1
|
Yadem AC, Armstrong JN, Sarimollaoglu M, Kiki Massa C, Ndifo JM, Menyaev YA, Mbe A, Richards K, Wade M, Zeng Y, Chen R, Zhou Q, Meten E, Ntone R, Tchuedji YLGN, Ullah S, Galanzha EI, Eteki L, Gonsu HK, Biris A, Suen JY, Boum Y, Zharov VP, Parikh S. Noninvasive in vivo photoacoustic detection of malaria with Cytophone in Cameroon. Nat Commun 2024; 15:9228. [PMID: 39455558 PMCID: PMC11511992 DOI: 10.1038/s41467-024-53243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Current malaria diagnostics are invasive, lack sensitivity, and rapid tests are plagued by deletions in target antigens. Here we introduce the Cytophone, an innovative photoacoustic flow cytometer platform with high-pulse-rate lasers and a focused ultrasound transducer array to noninvasively detect and identify malaria-infected red blood cells (iRBCs) using specific wave shapes, widths, and time delays generated from the absorbance of laser energy by hemozoin, a universal biomarker of malaria infection. In a population of Cameroonian adults with uncomplicated malaria, we assess our device for safety in a cross-sectional cohort (n = 10) and conduct a performance assessment in a longitudinal cohort (n = 20) followed for 30 ± 7 days after clearance of parasitemia. Longitudinal cytophone measurements are compared to point-of-care and molecular assays (n = 94). Cytophone is safe with 90% sensitivity, 69% specificity, and a receiver-operator-curve-area-under-the-curve (ROC-AUC) of 0.84, as compared to microscopy. ROC-AUCs of Cytophone, microscopy, and RDT compared to quantitative PCR are not statistically different from one another. The ability to noninvasively detect iRBCs in the bloodstream is a major advancement which offers the potential to rapidly identify both the large asymptomatic reservoir of infection, as well as diagnose symptomatic cases without the need for a blood sample.
Collapse
Affiliation(s)
| | | | - Mustafa Sarimollaoglu
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - Yulian A Menyaev
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Anastasie Mbe
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | | | - Martina Wade
- Yale School of Public Health, New Haven, CT, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Ruimin Chen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Elvis Meten
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | | | | | - Safi Ullah
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
| | - Ekaterina I Galanzha
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - Alexandru Biris
- Department of Applied Science & Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock (UALR), Little Rock, AR, USA
| | - James Y Suen
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Applied Science & Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock (UALR), Little Rock, AR, USA
| | - Yap Boum
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | - Vladimir P Zharov
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA.
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA.
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
2
|
Hoshi K, Tu ATT, Shobo M, Kettisen K, Ye L, Bülow L, Hakamata Y, Furuya T, Asano R, Tsugawa W, Ikebukuro K, Sode K, Yamazaki T. Potential of Enzymatically Synthesized Hemozoin Analog as Th1 Cell Adjuvant. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1440. [PMID: 39269102 PMCID: PMC11397214 DOI: 10.3390/nano14171440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Hemozoin (Hz) is a heme crystal produced during malaria infection that stimulates immune cells, leading to the production of cytokines and chemokines. The immunostimulatory action of Hz has previously been applied in the development of alternative adjuvants. Crystallization of hemin is a chemical approach for producing Hz. Here, we focused on an enzymatic production method for Hz using the heme detoxification protein (HDP), which catalyzes heme dimer formation from hemin in Plasmodium. We examined the immunostimulatory effects of an enzymatically synthesized analog of Hz (esHz) produced by recombinant Plasmodium falciparum HDP. Enzymatically synthesized Hz stimulates a macrophage cell line and human peripheral mononuclear cells, leading to the production of interleukin (IL)-6 and IL-12p40. In mice, subcutaneous administration of esHz together with an antigen, ovalbumin (OVA), increased the OVA-specific immunoglobulin (Ig) G2c isotype level in the serum, whereas OVA-specific IgG1 was not induced. Our findings suggest that esHz is a useful Th-1 cell adjuvant.
Collapse
Affiliation(s)
- Kazuaki Hoshi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
| | - Anh Thi Tram Tu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Miwako Shobo
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
| | - Karin Kettisen
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Yoji Hakamata
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| | - Tetsuya Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
3
|
Klar PB, Waterman DG, Gruene T, Mullick D, Song Y, Gilchrist JB, Owen CD, Wen W, Biran I, Houben L, Regev-Rudzki N, Dzikowski R, Marom N, Palatinus L, Zhang P, Leiserowitz L, Elbaum M. Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin. ACS CENTRAL SCIENCE 2024; 10:1504-1514. [PMID: 39220700 PMCID: PMC11363319 DOI: 10.1021/acscentsci.4c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin. Here, we apply emerging methods of in situ cryo-electron tomography and 3D electron diffraction to obtain a definitive structure of hemozoin directly from ruptured parasite cells. Biogenic hemozoin crystals take a striking polar morphology. Like β-hematin, the unit cell contains a heme dimer, which may form four distinct stereoisomers: two centrosymmetric and two chiral enantiomers. Diffraction analysis, supported by density functional theory analysis, reveals a selective mixture in the hemozoin lattice of one centrosymmetric and one chiral dimer. Absolute configuration has been determined by morphological analysis and confirmed by a novel method of exit-wave reconstruction from a focal series. Atomic disorder appears on specific facets asymmetrically, and the polar morphology can be understood in light of water binding. Structural modeling of the heme detoxification protein suggests a function as a chiral agent to bias the dimer formation in favor of rapid growth of a single crystalline phase. The refined structure of hemozoin should serve as a guide to new drug development.
Collapse
Affiliation(s)
- Paul Benjamin Klar
- Faculty
of Geosciences and MAPEX Center for Materials and Processes, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - David Geoffrey Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K.
- CCP4,
Research Complex at Harwell, Rutherford
Appleton Laboratory, Didcot OX11 0FA, U.K.
| | - Tim Gruene
- Department
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Debakshi Mullick
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - Yun Song
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - C. David Owen
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Wen Wen
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Idan Biran
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Ron Dzikowski
- Department
of Microbiology and Molecular Genetics, Institute for Medical Research
Israel-Canada, and The Kuvin Center for the Study of Infectious and
Tropical Diseases, The Hebrew University-Hadassah
Medical School, Jerusalem 9112010, Israel
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lukas Palatinus
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - Peijun Zhang
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
- Division
of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Leslie Leiserowitz
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Elbaum
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
4
|
Orbán Á, Schumacher JJ, Mucza S, Strinic A, Molnár P, Babai R, Halbritter A, Vértessy BG, Karl S, Krohns S, Kézsmárki I. Magneto-optical assessment of Plasmodium parasite growth via hemozoin crystal size. Sci Rep 2024; 14:14318. [PMID: 38906910 PMCID: PMC11192761 DOI: 10.1038/s41598-024-60988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Hemozoin is a natural biomarker formed during the hemoglobin metabolism of Plasmodium parasites, the causative agents of malaria. The rotating-crystal magneto-optical detection (RMOD) has been developed for its rapid and sensitive detection both in cell cultures and patient samples. In the current article we demonstrate that, besides quantifying the overall concentration of hemozoin produced by the parasites, RMOD can also track the size distribution of the hemozoin crystals. We establish the relations between the magneto-optical signal, the mean parasite age and the median crystal size throughout one erythrocytic cycle of Plasmodium falciparum parasites, where the latter two are determined by optical and scanning electron microscopy, respectively. The significant correlation between the magneto-optical signal and the stage distribution of the parasites indicates that the RMOD method can be utilized for species-specific malaria diagnosis and for the quick assessment of drug efficacy.
Collapse
Affiliation(s)
- Ágnes Orbán
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary.
| | - Jan-Jonas Schumacher
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Szilvia Mucza
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Ana Strinic
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Petra Molnár
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Réka Babai
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - András Halbritter
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Beáta G Vértessy
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Stephan Karl
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, Madang Province, 511, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLS, Australia
| | - Stephan Krohns
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - István Kézsmárki
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany.
| |
Collapse
|
5
|
Omorou R, Delabie B, Lavoignat A, Chaker V, Bonnot G, Traore K, Bienvenu AL, Picot S. Nanoparticle tracking analysis of natural hemozoin from Plasmodium parasites. Acta Trop 2024; 250:107105. [PMID: 38135133 DOI: 10.1016/j.actatropica.2023.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Hemozoin is a byproduct of hemoglobin digestion crucial for parasite survival. It forms crystals that can be of interest as drug targets or biomarkers of malaria infection. However, hemozoin has long been considered as an amorphous crystal of simple morphology. Studying the consequences of biomineralization of this crystal during the parasite growth may provide more comprehensive evidence of its role during malaria. OBJECTIVES This study aimed to investigate the interest of nanoparticles tracker analysis for measuring the concentration and size of hemozoin particles produced from different parasite sources and conditions. METHODS Hemozoin was extracted from several clones of Plasmodium falciparum both asexual and sexual parasites. Hemozoin was also extracted from blood samples of malaria patients and from saliva of asymptomatic malaria carriers. Nanoparticles tracking analysis (NTA) was performed to assess the size and concentration of hemozoin. RESULTS NTA data showed variation in hemozoin concentration, size, and crystal clusters between parasite clones, species, and stages. Among parasite clones, hemozoin concentration ranged from 131 to 2663 particles/infected red blood cell (iRBC) and size ranged from 149.6 ± 6.3 nm to 234.8 ± 40.1 nm. The mean size was lower for Plasmodium vivax (176 ± 79.2 nm) than for Plasmodium falciparum (254.8 ± 74.0 nm). Sexual NF54 parasites showed a 7.5-fold higher concentration of hemozoin particles (28.7 particles/iRBC) compared to asexual parasites (3.8 particles/iRBC). In addition, the mean hemozoin size also increased by approximately 60 % for sexual parasites. Compared to in vitro cultures of parasites, blood samples showed low hemozoin concentrations. CONCLUSIONS This study highlights the potential of NTA as a useful method for analyzing hemozoin, demonstrating its ability to provide detailed information on hemozoin characterization. However, further research is needed to adapt the NTA for hemozoin analysis.
Collapse
Affiliation(s)
- Roukayatou Omorou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France.
| | - Blanche Delabie
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Adeline Lavoignat
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Victorien Chaker
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Guillaume Bonnot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Karim Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Anne-Lise Bienvenu
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France; Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon 69004, France
| | - Stephane Picot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France; Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon 69004, France
| |
Collapse
|
6
|
Singh R, Singh R, Srihari V, Makde RD. In Vitro Investigation Unveiling New Insights into the Antimalarial Mechanism of Chloroquine: Role in Perturbing Nucleation Events during Heme to β-Hematin Transformation. ACS Infect Dis 2023; 9:1647-1657. [PMID: 37471056 DOI: 10.1021/acsinfecdis.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Malaria parasites generate toxic heme during hemoglobin digestion, which is neutralized by crystallizing into inert hemozoin (β-hematin). Chloroquine blocks this detoxification process, resulting in heme-mediated toxicity in malaria parasites. However, the exact mechanism of chloroquine's action remains unknown. This study investigates the impact of chloroquine on the transformation of heme into β-hematin. The results show that chloroquine does not completely halt the transformation process but rather slows it down. Additionally, chloroquine complexation with free heme does not affect substrate availability or inhibit β-hematin formation. Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) studies indicate that the size of β-hematin crystal particles and crystallites increases in the presence of chloroquine, suggesting that chloroquine does not impede crystal growth. These findings suggest that chloroquine delays hemozoin production by perturbing the nucleation events of crystals and/or the stability of crystal nuclei. Thus, contrary to prevailing beliefs, this study provides a new perspective on the working mechanism of chloroquine.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Rashmi Singh
- Laser & Functional Materials Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Velaga Srihari
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 40008, Maharashtra, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| |
Collapse
|
7
|
Schats R. Developing an archaeology of malaria. A critical review of current approaches and a discussion on ways forward. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2023; 41:32-42. [PMID: 36930997 DOI: 10.1016/j.ijpp.2023.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This paper presents the current state of the art in the investigation of past malaria by providing an extensive review of previous studies and identifying research possibilities for the future. MATERIALS All previous research on the detection of malaria in human skeletal material using macroscopic and biomolecular approaches is considered. METHODS The approaches and methods used by scholars and the results they obtained are evaluated and the limitations discussed. RESULTS There is a link between malaria and porous lesions with significantly higher prevalence in malaria-endemic areas, however, they are not pathognomonic or specific for malaria. Malaria can be identified using biomolecular techniques, yet, to date there is no completely satisfactory method that is able to consistently diagnose the disease. CONCLUSIONS Using macroscopic and biomolecular techniques, malaria can be investigated in past populations and the impact of the disease studied. Yet, this is not a straightforward process and the use of multiple lines of evidence is necessary to obtain the best results. SIGNIFICANCE The extensive discussion on ways malaria can and cannot be identified in past populations and the suggestions for new approaches provide a steppingstone for future research into this debilitating, global disease. LIMITATIONS Malaria is a difficult disease to study archaeologically and successful identification depends on many intrinsic and extrinsic factors. SUGGESTIONS FOR FURTHER RESEARCH More large-scale spatial analyses of porous lesions as well as targeting different tissues or molecules for biomolecular identification may improve the archaeological understanding of malaria.
Collapse
Affiliation(s)
- Rachel Schats
- Leiden University, Faculty of Archaeology, Laboratory for Human Osteoarchaeology, Einsteinweg 2, 2333CC Leiden, the Netherlands.
| |
Collapse
|
8
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
9
|
Tan AF, Thota P, Sakam SSB, Lew YL, Rajahram GS, William T, Barber BE, Kho S, Anstey NM, Bell D, Grigg MJ. Evaluation of a point-of-care haemozoin assay (Gazelle device) for rapid detection of Plasmodium knowlesi malaria. Sci Rep 2023; 13:4760. [PMID: 36959462 PMCID: PMC10036474 DOI: 10.1038/s41598-023-31839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Plasmodium knowlesi is the major cause of zoonotic malaria in Southeast Asia. Rapid and accurate diagnosis enables effective clinical management. A novel malaria diagnostic tool, Gazelle (Hemex Health, USA) detects haemozoin, a by-product of haem metabolism found in all Plasmodium infections. A pilot phase refined the Gazelle haemozoin identification algorithm, with the algorithm then tested against reference PCR in a larger cohort of patients with P. knowlesi mono-infections and febrile malaria-negative controls. Limit-of-detection analysis was conducted on a subset of P. knowlesi samples serially diluted with non-infected whole blood. The pilot phase of 40 P. knowlesi samples demonstrated 92.5% test sensitivity. P. knowlesi-infected patients (n = 203) and febrile controls (n = 44) were subsequently enrolled. Sensitivity and specificity of the Gazelle against reference PCR were 94.6% (95% CI 90.5-97.3%) and 100% (95% CI 92.0-100%) respectively. Positive and negative predictive values were 100% and 98.8%, respectively. In those tested before antimalarial treatment (n = 143), test sensitivity was 96.5% (95% CI 92.0-98.9%). Sensitivity for samples with ≤ 200 parasites/µL (n = 26) was 84.6% (95% CI 65.1-95.6%), with the lowest parasitaemia detected at 18/µL. Limit-of-detection (n = 20) was 33 parasites/µL (95% CI 16-65%). The Gazelle device has the potential for rapid, sensitive detection of P. knowlesi infections in endemic areas.
Collapse
Affiliation(s)
- Angelica F Tan
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia.
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.
| | | | - Sitti Saimah Binti Sakam
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Yao Long Lew
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Hospital Queen Elizabeth II, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia.
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
10
|
Liu L, Zhang Z, Liu H, Zhu S, Zhou T, Wang C, Hu M. Identification and characterisation of the haemozoin of Haemonchus contortus. Parasit Vectors 2023; 16:88. [PMID: 36879311 PMCID: PMC9990328 DOI: 10.1186/s13071-023-05714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Most haematophagous organisms constantly suck the host's haemoglobin, which produces toxic free haem. This toxic haem aggregation into the nontoxic crystallisation complex known as haemozoin represents one of the most important detoxification pathways in living organisms, but very little is known about the features of haemozoin in parasitic nematodes. Here, we identified and characterised the haemozoin of an economically significant blood-sucking nematode, Haemonchus contortus. METHODS Using electron microscopy, spectrophotometry analyses and biochemical approaches, haemozoin crystallisation was identified and characterised in parasitic fourth-stage larvae (L4s) and/or adult worms as well as L4s of in vitro culture. RESULTS The haemozoin was formed in intestinal lipid droplets of the parasitic L4s and adult worms. The characterisation of the haemozoin showed regularly spherical structures and had a 400-nm absorption peak. Furthermore, the haemozoin in in vitro cultured L4s was associated with the culture time and concentration of red blood cells added into the medium, and its formation could be inhibited by chloroquine-derived drugs. CONCLUSIONS This work provides detailed insight into the haemozoin formation of H. contortus and should have important implications for developing novel therapeutic targets against this parasite or related haematophagous organisms.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongshan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengnan Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taoxun Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Paica IC, Rusu I, Popescu O, Brînzan A, Pencea I, Dobrinescu C, Kelemen B. Tentative indicators of malaria in archaeological skeletal samples, a pilot study testing different methods. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2023; 40:109-116. [PMID: 36724549 DOI: 10.1016/j.ijpp.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE This study attempts to integrate multiple methods to investigate the presence of malaria in human skeletal samples from an archaeological context. MATERIALS 33 well preserved human remains originating from a 17th-century archaeological site in southeastern Romania. METHODS The human bone samples were analyzed using rapid diagnostic tests for malaria antigens and PCR amplification of Plasmodium falciparum apical membrane antigen 1. A preliminary test was performed to identify and briefly characterize the presence of hemozoin using a combination of TEM imaging and diffraction. RESULTS The rapid diagnostic tests indicated that more than half of the examined samples were positive for Plasmodium antigens, but no traces of the parasites' genetic material were detected despite repeated attempts. The TEM images indicated that hemozoin might be a promising diagnostic marker of malaria in ancient bones. CONCLUSIONS The indisputable identification of malaria in the analyzed archaeological population was not possible as none of the applied methodological strategies turned out to be straightforward. SIGNIFICANCE This study reinforces the intricacy and limitations of unequivocally identifying malaria in past populations and sets the stage for future studies on such life-threatening infectious disease in a geographical space, which is currently underrepresented in the bioarchaeological literature. LIMITATIONS The low sample size and the lack of consistency across all assays hindered understanding the role of malaria in the studied population. SUGGESTIONS FOR FURTHER RESEARCH Further thorough multidisciplinary approaches on malaria detection in ancient settlements would be appropriate to inform our knowledge of its origins, frequency, and pathogen changes over centuries.
Collapse
Affiliation(s)
| | - Ioana Rusu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, 400006, Romania; Molecular Biology Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, 400271, Romania.
| | - Octavian Popescu
- Institute of Biology Bucharest of Romanian Academy, Bucharest, 060031, Romania; Molecular Biology Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, 400271, Romania; Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, 400006, Romania
| | - Alexandru Brînzan
- Institute of Biology Bucharest of Romanian Academy, Bucharest, 060031, Romania
| | - Ion Pencea
- Department of Metallic Material Science and Physical Metallurgy, University Politehnica of Bucharest, Bucharest, 060042, Romania
| | - Cătălin Dobrinescu
- Department of Research-Development and Projects, Museum of National History and Archaeology, Constanţa, 900745, Romania
| | - Beatrice Kelemen
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, 400006, Romania; Molecular Biology Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, 400271, Romania
| |
Collapse
|
12
|
Mullick D, Rechav K, Leiserowitz L, Regev-Rudzki N, Dzikowski R, Elbaum M. Diffraction contrast in cryo-scanning transmission electron tomography reveals the boundary of hemozoin crystals in situ. Faraday Discuss 2022; 240:127-141. [PMID: 35938388 DOI: 10.1039/d2fd00088a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria is a potentially fatal infectious disease caused by the obligate intracellular parasite Plasmodium falciparum. The parasite infects human red blood cells (RBC) and derives nutrition by catabolism of hemoglobin. As amino acids are assimilated from the protein component, the toxic heme is released. Molecular heme is detoxified by rapid sequestration to physiologically insoluble hemozoin crystals within the parasite's digestive vacuole (DV). Common antimalarial drugs interfere with this crystallization process, leaving the parasites vulnerable to the by-product of their own metabolism. A fundamental debate with important implications on drug mechanism regards the chemical environment of crystallization in situ, whether aqueous or lipid. This issue had been addressed previously by cryogenic soft X-ray tomography. We employ cryo-scanning transmission electron tomography (CSTET) to probe parasite cells throughout the life cycle in a fully hydrated, vitrified state at higher resolution. During the acquisition of CSTET data, Bragg diffraction from the hemozoin provides a uniquely clear view of the crystal boundary at nanometer resolution. No intermediate medium, such as a lipid coating or shroud, could be detected surrounding the crystals. The present study describes a unique application of CSTET in the study of malaria. The findings can be extended to evaluate new drug candidates affecting hemozoin crystal growth.
Collapse
Affiliation(s)
- Debakshi Mullick
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Katya Rechav
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Leslie Leiserowitz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, and The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Fernando D, Thota P, Semege S, Booso R, Bell D, de A. W. Gunasekera KT, Ranaweera P. Evaluation of a haemozoin-based rapid diagnostic test for diagnosis of imported malaria during the phase of prevention of reestablishment in Sri Lanka. Malar J 2022; 21:263. [PMID: 36088431 PMCID: PMC9464370 DOI: 10.1186/s12936-022-04283-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background Sri Lanka, an island nation, has eliminated endemic malaria transmission. Maintaining elimination in the continued presence of vectors requires vigilance in screening people travelling from high malaria-risk areas and a rapid response with focal screening for infections identified in the community. Such screening requires accurate and very rapid assays that enable an immediate response. Both microscopy and rapid diagnostic tests (RDTs) have limitations including sensitivity and speed in screening large numbers, while polymerase chain reaction (PCR) is practical only as laboratory confirmation. This study assessed the utility of ‘Gazelle’, a novel rapid malaria assay based on magneto-optical detection of haemozoin, a by-product of malaria parasite metabolism. Methods Between October 2020 and March 2021, two groups of individuals were screened for malaria by four methods, namely, microscopy, Rapid Diagnostic Test (RDT), Gazelle and PCR. Passive case detection was carried out for confirmation of diagnosis amongst individuals suspected of having malaria. Individuals at high-risk of acquiring malaria, namely persons returning from malaria endemic countries, were screened by active case detection. Results Of the 440 individuals screened for malaria, nine malaria positives were diagnosed by PCR, microscopy and the HRP2 band of RDT, which included five Plasmodium falciparum infections, two Plasmodium ovale, and one each of Plasmodium vivax and Plasmodium malariae. Gazelle correctly detected the P. vivax, P. ovale and P. malariae infections within the 2 min test time, but did not detect two P. falciparum infections giving a sensitivity of 77.8%. Specificity was 100%. Discussion The Gazelle, a portable bench top device proved useful to screen a large number of blood samples for non-falciparum parasites within 5 minutes of sample input. Species differentiation, and improvement in P. falciparum detection, will be important to broaden utility. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04283-7.
Collapse
|
14
|
Towards rainbow portable Cytophone with laser diodes for global disease diagnostics. Sci Rep 2022; 12:8671. [PMID: 35606373 PMCID: PMC9126638 DOI: 10.1038/s41598-022-11452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
In vivo, Cytophone has demonstrated the capability for the early diagnosis of cancer, infection, and cardiovascular disorders through photoacoustic detection of circulating disease markers directly in the bloodstream with an unprecedented 1,000-fold improvement in sensitivity. Nevertheless, a Cytophone with higher specificity and portability is urgently needed. Here, we introduce a novel Cytophone platform that integrates a miniature multispectral laser diode array, time-color coding, and high-speed time-resolved signal processing. Using two-color (808 nm/915 nm) laser diodes, we demonstrated spectral identification of white and red clots, melanoma cells, and hemozoin in malaria-infected erythrocytes against a blood background and artifacts. Data from a Plasmodium yoelii murine model and cultured human P. falciparum were verified in vitro with confocal photothermal and fluorescent microscopy. With these techniques, we detected infected cells within 4 h after invasion, which makes hemozoin promising as a spectrally selective marker at the earliest stages of malaria progression. Along with the findings from our previous application of Cytophone with conventional lasers for the diagnosis of melanoma, bacteremia, sickle anemia, thrombosis, stroke, and abnormal hemoglobin forms, this current finding suggests the potential for the development of a portable rainbow Cytophone with multispectral laser diodes for the identification of these and other diseases.
Collapse
|
15
|
Current methods for the detection of Plasmodium parasite species infecting humans. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100086. [PMID: 35434694 PMCID: PMC9006665 DOI: 10.1016/j.crpvbd.2022.100086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022]
Abstract
Malaria is the world’s fatal parasitic disease. The ability to quickly and accurately identify malaria infection in challenging environments is crucial to allow efficient administration of the best treatment regime for human patients. If those techniques are accessible and efficient, global detection of Plasmodium species will become more sensitive, allowing faster and more precise action to be taken for disease control strategies. Recent advances in technology have enhanced our ability to diagnose different species of Plasmodium parasites with greater sensitivity and specificity. This literature review provides a summary and discussion of the current methods for the diagnosis and identification of Plasmodium spp. in human blood samples. So far not a single method is precise, but advanced technologies give consistent identification of a Plasmodium infection in endemic regions. By using the power of the recent methods, we can provide a broader understanding of the multiplicity of infection and or transmission dynamics of Plasmodium spp. This will result in improved disease control strategies, better-informed policy, and effective treatment for malaria-positive patients. Summary of the methods currently available for the detection of Plasmodium spp. infecting humans. No single method is perfect for every application to identify Plasmodium spp. Newly developed methods give promise for more reliable characterisation of Plasmodium spp.
Collapse
|
16
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
17
|
Giacometti M, Monticelli M, Piola M, Milesi F, Coppadoro L, Giuliani E, Jacchetti E, Raimondi MT, Ferrari G, Antinori S, Fiore GB, Bertacco R. On-chip magnetophoretic capture in a model of malaria-infected red blood cells. Biotechnol Bioeng 2022; 119:1129-1141. [PMID: 34984673 PMCID: PMC9306751 DOI: 10.1002/bit.28030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022]
Abstract
The search for new rapid diagnostic tests for malaria is a priority for developing an efficient strategy to fight this endemic disease, which affects more than 3 billion people worldwide. In this paper, we characterize systematically an easy-to-operate lab-on-chip, designed for the magnetophoretic capture of malaria-infected red blood cells. The method relies on the positive magnetic susceptibility of infected red blood cells with respect to blood plasma. A matrix of nickel posts fabricated in a silicon chip placed face down is aimed at attracting infected cells, while healthy cells sediment on a glass slide under the action of gravity. Using a model of infected red blood cells, i.e. erythrocytes with methaemoglobin, we obtained a capture efficiency of about 70% after 10 minutes in static conditions. By proper agitation, the capture efficiency reached 85% after just 5 minutes. Sample preparation requires only a 1:10 volume dilution of whole blood, previously treated with heparin, in a phosphate buffered solution. Nonspecific attraction of untreated red blood cells was not observed in the same time interval. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- M Giacometti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - M Monticelli
- Department of Physics, Politecnico di Milano, 20133, Milano, Italy
| | - M Piola
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - F Milesi
- Department of Physics, Politecnico di Milano, 20133, Milano, Italy
| | - L Coppadoro
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - E Giuliani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - E Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20133, Milano, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research, 56122, Pisa, Italy
| | - M T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20133, Milano, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research, 56122, Pisa, Italy
| | - G Ferrari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - S Antinori
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, 20157, Milano, Italy
| | - G B Fiore
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research, 56122, Pisa, Italy
| | - R Bertacco
- Department of Physics, Politecnico di Milano, 20133, Milano, Italy.,IFN-CNR, c/o Politecnico di Milano, 20133, Milano, Italy
| |
Collapse
|
18
|
Abstract
The challenges in malaria diagnosis continue to threaten the malaria elimination goal in India and other malaria-endemic countries. A rapid diagnostic test (RDT) kit is widely used in resource-constrained areas where microscopy and molecular methods are not easily deployable. Considering the problems associated with the currently available RDT kit, such as histidine-rich protein 2 gene deletion and prolonged stability of the protein in the blood, it suggests that new potential biomarkers are urgently needed. Hemozoin (Hz) is an important biomarker for malaria diagnosis, which is the by-product of a detoxification mechanism in the malaria parasite. This article highlights the importance of "Hz" for point-of-care malaria diagnosis when India and other countries are moving toward the goal of malaria elimination.
Collapse
|
19
|
Baptista V, Costa MS, Calçada C, Silva M, Gil JP, Veiga MI, Catarino SO. The Future in Sensing Technologies for Malaria Surveillance: A Review of Hemozoin-Based Diagnosis. ACS Sens 2021; 6:3898-3911. [PMID: 34735120 DOI: 10.1021/acssensors.1c01750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early and effective malaria diagnosis is vital to control the disease spread and to prevent the emergence of severe cases and death. Currently, malaria diagnosis relies on optical microscopy and immuno-rapid tests; however, these require a drop of blood, are time-consuming, or are not specific and sensitive enough for reliable detection of low-level parasitaemia. Thus, there is an urge for simpler, prompt, and accurate alternative diagnostic methods. Particularly, hemozoin has been increasingly recognized as an attractive biomarker for malaria detection. As the disease proliferates, parasites digest host hemoglobin, in the process releasing toxic haem that is detoxified into an insoluble crystal, the hemozoin, which accumulates along with infection progression. Given its magnetic, optical, and acoustic unique features, hemozoin has been explored for new label-free diagnostic methods. Thereby, herein, we review the hemozoin-based malaria detection methods and critically discuss their challenges and potential for the development of an ideal diagnostic device.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Mariana S. Costa
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Miguel Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - José Pedro Gil
- Stockholm Malaria Center, Department of Microbiology and Tumour Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
20
|
Verma L, Vekilov PG, Palmer JC. Solvent Structure and Dynamics near the Surfaces of β-Hematin Crystals. J Phys Chem B 2021; 125:11264-11274. [PMID: 34609878 DOI: 10.1021/acs.jpcb.1c06589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hematin crystallization, which is an essential component of the physiology of malaria parasites and the most successful target for antimalarial drugs, proceeds in mixed organic-aqueous solvents both in vivo and in vitro. Here we employ molecular dynamics simulations to examine the structuring and dynamics of a water-normal octanol mixture (a solvent that mimics the environment hosting hematin crystallization in vivo) in the vicinity of the typical faces in the habit of a hematin crystal. The simulations reveal that the properties of the solvent in the layer adjacent to the crystal are strongly impacted by the distinct chemical and topological features presented by each crystal face. The solvent organizes into at least three distinct layers. We also show that structuring of the solvent near the different faces of β-hematin strongly impacts the interfacial dynamics. The relaxation time of n-octanol molecules is longest in the contact layers and correlates with the degree of structural ordering at the respective face. We show that the macroscopically homogeneous water-octanol solution holds clusters of water and n-octanol connected by hydrogen bonds that entrap the majority of the water but are mostly smaller than 30 water molecules. Near the crystal surface the clusters anchor on hematin carboxyl groups. These results provide a direct example that solvent structuring is not restricted to aqueous and other hydrogen-bonded solutions. Our findings illuminate two fundamental features of the mechanisms of hematin crystallization: the elongated shapes of natural and synthetic hematin crystals and the stabilization of charged groups of hematin and antimalarials by encasing in water clusters. In addition, these findings suggest that hematin crystallization may be controlled by additives that disrupt or reinforce solvent structuring.
Collapse
Affiliation(s)
- Laksmanji Verma
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.,Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Jeremy C Palmer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
21
|
Perner J, Hatalova T, Cabello-Donayre M, Urbanova V, Sojka D, Frantova H, Hartmann D, Jirsova D, Pérez-Victoria JM, Kopacek P. Haem-responsive gene transporter enables mobilization of host haem in ticks. Open Biol 2021; 11:210048. [PMID: 34465215 PMCID: PMC8437232 DOI: 10.1098/rsob.210048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ticks, notorious blood-feeders and disease-vectors, have lost a part of their genetic complement encoding haem biosynthetic enzymes and are, therefore, dependent on the acquisition and distribution of host haem. Solute carrier protein SLC48A1, aka haem-responsive gene 1 protein (HRG1), has been implicated in haem transport, regulating the availability of intracellular haem. HRG1 transporter has been identified in both free-living and parasitic organisms ranging from unicellular kinetoplastids, nematodes, up to vertebrates. However, an HRG1 homologue in the arthropod lineage has not yet been identified. We have identified a single HRG1 homologue in the midgut transcriptome of the tick Ixodes ricinus, denoted as IrHRG, and have elucidated its role as a haem transporter. Data from haem biosynthesis-deficient yeast growth assays, systemic RNA interference and the evaluation of gallium protoporphyrin IX-mediated toxicity through tick membrane feeding clearly show that IrHRG is the bona fide tetrapyrrole transporter. We argue that during evolution, ticks profited from retaining a functional hrg1 gene in the genome because its protein product facilitates host haem escort from intracellularly digested haemoglobin, rendering haem bioavailable for a haem-dependent network of enzymes.
Collapse
Affiliation(s)
- J. Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - T. Hatalova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - M. Cabello-Donayre
- Institute of Parasitology and Biomedicine ‘López-Neyra’, CSIC, (IPBLN-CSIC), Granada, Spain
| | - V. Urbanova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - H. Frantova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Hartmann
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Jirsova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - J. M. Pérez-Victoria
- Institute of Parasitology and Biomedicine ‘López-Neyra’, CSIC, (IPBLN-CSIC), Granada, Spain
| | - P. Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
22
|
Kara D, Deissler RJ, Al Helo R, Blasinsky K, Grimberg BT, Brown R. An ON-OFF Magneto-Optical Probe of Anisotropic Biofluid Crystals: A β-Hematin Case Study. IEEE TRANSACTIONS ON MAGNETICS 2021; 57:5200211. [PMID: 35813117 PMCID: PMC9268508 DOI: 10.1109/tmag.2021.3096046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have designed, developed and evaluated an innovative portable magneto-optical detector (MOD) in which a light beam with variable polarization passes through a fluid sample immersed in a variable magnetic field. The light intensity is measured downstream along the forward scattering direction. The field is turned on and off through the in-and-out motion of nearby permanent magnets. As a result, for sufficiently magnetically and optically anisotropic samples, the optical absorption is sensitive to changes in the light polarization. Both detection and characterization applications are therefore available. For instance, both the degree of malaria infection can be measured and hemozoin crystalline properties can be studied. We present experimental results for synthetic hemozoin, and describe them in terms of the basic physics and chemistry underlying the correlations of the directions of the external magnetic field and the light beam polarization. We connect this work to a commercialized product for malaria detection and compare it to other magneto-optical instruments and methods. We conduct tests of absorption parameters, the electric polarizability tensor, and we discuss the connection to magnetic and electric dipole moments.
Collapse
Affiliation(s)
- Danielle Kara
- Department of Physics, John Carroll University, University Heights, OH, 44118, USA
| | - Robert J. Deissler
- Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rose Al Helo
- Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kyle Blasinsky
- Department of Physics, John Carroll University, University Heights, OH, 44118, USA
| | - Brian T. Grimberg
- Center for Global Health & Diseases, Department of Pathology, Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Robert Brown
- Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
23
|
Thissera B, Hallyburton I, Ngwa CJ, Cherif-Silini H, Hassane ASI, Anderson M, Campbell LA, Mutter N, Eshelli M, Abdelmohsen UR, Yaseen M, Pradel G, Belbahri L, Elgendy B, Hegazy L, Rateb ME. Potent antiplasmodial alkaloids from the rhizobacterium Pantoea agglomerans as hemozoin modulators. Bioorg Chem 2021; 115:105215. [PMID: 34358799 DOI: 10.1016/j.bioorg.2021.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022]
Abstract
Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.
Collapse
Affiliation(s)
- Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Irene Hallyburton
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Ahmed S I Hassane
- Aberdeen Royal Infirmary, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZN, Scotland, UK
| | - Mark Anderson
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lorna A Campbell
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nicole Mutter
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manal Eshelli
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK; Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli 13275, Libya
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt
| | - Mohammed Yaseen
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA.
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK.
| |
Collapse
|
24
|
Giacometti M, Milesi F, Coppadoro PL, Rizzo A, Fagiani F, Rinaldi C, Cantoni M, Petti D, Albisetti E, Sampietro M, Ciardo M, Siciliano G, Alano P, Lemen B, Bombe J, Nwaha Toukam MT, Tina PF, Gismondo MR, Corbellino M, Grande R, Fiore GB, Ferrari G, Antinori S, Bertacco R. A Lab-On-chip Tool for Rapid, Quantitative, and Stage-selective Diagnosis of Malaria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004101. [PMID: 34306971 PMCID: PMC8292881 DOI: 10.1002/advs.202004101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/22/2021] [Indexed: 05/21/2023]
Abstract
Malaria remains the most important mosquito-borne infectious disease worldwide, with 229 million new cases and 409.000 deaths in 2019. The infection is caused by a protozoan parasite which attacks red blood cells by feeding on hemoglobin and transforming it into hemozoin. Despite the WHO recommendation of prompt malaria diagnosis, the quality of microscopy-based diagnosis is frequently inadequate while rapid diagnostic tests based on antigens are not quantitative and still affected by non-negligible false negative/positive results. PCR-based methods are highly performant but still not widely used in endemic areas. Here, a diagnostic tool (TMek), based on the paramagnetic properties of hemozoin nanocrystals in infected red blood cells (i-RBCs), is reported on. Exploiting the competition between gravity and magnetic forces, i-RBCs in a whole blood specimen are sorted and electrically detected in a microchip. The amplitude and time evolution of the electrical signal allow for the quantification of i-RBCs (in the range 10-105 i-RBC µL-1) and the distinction of the infection stage. A preliminary validation study on 75 patients with clinical suspect of malaria shows on-field operability, without false negative and a few false positive results. These findings indicate the potential of TMek as a quantitative, stage-selective, rapid test for malaria.
Collapse
Affiliation(s)
- Marco Giacometti
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Francesca Milesi
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Pietro Lorenzo Coppadoro
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Alberto Rizzo
- Specialità di Microbiologia e Virologia Università degli Studi di MilanoMilanoItaly
| | - Federico Fagiani
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Christian Rinaldi
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Matteo Cantoni
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Daniela Petti
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Edoardo Albisetti
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Marco Sampietro
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Mariagrazia Ciardo
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | - Giulia Siciliano
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | - Pietro Alano
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | | | | | | | | | - Maria Rita Gismondo
- UOC Microbiologia ClinicaVirologia e Diagnostica Bioemergenza – Sacco teaching Hospital ASST FBF Saccovia GB GrassiMilano74‐20157Italy
| | - Mario Corbellino
- Department of Biomedical and Clinical Sciences “Luigi Sacco”University of Milanovia GB GrassiMilano74‐20157Italy
| | - Romualdo Grande
- UOC Microbiologia ClinicaVirologia e Diagnostica Bioemergenza – Sacco teaching Hospital ASST FBF Saccovia GB GrassiMilano74‐20157Italy
| | - Gianfranco Beniamino Fiore
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Giorgio Ferrari
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences “Luigi Sacco”University of Milanovia GB GrassiMilano74‐20157Italy
| | - Riccardo Bertacco
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
- CNR‐IFNInstitute for Photonics and NanotechnologiesPiazza Leonardo da Vinci 32Milano20133Italy
| |
Collapse
|
25
|
Kapishnikov S, Hempelmann E, Elbaum M, Als‐Nielsen J, Leiserowitz L. Malaria Pigment Crystals: The Achilles' Heel of the Malaria Parasite. ChemMedChem 2021; 16:1515-1532. [PMID: 33523575 PMCID: PMC8252759 DOI: 10.1002/cmdc.202000895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquine-hematin complex, at the vacuole's membrane.
Collapse
Affiliation(s)
- Sergey Kapishnikov
- Dept. of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Ernst Hempelmann
- Center of Cellular and Molecular Biology of DiseasesInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP)City of Knowledge0843 (Republic ofPanama
| | - Michael Elbaum
- Dept. of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Jens Als‐Nielsen
- Niels Bohr InstituteUniversity of Copenhagen2100CopenhagenDenmark
| | - Leslie Leiserowitz
- Dept. of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
26
|
de Melo GC, Netto RLA, Mwangi VI, Salazar YEAR, de Souza Sampaio V, Monteiro WM, de Almeida E Val FF, Rocheleau A, Thota P, Lacerda MVG. Performance of a sensitive haemozoin-based malaria diagnostic test validated for vivax malaria diagnosis in Brazilian Amazon. Malar J 2021; 20:146. [PMID: 33712019 PMCID: PMC7953757 DOI: 10.1186/s12936-021-03688-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/05/2021] [Indexed: 01/20/2023] Open
Abstract
Background Vivax malaria diagnosis remains a challenge in malaria elimination, with current point of care rapid diagnostic tests (RDT) missing many clinically significant infections because of usually lower peripheral parasitaemia. Haemozoin-detecting assays have been suggested as an alternative to immunoassay platforms but to date have not reached successful field deployment. Haemozoin is a paramagnetic crystal by-product of haemoglobin digestion by malaria parasites and is present in the food vacuole of malaria parasite-infected erythrocytes. This study aimed to compare the diagnostic capability of a new haemozoin-detecting platform, the Gazelle™ device with optical microscopy, RDT and PCR in a vivax malaria-endemic region. Methods A comparative, double-blind study evaluating symptomatic malaria patients seeking medical care was conducted at an infectious diseases reference hospital in the western Brazilian Amazon. Optical microscopy, PCR, RDT, and Gazelle™ were used to analyse blood samples. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Kappa values were calculated. Results Out of 300 patients, 24 test results were excluded from the final analysis due to protocol violation (6) and inconclusive and/or irretrievable results (18). Gazelle™ sensitivity was 96.1 % (91.3–98.3) and 72.1 % (65.0–78.3) when compared to optical microscopy and PCR, respectively whereas it was 83.9 % and 62.8 % for RDTs. The platform presented specificity of 100 % (97.4–100), and 99.0 % (94.8–99.9) when compared to optical microscopy, and PCR, respectively, which was the same for RDTs. Its correct classification rate was 98.2 % when compared to optical microscopy and 82.3 % for PCR; the test’s accuracy when compared to optical microscopy was 98.1 % (96.4–99.7), when compared to RDT was 95.2 % (93.0–97.5), and when compared to PCR was 85.6 % (82.1–89.1). Kappa (95 % CI) values for Gazelle™ were 96.4 (93.2–99.5), 88.2 (82.6–93.8) and 65.3 (57.0–73.6) for optical microscopy, RDT and PCR, respectively. Conclusions The Gazelle™ device was shown to have faster, easier, good sensitivity, specificity, and accuracy when compared to microscopy and was superior to RDT, demonstrating to be an alternative for vivax malaria screening particularly in areas where malaria is concomitant with other febrile infections (including dengue fever, zika, chikungunya, Chagas, yellow fever, babesiosis).
Collapse
Affiliation(s)
- Gisely Cardoso de Melo
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil. .,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.
| | | | - Victor Irungu Mwangi
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | | | - Vanderson de Souza Sampaio
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.,Fundação de Vigilância em Saúde (FVS) - Manaus, Manaus, Amazonas, 69093-018, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Fernando Fonseca de Almeida E Val
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Anne Rocheleau
- Hemex Health, 4640 SW Macadam Avenue, Suite 250 , Portland, Oregon, 97239, USA
| | - Priyaleela Thota
- Hemex Health, 4640 SW Macadam Avenue, Suite 250 , Portland, Oregon, 97239, USA
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas & Maria Deane (ILMD) Fiocruz, Manaus, Amazonas, 69057-070, Brazil
| |
Collapse
|
27
|
Magneto-optical diagnosis of symptomatic malaria in Papua New Guinea. Nat Commun 2021; 12:969. [PMID: 33579923 PMCID: PMC7881035 DOI: 10.1038/s41467-021-21110-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022] Open
Abstract
Improved methods for malaria diagnosis are urgently needed. Here, we evaluate a novel method named rotating-crystal magneto-optical detection (RMOD) in 956 suspected malaria patients in Papua New Guinea. RMOD tests can be conducted within minutes and at low cost. We systematically evaluate the capability of RMOD to detect infections by directly comparing it with expert light microscopy, rapid diagnostic tests and polymerase chain reaction on capillary blood samples. We show that compared to light microscopy, RMOD exhibits 82% sensitivity and 84% specificity to detect any malaria infection and 87% sensitivity and 88% specificity to detect Plasmodium vivax. This indicates that RMOD could be useful in P. vivax dominated elimination settings. Parasite density correlates well with the quantitative magneto-optical signal. Importantly, residual hemozoin present in malaria-negative patients is also detectable by RMOD, indicating its ability to detect previous infections. This could be exploited to reveal transmission hotspots in low-transmission settings. Here Arndt et al. establish rotating-crystal magneto-optical detection (RMOD) as a near-point-of-care diagnostic tool for malaria detection and report a sensitivity and specificity of 82% and 84%, respectively, as validated by analyzing a clinical population in a high transmission setting in Papua New Guinea.
Collapse
|
28
|
Wang W, Dong RL, Gu D, He JA, Yi P, Kong SK, Ho HP, Loo J, Wang W, Wang Q. Antibody-free rapid diagnosis of malaria in whole blood with surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. Adv Med Sci 2020; 65:86-92. [PMID: 31923771 DOI: 10.1016/j.advms.2019.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/12/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study is to establish a rapid antibody-free diagnostic method of malaria infection with Plasmodium falciparum and Plasmodium vivax in whole blood with Surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. MATERIALS AND METHODS The blood samples collected from patients were first lysed and centrifuged before dropping on the gold nano-structure (AuNS) substrate. Malaria diagnosis was performed by detecting Raman peaks from Surface Enhanced Raman Spectroscopy (SERS) with a 532 nm laser excitation. RESULTS Raman peaks at 1370 cm-1, 1570 cm-1, and 1627 cm-1, known to have high specificity against interference from other mosquito-borne diseases such as Dengue and West Nile virus infection, were selected as the fingerprint markers associated with P. falciparum and P. vivax infection. The limit of detection was 10-5 dilution, corresponding to the concentration of parasitized blood cells of 100/mL. A total number of 25 clinical samples, including 5 from patients with P. falciparum infection, 10 with P. vivax infection and 10 from healthy volunteers, were evaluated to support its clinical practical use. The whole assay on malaria detection took 30 min to complete. CONCLUSIONS While the samples analyzed in this work have strong clinical relevance, we have clearly demonstrated that sensitive malaria detection using AuNS-SERS is a practical direction for rapid in-field diagnosis of malaria infection.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rui-Ling Dong
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jian-An He
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen, China
| | - Pin Yi
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Siu-Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jacky Loo
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Wen Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Gordon P, Venancio VP, Mertens-Talcott SU, Coté G. Portable bright-field, fluorescence, and cross-polarized microscope toward point-of-care imaging diagnostics. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31564071 PMCID: PMC6997630 DOI: 10.1117/1.jbo.24.9.096502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/04/2019] [Indexed: 05/16/2023]
Abstract
Emerging technologies are enabling the feasibility of new types of point-of-care diagnostic devices. A portable, multimodal microscopy platform intended for use in remote diagnostic applications is presented. Use of such a system could bring high-quality microscopy to field use for diseases such as malaria, allowing better diagnostic and surveillance information to be gathered. The microscope was designed using off-the-shelf components and a manual filter selection to generate bright-field, fluorescent, and cross-polarized images of samples mounted to microscopy slides. Design parameters for the system are discussed, and characterization is performed using standardized imaging targets, multimodal phantoms, and blood smears simulating those used in malaria diagnosis. The microscope is shown to be able to image below element 9-3 of a 1951 U.S. Air Force target, indicating that the system is capable of resolving features < 775 nm. Morphological indicators of Plasmodium falciparum can be visualized in images from each modality and combined into high-contrast composite images. To optimize parasitic feature contrast across all three imaging modes, several different staining techniques were compared, with results indicating that use of a single nucleic acid binding fluorophore is preferable.
Collapse
Affiliation(s)
- Paul Gordon
- Texas A&M University, Department of Biomedical Engineering, Optical Biosensing Laboratory, College Station, Texas, United States
| | - Vinicius Paula Venancio
- Texas A&M University, Department of Nutrition and Food Science, College Station, Texas, United States
| | | | - Gerard Coté
- Texas A&M University, Department of Biomedical Engineering, Optical Biosensing Laboratory, College Station, Texas, United States
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, Texas, United States
- Address all correspondence to Gerard Coté, E-mail:
| |
Collapse
|
30
|
What is pure hemozoin? A close look at the surface of the malaria pigment. J Inorg Biochem 2019; 194:214-222. [DOI: 10.1016/j.jinorgbio.2019.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/09/2023]
|
31
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
32
|
Vγ9Vδ2 T cells proliferate in response to phosphoantigens released from erythrocytes infected with asexual and gametocyte stage Plasmodium falciparum. Cell Immunol 2018; 334:11-19. [PMID: 30177348 DOI: 10.1016/j.cellimm.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023]
Abstract
Vγ9Vδ2 T cells, the dominant γδ T cell subset in human peripheral blood, are stimulated by phosphoantigens, of which (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate, is produced in the apicoplast of malaria parasites. Cell-free media from synchronised Plasmodium falciparum asexual ring, trophozoite, and schizont stage-cultures of high purity as well as media from ruptured schizont cultures, all stimulated Vγ9Vδ2 T cell proliferation, as did media from pure gametocyte cultures, whereas media from uninfected erythrocytes cultures did not. The media from ruptured schizont cultures and all the asexual and gametocyte stage cultures contained only background iron levels, suggesting that all erythrocyte haemoglobin is consumed as the parasites develop and supporting that the phosphoantigens were released from intact parasitized erythrocytes. The Vγ9Vδ2 T cell-stimulating agent was not affected by freezing, thawing or heating but was sensitive to phosphatase treatment, confirming its phosphoantigen identity. In summary, phosphoantigens are released from parasitised erythrocytes at all developmental blood stages.
Collapse
|
33
|
McBirney SE, Chen D, Scholtz A, Ameri H, Armani AM. Rapid Diagnostic for Point-of-Care Malaria Screening. ACS Sens 2018; 3:1264-1270. [PMID: 29781606 DOI: 10.1021/acssensors.8b00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite significant success in therapeutic development, malaria remains a widespread and deadly infectious disease in the developing world. Given the nearly 100% efficacy of current malaria therapeutics, the primary barrier to eradication is lack of early diagnosis of the infected population. However, there are multiple strains of malaria. Although significant efforts and resources have been invested in developing antibody-based diagnostic methods for Plasmodium falciparum, a rapid and easy to use screening method capable of detecting all malaria strains has not been realized. Yet, until the entire malaria-infected population receives treatment, the disease will continue to impact society. Here, we report the development of a portable, magneto-optic technology for early stage malaria diagnosis based on the detection of the malaria pigment, hemozoin. Using β-hematin, a hemozoin mimic, we demonstrate detection limits of <0.0081 μg/mL in 500 μL of whole rabbit blood with no additional reagents required. This level corresponds to <26 parasites/μL, a full order of magnitude below clinical relevance and comparable to or less than existing technologies.
Collapse
Affiliation(s)
| | | | - Alexis Scholtz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hossein Ameri
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, United States
| | | |
Collapse
|
34
|
Maknitikul S, Luplertlop N, Chaisri U, Maneerat Y, Ampawong S. Featured Article: Immunomodulatory effect of hemozoin on pneumocyte apoptosis via CARD9 pathway, a possibly retarding pulmonary resolution. Exp Biol Med (Maywood) 2018; 243:395-407. [PMID: 29402133 DOI: 10.1177/1535370218757458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the most virulent malaria parasite species, causes severe symptoms especially acute lung injury (ALI), of which characterized by alveolar epithelium and endothelium destruction and accelerated to blood-gas-barrier breakdown. Parasitized erythrocytes, endothelial cells, monocytes, and cytokines are all involved in this mechanism, but hemozoin (HZ), the parasitic waste from heme detoxification, also mainly contributes. In addition, it is not clear why type II pneumocyte proliferation, alveolar restorative stage, is rare in malaria-associated ALI. To address this, in vitro culture of A549 cells with Plasmodium HZ or with interleukin (IL)-1β triggered by HZ and monocytes (HZ-IL-1β) was conducted to determine their alveolar apoptotic effect using ethidium bromide/acridine orange staining, annexin-V-FITC/propidium iodide staining, and electron mircroscopic study. Caspase recruitment domain-containing protein 9 ( CARD9), the apoptotic regulator gene, and IL-1β were quantified by reverse-transcriptase PCR. Junctional cellular defects were characterized by immunohistochemical staining of E-cadherin. The results revealed that cellular apoptosis and CARD9 expression levels were extremely high 24 h after induction by HZ-IL-1β when compared to the HZ- and non-treated groups. E-cadherin was markedly down-regulated by HZ-IL-1β and HZ treatments. CARD9 expression was positively correlated with IL-1β expression and the number of apoptotic cells. Interestingly, the localization of HZ in the vesicular surfactant of apoptotic pneumocyte was also identified and submitted to be a cause of alveolar resolution abnormality. Thus, HZ triggers monocytes to produce IL-1β and induces pneumocyte type II apoptosis through CARD9 pathway in association with down-regulated E-cadherin, which probably impairs alveolar resolution in malaria-associated ALI. Impact statement The present work shows the physical and immunomodulatory properties of hemozoin on the induction of pneumocyte apoptosis in relation to IL-1β production through the CARD9 pathway. This occurrence may be a possible pathway for the retardation of lung resolution leading to blood-gas-barrier breakdown. Our findings lead to the understanding of the host-parasite relationship focusing on the dysfunction in ALI induced by HZ, a possible pathway of the recovering lung epithelial retardation in malaria-associated ARDS.
Collapse
Affiliation(s)
- Sitang Maknitikul
- 1 Department of Tropical Pathology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| | - Natthanej Luplertlop
- 2 Department of Microbiology and Immunology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| | - Urai Chaisri
- 1 Department of Tropical Pathology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| | - Yaowapa Maneerat
- 1 Department of Tropical Pathology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| | - Sumate Ampawong
- 1 Department of Tropical Pathology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
35
|
Pinna RA, Dos Santos AC, Perce-da-Silva DS, da Silva LA, da Silva RNR, Alves MR, Santos F, de Oliveira Ferreira J, Lima-Junior JC, Villa-Verde DM, De Luca PM, Carvalho-Pinto CE, Banic DM. Correlation of APRIL with production of inflammatory cytokines during acute malaria in the Brazilian Amazon. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:207-220. [PMID: 29314720 PMCID: PMC5946147 DOI: 10.1002/iid3.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A proliferation-inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. METHODS Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax-infected patients were analyzed by flow cytometry. RESULTS APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL-1, IL-2, IL-4, IL-6, and IL-13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. CONCLUSION These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species.
Collapse
Affiliation(s)
- Raquel A Pinna
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Adriana C Dos Santos
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Daiana S Perce-da-Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Luciene A da Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Rodrigo N Rodrigues da Silva
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Marcelo R Alves
- Laboratory of Research in Pharmacogenetics, National Institute of Infectology, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Fátima Santos
- Laboratory of Entomology, LACEN/RO, Rua Anita Garibalde, 4130 - Costa e Silva, Porto Velho, RO, Brazil, 76803-620
| | - Joseli de Oliveira Ferreira
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Josué C Lima-Junior
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Déa M Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Paula M De Luca
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Carla E Carvalho-Pinto
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Dalma M Banic
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| |
Collapse
|
36
|
Gossuin Y, Okusa Ndjolo P, Vuong QL, Duez P. NMR relaxation properties of the synthetic malaria pigment β-hematin. Sci Rep 2017; 7:14557. [PMID: 29109553 PMCID: PMC5674059 DOI: 10.1038/s41598-017-15238-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
200 million patients suffer from malaria, a parasitic disease caused by protozoans of the genus Plasmodium. Reliable diagnosis is crucial since it allows the early detection of the disease. The development of rapid, sensitive and low-cost diagnosis tools is an important research area. Different studies focused on the detection of hemozoin, a major by-product of hemoglobin detoxification by the parasite. Hemozoin and its synthetic analog, β-hematin, form paramagnetic crystals. A new detection method of malaria takes advantage of the paramagnetism of hemozoin through the effect that such magnetic crystals have on Nuclear Magnetic Resonance (NMR) relaxation of water protons. Indeed, magnetic microparticles cause a shortening of the relaxation times. In this work, the magnetic properties of two types of β-hematin are assessed at different temperatures and magnetic fields. The pure paramagnetism of β-hematin is confirmed. The NMR relaxation of β–hematin suspensions is also studied at different magnetic fields and for different echo-times. Our results help to identify the best conditions for β–hematin detection by NMR: T2 must be selected, at large magnetic fields and for long echo-times. However, the effect of β-hematin on relaxation does not seem large enough to achieve accurate detection of malaria without any preliminary sample preparation, as microcentrifugation.
Collapse
Affiliation(s)
- Yves Gossuin
- Biomedical Physics Unit UMONS, 25 avenue Maistriau, Mons, 7000, Belgium.
| | - Philippe Okusa Ndjolo
- Therapeutic Chemistry and Pharmacognosy UMONS, 25 avenue Maistriau, Mons, 7000, Belgium
| | - Quoc Lam Vuong
- Biomedical Physics Unit UMONS, 25 avenue Maistriau, Mons, 7000, Belgium
| | - Pierre Duez
- Therapeutic Chemistry and Pharmacognosy UMONS, 25 avenue Maistriau, Mons, 7000, Belgium
| |
Collapse
|
37
|
Khmelinskii I, Makarov V. Temperature dependence of the spin relaxation time of Fe 3 O 4 and hemozoin superparamagnetic nanocrystals. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Antimalarials inhibit hematin crystallization by unique drug-surface site interactions. Proc Natl Acad Sci U S A 2017; 114:7531-7536. [PMID: 28559329 DOI: 10.1073/pnas.1700125114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In malaria pathophysiology, divergent hypotheses on the inhibition of hematin crystallization posit that drugs act either by the sequestration of soluble hematin or their interaction with crystal surfaces. We use physiologically relevant, time-resolved in situ surface observations and show that quinoline antimalarials inhibit β-hematin crystal surfaces by three distinct modes of action: step pinning, kink blocking, and step bunch induction. Detailed experimental evidence of kink blocking validates classical theory and demonstrates that this mechanism is not the most effective inhibition pathway. Quinolines also form various complexes with soluble hematin, but complexation is insufficient to suppress heme detoxification and is a poor indicator of drug specificity. Collectively, our findings reveal the significance of drug-crystal interactions and open avenues for rationally designing antimalarial compounds.
Collapse
|
39
|
Wang W, Li Q, Wei Y, Xue J, Sun X, Yu Y, Chen Z, Li S, Duan L. Novel carbazole aminoalcohols as inhibitors of β-hematin formation: Antiplasmodial and antischistosomal activities. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:191-199. [PMID: 28395189 PMCID: PMC5384886 DOI: 10.1016/j.ijpddr.2017.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/24/2023]
Abstract
Malaria and schistosomiasis are two of the most socioeconomically devastating parasitic diseases in tropical and subtropical countries. Since current chemotherapeutic options are limited and defective, there is an urgent need to develop novel antiplasmodials and antischistosomals. Hemozoin is a disposal product formed from the hemoglobin digestion by some blood-feeding parasites. Hemozoin formation is an essential process for the parasites to detoxify free heme, which is a reliable therapeutic target for identifying novel antiparasitic agents. A series of novel carbazole aminoalcohols were designed and synthesized as potential antiplasmodial and antischistosomal agents, and several compounds showed potent in vitro activities against Plasmodium falciparum 3D7 and Dd2 strains and adult and juvenile Schistosoma japonicum. Investigations on the dual antiparasitic mechanisms showed the correlation between inhibitory activity of β-hematin formation and antiparasitic activity. Inhibiting hemozoin formation was identified as one of the mechanisms of action of carbazole aminoalcohols. Compound 7 displayed potent antiplasmodial (Pf3D7 IC50 = 0.248 μM, PfDd2 IC50 = 0.091 μM) and antischistosomal activities (100% mortality of adult and juvenile schistosomes at 5 and 10 μg/mL, respectively) and exhibited low cytotoxicity (CC50 = 7.931 μM), which could be considered as a promising lead for further investigation. Stoichiometry determination and molecular docking studies were also performed to explain the mode of action of compound 7. Carbazole aminoalcohol was confirmed as a novel antiplasmodial and antischistosomal scaffold. The mechanism of action relied on β-hematin formation inhibition. The carbazole aminoalcohols interacted with hematin through forming a 1:1 complex. Compound 7 showed potent antiplasmodial ability (Pf3D7 IC50 = 0.248 μM, PfDd2 IC50 = 0.091 μM). In vitro antischistosomal effect of 7 meets the WHO's criterion of “hit” for schistosomiasis control.
Collapse
Affiliation(s)
- Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China; ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiang Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Yufen Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Jian Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Xiao Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Yu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Liping Duan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
40
|
Inyushin M, Kucheryavih Y, Kucheryavih L, Rojas L, Khmelinskii I, Makarov V. Superparamagnetic Properties of Hemozoin. Sci Rep 2016; 6:26212. [PMID: 27188748 PMCID: PMC4870585 DOI: 10.1038/srep26212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/27/2016] [Indexed: 11/09/2022] Open
Abstract
We report that hemozoin nanocrystals demonstrate superparamagnetic properties, with direct measurements of the synthetic hemozoin magnetization. The results show that the magnetic permeability constant varies from μ = 4585 (at -20 °C) to 3843 (+20 °C), with the values corresponding to a superparamagnetic system. Similar results were obtained from the analysis of the diffusion separation of natural hemozoin nanocrystals in the magnetic field gradient, with μ = 6783 exceeding the value obtained in direct measurements by the factor of 1.8. This difference is interpreted in terms of structural differences between the synthetic and natural hemozoin. The ab initio analysis of the hemozoin elementary cell showed that the Fe(3+) ion is in the high-spin state (S = 5/2), while the exchange interaction between Fe(3+) electron-spin states was much stronger than kBT at room temperature. Thus, the spin dynamics of the neighboring Fe(3+) ions are strongly correlated, lending support to the superparamagnetism.
Collapse
Affiliation(s)
- M. Inyushin
- Universidad Central del Caribe, Bayamón, PR 00960-6032, USA
| | | | - L. Kucheryavih
- Universidad Central del Caribe, Bayamón, PR 00960-6032, USA
| | - L. Rojas
- Universidad Central del Caribe, Bayamón, PR 00960-6032, USA
| | - I. Khmelinskii
- University of the Algarve, FCT, DQB and CIQA, 8005-139, Faro, Portugal
| | - V. Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA
| |
Collapse
|
41
|
Cai C, Carey KA, Nedosekin DA, Menyaev YA, Sarimollaoglu M, Galanzha EI, Stumhofer JS, Zharov VP. In vivo photoacoustic flow cytometry for early malaria diagnosis. Cytometry A 2016; 89:531-42. [PMID: 27078044 DOI: 10.1002/cyto.a.22854] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 12/26/2022]
Abstract
In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease-associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label-free detection of malaria parasite-produced hemozoin in infected red blood cells (iRBCs) as high-contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001-0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼10(3) times better than the existing tests. Multicolor time-of-flight PAFC with high-pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real-time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble-based multicolor PAFC showed capability to real-time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high-sensitivity, high-resolution ultrafast PAFC-FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite-cell interactions directly in bloodstream, whereas portable hand-worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Chengzhong Cai
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, 72079
| | - Kai A Carey
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Yulian A Menyaev
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Ekaterina I Galanzha
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| |
Collapse
|
42
|
Ishmukhametov RR, Russell AN, Wheeler RJ, Nord AL, Berry RM. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes. Sci Rep 2016; 6:20729. [PMID: 26853732 PMCID: PMC4745110 DOI: 10.1038/srep20729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/11/2016] [Indexed: 12/02/2022] Open
Abstract
Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.
Collapse
Affiliation(s)
- Robert R Ishmukhametov
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Aidan N Russell
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Richard J Wheeler
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ashley L Nord
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Richard M Berry
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| |
Collapse
|
43
|
Hemozoin is a product of heme detoxification in the gut of the most medically important species of the family Opisthorchiidae. Int J Parasitol 2016; 46:147-156. [PMID: 26812025 DOI: 10.1016/j.ijpara.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
Many species of trematodes such as Schistosoma spp., Fasciola hepatica and Echinostoma trivolvis are blood-feeding parasites. Nevertheless, there is no consensus on the feeding habits of the family Opisthorchiidae (Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis). Previously, histological studies of O. felineus and C. sinensis revealed some dark stained material in their gut lumen. In this study we conducted a comprehensive analysis of the gut contents of three members of the family Opisthorchiidae (O. felineus, O. viverrini and C. sinensis). Using transmission electron microscopy, we demonstrated for the first known time the presence of disintegrating blood cells in the gut of O. felineus as well as electron-dense crystals in the gut of O. felineus and C. sinensis. Electron energy loss spectroscopy revealed iron atoms in these crystals, and mass spectrometry of the purified pigment demonstrated the presence of heme. Fourier-transform infrared spectroscopy identified the signature peaks of the common iron-carboxylate bond characteristic in crystals isolated from O. felineus and C. sinensis. Scanning electron microscopy showed layered ovoid crystals of various sizes from 50 nm to 2 μm. Morphological, chemical and paramagnetic properties of these crystals were similar to those of hemozoin from Schistosoma mansoni. Crystal formation occurs on the surface of lipid droplets in O. felineus and C. sinensis guts. Our results suggest that the diet of O. felineus and C. sinensis includes blood. Detoxification of the free heme produced during the digestion proceeds via formation of insoluble crystals that contain iron and heme dimers, i.e. crystals of hemozoin. Furthermore, we believe that biocrystallisation of hemozoin takes place on the surface of the lipid droplets, similar to S. mansoni. Hemozoin was not detected in the closely related species O. viverrini.
Collapse
|
44
|
Tempera C, Franco R, Caro C, André V, Eaton P, Burke P, Hänscheid T. Characterization and optimization of the haemozoin-like crystal (HLC) assay to determine Hz inhibiting effects of anti-malarial compounds. Malar J 2015; 14:403. [PMID: 26458401 PMCID: PMC4603294 DOI: 10.1186/s12936-015-0913-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023] Open
Abstract
Background The haem-haemozoin biocrystallization pathway is an attractive target where several efficacious and safe anti-malarial drugs act. Consequently, in vitro haemozoin (Hz) inhibition assays have been developed to identify novel compounds. However, results may differ between assays and often require complex methods or sophisticated infrastructure. The recently reported growth of haemozoin-like crystals (HLC) appears to be a simple alternative although the endproduct is structurally different to Hz. This study set out to characterize this assay in depth, optimize it, and assess its performance. Methods The HLC assay was used as previously described but a range of different growth conditions were examined. Obtained HLCs were investigated and compared to synthetic (sHz) and natural haemozoin (nHz) using scanning electron microscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared spectroscopy (FTIR) and Raman spectroscopy (RS). Interactions of HLC with quinolines was analysed using RS. Inhibitory effects of currently used anti-malarial drugs under four final growth conditions were established. Results HLC growth requires Mycoplasma Broth Base, Tween 80, pancreatin, and lysed blood or haemin. HLCs are similar to nHz and sHz in terms of solubility, macroscopic and microscopic appearance although PXRD, FTIR and RS confirm that the haem aggregates of HLCs are structurally different. RS reveals that CQ seems to interact with HLCs in similar ways as with Hz. Inhibition of quinoline drugs ranged from 62.5 µM (chloroquine, amodiaquine, piperaquine) to 500 µM in mefloquine. Conclusions The HLC assay provides data on inhibiting properties of compounds. Even if the end-product is not structurally identical to Hz, the inhibitory effects appear consistent with those obtained with sHz assays, as illustrated by the results obtained for quinolines. The assay is simple, inexpensive, robust, reproducible and can be performed under basic laboratory conditions with a simple visual positive/negative read-out. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0913-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Tempera
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Ricardo Franco
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Carlos Caro
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | - Peter Eaton
- , Departamento de Química e Bioquímica, Faculdade de Ciências, REQUIMTE/UCIBIO, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Peter Burke
- STERIS Corporation, 5960 Heisley Road, Mentor, OH, 44060, USA.
| | - Thomas Hänscheid
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal. .,Faculdade de Medicina, Instituto de Microbiologia, Lisbon, Portugal.
| |
Collapse
|
45
|
Young RM, Adendorff MR, Wright AD, Davies-Coleman MT. Antiplasmodial activity: The first proof of inhibition of heme crystallization by marine isonitriles. Eur J Med Chem 2015; 93:373-80. [DOI: 10.1016/j.ejmech.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
|
46
|
Vekilov PG, Rimer JD, Olafson KN, Ketchum MA. Lipid or aqueous medium for hematin crystallization? CrystEngComm 2015. [DOI: 10.1039/c5ce01178g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hematin crystallization, the primary heme detoxification mechanism of malaria parasites infecting human erythrocytes, most likely requires the participation of lipid structures.
Collapse
Affiliation(s)
- Peter G. Vekilov
- Department of Chemical and Biomolecular Engineering
- University of Houston
- Houston, USA
- Department of Chemistry
- University of Houston
| | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering
- University of Houston
- Houston, USA
| | - Katy N. Olafson
- Department of Chemical and Biomolecular Engineering
- University of Houston
- Houston, USA
| | - Megan A. Ketchum
- Department of Chemical and Biomolecular Engineering
- University of Houston
- Houston, USA
| |
Collapse
|
47
|
Garrett NL, Sekine R, Dixon MWA, Tilley L, Bambery KR, Wood BR. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Phys Chem Chem Phys 2014; 17:21164-8. [PMID: 25491490 DOI: 10.1039/c4cp04930f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.
Collapse
Affiliation(s)
- Natalie L Garrett
- Centre for Biospectroscopy, School of Chemistry, Monash University, 3800, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Deroost K, Lays N, Pham TT, Baci D, Van den Eynde K, Komuta M, Prato M, Roskams T, Schwarzer E, Opdenakker G, Van den Steen PE. Hemozoin induces hepatic inflammation in mice and is differentially associated with liver pathology depending on the Plasmodium strain. PLoS One 2014; 9:e113519. [PMID: 25419977 PMCID: PMC4242621 DOI: 10.1371/journal.pone.0113519] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/29/2014] [Indexed: 12/26/2022] Open
Abstract
Malaria is a global disease that clinically affects more than two hundred million people annually. Despite the availability of effective antimalarials, mortality rates associated with severe complications are high. Hepatopathy is frequently observed in patients with severe malarial disease and its pathogenesis is poorly understood. Previously, we observed high amounts of hemozoin or malaria pigment in livers from infected mice. In this study, we investigated whether hemozoin is associated with liver injury in different mouse malaria models. C57BL/6J mice infected with the rodent parasites Plasmodium berghei ANKA, P. berghei NK65 or P. chabaudi AS had elevated serum liver enzymes without severe histological changes in the liver, in line with the observations in most patients. Furthermore, liver enzymes were significantly higher in serum of P. chabaudi AS-infected mice compared to mice infected with the P. berghei parasite strains and a strong positive correlation was found between hepatic hemozoin levels, hepatocyte damage and inflammation in the liver with P. chabaudi AS. The observed liver injury was only marginally influenced by the genetic background of the host, since similar serum liver enzyme levels were measured in infected C57BL/6J and BALB/c mice. Intravenous injection of P. falciparum-derived hemozoin in malaria-free C57BL/6J mice induced inflammatory gene transcription in the liver, suggesting that hemozoin may be involved in the pathogenesis of malaria hepatopathy by inducing inflammation.
Collapse
Affiliation(s)
- Katrien Deroost
- Department of Microbiology & Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Natacha Lays
- Department of Microbiology & Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Department of Microbiology & Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Denisa Baci
- Department of Oncology, University of Torino, Torino, Italy
- Department of Biology, Tor Vergata Rome University, Rome, Italy
| | | | - Mina Komuta
- Translational Cell & Tissue Research, KU Leuven – University of Leuven, Leuven, Belgium
| | - Mauro Prato
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Tania Roskams
- Translational Cell & Tissue Research, KU Leuven – University of Leuven, Leuven, Belgium
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, Torino, Italy
- Department of Genetics, Biology, and Biochemistry, University of Torino, Torino, Italy
| | - Ghislain Opdenakker
- Department of Microbiology & Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Department of Microbiology & Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
49
|
Ulrich P, Gipson GR, Clark MA, Tripathi A, Sullivan DJ, Cerami C. In vitro and in vivo antimalarial activity of amphiphilic naphthothiazolium salts with amine-bearing side chains. Am J Trop Med Hyg 2014; 91:824-32. [PMID: 25184829 DOI: 10.4269/ajtmh.13-0565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Because of emerging resistance to existing drugs, new chemical classes of antimalarial drugs are urgently needed. We have rationally designed a library of compounds that were predicted to accumulate in the digestive vacuole and then decrystallize hemozoin by breaking the iron carboxylate bond in hemozoin. We report the synthesis of 16 naphthothiazolium salts with amine-bearing side chains and their activities against the erythrocytic stage of Plasmodium falciparum in vitro. KSWI-855, the compound with the highest efficacy against the asexual stages of P. falciparum in vitro, also had in vitro activity against P. falciparum gametocytes and in vivo activity against P. berghei in a murine malaria model.
Collapse
Affiliation(s)
- Peter Ulrich
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - Gregory R Gipson
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - Martha A Clark
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - Abhai Tripathi
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - David J Sullivan
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - Carla Cerami
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| |
Collapse
|
50
|
Hleb EYL, Lapotko DO. Malaria theranostics using hemozoin-generated vapor nanobubbles. Theranostics 2014; 4:761-9. [PMID: 24883125 PMCID: PMC4038757 DOI: 10.7150/thno.9128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/26/2014] [Indexed: 12/31/2022] Open
Abstract
Malaria remains a widespread and deadly infectious human disease, with increasing diagnostic and therapeutic challenges due to the drug resistance and aggressiveness of malaria infection. Early detection and innovative approaches for parasite destruction are needed. The high optical absorbance and nano-size of hemozoin crystals have been exploited to detect and mechanically destroy the malaria parasite in a single theranostic procedure. Transient vapor nanobubbles are generated around hemozoin crystals in malaria parasites in infected erythrocytes in response to a single short laser pulse. Optical scattering signals of the nanobubble report the presence of the malaria parasite. The mechanical impact of the same nanobubble physically destroys the parasite in nanoseconds in a drug-free manner. Laser-induced nanobubble treatment of human blood in vitro results in destruction of up to 95% of parasites after a single procedure, and delivers an 8-fold better parasiticidal efficacy compared to standard chloroquine drug treatment. The mechanism of destruction is highly selective for malaria infected red cells and does not harm neighboring, uninfected erythrocytes. Thus, laser pulse-induced vapor nanobubble generation around hemozoin supports both rapid and highly specific detection and destruction of malaria parasites in one theranostic procedure.
Collapse
Affiliation(s)
| | - Dmitri O. Lapotko
- 1. Department of Biochemistry and Cell Biology, Rice University, Houston, TX
- 2. Department of Physics and Astronomy, Rice University, Houston, TX
| |
Collapse
|