1
|
Warlick Iv H, Tocci D, Prashar S, Boldt E, Khalil A, Arora S, Matthews T, Wahid T, Fernandez R, Ram D, Leon L, Arain A, Rey J, Davis K. Role of vesicular monoamine transporter-2 for treating attention deficit hyperactivity disorder: a review. Psychopharmacology (Berl) 2024; 241:2191-2203. [PMID: 39302436 DOI: 10.1007/s00213-024-06686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
RATIONALE The Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) classifies attention deficit hyperactivity disorder (ADHD) as a neurodevelopmental disorder that interferes with human functioning and development. As the clinical presentation of ADHD involves a deficiency in executive function, neurocognitive deficits involving distinctive neuropathological changes must be present for clinical diagnosis. OBJECTIVES The vesicular monoamine transporter (VMAT), specifically VMAT-2, plays a role in ADHD pathogenesis. In addition, experimental data show that the stimulants (amphetamines and methylphenidate) are first-line treatments for the condition because of their extensive interaction with VMAT-2. The interactions of peptides, bupropion, and nutritional supplements with VMAT-2 receptors have been researched, but more evidence is needed to elucidate their pharmacodynamic properties. Therefore, this literature review evaluated the current pharmacological treatment modalities, peptides, and nutritional supplements for ADHD that target the VMAT-2 system. METHODS, RESULTS, AND CONCLUSIONS We obtained relevant studies from several platforms, including the National Center for Biotechnology, Clinical Key, Access Medicine, and PubMed. From the results of these studies, we observed that stimulants interact highly with the VMAT-2 transporter, with omega-3 fatty acids, peptides, and bupropion exerting some modulatory activity on VMAT-2. These agents should be considered for the future treatment of ADHD, although clinical-level research involving human participants is necessary.
Collapse
Affiliation(s)
- Halford Warlick Iv
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA.
| | - Darcy Tocci
- Dr. Kiran C. Patel College of Allopathic Medicine, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sukriti Prashar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Erick Boldt
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Alena Khalil
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Simran Arora
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Thomas Matthews
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Talha Wahid
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Richard Fernandez
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Dhiya Ram
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Lexie Leon
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Arisha Arain
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Jose Rey
- College of Pharmacy, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Kelley Davis
- Dr. Kiran C. Patel College of Allopathic Medicine, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
2
|
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Physiological and Pathological Processes within the Gastrointestinal Tract: A Review. Int J Mol Sci 2021; 22:ijms22168682. [PMID: 34445388 PMCID: PMC8395522 DOI: 10.3390/ijms22168682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide widely distributed in the central nervous system (CNS) and many peripheral organs, such as the digestive tract, endocrine, reproductive and respiratory systems, where it plays different regulatory functions and exerts a cytoprotective effect. The multifarious physiological effects of PACAP are mediated through binding to different G protein-coupled receptors, including PAC1 (PAC1-R), VPAC1 (VPAC1-R) and VPAC2 (VPAC2-R) receptors. In the gastrointestinal (GI) tract, PACAP plays an important regulatory function. PACAP stimulates the secretion of digestive juices and hormone release, regulates smooth muscle contraction, local blood flow, cell migration and proliferation. Additionally, there are many reports confirming the involvement of PACAP in pathological processes within the GI tract, including inflammatory states, neuronal injury, diabetes, intoxication and neoplastic processes. The purpose of this review is to summarize the distribution and pleiotropic action of PACAP in the control of GI tract function and its cytoprotective effect in the course of GI tract disorders.
Collapse
|
3
|
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 2019; 8. [PMID: 31559013 PMCID: PMC6743256 DOI: 10.12688/f1000research.18039.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mari Iwasaki
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Departments of Medicine and Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
4
|
May AT, Crowe MS, Blakeney BA, Mahavadi S, Wang H, Grider JR, Murthy KS. Identification of expression and function of the glucagon-like peptide-1 receptor in colonic smooth muscle. Peptides 2019; 112:48-55. [PMID: 30508636 PMCID: PMC6342651 DOI: 10.1016/j.peptides.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/07/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
Abstract
The insulinotropic effects of the incretin hormone, glucagon-like peptide-1 (GLP-1) are mediated via GLP-1 receptors (GLP-1R) present on pancreatic β cells. GLP-1 causes a decrease in the motility of stomach and intestine which involves both central and peripheral nervous systems. The expression and function of GLP-1R in gastrointestinal smooth muscle, however, are not clear. Muscle strips and isolated muscle cells were prepared from mouse colon and the effect of GLP-1(7-36) amide on acetylcholine (ACh)-induced contraction was measured. Muscle cells in culture were used to identify the expression of GLP-1R and the signaling pathways activated by GLP-1(7-36) amide. GLP-1R was expressed in the mucosal and non-mucosal tissue preparations derived from colon, and in smooth muscle cell cultures devoid of other cells such as enteric neurons. In colonic muscle strips, the addition of GLP-1(7-36) amide caused dose-dependent inhibition of acetylcholine-induced contractions. The effect of GLP-1(7-36) amide was partly inhibited by the neuronal blocker tetrodotoxin and nitric oxide (NO) synthase inhibitor l-NNA suggesting both NO-dependent neural and NO-independent direct effects on smooth muscle. In isolated colonic smooth muscle cells, GLP-1(7-36) amide caused an increase in Gαs activity, cAMP levels, and PKA activity, and inhibited ACh-induced contraction. The effect of GLP-1(7-36) amide on Gαs activity and cAMP levels was blocked by NF449, an inhibitor of Gαs, and the effect of GLP-1(7-36) amide on contraction was blocked by NF449 and myristoylated PKI, an inhibitor of PKA. We conclude that colonic smooth muscle cells express GLP-1R, and GLP-1(7-36) amide inhibits acetylcholine-induced contraction via GLP-1R coupled to the Gαs/cAMP/PKA pathway.
Collapse
Affiliation(s)
- Alexander T May
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Box 980551, Richmond, VA, 23298, United States
| | - Molly S Crowe
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Box 980551, Richmond, VA, 23298, United States
| | - Bryan A Blakeney
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Box 980551, Richmond, VA, 23298, United States
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Box 980551, Richmond, VA, 23298, United States
| | - Hongxia Wang
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Box 980551, Richmond, VA, 23298, United States
| | - John R Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Box 980551, Richmond, VA, 23298, United States
| | - Karnam S Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Box 980551, Richmond, VA, 23298, United States.
| |
Collapse
|
5
|
Reglodi D, Illes A, Opper B, Schafer E, Tamas A, Horvath G. Presence and Effects of Pituitary Adenylate Cyclase Activating Polypeptide Under Physiological and Pathological Conditions in the Stomach. Front Endocrinol (Lausanne) 2018; 9:90. [PMID: 29615974 PMCID: PMC5868562 DOI: 10.3389/fendo.2018.00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide with widespread occurrence throughout the body including the gastrointestinal system. In the small and large intestine, effects of PACAP on cell proliferation, secretion, motility, gut immunology and blood flow, as well as its importance in bowel inflammatory reactions and cancer development have been shown and reviewed earlier. However, no current review is available on the actions of PACAP in the stomach in spite of numerous data published on the gastric presence and actions of the peptide. Therefore, the aim of the present review is to summarize currently available data on the distribution and effects of PACAP in the stomach. We review data on the localization of PACAP and its receptors in the stomach wall of various mammalian and non-mammalian species, we then give an overview on PACAP's effects on secretion of gastric acid and various hormones. Effects on cell proliferation, differentiation, blood flow and gastric motility are also reviewed. Finally, we outline PACAP's involvement and changes in various human pathological conditions.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
- *Correspondence: Dora Reglodi,
| | - Anita Illes
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
- 1st Department of Internal Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Eszter Schafer
- Department of Gastroenterology, Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
6
|
Mahavadi S, Bhattacharya S, Kim J, Fayed S, Al-Shboul O, Grider JR, Murthy KS. Caveolae-dependent internalization and homologous desensitization of VIP/PACAP receptor, VPAC₂, in gastrointestinal smooth muscle. Peptides 2013; 43:137-45. [PMID: 23499767 PMCID: PMC4026926 DOI: 10.1016/j.peptides.2013.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/18/2022]
Abstract
The main membrane proteins of caveolae (caveolin-1, -2 and -3) oligomerize within lipid rich domains to form regular invaginations of smooth muscle plasma membrane and participate in receptor internalization and desensitization independent of clathrin-coated vesicle endocytosis. We have previously shown that Gs-coupled VIP/PACAP receptors, VPAC2, predominantly expressed in smooth muscle cells of the gut, are exclusively phosphorylated by GRK2 leading to receptor internalization and desensitization. Herein, we characterized the role of caveolin-1 in VPAC2 receptor internalization and desensitization in gastric smooth muscle using three approaches: (i) methyl β-cyclodextrin (MβCD) to deplete cholesterol and disrupt caveolae in dispersed muscle cells, (ii) caveolin-1 siRNA to suppress caveolin-1 expression in cultured muscle cells, and (iii) caveolin-1 knockout mice (caveolin-1(-/-)). Pretreatment of gastric muscle cells with VIP stimulated tyrosine phosphorylation of caveolin-1, and induced VPAC2 receptor internalization (measured as decrease in (125)I-VIP binding after pretreatment) and desensitization (measured as decrease in VIP-induced cAMP formation after pretreatment). Caveolin-1 phosphorylation, and VPAC2 receptor internalization and desensitization were blocked by disruption of caveolae with MβCD, suppression of caveolin-1 with caveolin-1 siRNA or inhibition of Src kinase activity by PP2. Pretreatment with VIP significantly inhibited adenylyl cyclase activity and muscle relaxation in response to subsequent addition of VIP in freshly dispersed muscle cells and in muscle strips isolated from wild type and caveolin-1(-/-) mice; however, the inhibition was significantly attenuated in caveolin-1(-/-) mice. These results suggest that caveolin-1 plays an important role in VPAC2 receptor internalization and desensitization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karnam S. Murthy
- Corresponding author at: Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298-0551, United States. Tel.: +1 804 828 0029; fax: +1 804 827 0947. (K.S. Murthy)
| |
Collapse
|
7
|
|
8
|
Kim SH, Youm JH, Lee DK, Park SY, Shin CY, Ryu JS, La HO, Song HJ, Min YS, Sohn UD. Effect of hydrogen peroxide on VIP-induced relaxation of the cat lower esophageal sphincter. Arch Pharm Res 2008; 30:1419-25. [PMID: 18087810 DOI: 10.1007/bf02977366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated the effects of hydrogen peroxide (H2O2) on relaxation of the cat lower esophageal sphincter (LES). Vasoactive intestinal peptide (VIP) caused dose-dependent relaxation of LES, and H2O2 reduced VIP-induced relaxation. Relaxation was also attenuated by pertussis toxin (PTX), indicating a Gi/o component. VIP treatment increased [35S]GTPgammaS binding to Gs and Gi3 protein, but not to Go, Gq, Gil or Gi2. This increase in Gs or Gi3 binding was reduced by H2O2. However, the relaxation induced by sodium nitroprusside (SNP), 3-morpholino sydnomine (SIN-1), 8-br cGMP (cGMP analog), forskolin (adenylate cyclase activator), and dibutyryl-cAMP (a stable cAMP analog) was not reduced by H2O2. These data suggest that H202 inhibits VIP-induced relaxation via a Gi-dependent pathway, perhaps by inhibiting the activation of G(i3) or Gs downstream of the VIP receptor and independent of cAMP or NO-cGMP signaling.
Collapse
Affiliation(s)
- Sung Hyo Kim
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Murthy KS, Mahavadi S, Huang J, Zhou H, Sriwai W. Phosphorylation of GRK2 by PKA augments GRK2-mediated phosphorylation, internalization, and desensitization of VPAC2 receptors in smooth muscle. Am J Physiol Cell Physiol 2007; 294:C477-87. [PMID: 18077607 DOI: 10.1152/ajpcell.00229.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The smooth muscle of the gut expresses mainly G(s) protein-coupled vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptors (VPAC(2) receptors), which belong to the secretin family of G protein-coupled receptors. The extent to which PKA and G protein-coupled receptor kinases (GRKs) participate in homologous desensitization varies greatly among the secretin family of receptors. The present study identified the novel role of PKA in homologous desensitization of VPAC(2) receptors via the phosphorylation of GRK2 at Ser(685). VIP induced phosphorylation of GRK2 in a concentration-dependent fashion, and the phosphorylation was abolished by blockade of PKA with cell-permeable myristoylated protein kinase inhibitor (PKI) or in cells expressing PKA phosphorylation-site deficient GRK2(S685A). Phosphorylation of GRK2 increased its activity and binding to G betagamma. VIP-induced phosphorylation of VPAC(2) receptors was abolished in muscle cells expressing kinase-deficient GRK2(K220R) and attenuated in cells expressing GRK2(S685A) or by PKI. VPAC(2) receptor internalization (determined from residual (125)I-labeled VIP binding and receptor biotinylation after a 30-min exposure to VIP) was blocked in cells expressing GRK2(K220R) and attenuated in cells expressing GRK2(S685A) or by PKI. Finally, VPAC(2) receptor degradation (determined from residual (125)I-labeled VIP binding and receptor expression after a prolonged exposure to VIP) and functional VPAC(2) receptor desensitization (determined from the decrease in adenylyl cyclase activity and cAMP formation after a 30-min exposure to VIP) were abolished in cells expressing GRK2(K220R) and attenuated in cells expressing GRK2(S685A). These results demonstrate that in gastric smooth muscle VPAC(2) receptor phosphorylation is mediated by GRK2. Phosphorylation of GRK2 by PKA enhances GRK2 activity and its ability to induce VPAC(2) receptor phosphorylation, internalization, desensitization, and degradation.
Collapse
Affiliation(s)
- Karnam S Murthy
- Department of Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | |
Collapse
|
10
|
Huang J, Mahavadi S, Sriwai W, Grider JR, Murthy KS. Cross-regulation of VPAC(2) receptor desensitization by M(3) receptors via PKC-mediated phosphorylation of RKIP and inhibition of GRK2. Am J Physiol Gastrointest Liver Physiol 2007; 292:G867-74. [PMID: 17170028 DOI: 10.1152/ajpgi.00326.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In gastrointestinal smooth muscle cells, VPAC(2) receptor desensitization is exclusively mediated by G protein-coupled receptor kinase 2 (GRK2). The present study examined the mechanisms by which acetylcholine (ACh) acting via M(3) receptors regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. Vasoactive intestinal peptide induced VPAC(2) receptor phosphorylation, internalization, and desensitization in both freshly dispersed and cultured smooth muscle cells. Costimulation with ACh in the presence of M(2) receptor antagonist (i.e., activation of M(3) receptors) inhibited VPAC(2) receptor phosphorylation, internalization, and desensitization. Inhibition was blocked by the selective protein kinase C (PKC) inhibitor bisindolylmaleimide, suggesting that the inhibition was mediated by PKC, derived from M(3) receptor activation. Similar results were obtained by direct activation of PKC with phorbol myristate acetate. In the presence of the M(2) receptor antagonist, ACh induced phosphorylation of Raf kinase inhibitory protein (RKIP), increased RKIP-GRK2 association, decreased RKIP-Raf-1 association, and stimulated ERK1/2 activity, suggesting that, upon phosphorylation by PKC, RKIP dissociates from its known target Raf to associate with, and block the activity of, GRK2. In muscle cells expressing RKIP(S153A), which lacks the PKC phosphorylation site, RKIP phosphorylation was blocked and the inhibitory effect of ACh on VPAC(2) receptor phosphorylation, internalization, and desensitization and the stimulatory effect on ERK1/2 activation were abolished. This study identified a novel mechanism of cross-regulation of G(s)-coupled receptor phosphorylation and internalization by G(q)-coupled receptors. The mechanism involved phosphorylation of RKIP by PKC, switching RKIP from association with Raf-1 to association with, and inhibition of, GRK2.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adenylyl Cyclases/metabolism
- Animals
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinase Type II
- Diamines/pharmacology
- Endocytosis/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Indoles/pharmacology
- Maleimides/pharmacology
- Models, Biological
- Muscarinic Antagonists/pharmacology
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Phosphatidylethanolamine Binding Protein/genetics
- Phosphatidylethanolamine Binding Protein/metabolism
- Phosphorylation/drug effects
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- Rabbits
- Receptor Cross-Talk
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M3/antagonists & inhibitors
- Receptor, Muscarinic M3/metabolism
- Receptor, Muscarinic M3/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/physiology
- Tetradecanoylphorbol Acetate/pharmacology
- Transfection
- Vasoactive Intestinal Peptide/pharmacology
- beta-Adrenergic Receptor Kinases/metabolism
Collapse
Affiliation(s)
- Jiean Huang
- Department of Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
11
|
Mahavadi S, Huang J, Sriwai W, Rao KRSS, Murthy KS. Cross-regulation of VPAC2 receptor internalization by m2 receptors via c-Src-mediated phosphorylation of GRK2. ACTA ACUST UNITED AC 2006; 139:109-14. [PMID: 17169446 PMCID: PMC1862603 DOI: 10.1016/j.regpep.2006.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 01/25/2023]
Abstract
The aim of the study was to examine the mechanisms by which ACh, acting via m2 receptors, regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. VIP induced VPAC(2) receptor phosphorylation and internalization in freshly dispersed smooth muscle cells. Co-stimulation with acetylcholine (ACh), in the presence of m3 receptor antagonist, 4-DAMP, augmented VPAC(2) receptor phosphorylation and internalization. The m2 receptor antagonist methoctramine or the c-Src inhibitor PP2 blocked the effect of ACh, suggesting that the augmentation was mediated by c-Src, derived from m2 receptor activation. ACh induced activation of c-Src and phosphorylation of GRK2 and the effects of ACh were blocked by methoctramine, PP2, or by uncoupling of m2 receptors from G(i3) with pertussis toxin. In conclusion, we identified a novel mechanism of cross-regulation of GRK2-mediated phosphorylation and internalization of G(s)-coupled VPAC(2) receptors by G(i)-coupled m2 receptors via tyrosine phosphorylation of GRK2 and stimulation of GRK2 activity.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | | | | | | | | |
Collapse
|
12
|
Zhou H, Huang J, Murthy KS. Molecular cloning and functional expression of a VIP-specific receptor. Am J Physiol Gastrointest Liver Physiol 2006; 291:G728-34. [PMID: 16959956 DOI: 10.1152/ajpgi.00138.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three receptors for VIP and pituitary adenylate cyclase-activating peptide (PACAP) have been cloned and characterized: PAC(1), with high affinity for PACAP, and VPAC(1) and VPAC(2) with equally high affinity for VIP and PACAP. The existence of a VIP-specific receptor (VIP(s)) in guinea pig (GP) teniae coli smooth muscle was previously surmised on the basis of functional studies, and its existence was confirmed by cloning of a partial NH(2)-terminal sequence. Here we report the cloning of the full-length cDNAs of two receptors, a VPAC(2) receptor from GP gastric smooth muscle and VIP(s) from GP teniae coli smooth muscle. The cDNA sequence of the VIP(s) encodes a 437-amino acid protein (M(r) 49,560) that possesses 87% similarity to VPAC(2) receptors in rat and mouse and differs from the VPAC(2) receptor in GP gastric smooth muscle by only two amino-acid residues, F(40)F(41) in lieu of L(40)L(41). In COS-1 cells transfected with the GP teniae coli smooth muscle receptor, only VIP bound with high affinity (IC(50) 1.4 nM) and stimulated cAMP formation with high potency (EC(50) 1 nM). In contrast, in COS-1 cells transfected with the GP gastric smooth muscle receptor, both VIP and PACAP bound with equally high affinity (IC(50) 2.3 nM) and stimulated cAMP with equally high potency (EC(50) 1.5 nM). We conclude that the receptor cloned from GP teniae coli smooth muscle is a VIP(s) distinct from VPAC(1) and VPAC(2) receptors. The ligand specificity in this species is determined by a pair of adjacent phenylalanine residues (L(40)L(41)) in the NH(2)-terminal ligand-binding domain.
Collapse
Affiliation(s)
- Huiping Zhou
- Depts. of Physiology and Medicine, Medical College of Virginia Campus, VA Commonwealth Univ., Richmond, VA 23298, USA
| | | | | |
Collapse
|
13
|
Abstract
Phosphorylation of Ser19 on the 20-kDa regulatory light chain of myosin II (MLC20) by Ca2+/calmodulin-dependent myosin light-chain kinase (MLCK) is essential for initiation of smooth muscle contraction. The initial [Ca2+]i transient is rapidly dissipated and MLCK inactivated, whereas MLC20 and muscle contraction are well maintained. Sustained contraction does not reflect Ca2+ sensitization because complete inhibition of MLC phosphatase activity in the absence of Ca2+ induces smooth muscle contraction. This contraction is suppressed by staurosporine, implying participation of a Ca2+-independent MLCK. Thus, sustained contraction, as with agonist-induced contraction at experimentally fixed Ca2+ concentrations, involves (a) G protein activation, (b) regulated inhibition of MLC phosphatase, and (c) MLC20 phosphorylation via a Ca2+-independent MLCK. The pathways that lead to inhibition of MLC phosphatase by G(q/13)-coupled receptors are initiated by sequential activation of Galpha(q)/alpha13, RhoGEF, and RhoA, and involve Rho kinase-mediated phosphorylation of the regulatory subunit of MLC phosphatase (MYPT1) and/or PKC-mediated phosphorylation of CPI-17, an endogenous inhibitor of MLC phosphatase. Sustained MLC20 phosphorylation is probably induced by the Ca2+-independent MLCK, ZIP kinase. The pathways initiated by G(i)-coupled receptors involve sequential activation of Gbetagamma(i), PI 3-kinase, and the Ca2+-independent MLCK, integrin-linked kinase. The last phosphorylates MLC20 directly and inhibits MLC phosphatase by phosphorylating CPI-17. PKA and PKG, which mediate relaxation, act upstream to desensitize the receptors (VPAC2 and NPR-C), inhibit adenylyl and guanylyl cyclase activities, and stimulate cAMP-specific PDE3 and PDE4 and cGMP-specific PDE5 activities. These kinases also act downstream to inhibit (a) initial contraction by inhibiting Ca2+ mobilization and (b) sustained contraction by inhibiting RhoA and targets downstream of RhoA. This increases MLC phosphatase activity and induces MLC20 dephosphorylation and muscle relaxation.
Collapse
Affiliation(s)
- Karnam S Murthy
- Department of Physiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA.
| |
Collapse
|
14
|
Kuemmerle JF, Murthy KS, Bowers JG. IGFBP-3 activates TGF-beta receptors and directly inhibits growth in human intestinal smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G795-802. [PMID: 15178549 DOI: 10.1152/ajpgi.00009.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have shown that human intestinal smooth muscle cells produce IGF-I and IGF binding protein-3 (IGFBP-3). Endogenous IGF-I acts in autocrine fashion to stimulate growth of these cells. IGFBP-3 inhibits the binding of IGF-I to its receptor and thereby inhibits IGF-I-stimulated growth. In several carcinoma cell lines and some normal cells, IGFBP-3 regulates growth independently of IGF-I. Two mechanisms for this effect have been identified: IGFBP-3 can directly activate transforming growth factor-beta (TGF-beta) receptors or it can undergo direct nuclear translocation. The aim of the present study was to determine whether IGFBP-3 acts independently of IGF-I and to characterize the mechanisms mediating this effect in human intestinal smooth muscle cells. The direct effects of IGFBP-3 were determined in the presence of an IGF-I receptor antagonist to eliminate its IGF-I-dependent effects. Affinity labeling of TGF-beta receptors (TGF-betaRI, TGF-betaRII, and TGF-betaRV) with 125I-labeled TGF-beta1 showed that IGFBP-3 displaced binding to TGF-betaRII and TGF-betaRV in a concentration-dependent fashion. IGFBP-3 stimulated TGF-betaRII-dependent serine phosphorylation (activation) of both TGF-betaRI and of its primary substrate, Smad2(Ser465/467). IGFBP-3 also caused IGF-I-independent inhibition of basal [3H]thymidine incorporation. The effects of IGFBP-3 on Smad2 phosphorylation and on smooth muscle cell proliferation were independent of TGF-beta1 and were abolished by transfection of Smad2 siRNA. Immunoneutralization of IGFBP-3 increased basal [3H]thymidine incorporation, implying that endogenous IGFBP-3 inhibits proliferation. We conclude that endogenous IGFBP-3 directly inhibits proliferation of human intestinal smooth muscle cells by activation of TGF-betaRI and Smad2, an effect that is independent of its effect on IGF-I-stimulated growth.
Collapse
Affiliation(s)
- John F Kuemmerle
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0711, USA.
| | | | | |
Collapse
|
15
|
Sandgren K, Lin Z, Ekblad E. Differential effects of VIP and PACAP on survival of cultured adult rat myenteric neurons. REGULATORY PEPTIDES 2003; 111:211-7. [PMID: 12609771 DOI: 10.1016/s0167-0115(02)00290-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our knowledge of neuroprotective factors important for the adult enteric nervous system is poor. Changes in expression of vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) in enteric neurons in response to neuronal injury or colchicine treatment, as well as in intestinal adaptation, have been described. Cultured myenteric neurons increase their expression of VIP; furthermore, culturing myenteric neurons in the presence of VIP enhances neuronal survival. The aims of this study were to evaluate possible changes in PACAP expression in dissociated and cultured myenteric neurons from adult rat small intestine, and to determine the ability of PACAP-38 and PACAP-27 to promote survival of cultured myenteric neurons, as compared with that of VIP. A marked decrease in the number of surviving neurons was noted during culturing. No difference in neuronal survival was found after culturing in the presence of PACAP-38 or PACAP-27, whereas VIP significantly increased neuronal survival. In contrast to the marked increase noted in the number of VIP-expressing neurons, culturing caused no change in the number of PACAP-expressing myenteric neurons. We were thus able to demonstrate that VIP, but not PACAP, promoted survival of myenteric neurons in culture. This suggests the presence of a VIP-specific receptor mediating neuroprotection in adult myenteric neurons.
Collapse
Affiliation(s)
- Katarina Sandgren
- Department of Physiological Sciences, Neuroendocrine Cell Biology, BMC F10, Lund University, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
16
|
|
17
|
Laburthe M, Couvineau A. Molecular pharmacology and structure of VPAC Receptors for VIP and PACAP. REGULATORY PEPTIDES 2002; 108:165-73. [PMID: 12220741 DOI: 10.1016/s0167-0115(02)00099-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
VIP and PACAP are two prominent neuropeptides which share two common G protein-coupled receptors VPAC1 and VPAC2 while PACAP has an additional specific receptor PAC1. This paper reviews the present knowledge regarding three aspects of VPAC receptors including: (i). receptor specificity towards natural VIP-related peptides and pharmacology of synthetic agonists or antagonists; (ii). receptor signaling; (iii). molecular basis of ligand-receptor interaction as determined by site-directed mutagenesis, construction of receptor chimeras and structural modeling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Humans
- Ligands
- Models, Molecular
- Neuropeptides/physiology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Conformation
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Substrate Specificity
- Vasoactive Intestinal Peptide/chemistry
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- M Laburthe
- Neuroendocrinology and Cell Biology, INSERM U41O, Faculté de Médecine Xavier Bichat, 75018, Paris, France.
| | | |
Collapse
|
18
|
Tornøe K, Hannibal J, Georg B, Schmidt PT, Hilsted L, Fahrenkrug J, Holst JJ. PACAP 1-38 as neurotransmitter in the porcine antrum. REGULATORY PEPTIDES 2001; 101:109-21. [PMID: 11495686 DOI: 10.1016/s0167-0115(01)00276-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UNLABELLED The concentration of PACAP 1-38 in porcine antrum amounted to 15.4+/-7.9 and 20.3+/-8 pmol/g tissue in the mucosal and muscular layers. PACAP immunoreactive (IR) fibres innervated the muscular (co-localised with VIP) and submucosal/mucosal layers (some co-storing VIP and CGRP) including myenteric and submucosal plexus and blood vessels. Only myenteric nerve cell bodies contained PACAP-IR (co-storing VIP). In isolated perfused antrum, vagus nerve stimulation (8 Hz) and capsaicin (10(-5) M) increased PACAP 1-38 release. PACAP 1-38 (10(-9) M) increased substance P (SP), gastrin releasing peptide (GRP) and VIP release. PACAP 1-38 (10(-8) M) inhibited gastrin secretion and stimulated somatostatin secretion and motility dose-dependently. PACAP-induced motility was strongly inhibited by the antagonist PACAP 6-38 but also by atropine and substance P-antagonists (CP99994/SR48968) but PACAP 6-38 had no effect on vagus-induced secretion or motility. CONCLUSION PACAP 1-38 may be involved in antral motility and secretion by interacting with cholinergic, SP-ergic, GRP-ergic and/or VIP-ergic neurones, and may also be involved in afferent reflex pathways.
Collapse
Affiliation(s)
- K Tornøe
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200, N, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
Teng BQ, Grider JR, Murthy KS. Identification of a VIP-specific receptor in guinea pig tenia coli. Am J Physiol Gastrointest Liver Physiol 2001; 281:G718-25. [PMID: 11518684 DOI: 10.1152/ajpgi.2001.281.3.g718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) interact with VPAC(2) receptors in rabbit and guinea pig (GP) gastric muscle but with functionally distinct VIP and PACAP receptors in GP tenia coli. This study examined whether selectivity for VIP was determined by two residues (40, 41) in the extracellular domain that differ in the VIP receptors of GP gastric and tenial muscle. A mutant rat VPAC(2) receptor (L40F, L41F), and two chimeric receptors in which the NH(2)-terminal domain of rat VPAC(2) receptor was replaced with that of GP gastric (chimeric-G) or tenia coli (chimeric-T) VIP receptors, were constructed and expressed in COS-1 cells. VIP and PACAP bound with equal affinity to wild-type and mutant rat VPAC(2) receptors and to chimeric-G receptor (IC(50): VIP 0.3 +/- 0.1 to 1.5 +/- 0.4 nM, PACAP 0.4 +/- 0.1 to 2.5 +/- 0.1 nM) and stimulated cAMP with equal potency (EC(50): VIP 13 +/- 5 to 48 +/- 8 nM, PACAP 8 +/- 3 to 31 +/- 14 nM). VIP bound with high affinity also to chimeric-T receptor (IC(50): 0.5 +/- 0.1 nM) and stimulated cAMP with high potency (EC(50): 3 +/- 1 nM). In contrast, PACAP exhibited >1,000-fold less affinity for binding or potency for stimulating cAMP. We conclude that GP tenia coli express a VIP-specific receptor and that selectivity is determined by a pair of extracellular phenylalanine residues.
Collapse
Affiliation(s)
- B Q Teng
- Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0711, USA
| | | | | |
Collapse
|
20
|
Baccari MC, Calamai F. Modulation of nitrergic relaxant responses by peptides in the mouse gastric fundus. REGULATORY PEPTIDES 2001; 98:27-32. [PMID: 11179775 DOI: 10.1016/s0167-0115(00)00225-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of pituitary adenylate cyclase-activating peptide (PACAP-38) and vasoactive intestinal polypeptide (VIP) were investigated in the gastric fundus strips of the mouse. In carbachol (CCh) precontracted strips, in the presence of guanethidine, electrical field stimulation (EFS) elicited a fast inhibitory response that may be followed, at the highest stimulation frequencies employed, by a sustained relaxation. The fast response was abolished by the nitric oxide (NO) synthesis inhibitor L-N(G)-nitro arginine (L-NNA) or by the guanylate cyclase inhibitor (ODQ), the sustained one by alpha-chymotrypsin. alpha-Chymotrypsin also increased the amplitude of the EFS-induced fast relaxation. PACAP-38 and VIP caused tetrodotoxin-insensitive sustained relaxant responses that were both abolished by alpha-chymotrypsin. Apamin did not influence relaxant responses to EFS nor relaxation to both peptides. PACAP 6-38 abolished EFS-induced sustained relaxations, increased the amplitude of the fast ones and antagonized the smooth muscle relaxation to both PACAP-38 and VIP. VIP 10-28 and [D-p-Cl-Phe6,Leu17]-VIP did not influence the amplitude of both the fast or the sustained response to EFS nor influenced the relaxation to VIP and PACAP-38. The results indicate that in strips from mouse gastric fundus peptides, other than being responsible for EFS-induced sustained relaxation, also exerts a modulatory action on the release of the neurotransmitter responsible for the fast relaxant response, that appears to be NO.
Collapse
Affiliation(s)
- M C Baccari
- Department of Physiology, University of Florence, Viale G.B. Morgagni 63, 50134, Florence, Italy.
| | | |
Collapse
|
21
|
Ekblad E, Jongsma H, Brabet P, Bockaert J, Sundler F. Characterization of intestinal receptors for VIP and PACAP in rat and in PAC1 receptor knockout mouse. Ann N Y Acad Sci 2001; 921:137-47. [PMID: 11193817 DOI: 10.1111/j.1749-6632.2000.tb06960.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The receptors for VIP and PACAP were characterized in vitro on rat ileal and colonic longitudinal smooth muscle with adherent myenteric ganglia. Colon strips from PAC1 receptor knockout and wildtype mice were also examined. VIP, PACAP-38 and PACAP-27 all caused concentration dependent relaxations. In rat ileum three different types of smooth muscle VIP/PACAP receptors were defined: (1) a PACAP-27 preferring receptor coupled to apamin sensitive Ca(2+)-dependent K+ channels, (2) a PAC1 receptor activated by both PACAP-27 and PACAP-38, and (3) a VIP specific receptor regulated by NPY. The receptors identified in rat colon were: (1) a PAC1 receptor localized on NO synthesizing neurones. Activation leads to increased NO production. (2) A smooth muscle PAC1 receptor. The responses elicited by both receptors were abolished by apamin. (3) A smooth muscle VIP specific receptor. PAC1 receptor knockout mice did not respond to PACAP-27 or PACAP-38, whereas VIP induced a relaxatory response indicating the presence of a VIP specific receptor. In wildtype mice all three peptides elicited relaxatory responses. Pharmacological characterization of intestinal VIP/PACAP receptors indicates the existence of receptors, such as a PACAP-27 preferring receptor and a VIP specific receptor, distinct from those that have been cloned (VPAC1, VPAC2, and PAC1).
Collapse
MESH Headings
- Animals
- Colon/drug effects
- Colon/innervation
- Colon/metabolism
- Female
- Ileum/drug effects
- Ileum/innervation
- Ileum/metabolism
- In Vitro Techniques
- Intestinal Mucosa/metabolism
- Mice
- Mice, Knockout
- Muscle Relaxation/drug effects
- Neuropeptides/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Rats
- Rats, Sprague-Dawley
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- E Ekblad
- Department of Physiological Sciences, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Murthy KS, Grider JR, Makhlouf GM. Heterologous desensitization of response mediated by selective PKC-dependent phosphorylation of G(i-1) and G(i-2). Am J Physiol Cell Physiol 2000; 279:C925-34. [PMID: 11003572 DOI: 10.1152/ajpcell.2000.279.4.c925] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the ability of protein kinase C (PKC) to induce heterologous desensitization by targeting specific G proteins and limiting their ability to transduce signals in smooth muscle. Activation of PKC by pretreatment of intestinal smooth muscle cells with phorbol 12-myristate 13-acetate, cholecystokinin octapeptide, or the phosphatase 1 and phosphatase 2A inhibitor, calyculin A, selectively phosphorylated Galpha(i-1) and Galpha(i-2), but not Galpha(i-3) or Galpha(o), and blocked inhibition of adenylyl cyclase mediated by somatostatin receptors coupled to G(i-1) and opioid receptors coupled to G(i-2), but not by muscarinic M(2) and adenosine A(1) receptors coupled to G(i-3). Phosphorylation of Galpha(i-1) and Galpha(i-2) and blockade of cyclase inhibition were reversed by calphostin C and bisindolylmaleimide, and additively by selective inhibitors of PKCalpha and PKCepsilon. Blockade of inhibition was prevented by downregulation of PKC. Phosphorylation of Galpha-subunits by PKC also affected responses mediated by betagamma-subunits. Pretreatment of muscle cells with cANP-(4-23), a selective agonist of the natriuretic peptide clearance receptor, NPR-C, which activates phospholipase C (PLC)-beta3 via the betagamma-subunits of G(i-1) and G(i-2), inhibited the PLC-beta response to somatostatin and [D-Pen(2,5)]enkephalin. The inhibition was partly reversed by calphostin C. Short-term activation of PKC had no effect on receptor binding or effector enzyme (adenylyl cyclase or PLC-beta) activity. We conclude that selective phosphorylation of Galpha(i-1) and Galpha(i-2) by PKC partly accounts for heterologous desensitization of responses mediated by the alpha- and betagamma-subunits of both G proteins. The desensitization reflects a decrease in reassociation and thus availability of heterotrimeric G proteins.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- Blotting, Western
- Cells, Cultured
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/agonists
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Hormones/pharmacology
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/metabolism
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Naphthalenes/pharmacology
- Phospholipase C beta
- Phosphoric Monoester Hydrolases/antagonists & inhibitors
- Phosphorylation/drug effects
- Precipitin Tests
- Protein Isoforms/metabolism
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Rabbits
- Signal Transduction/drug effects
- Sincalide/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- K S Murthy
- Departments of Medicine and Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0711, USA
| | | | | |
Collapse
|
23
|
Grider JR. Focus on "molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal". Am J Physiol Cell Physiol 2000; 279:C284-5. [PMID: 10912993 DOI: 10.1152/ajpcell.2000.279.2.c284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 2000; 279:C529-39. [PMID: 10913020 DOI: 10.1152/ajpcell.2000.279.2.c529] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Located within the tunica muscularis of the gastrointestinal (GI) tract are networks of cells known as interstitial cells of Cajal (ICC). ICC are critical for important basic functions of GI motility such as generation and propagation of slow-wave pacemaker activity and reception of regulatory inputs from the enteric nervous system. We have developed a novel procedure to identify and isolate individual ICC from freshly dispersed cell preparations of the murine small intestine and gastric fundus and to determine differential transcriptional expression We have compared the expression profiles of pacemaker ICC isolated from the murine small intestine (IC-MY) and ICC involved in neurotransmission from the gastric fundus (IC-IM). We have also compared expression profiles between ICC and smooth muscle cells (SMC) and between freshly isolated ICC and cultured ICC. Cultured ICC express smooth muscle myosin, whereas freshly dispersed ICC do not. All cell types express muscarinic receptor types M(2) and M(3), neurokinin receptors NK(1) and NK(3), and inhibitory receptor VIP-1, whereas only cultured ICC and SMC express VIP-2. Both cultured and freshly dispersed IC-IM and IC-MY express the soluble form of stem cell factor, whereas SMC from the gastric fundus express only the membrane-bound form.
Collapse
Affiliation(s)
- A Epperson
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Murthy KS, Teng BQ, Zhou H, Jin JG, Grider JR, Makhlouf GM. G(i-1)/G(i-2)-dependent signaling by single-transmembrane natriuretic peptide clearance receptor. Am J Physiol Gastrointest Liver Physiol 2000; 278:G974-80. [PMID: 10859228 DOI: 10.1152/ajpgi.2000.278.6.g974] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Single-transmembrane natriuretic peptide clearance receptor (NPR-C), which is devoid of a cytoplasmic guanylyl cyclase domain, interacts with pertussis toxin (PTx)-sensitive G proteins to activate endothelial nitric oxide synthase (eNOS) expressed in gastrointestinal smooth muscle cells. We examined the ability of NPR-C to activate other effector enzymes in eNOS-deficient tenia coli smooth muscle cells; these cells expressed NPR-C and NPR-B but not NPR-A. Atrial natriuretic peptide (ANP), the selective NPR-C ligand cANP-(4-23), and vasoactive intestinal peptide (VIP) inhibited (125)I-ANP and (125)I-VIP binding to muscle membranes in a pattern indicating high-affinity binding to NPR-C. Interaction of VIP with NPR-C was confirmed by its ability to inhibit (125)I-ANP binding to membranes of NPR-C-transfected COS-1 cells. In tenia muscle cells, all ligands selectively activated G(i-1) and G(i-2); VIP also activated G(s) via VIP(2) receptors. All ligands stimulated phosphoinositide hydrolysis, which was inhibited by ANP-(1-11), PTx, and antibodies to phospholipase C-beta3 (PLC-beta3) and Gbeta. cANP-(4-23) contracted tenia muscle cells; contraction was blocked by U-73122 and PTx and by antibodies to PLC-beta3 and Gbeta in intact and permeabilized muscle cells, respectively. VIP and ANP contracted muscle cells only after inhibition of cAMP- and cGMP-dependent protein kinases. ANP and cANP-(4-23) inhibited forskolin-stimulated cAMP in a PTx-sensitive fashion. We conclude that NPR-C is coupled to activation of PLC-beta3 via betagamma-subunits of G(i-1) and G(i-2) and to inhibition of adenylyl cyclase via alpha-subunits.
Collapse
Affiliation(s)
- K S Murthy
- Department of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0711, USA
| | | | | | | | | | | |
Collapse
|
26
|
Plujà L, Fernández E, Jiménez M. Electrical and mechanical effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide in the rat colon involve different mechanisms. Eur J Pharmacol 2000; 389:217-24. [PMID: 10688987 DOI: 10.1016/s0014-2999(99)00773-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work aimed to study the effects of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) on the mechanical and electrical activity of the circular muscle of the rat colon and the mechanisms involved in such effects. Spontaneous mechanical activity was studied in vitro in an organ bath and the membrane potential was recorded using the microelectrode technique. Both VIP and PACAP (0.1 microM) caused an immediate, sustained and tetrodotoxin (1 microM)-resistant inhibition of the cyclic spontaneous mechanical activity and hyperpolarization. The small-conductance Ca(2+)-activated K(+) channel blocker, apamin (1 microM), did not change the VIP- and PACAP-induced relaxation but reduced the hyperpolarization induced by PACAP whereas it did not change that induced by VIP. In contrast, the purinoceptor antagonist, suramin (100 microM), blocked the hyperpolarization caused by PACAP and VIP but failed to change their mechanical inhibitory effects. Moreover, the putative PACAP and VIP receptor antagonists, PACAP-(6-38) and VIP-(10-28), respectively, both 3 microM, failed to change the effects of either peptide and modified neither the inhibitory junction potential nor the relaxation induced by electrical-field stimulation. Thus, these results suggest that the mechanisms mediating relaxation are not strictly coupled to the mechanisms mediating hyperpolarization. This could be due to activation of two distinct mechanisms of action after agonist receptor interaction.
Collapse
Affiliation(s)
- L Plujà
- Department of Cell Biology, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
27
|
Motomura Y, Chijiiwa Y, Yasuda O, Ochiai T, Harada N, Nawata H. Thyrotropin-releasing hormone interacts with vasoactive intestinal peptide-specific receptor in guinea pig cecal circular smooth muscle cells. REGULATORY PEPTIDES 2000; 87:41-6. [PMID: 10710287 DOI: 10.1016/s0167-0115(99)00098-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The relationship between thyrotropin-releasing hormone (TRH) binding sites and vasoactive intestinal peptide (VIP) receptors in circular muscle cells obtained from the guinea pig cecum was investigated using antagonists of VIP receptors and a selective receptor protection method. Both VIP10-28, a VIP antagonist, and atrial natriuretic peptide1-11 (ANP1-11), a VIP-specific receptor antagonist, completely inhibited 10(-5) M TRH-induced relaxation in a concentration-dependent manner. The muscle cells where cholecystokinin octapeptide (CCK-8) and TRH binding sites were protected completely preserved the inhibitory responses to TRH and ANP (a VIP-specific receptor agonist), and partially the inhibitory response to VIP. Peptide histidine isoleucine (PHI: a VIP-preferring receptor agonist) had no inhibitory effect on these cells. The muscle cells where CCK-8 and ANP (VIP-specific) receptors were protected completely preserved the inhibitory responses to TRH and ANP and partially the inhibitory response to VIP. PHI had no inhibitory effect on these cells. The muscle cells where CCK-8 and VIP receptors (both VIP-specific and VIP-preferring receptors) were protected preserved completely the inhibitory responses to TRH, VIP, ANP, and PHI. The muscle cells where CCK-8 and PHI (VIP-preferring) receptors were protected completely preserved the inhibitory response to PHI and partially the inhibitory response to VIP. TRH and ANP had no inhibitory effect on these cells. This study first demonstrates that TRH interacts with VIP-specific receptor in guinea pig cecal circular smooth muscle cells.
Collapse
Affiliation(s)
- Y Motomura
- Department of Clinical Genetics, Medical Institute of Bioregulation, Kyushu University, Tsurumihara, Beppu, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Ekblad E. Pharmacological evidence for both neuronal and smooth muscular PAC1 receptors and a VIP-specific receptor in rat colon. REGULATORY PEPTIDES 1999; 85:87-92. [PMID: 10651061 DOI: 10.1016/s0167-0115(99)00080-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED The receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) were characterised in vitro on rat colon longitudinal smooth muscle with adherent myenteric ganglia. VIP, PACAP-38 and PACAP-27 all caused concentration-dependent relaxations. PACAP-27 and PACAP-38 were equipotent, while VIP was less potent. Tetrodotoxin (10(-6) M), L-NAME (10(-4) M), 7-NINA (10(-5) M) and ODQ (3 x 10(-6) M) reduced the amplitude of the relaxatory responses to PACAP-38 but did not affect relaxations induced by VIP or PACAP-27. Apamin (10(-6) M) almost totally abolished the PACAP-27- and PACAP-38-induced relaxations, while VIP-induced relaxations were only slightly reduced. Tetraethylammonium (TEA) reduced VIP- but not PACAP-27-induced relaxations, while charybdotoxin was ineffective. Cross-desensitisation between PACAP-27, PACAP-38 and VIP could be revealed to some extent. IN CONCLUSION VIP, PACAP-27 and PACAP-38 are effective relaxants in rat colon longitudinal muscle. The receptors involved are classified as: (1) a neuronal PAC1 receptor localised on NO-synthesising neurones, the preferred ligand being PACAP-38. Activation of this receptor leads to an increased NO production. (2) A smooth muscle PAC1 receptor, the preferred ligand being PACAP-27. However, also PACAP-38 and, to a less extent, VIP activate this receptor. The relaxatory responses elicited by both PACAP-27 and PACAP-38 are abolished by apamin and thus mediated through small conductance Ca2+-activated K+ channels. (3) A VIP-specific receptor localised on smooth muscle cells. The mechanisms whereby this receptor elicits a relaxatory response involve, at least to some extent, TEA-sensitive K+ channels.
Collapse
MESH Headings
- Animals
- Apamin/pharmacology
- Colon/drug effects
- Colon/innervation
- Colon/physiology
- Female
- Indazoles/pharmacology
- Muscle Relaxation/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Myenteric Plexus/drug effects
- Myenteric Plexus/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Neuropeptides/pharmacology
- Nitric Oxide/biosynthesis
- Oxadiazoles/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Quinoxalines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/drug effects
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/drug effects
- Receptors, Vasoactive Intestinal Peptide/physiology
- Tetrodotoxin/pharmacology
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- E Ekblad
- Department of Physiological Sciences, Lund University Hospital, Sweden.
| |
Collapse
|
29
|
Läuff JM, Modlin IM, Tang LH. Biological relevance of pituitary adenylate cyclase-activating polypeptide (PACAP) in the gastrointestinal tract. REGULATORY PEPTIDES 1999; 84:1-12. [PMID: 10535402 DOI: 10.1016/s0167-0115(99)00024-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Since its initial discovery in 1989, pituitary adenylate cyclase activating peptide (PACAP) has been noted to distribute widely in the brain, the respiratory and the gastrointestinal system. It occurs in two bioactive molecules, PACAP-27 and the C-terminally extended PACAP-38, which evoke activity by binding to three distinct types of high-affinity, G-protein coupled membrane receptors. It is present throughout the entirety of the gut but is rare in certain areas such as the intestinal mucosa and islets of Langerhans. PACAP-induced biological effects are protean and include alterations of motility in the bowel and the gallbladder, stimulation of gastric acid and intestinal secretion, hormone/enzyme release from the exocrine and endocrine pancreas, and the induction as well as inhibition of proliferation in neuroendocrine cells and tumors. Its hepatic activity has to date not been elucidated in detail. One of the interesting features of PACAP is the species and organ dependent variation of its biological effects. Of particular note is its superior potency when compared with other neuropeptides identified in the gut, and the involvement of a number of different second messenger systems upon PACAP receptor activation.
Collapse
Affiliation(s)
- J M Läuff
- Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, CT 06520-8062, USA
| | | | | |
Collapse
|
30
|
Murthy KS, Teng B, Jin J, Makhlouf GM. G protein-dependent activation of smooth muscle eNOS via natriuretic peptide clearance receptor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1409-16. [PMID: 9843699 DOI: 10.1152/ajpcell.1998.275.6.c1409] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In gastrointestinal smooth muscle, the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) induce relaxation by interacting with VIP2/PACAP3 receptors coupled via Gs to adenylyl cyclase and with distinct receptors coupled via Gi1 and/or Gi2 to a smooth muscle endothelial nitric oxide synthase (eNOS). The present study identifies the receptor as the single-transmembrane natriuretic peptide clearance receptor (NPR-C). RT-PCR and Northern analysis demonstrated expression of the natriuretic peptide receptors NPR-C and NPR-B but not NPR-A in rabbit gastric muscle cells. In binding studies using 125I-labeled atrial natriuretic peptide (125I-ANP) and 125I-VIP as radioligands, VIP, ANP, and the selective NPR-C ligand cANP(4-23) bound with high affinity to NPR-C. ANP, cANP-(4-23), and VIP initiated identical signaling cascades consisting of Ca2+ influx, activation of eNOS via Gi1 and Gi2, stimulation of cGMP formation, and muscle relaxation. NOS activity and cGMP formation were abolished (93 +/- 3 to 96 +/- 2% inhibition) by nifedipine, pertussis toxin, the NOS inhibitor, NG-nitro-L-arginine, and the antagonists ANP-(1-11) and VIP-(10-28). NOS activity stimulated by all three ligands in muscle membranes was additively inhibited by Gi1 and Gi2 antibodies (82 +/- 2 to 84 +/- 1%). In reconstitution studies, VIP, cANP-(4-23), and guanosine 5'-O-(3-thiotriphosphate) stimulated NOS activity in membranes of COS-1 cells cotransfected with NPR-C and eNOS. The results establish a unique mechanism for G protein-dependent activation of a constitutive NOS expressed in gastrointestinal smooth muscle involving interaction of the relaxant neuropeptides VIP and PACAP with a single-transmembrane natriuretic peptide receptor, NPR-C.
Collapse
Affiliation(s)
- K S Murthy
- Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0711, USA
| | | | | | | |
Collapse
|