myasoedov NF. Neuroprotective Effects of Peptides in the Brain: Transcriptome Approach. BIOCHEMISTRY (MOSCOW) 2021; 85:279-287. [PMID: 32564732 DOI: 10.1134/s0006297920030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The importance of studying the action mechanisms of drugs based on natural regulatory peptides is commonly recognized. Particular attention is paid to the peptide drugs that contribute to the restoration of brain functions after acute cerebrovascular accidents (stroke), which for many years continues to be one of the main problems and threats to human health. However, molecular genetic changes in the brain in response to ischemia, as well as the mechanisms of protective effects of peptides, have not been sufficiently studied. This limits the use of neuroprotective peptides and makes it difficult to develop new, more efficient drugs with targeted action on brain functions. Transcriptome analysis is a promising approach for studying the mechanisms of the damaging effects of cerebral ischemia and neuroprotective action of peptide drugs. Beside investigating the role of mRNAs in protein synthesis, the development of new neuroprotection strategies requires studying the involvement of regulatory RNAs in ischemia. Of greatest interest are microRNAs (miRNAs) and circular RNAs (circRNAs), which are expressed predominantly in the brain. CircRNAs can interact with miRNAs and diminish their activity, thereby inhibiting miRNA-mediated repression of mRNAs. It has become apparent that analysis of the circRNA/miRNA/mRNA system is essential for deciphering the mechanisms of brain damage and repair. Here, we present the results of studies on the ischemia-induced changes in the activity of genes and peptide-mediated alterations in the transcriptome profiles in experimental ischemia and formulate the basic principles of peptide regulation in the ischemia-induced damage.
Collapse
Affiliation(s)
- I B Filippenkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - L V Dergunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - S A Limborska
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - N F Myasoedov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| |
Collapse
|
6
|
Novel Insights into the Protective Properties of ACTH (4-7)PGP (Semax) Peptide at the Transcriptome Level Following Cerebral Ischaemia-Reperfusion in Rats. Genes (Basel) 2020; 11:genes11060681. [PMID: 32580520 PMCID: PMC7350263 DOI: 10.3390/genes11060681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischaemia is the most common cause of impaired brain function. Biologically active peptides represent potential drugs for reducing the damage that occurs after ischaemia. The synthetic melanocortin derivative, ACTH(4-7)PGP (Semax), has been used successfully in the treatment of patients with severe impairment of cerebral blood circulation. However, its molecular mechanisms of action within the brain are not yet fully understood. Previously, we used the transient middle cerebral artery occlusion (tMCAO) model to study the damaging effects of ischaemia-reperfusion on the brain transcriptome in rats. Here, using RNA-Seq analysis, we investigated the protective properties of the Semax peptide at the transcriptome level under tMCAO conditions. We have identified 394 differentially expressed genes (DEGs) (>1.5-fold change) in the brains of rats at 24 h after tMCAO treated with Semax relative to saline. Following tMCAO, we found that Semax suppressed the expression of genes related to inflammatory processes and activated the expression of genes related to neurotransmission. In contrast, ischaemia-reperfusion alone activated the expression of inflammation-related genes and suppressed the expression of neurotransmission-related genes. Therefore, the neuroprotective action of Semax may be associated with a compensation of mRNA expression patterns that are disrupted during ischaemia-reperfusion conditions.
Collapse
|
7
|
Peymen K, Watteyne J, Borghgraef C, Van Sinay E, Beets I, Schoofs L. Myoinhibitory peptide signaling modulates aversive gustatory learning in Caenorhabditis elegans. PLoS Genet 2019; 15:e1007945. [PMID: 30779740 PMCID: PMC6380545 DOI: 10.1371/journal.pgen.1007945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Aversive learning and memories are crucial for animals to avoid previously encountered stressful stimuli and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learned behaviors, but their precise role is not well understood. Here, we show that neuropeptides of the evolutionarily conserved MyoInhibitory Peptide (MIP)-family modify salt chemotaxis behavior in Caenorhabditis elegans according to previous experience. MIP signaling, through activation of the G protein-coupled receptor SPRR-2, is required for short-term gustatory plasticity. In addition, MIP/SPRR-2 neuropeptide-receptor signaling mediates another type of aversive gustatory learning called salt avoidance learning that depends on de novo transcription, translation and the CREB transcription factor, all hallmarks of long-term memory. MIP/SPRR-2 signaling mediates salt avoidance learning in parallel with insulin signaling. These findings lay a foundation to investigate the suggested orphan MIP receptor orthologs in deuterostomians, including human GPR139 and GPR142. All animals rely on learning and memory processes to learn from experience and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learning and memory processes. We found that the C. elegans receptor SPRR-2 and its ligands, the MIP-1 neuropeptides—which are members of the evolutionarily conserved myoinhibitory peptide system—are required for aversive gustatory learning. Our results provide a basis for investigations into the poorly characterized MIP systems in deuterostomians, including humans, and suggest a possible function in learning for human MIP signaling.
Collapse
Affiliation(s)
- Katleen Peymen
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Watteyne
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | - Elien Van Sinay
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Isabel Beets
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail: (IB); (LS)
| | - Liliane Schoofs
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail: (IB); (LS)
| |
Collapse
|
8
|
Gisquet-Verrier P, Riccio DC. Memory Integration as a Challenge to the Consolidation/Reconsolidation Hypothesis: Similarities, Differences and Perspectives. Front Syst Neurosci 2019; 12:71. [PMID: 30687031 PMCID: PMC6337075 DOI: 10.3389/fnsys.2018.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023] Open
Abstract
We recently proposed that retrograde amnesia does not result from a disruption of the consolidation/reconsolidation processes but rather to the integration of the internal state induced by the amnesic treatment within the initial memory. Accordingly, the performance disruption induced by an amnesic agent does not result from a disruption of the memory fixation process, but from a difference in the internal state present during the learning phase (or reactivation) and at the later retention test: a case of state-dependency. In the present article, we will review similarities and differences these two competing views may have on memory processing. We will also consider the consequences the integration concept may have on the way memory is built, maintained and retrieved, as well as future research perspectives that such a new view may generate.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
9
|
Inozemtsev AN, Bokieva SB, Karpukhina OV, Gumargalieva KZ, Kamenskii AA, Myasoedov NF. Paradoxical influence of combined effect of Semax and ammonium molybdate on learning and memory in rats. ACTA ACUST UNITED AC 2017. [DOI: 10.3103/s0096392517030051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Semax, an analog of ACTH (4-7), regulates expression of immune response genes during ischemic brain injury in rats. Mol Genet Genomics 2017; 292:635-653. [PMID: 28255762 DOI: 10.1007/s00438-017-1297-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022]
Abstract
Brain stroke continues to claim the lives of million people every year. To build the effective strategies for stroke treatment it is necessary to understand the neuroprotective mechanisms that are able to prevent the ischemic injury. Consisting of the ACTH(4-7) fragment and the tripeptide Pro-Gly-Pro (PGP), the synthetic peptide Semax effectively protects brain against ischemic stroke. However, the molecular mechanisms underlying its neuroprotection and participation of PGP in them are still needed to be clarified. To reveal biological processes and signaling pathways, which are affected by Semax and PGP, we performed the transcriptome analysis of cerebral cortex of rats with focal cerebral ischemia treated by these peptides. The genome-wide biochip data analysis detected the differentially expressed genes (DEGs) and bioinformatic web-tool Ingenuity iReport found DEGs associations with several biological processes and signaling pathways. The immune response is the process most markedly affected by the peptide: Semax enhances antigen presentation signaling pathway, intensifies the effect of ischemia on the interferon signaling pathways and affects the processes for synthesizing immunoglobulins. Semax significantly increased expression of the gene encoding the immunoglobulin heavy chain, highly affects on cytokine, stress response and ribosomal protein-encoding genes after occlusion. PGP treatment of rats with ischemia attenuates the immune activity and suppresses neurotransmission in the CNS. We suppose that neuroprotective mechanism of Semax is realized via the neuroimmune crosstalk, and the new properties of PGP were found under ischemia. Our results provided the basis for further proteomic investigations in the field of searching Semax neuroprotection mechanism.
Collapse
|
11
|
Kirsch P. Oxytocin in the socioemotional brain: implications for psychiatric disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 26869847 PMCID: PMC4734884 DOI: 10.31887/dcns.2015.17.4/pkirsch] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The neuropeptide oxytocin (OXT), highly conserved during evolution, is an important modulator of social and emotional processes across many species. During the last decade, a large body of literature has revealed its effects on different aspects of social behavior, including social stress and anxiety, social memory, affiliation and bonding, emotion recognition, mentalizing, empathy, and interpersonal trust. In addition, as impairments in these social domains can be observed in a number of neuropsychiatric disorders, such as autism, social anxiety disorder, depression, schizophrenia, and borderline personality disorder, the role of OXT in mental disorders and their treatment has been intensively studied. The present paper gives a short overview of these lines of research and shows how OXT has become a promising target for novel treatment approaches for mental disorders characterized by social impairments.
Collapse
Affiliation(s)
- Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| |
Collapse
|
12
|
Magrì A, Tabbì G, Giuffrida A, Pappalardo G, Satriano C, Naletova I, Nicoletti VG, Attanasio F. Influence of the N-terminus acetylation of Semax, a synthetic analog of ACTH(4-10), on copper(II) and zinc(II) coordination and biological properties. J Inorg Biochem 2016; 164:59-69. [PMID: 27586814 DOI: 10.1016/j.jinorgbio.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
Semax is a heptapeptide (Met-Glu-His-Phe-Pro-Gly-Pro) that encompasses the sequence 4-7 of N-terminal domain of the adrenocorticotropic hormone and a C-terminal Pro-Gly-Pro tripeptide. N-terminal amino group acetylation (Ac-Semax) modulates the chemical and biological properties of parental peptide, modifying the ability of Semax to form complex species with Cu(II) ion. At physiological pH, the main complex species formed by Ac-Semax, [CuLH-2]2-, consists in a distorted CuN3O chromophore with a weak apical interaction of the methionine sulphur. Such a complex differs from the Cu(II)-Semax complex system, which exhibits a CuN4 chromophore. The reduced ligand field affects the [CuLH-2]2- formal redox potential, which is more positive than that of Cu(II)-Semax corresponding species. In the amino-free form, the resulting complex species is redox-stable and unreactive against ascorbic acid, unlike the acetylated form. Semax acetylation did not protect from Cu(II) induced toxicity on a SH-SY5Y neuroblastoma cell line, thus demonstrating the crucial role played by the free NH2 terminus in the cell protection. Since several brain diseases are associated either to Cu(II) or Zn(II) dyshomeostasis, here we characterized also the complex species formed by Zn(II) with Semax and Ac-Semax. Both peptides were able to form Zn(II) complex species with comparable strength. Confocal microscopy imaging confirmed that peptide group acetylation does not affect the Zn(II) influx in neuroblastoma cells. Moreover, a punctuate distribution of Zn(II) within the cells suggests a preferred subcellular localization that might explain the zinc toxic effect. A future perspective can be the use of Ac-Semax as ionophore in antibody drug conjugates to produce a dysmetallostasis in tumor cells.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Giovanni Tabbì
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy.
| | - Alessandro Giuffrida
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Pappalardo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Cristina Satriano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Irina Naletova
- Dipartimento di Scienze Biomediche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario C.I.R.C.S.M.B., Via C. Ulpiani 27, 70125 Bari, Italy
| | - Vincenzo G Nicoletti
- Dipartimento di Scienze Biomediche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
13
|
Pro-Cognitive Properties of the Immunomodulatory Polypeptide Complex, Yolkin, from Chicken Egg Yolk and Colostrum-Derived Substances: Analyses Based on Animal Model of Age-Related Cognitive Deficits. Arch Immunol Ther Exp (Warsz) 2016; 64:425-34. [PMID: 26972875 PMCID: PMC5021734 DOI: 10.1007/s00005-016-0392-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
The study aimed to assess the effect of the polypeptide Y complex (Yolkin), isolated from chicken egg yolk, on behavioural and cognitive functions. It also aimed to compare this activity with colostrum-derived substances (Colostrinin, Coloco), which have a confirmed impact on learning and memory. In the study, the effect of Yolkin, administered to rats of different ages, who performed various tasks involving spatial and episodic memory, motor functions and exploratory behavior, was assessed. The experiment was carried out in rats which were 6 and 12 months old. Two different doses of the studied specimens based on previous comparative studies and two different routes of administration (oral and retroperitoneal) were used. A series of behavioural tests were carried out, including an open field test, a novel object recognition test and a Morris water maze. They were used to evaluate the impact of the studied specimen on improving locomotor function and exploratory behaviour, preventing their decline and assess the functioning of episodic and spatial memory in aging rats. The administration of Yolkin gave distinct effects compared to colostrum-derived substances, although confirmed its suggested pro-cognitive action. Therefore, it may be used to enhance cognitive functions and inhibit the progression of dementia in the course of neurodegenerative disorders.
Collapse
|
14
|
Medvedeva EV, Dmitrieva VG, Stavchansky VV, Povarova OV, Limborska SA, Myasoedov NF, Dergunova LV. Semax-Induced Changes in Growth Factor mRNA Levels in the Rat Brain on the Third Day After Ischemia. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Tay PKC. The adaptive value associated with expressing and perceiving angry-male and happy-female faces. Front Psychol 2015; 6:851. [PMID: 26157405 PMCID: PMC4476135 DOI: 10.3389/fpsyg.2015.00851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/08/2015] [Indexed: 11/26/2022] Open
Abstract
Facial expressions are valuable for conveying and understanding the inner thoughts and feelings of the expressor. However, the adaptive value associated with a specific expression on a male face is different from a female face. The present review uses a functional-evolutionary analysis to elucidate the evolutionary advantage in the expression and perception of angry-male and happy-female faces over angry-female and happy-male faces. For the expressors, it is more advantageous for men to show angry facial expression as it signals dominance, averts aggression and deters mate poaching; it is more advantageous for women to display happy facial expression as it signals their willingness for childcare, tending and befriending. For the perceivers, those sensitive to angry men avoid being physically harmed while those sensitive to happy women gain social support. Extant evidence suggests that facial structure and cognitive mechanisms evolved to express and perceive angry-male and happy-female faces more efficiently compared to angry-female and happy-male faces.
Collapse
Affiliation(s)
- Peter Kay Chai Tay
- School of Social Sciences, Singapore Management University, Singapore, Singapore
| |
Collapse
|
16
|
Tabbì G, Magrì A, Giuffrida A, Lanza V, Pappalardo G, Naletova I, Nicoletti VG, Attanasio F, Rizzarelli E. Semax, an ACTH4-10 peptide analog with high affinity for copper(II) ion and protective ability against metal induced cell toxicity. J Inorg Biochem 2015; 142:39-46. [DOI: 10.1016/j.jinorgbio.2014.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|
17
|
Wirth MM. Hormones, stress, and cognition: The effects of glucocorticoids and oxytocin on memory. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2014; 1:177-201. [PMID: 25893159 DOI: 10.1007/s40750-014-0010-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hormones have nuanced effects on learning and memory processes. The degree and direction of the effect (e.g., is memory impaired or enhanced?) depends on the dose, type and stage of memory, and type of material being learned, among other factors. This review will focus on two specific topics within the realm of effects of hormones on memory: (1) How glucocorticoids (the output hormones of the hypothalamic-pituitary-adrenal axis) affect long-term memory consolidation, retrieval, and working memory, with a focus on neural mechanisms and effects of emotion; and (2) How oxytocin affects memory, with emphasis on a speculative hypothesis that oxytocin might exert its myriad effects on human social cognition and behavior via impacts on more general cognitive processes. Oxytocin-glucocorticoid interactions will be briefly addressed. These effects of hormones on memory will also be considered from an evolutionary perspective.
Collapse
Affiliation(s)
- Michelle M Wirth
- Department of Psychology, University of Notre Dame, 123B Haggar Hall, Notre Dame, IN, 46556, USA,
| |
Collapse
|
18
|
Qin QH, Wang ZL, Tian LQ, Gan HY, Zhang SW, Zeng ZJ. The integrative analysis of microRNA and mRNA expression in Apis mellifera following maze-based visual pattern learning. INSECT SCIENCE 2014; 21:619-636. [PMID: 24136738 DOI: 10.1111/1744-7917.12065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
The honeybee (Apis mellifera) is a social insect with strong sensory capacity and diverse behavioral repertoire and is recognized as a good model organism for studying the neurobiological basis of learning and memory. In this study, we analyzed the changes in microRNA (miRNA) and messenger RNA (mRNA) following maze-based visual learning using next-generation small RNA sequencing and Solexa/lllumina Digital Gene Expression tag profiling (DGE). For small RNA sequencing, we obtained 13 367 770 and 13 132 655 clean tags from the maze and control groups, respectively. A total of 40 differentially expressed known miRNAs were detected between these two samples, and all of them were up-regulated in the maze group compared to the control group. For DGE, 5 681 320 and 5 939 855 clean tags were detected from the maze and control groups, respectively. There were a total of 388 differentially expressed genes between these two samples, with 45 genes up-regulated and 343 genes down-regulated in the maze group, compared to the control group. Additionally, the expression levels of 10 differentially expressed genes were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the expression trends of eight of them were consistent with the DGE result, although the degree of change was lower in amplitude. The integrative analysis of miRNA and mRNA expression showed that, among the 40 differentially expressed known miRNAs and 388 differentially expressed genes, 60 pairs of miRNA/mRNA were identified as co-expressed in our present study. These results suggest that both miRNA and mRNA may play a pivotal role in the process of learning and memory in honeybees. Our sequencing data provide comprehensive miRNA and gene expression information for maze-based visual learning, which will facilitate understanding of the molecular mechanisms of honeybee learning and memory.
Collapse
Affiliation(s)
- Qiu-Hong Qin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | | | | | | | | | | |
Collapse
|
19
|
Medvedeva EV, Dmitrieva VG, Povarova OV, Limborska SA, Skvortsova VI, Myasoedov NF, Dergunova LV. The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis. BMC Genomics 2014; 15:228. [PMID: 24661604 PMCID: PMC3987924 DOI: 10.1186/1471-2164-15-228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/18/2014] [Indexed: 01/09/2023] Open
Abstract
Background The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo. Results The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the “ischemia” group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO). The peptide predominantly enhanced the expression of genes related to the immune system. Three hours after pMCAO, Semax influenced the expression of some genes that affect the activity of immune cells, and, 24 h after pMCAO, the action of Semax on the immune response increased considerably. The genes implicated in this response represented over 50% of the total number of genes that exhibited Semax-induced altered expression. Among the immune-response genes, the expression of which was modulated by Semax, genes that encode immunoglobulins and chemokines formed the most notable groups. In response to Semax administration, 24 genes related to the vascular system exhibited altered expression 3 h after pMCAO, whereas 12 genes were changed 24 h after pMCAO. These genes are associated with such processes as the development and migration of endothelial tissue, the migration of smooth muscle cells, hematopoiesis, and vasculogenesis. Conclusions Semax affects several biological processes involved in the function of various systems. The immune response is the process most markedly affected by the drug. Semax altered the expression of genes that modulate the amount and mobility of immune cells and enhanced the expression of genes that encode chemokines and immunoglobulins. In conditions of rat brain focal ischemia, Semax influenced the expression of genes that promote the formation and functioning of the vascular system. The immunomodulating effect of the peptide discovered in our research and its impact on the vascular system during ischemia are likely to be the key mechanisms underlying the neuroprotective effects of the peptide.
Collapse
Affiliation(s)
- Ekaterina V Medvedeva
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hasunuma I, Toyoda F, Okada R, Yamamoto K, Kadono Y, Kikuyama S. Roles of arginine vasotocin receptors in the brain and pituitary of submammalian vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:191-225. [PMID: 23809437 DOI: 10.1016/b978-0-12-407696-9.00004-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This chapter reviews the functions of arginine vasotocin (AVT) and its receptors in the central nervous system (CNS) of primarily submammalian vertebrates. The V1a-type receptor, which is widely distributed in the CNS of birds, amphibians, and fish, is one of the most important receptors involved in the expression of social and reproductive behaviors. In mammals, the V1b receptor of arginine vasopressin, an AVT ortholog, is assumed to be involved in aggression, social memory, and stress responses. The distribution of the V1b-type receptor in the brain of submammalian vertebrates has only been reported in an amphibian species, and its putative functions are discussed in this review. The functions of V2-type receptor in the CNS are still unclear. Recent phylogenetical and pharmacological analyses have revealed that the avian VT1 receptor can be categorized as a V2b-type receptor. The distribution of this newly categorized VT1 receptor in the brain of avian species should contribute to our knowledge of the possible roles of the V2b-type receptor in the CNS of other nonmammalian vertebrates. The functions of AVT in the amphibian and avian pituitaries are also discussed, focusing on the V1b- and V1a-type receptors.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Subiah CO, Mabandla MV, Phulukdaree A, Chuturgoon AA, Daniels WMU. The effects of vasopressin and oxytocin on methamphetamine-induced place preference behaviour in rats. Metab Brain Dis 2012; 27:341-50. [PMID: 22447521 DOI: 10.1007/s11011-012-9297-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/15/2012] [Indexed: 01/08/2023]
Abstract
Methamphetamine is a highly addictive stimulant drug whose illicit use and resultant addiction has become an alarming global phenomenon. The mesolimbic dopaminergic pathway has been shown to be fundamental to the establishment of addictive behaviour. This pathway, as part of the reward system of the brain, has also been shown to be important in classical conditioning, which is a learnt response. Within the modulation of learning and memory, the neurohypophyseal hormones vasopressin and oxytocin have been reported to play a vital role, with vasopressin exerting a long- term facilitatory effect and oxytocin exerting an inhibitory effect. Therefore we adopted a conditioned place preference model to investigate whether vasopressin V1b receptor antagonist SSR 149415 or oxytocin treatment would cause a decrease in the seeking behaviour in a reinstatement paradigm. Behavioural findings indicated that methamphetamine induced a change in the place preference in the majority of our animals. This change in place preference was not seen when vasopressin was administered during the extinction phase. On the other hand the methamphetamine-induced change in place preference was enhanced during the reinstatement phase in the animals that were treated with oxytocin. Striatal dopamine levels were determined, as methamphetamine is known to increase dopamine transmission in this area. Significant changes in dopamine levels were observed in some of our animals. Rats that received both methamphetamine and oxytocin had significantly higher striatal dopamine than those that received oxytocin alone. Western blot analysis for hippocampal cyclic AMP response element binding protein (CREB) was also conducted as a possible indicator of glutamatergic NMDA receptor activity, a pathway that is important for learning and memory. The Western blot analysis showed no changes in hippocampal pCREB expression. Overall our data led us to conclude that methamphetamine treatment can change place preference behaviour in rats and that this change may be partially restored by vasopressin antagonism, but exaggerated by oxytocin.
Collapse
Affiliation(s)
- Cassandra O Subiah
- Discipline of Human Physiology, College of Health Science, University of KwaZulu-Natal, Durban, South Africa.
| | | | | | | | | |
Collapse
|
22
|
Effect of semax and its C-terminal fragment Pro-Gly-Pro on the expression of VEGF family genes and their receptors in experimental focal ischemia of the rat brain. J Mol Neurosci 2012; 49:328-33. [PMID: 22772900 DOI: 10.1007/s12031-012-9853-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022]
Abstract
The synthetic peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is used successfully in acute stroke therapy. In spite of numerous studies on the subject, many aspects of the neuroprotective effects of the peptide remain unknown. We studied the action of Semax and its C-terminal tripeptide Pro-Gly-Pro on the expression of the VEGF gene family (Vegf-a, Vegf-b, Vegf-c, Vegf-d, and Plgf) and their receptors (Vegfr-1, Vegfr-2, and Vegfr-3) in the frontoparietal cortex region of the rat brain at 3, 24, and 72 h after permanent left middle cerebral artery occlusion (pMCAO). The relative mRNA level of the genes studied was assessed using real-time reverse transcription-PCR. The Vegf-b and Vegf-d genes were most affected by the peptides, which resulted in their most noticeable activation at 3 h after pMCAO. The level of Vegf-d transcripts decreased considerably, whereas the mRNA level of the Vegf-b gene was significantly increased after 72 h of treatment with each of the peptides. In addition, the effects of the peptides on the expression of the Vegf-b and Vegf-d genes were the opposite of the action of ischemia. It is suggested that the identified effects of the peptides diminish the effects of ischemia, thus participating in the positive therapeutic effect of Semax on ischemic stroke.
Collapse
|
23
|
Cao B, Zhang X, Yan N, Chen S, Li Y. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats. Mol Brain 2012; 5:19. [PMID: 22681758 PMCID: PMC3407758 DOI: 10.1186/1756-6606-5-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/09/2012] [Indexed: 11/20/2022] Open
Abstract
Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain sensitivity) and anterior cingulate cortex neuronal responses to CRD. Conclusion CCK activating vagal afferent C fibers enhances memory consolidation and retention involved in long-term visceral negative affective state. Thus, in a number of gastrointestinal disorders, such as irritable bowel syndrome, nutrient content may contribute to painful visceral perception by enhancing visceral aversive memory via acts on vagal afferent pathway.
Collapse
Affiliation(s)
- Bing Cao
- Neuroscience Laboratory, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
24
|
Bos PA, Panksepp J, Bluthé RM, van Honk J. Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: a review of single administration studies. Front Neuroendocrinol 2012; 33:17-35. [PMID: 21256859 DOI: 10.1016/j.yfrne.2011.01.002] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/21/2010] [Accepted: 01/18/2011] [Indexed: 01/16/2023]
Abstract
Steroids and peptides mediate a diverse array of animal social behaviors. Human research is restricted by technical-ethical limitations, and models of the neuroendocrine regulation of social-emotional behavior are therefore mainly limited to non-human species, often under the assumption that human social-emotional behavior is emancipated from hormonal control. Development of acute hormone administration procedures in human research, together with the advent of novel non-invasive neuroimaging techniques, have opened up opportunities to systematically study the neuroendocrinology of human social-emotional behavior. Here, we review all placebo-controlled single hormone administration studies addressing human social-emotional behavior, involving the steroids testosterone and estradiol, and the peptides oxytocin and vasopressin. These studies demonstrate substantial hormonal control over human social-emotional behavior and give insights into the underlying neural mechanisms. Finally, we propose a theoretical model that synthesizes detailed knowledge of the neuroendocrinology of social-emotional behavior in animals with the recently gained data from humans described in our review.
Collapse
Affiliation(s)
- Peter A Bos
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Glazova NY, Atanov MS, Pyzgareva AV, Andreeva LA, Manchenko DM, Markov DD, Inozemtseva LS, Dolotov OV, Levitskaya NG, Kamensky AA, Grivennikov IA, Myasoedov NF. Neurotropic activity of ACTH(7-10)PGP, an analog of an ACTH fragment. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2011; 440:270-4. [PMID: 22134808 DOI: 10.1134/s0012496611050140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Indexed: 11/22/2022]
Affiliation(s)
- N Yu Glazova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cognitive enhancers: focus on modulatory signaling influencing memory consolidation. Pharmacol Biochem Behav 2011; 99:155-63. [PMID: 21236291 DOI: 10.1016/j.pbb.2010.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 12/24/2022]
Abstract
Biological research has unraveled many of the molecular and cellular mechanisms involved in the formation of long-lasting memory, providing new opportunities for the development of cognitive-enhancing drugs. Studies of drug enhancement of cognition have benefited from the use of pharmacological treatments given after learning, allowing the investigation of mechanisms regulating the consolidation phase of memory. Modulatory systems influencing consolidation processes include stress hormones and several neurotransmitter and neuropeptide systems. Here, we review some of the findings on memory enhancement by drug administration in animal models, and discuss their implications for the development of cognitive enhancers.
Collapse
|
27
|
Kim PA, Voskresenskaya OG, Kamensky AA. Delayed nootropic effects of arginine vasopressin after early postnatal chronic administration to albino rat pups. Bull Exp Biol Med 2009; 147:687-90. [PMID: 19902057 DOI: 10.1007/s10517-009-0604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intranasal administration of arginine vasopressin (10 microg/kg) to albino rat pups had a strong nootropic effect during training with positive and negative reinforcement. This effect was different in animals of various age groups: training with positive reinforcement was improved in "adolescent" rats and pubertal animals, while during training with negative reinforcement, the nootropic effect of the peptide was more prolonged and persisted also in adult animals.
Collapse
Affiliation(s)
- P A Kim
- Department of Human and Animal Physiology, Biological Faculty, M. V. Lomonosov Moscow State University, Russia.
| | | | | |
Collapse
|
28
|
Silachev DN, Shram SI, Shakova FM, Romanova GA, Myasoedov NF. Formation of spatial memory in rats with ischemic lesions to the prefrontal cortex; effects of a synthetic analog of ACTH(4-7). ACTA ACUST UNITED AC 2009; 39:749-56. [PMID: 19779827 DOI: 10.1007/s11055-009-9197-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 02/27/2008] [Indexed: 11/26/2022]
Abstract
Photochemically induced thrombosis of blood vessels in the prefrontal cortex in rats was shown to lead to ischemic infarcts in the lesion zone. Bilateral ischemic lesioning of the prefrontal cortex degraded measures of spatial memory when animals were tested in a Morris water maze with an invisible platform 20-24 days after surgery. Chronic intranasal administration of the peptide Met-Glu-His-Phe-Pro-Gly-Pro (Semax), a synthetic analog of ACTH(4-7), at a dose of 250 microg/kg/day during the first six days after photothrombosis, led to recovery of the animals' learning ability. The long-term antiamnestic action of the peptide observed here may result from its neuroprotective activity and its ability to stimulate the synthesis of neurotrophic factors.
Collapse
Affiliation(s)
- D N Silachev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
29
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Honda K, Takano Y. New topics in vasopressin receptors and approach to novel drugs: involvement of vasopressin V1a and V1b receptors in nociceptive responses and morphine-induced effects. J Pharmacol Sci 2009; 109:38-43. [PMID: 19151540 DOI: 10.1254/jphs.08r30fm] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Arginine vasopressin (AVP) receptors have been classified into V1a, V1b, and V2 subtypes. Recent studies have demonstrated the involvement of AVP in anti-nociception and in morphine-induced anti-nociception. However, the roles of individual AVP-receptor subtypes have not been fully elucidated. Here, we have summarized the role of V1-receptor subtypes in behavioral responses to noxious stimuli and to morphine. In this review, we focus on studies using mice lacking the V1a receptor (V1a(-/-) mice) and the V1b receptor (V1b(-/-) mice).
Collapse
Affiliation(s)
- Kenji Honda
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | |
Collapse
|
31
|
Shaitan KV, Tereshkina KB, Kitaev AS, Tereshkin EB, Levtsova OV, Antonov MY, Akimov MP, Nikolaev IN. Conformational transitions in the nootropic peptide semax (MEHFPGP) and its N-terminal modifications. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Storozhevykh TP, Tukhbatova GR, Senilova YE, Pinelis VG, Andreeva LA, Myasoyedov NF. Effects of semax and its Pro-Gly-Pro fragment on calcium homeostasis of neurons and their survival under conditions of glutamate toxicity. Bull Exp Biol Med 2008; 143:601-4. [PMID: 18239779 DOI: 10.1007/s10517-007-0192-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Semax (100 microM) and its Pro-Gly-Pro fragment (20 and 100 microM) delayed the development of calcium dysregulation and reduction of the mitochondrial potential in cultured cerebellar granule cells under conditions of glutamate neurotoxicity. Incubation with these peptides improved neuronal survival by on average 30%. The neuroprotective effect of semax in cerebral ischemia/hypoxia can be due to improvement of mitochondrial resistance to "calcium" stress.
Collapse
Affiliation(s)
- T P Storozhevykh
- Laboratory of Membranology, Center of Children's Health, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
33
|
Pitman R. Commentary: synthesis and perspectives. PROGRESS IN BRAIN RESEARCH 2007; 167:249-54. [DOI: 10.1016/s0079-6123(07)67018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Do-Rego JL, Acharjee S, Seong JY, Galas L, Alexandre D, Bizet P, Burlet A, Kwon HB, Luu-The V, Pelletier G, Vaudry H. Vasotocin and mesotocin stimulate the biosynthesis of neurosteroids in the frog brain. J Neurosci 2006; 26:6749-60. [PMID: 16793882 PMCID: PMC6673836 DOI: 10.1523/jneurosci.4469-05.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 11/21/2022] Open
Abstract
The neurohypophysial nonapeptides vasopressin (VP) and oxytocin (OT) modulate a broad range of cognitive and social activities. Notably, in amphibians, vasotocin (VT), the ortholog of mammalian VP, plays a crucial role in the control of sexual behaviors. Because several neurosteroids also regulate reproduction-related behaviors, we investigated the possible effect of VT and the OT ortholog mesotocin (MT) in the control of neurosteroid production. Double immunohistochemical labeling of frog brain sections revealed the presence of VT/MT-positive fibers in close proximity of neurons expressing the steroidogenic enzymes 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3beta-HSD) and cytochrome P450 17alpha-hydroxylase/c17, 20-lyase (P450(C17)). High concentrations of VT and MT receptor mRNAs were observed in diencephalic nuclei containing the 3beta-HSD and P450(C17) neuronal populations. Exposure of frog hypothalamic explants to graded concentrations of VT or MT produced a dose-dependent increase in the formation of progesterone, 17-hydroxypregnenolone, 17-hydroxyprogesterone, and dehydroepiandrosterone. The stimulatory effect of VT and MT on neurosteroid biosynthesis was mimicked by VP and OT, as well as by a selective V1b receptor agonist, whereas V2 and OT receptor agonists had no effect. VT-induced neurosteroid production was completely suppressed by selective V1a receptor antagonists and was not affected by V2 and OT receptor antagonists. Concurrently, the effect of MT on neurosteroidogenesis was markedly attenuated by selective OT and V1a receptor antagonists but not by a V2 antagonist. The present study provides the first evidence for a regulatory effect of VT and MT on neurosteroid biosynthesis. These data suggest that neurosteroids may mediate some of the behavioral actions of VT and MT.
Collapse
|
35
|
Eremin KO, Kudrin VS, Saransaari P, Oja SS, Grivennikov IA, Myasoedov NF, Rayevsky KS. Semax, an ACTH(4-10) analogue with nootropic properties, activates dopaminergic and serotoninergic brain systems in rodents. Neurochem Res 2006; 30:1493-500. [PMID: 16362768 DOI: 10.1007/s11064-005-8826-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Corticotrophin (ACTH) and its analogues, particularly Semax (Met-Glu-His-Phe-Pro-Gly-Pro), demonstrate nootropic activity. Close functional and anatomical links have been established between melanocortinergic and monoaminergic brain systems. The aim of present work was to investigate the effects of Semax on neurochemical parameters of dopaminergic- and serotonergic systems in rodents. The tissue content of 5-hydroxyindoleacetic acid (5-HIAA) in the striatum was significantly increased (+25%) 2 h after Semax administration. The extracellular striatal level of 5-HIAA gradually increased up to 180% within 1-4 h after Semax (0.15 mg/kg, ip) administration. This peptide alone failed to alter the tissue and extracellular concentrations of dopamine and its metabolites. Semax injected 20 min prior D: -amphetamine dramatically enhanced the effects of the latter on the extracellular level of dopamine and on the locomotor activity of animals. Our results reveal the positive modulatory effect of Semax on the striatal serotonergic system and the ability of Semax to enhance both the striatal release of dopamine and locomotor behavior elicited by D-amphetamine.
Collapse
Affiliation(s)
- Kirill O Eremin
- V.V. Zakusov's Research Institute of Pharmacology RAMS, Baltyskaya Str., 8, 125315, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Effect of Modification of the N-Terminal Region of Semax on the Expression of Nootropic Effect of Semax Analogs. BIOL BULL+ 2005. [DOI: 10.1007/s10525-005-0116-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Kaplan TJ, Skyers PR, Tabori NE, Drake CT, Milner TA. Ultrastructural evidence for mu-opioid modulation of cholinergic pathways in rat dentate gyrus. Brain Res 2004; 1019:28-38. [PMID: 15306235 DOI: 10.1016/j.brainres.2004.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/30/2022]
Abstract
Within the rat hippocampal formation, cholinergic afferents and mu-opioid receptors (MORs) are involved in many crucial learning processes, including those associated with drug reward. Pharmacological data, and the overlapping distributions of cholinergic and mu-opioid systems, particularly in the dentate gyrus, suggest that MOR activation is a potential mechanism for endogenous opioid modulation of cholinergic activity. To date, anatomical evidence supporting this has not been reported. To delineate the relationship between cholinergic afferents and MOR-containing processes in the dentate gyrus, hippocampal sections were dually immunolabeled for vesicular acetylcholine transporter (VAChT) and MOR-1 and examined by electron microscopy. VAChT immunoreactivity was in unmyelinated axons and axon terminals, and was most often associated with small synaptic vesicles. MOR immunoreactivity was found in axons, axon terminals and, to a lesser extent, perikarya, which resembled GABAergic basket cells. Semi-quantitative ultrastructural analysis revealed that from 5% to 13% (depending on laminar location) of VAChT-immunoreactive (ir) presynaptic profiles contained MOR immunoreactivity. Additionally, 7% of VAChT-ir presynaptic profiles directly apposed MOR-ir axons and terminals, and there were almost no appositions to MOR-ir dendrites. These data suggest that opioids may directly and indirectly modulate acetylcholine release and/or reuptake. In the hilus and molecular layer, 4% of VAChT-ir terminals contacted dendritic shafts that were also contacted by MOR-ir terminals. This suggests that cholinergic afferents and MOR-containing afferents can converge on granule cell dendrites (which are restricted to the molecular layer) and on interneuron dendrites in the hilus. The results of this study provide ultrastructural evidence for direct and indirect modulation of cholinergic systems by mu-opioids in the hippocampal formation.
Collapse
Affiliation(s)
- Theodore J Kaplan
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
38
|
Mishima K, Tsukikawa H, Miura I, Inada K, Abe K, Matsumoto Y, Egashira N, Iwasaki K, Fujiwara M. Ameliorative effect of NC-1900, a new AVP4-9 analog, through vasopressin V1A receptor on scopolamine-induced impairments of spatial memory in the eight-arm radial maze. Neuropharmacology 2003; 44:541-52. [PMID: 12646291 DOI: 10.1016/s0028-3908(02)00408-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanism by which NC-1900, a new pGlu-Asn-Cys(Cys)-Pro-Arg-Gly-NH(2) (AVP(4-9)) analog, improves spatial memory in rats using an eight-arm radial maze was examined. Even at very low doses (0.2 ng/kg for s.c., 1 microg/kg for p.o., 1 fg for i.c.v.) NC-1900 improved scopolamine-induced impairment of spatial memory. NC-1900 (1 ng/kg, s.c.) also improved impairment of spatial memory induced by pirenzepine, a muscarinic(1) (M(1)) receptor antagonist, and by KN-62, a Ca2+/calmodulin (CaM)-dependent protein kinase II inhibitor. [Pmp(1), Tyr(Me)(2)]-Arg(8)-vasopressin, a vasopressin(1A) (V(1A)) receptor antagonist, and nicardipine, L-type Ca2+ blocker, but not OPC-31260, a V(2) antagonist, suppressed the effect of NC-1900 on scopolamine-induced impairment of spatial memory. A microdialysis study showed that NC-1900 did not affect acetylcholine release in the ventral hippocampus (VH) of intact rats or of scopolamine-treated rats. NC-1900 (1 microM) increased [Ca2+](i) in the VH than in the dorsal hippocampus (DH). Pretreatment with nicardipine (1 microM) and Ca2+ -free conditions inhibited the NC-1900-induced [Ca2+](i) response in the VH. Whereas co-administration of NC-1900 (1 microM) and carbachol (500 microM) increased [Ca2+](i) in the VH. Moreover, nicardipine concentration-dependently inhibited the increase in [Ca2+](i) induced by the co-administration of NC-1900 and carbachol in the VH. These results suggest that NC-1900 activates the V(1A) receptor at the postsynaptic cholinergic nerve, and causes a transient influx of intracellular Ca2+ through L-type Ca2+ channels, to interact with the M(1) receptor. The activation of these Ca2+ -dependent processes induced by NC-1900 may be involved in the positive effect of NC-1900 on scopolamine-induced impairment of spatial memory.
Collapse
Affiliation(s)
- K Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mishima K, Tsukikawa H, Inada K, Fujii M, Iwasaki K, Matsumoto Y, Abe K, Egawa T, Fujiwara M. Ameliorative effect of vasopressin-(4-9) through vasopressin V(1A) receptor on scopolamine-induced impairments of rat spatial memory in the eight-arm radial maze. Eur J Pharmacol 2001; 427:43-52. [PMID: 11553362 DOI: 10.1016/s0014-2999(01)01200-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to clarify the mechanism by which pGlu-Asn-Cys(Cys)-Pro-Arg-Gly-NH(2) (vasopressin-(4-9)), a major metabolite C-terminal fragment of [Arg(8)]-vasopressin (vasopressin-(1-9)), improves learning and memory, we used several different drugs such as an acetylcholine receptor antagonist, a Ca(2+)/calmodulin-dependent protein kinase II inhibitor, vasopressin receptor antagonists and L-type Ca(2+) channel blocker to disrupt spatial memory in rats. Moreover, we examined the effect of vasopressin-(4-9) on acetylcholine release in the ventral hippocampus using microdialysis. Vasopressin-(4-9) (10 fg/brain, i.c.v.) improved the impairment of spatial memory in the eight-arm radial maze induced by scopolamine, pirenzepine and Ca(2+)/calmodulin -dependent protein kinase II inhibitor. Pirenzepine, a vasopressin V(1A) receptor antagonist, and L-type Ca(2+) channel blocker, but not a vasopressin V(2) receptor antagonist, suppressed the effects of vasopressin-(4-9) on scopolamine-induced impairment of spatial memory. Moreover, vasopressin-(4-9) did not affect acetylcholine release in the ventral hippocampus of intact rats or of scopolamine-treated rats as assessed by microdialysis. These results suggest that vasopressin-(4-9) activates vasopressin V(1A) receptors on the postsynaptic membrane of cholinergic neurons, and induces a transient influx of intracellular Ca(2+) through L-type Ca(2+) channels to interact with muscarinic M(1) receptors. The activation of these processes by vasopressin-(4-9) is critically involved in the positive effect of vasopressin-(4-9) on scopolamine-induced impairment of spatial memory.
Collapse
Affiliation(s)
- K Mishima
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brinton RD, Thompson RH, Brownson EA. Spatial, cellular and temporal basis of vasopressin potentiation of norepinephrine-induced cAMP formation. Eur J Pharmacol 2000; 405:73-88. [PMID: 11033316 DOI: 10.1016/s0014-2999(00)00543-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study investigated the spatial distribution of vasopressin V(1) and beta(1)-adrenoceptors within hippocampal subfields and lamina in an attempt to localize the site(s) of interaction between these two receptor systems. In addition, the cell types, neuronal and glial, in which the vasopressin-induced neuromodulation occurs, were identified. Lastly, the temporal constraints of the potentiation induced by vasopressin were investigated. Results of these analyses demonstrated multiple sites within the hippocampus where the interaction between vasopressin and norephinephrine could occur. Moreover, vasopressin-induced potentiation of adrenergic stimulated cyclase occurred in both hippocampal neurons and glia whereas it did not occur in undifferentiated neurons. Analysis of the temporal constraints of vasopressin-induced potentiation revealed that pre-activation of the vasopressin V(1) receptor for 1 min yielded greater potentiation than simultaneous exposure to vasopressin and norepinephrine. These data provide insights into the spatial and temporal characteristics for the interaction between the vasopressin receptor and adrenoceptor systems and provide a cellular and biochemical rationale for the behavioral findings of Kovács and De Wied.
Collapse
Affiliation(s)
- R D Brinton
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
41
|
Rollo CD, Ko CV, Tyerman JGA, Kajiura LJ. The growth hormone axis and cognition: empirical results and integrated theory derived from giant transgenic mice. CAN J ZOOL 1999. [DOI: 10.1139/z99-153] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sleep is required for the consolidation of memory for complex tasks, and elements of the growth-hormone (GH) axis may regulate sleep. The GH axis also up-regulates protein synthesis, which is required for memory consolidation. Transgenic rat GH mice (TRGHM) express plasma GH at levels 100-300 times normal and sleep 3.4 h longer (30%) than their normal siblings. Consequently, we hypothesized that they might show superior ability to learn a complex task (8-choice radial maze); 47% of the TRGHM learned the task before any normal mice. All 17 TRGHM learned the task, but 33% of the 18 normal mice learned little. TRGHM learned the task significantly faster than normal mice (p < 0.05) and made half as many errors in doing so, even when the normal nonlearners were excluded from the analysis. Whereas normal mice expressed a linear learning curve, TRGHM showed exponentially declining error rates. The contribution of the GH axis to cognition is conspicuously sparse in literature syntheses of knowledge concerning neuroendocrine mechanisms of learning and memory. This paper synthesizes the crucial role of major components of the GH axis in brain functioning into a holistic framework, integrating learning, sleep, free radicals, aging, and neurodegenerative diseases. TRGHM show both enhanced learning in youth and accelerated aging. Thus, they may provide a powerful new probe for use in gaining an understanding of aspects of central nervous system functioning, which is highly relevant to human health.
Collapse
|
42
|
Delorenzi A, Maldonado H. Memory enhancement by the angiotensinergic system in the crab Chasmagnathus is mediated by endogenous angiotensin II. Neurosci Lett 1999; 266:1-4. [PMID: 10336169 DOI: 10.1016/s0304-3940(99)00232-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In previous work with the crab Chasmagnathus, it was reported that either exogenous angiotensin II (ANGII) or angiotensin IV (ANGIV), have an enhancing effect on long-term memory, which involves an association between context and an iterative danger stimulus (context-signal memory, CSM). Present results indicate that Dival, an ANGIV antagonist, reverts the facilitatory effect of ANGIV but not that of ANGII, whereas saralasin but not Dival, disrupts CSM. These findings suggest that ANGII is the endogenous angiotensin that plays a significant role in long-term memory, while the ANGIV receptor would not be encompassed in the cascade of events related to crab's CSM.
Collapse
Affiliation(s)
- A Delorenzi
- Facultad de Ciencias Exactas y Naturales, Depto Biología, Universidad de Buenos Aires, Argentina.
| | | |
Collapse
|
43
|
Abstract
Centrally released arginine vasopressin (AVP) has been associated with various behavioural and cognitive effects, such as scent marking, aggression, and memory, which are believed to be mediated by the V1a subtype of the vasopressin receptor. Although the distribution of V1a receptors is conserved in a few brain regions, the pattern of expression of this receptor is, in general, highly species-specific. We have used receptor autoradiography with the linear V1a receptor ligand (125I-Phenylacetyl-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-Tyr-NH2) to characterize the pattern of receptor binding in the rhesus monkey brain. Brain sites of V1a receptor synthesis were defined using in-situ hybridization. The regions of highest V1a receptor density included the prefrontal, cingulate, pyriform, and entorhinal cortex, as well as the presubiculum and mamillary bodies. In addition, V1a receptor binding and mRNA were detected in several regions reported to have V1a receptor in most rodents, including the amygdala, bed nucleus of the stria terminalis, lateral septum, hypothalamus and the brainstem. The distribution is consistent with a role for vasopressin in higher cognitive functions, especially memory, in primates.
Collapse
Affiliation(s)
- L J Young
- Department of Psychiatry and Behavioural Sciences, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|