1
|
Wáng YXJ, Yu WL, Deng M. Age- and sex-related variations of normal spleen T1rho and the more stable liver T1rho to spleen T1rho ratio. ROFO-FORTSCHR RONTG 2024. [PMID: 39437996 DOI: 10.1055/a-2428-7409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We aim to evaluate the potential age- and sex-related variations of normative values of spleen T1rho.Two T1rho sequences were used, with one based on fast spin echo sequence (FSE) and the other based on gradient echo sequence (GRE). Spleen and liver FSE T1rho values were measured in 52 healthy volunteers (36 females, 16 males), and spleen and liver GRE T1rho values were measured in 14 healthy volunteers (6 females, 8 males).For FSE data, an age-related decreasing trend of spleen T1rho was noted for both females and males. This trend was consistent with female liver T1rho values, while such a trend was not noted for male liver T1rho. Females had a higher T1rho than males, both for the spleen (92.8 vs 77.3 ms, p<0.0001) and for the liver (44.2 vs. 38.9 ms, p<0.0001, FSE data). The spleen T1rho value was approximately double the liver T1rho value. The spleen T1rho and liver T1rho were positively correlated, both for FSE data (r=0.611) and GRE data (r=0.541). When the spleen T1rho was used to normalize the liver T1rho, the ratio of T1rholiver/T1rhospleen largely removed the sex and age effect. The spleen T1rho in menstrual phase women was 10.7% lower (p=0.012) than that of non-menstrual phase women, while the liver T1rho in menstrual phase women was 3.8% lower than that of non-menstrual phase women.Since women in the menstrual phase tend to have lower body iron, the fact that both liver T1rho and spleen T1rho are shorter among women in the menstrual phase than women in the non-menstrual phase indicates that liver and spleen T1rho physiological variations may not be dominantly affected by the iron content of the tissue. If a pathology has only affected the liver while the spleen is normal, there is a possibility the ratio T1rholiver/T1rhospleen may offer better characterization of liver pathologies. · There is an age-related decreasing trend of spleen T1rho.. · Females have a higher spleen T1rho than males.. · The spleen T1rho value is approximately double the liver T1rho value.. · Spleen T1rho and liver T1rho are positively correlated.. · Wáng YXJ, Yu W-L, Deng M. Age- and sex-related variations of normal spleen T1rho and the more stable liver T1rho to spleen T1rho ratio. Fortschr Röntgenstr 2024; DOI 10.1055/a-2428-7409.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Wei-Ling Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Min Deng
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
Piskova T, Kozyrina AN, Di Russo J. Mechanobiological implications of age-related remodelling in the outer retina. BIOMATERIALS ADVANCES 2023; 147:213343. [PMID: 36801797 DOI: 10.1016/j.bioadv.2023.213343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The outer retina consists of the light-sensitive photoreceptors, the pigmented epithelium, and the choroid, which interact in a complex manner to sustain homeostasis. The organisation and function of these cellular layers are mediated by the extracellular matrix compartment named Bruch's membrane, situated between the retinal epithelium and the choroid. Like many tissues, the retina experiences age-related structural and metabolic changes, which are relevant for understanding major blinding diseases of the elderly, such as age-related macular degeneration. Compared with other tissues, the retina mainly comprises postmitotic cells, making it less able to maintain its mechanical homeostasis over the years functionally. Aspects of retinal ageing, like the structural and morphometric changes of the pigment epithelium and the heterogenous remodelling of the Bruch's membrane, imply changes in tissue mechanics and may affect functional integrity. In recent years, findings in the field of mechanobiology and bioengineering highlighted the importance of mechanical changes in tissues for understanding physiological and pathological processes. Here, we review the current knowledge of age-related changes in the outer retina from a mechanobiological perspective, aiming to generate food for thought for future mechanobiology studies in the outer retina.
Collapse
Affiliation(s)
- Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Aleksandra N Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Dutta RK, Lee JN, Maharjan Y, Park C, Choe SK, Ho YS, Kwon HM, Park R. Catalase-deficient mice induce aging faster through lysosomal dysfunction. Cell Commun Signal 2022; 20:192. [PMID: 36474295 PMCID: PMC9724376 DOI: 10.1186/s12964-022-00969-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lysosomes are a central hub for cellular metabolism and are involved in the regulation of cell homeostasis through the degradation or recycling of unwanted or dysfunctional organelles through the autophagy pathway. Catalase, a peroxisomal enzyme, plays an important role in cellular antioxidant defense by decomposing hydrogen peroxide into water and oxygen. In accordance with pleiotropic significance, both impaired lysosomes and catalase have been linked to many age-related pathologies with a decline in lifespan. Aging is characterized by progressive accumulation of macromolecular damage and the production of high levels of reactive oxygen species. Although lysosomes degrade the most long-lived proteins and organelles via the autophagic pathway, the role of lysosomes and their effect on catalase during aging is not known. The present study investigated the role of catalase and lysosomal function in catalase-knockout (KO) mice. METHODS We performed experiments on WT and catalase KO younger (9 weeks) and mature adult (53 weeks) male mice and Mouse embryonic fibroblasts isolated from WT and KO mice from E13.5 embryos as in vivo and in ex-vivo respectively. Mouse phenotyping studies were performed with controls, and a minimum of two independent experiments were performed with more than five mice in each group. RESULTS We found that at the age of 53 weeks (mature adult), catalase-KO mice exhibited an aging phenotype faster than wild-type (WT) mice. We also found that mature adult catalase-KO mice induced leaky lysosome by progressive accumulation of lysosomal content, such as cathespin D, into the cytosol. Leaky lysosomes inhibited autophagosome formation and triggered impaired autophagy. The dysregulation of autophagy triggered mTORC1 (mechanistic target of rapamycin complex 1) activation. However, the antioxidant N-acetyl-L-cysteine and mTORC1 inhibitor rapamycin rescued leaky lysosomes and aging phenotypes in catalase-deficient mature adult mice. CONCLUSIONS This study unveils the new role of catalase and its role in lysosomal function during aging. Video abstract.
Collapse
Affiliation(s)
- Raghbendra Kumar Dutta
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Institute of AI-Medical Science, GRI, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Joon No Lee
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Institute of AI-Medical Science, GRI, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Yunash Maharjan
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Institute of AI-Medical Science, GRI, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Channy Park
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Institute of AI-Medical Science, GRI, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Seong-Kyu Choe
- grid.410899.d0000 0004 0533 4755Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538 Republic of Korea
| | - Ye-Shih Ho
- grid.254444.70000 0001 1456 7807Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI USA
| | - Hyug Moo Kwon
- grid.42687.3f0000 0004 0381 814XSchool of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Raekil Park
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Institute of AI-Medical Science, GRI, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
4
|
Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction. Antioxidants (Basel) 2022; 11:antiox11091695. [PMID: 36139771 PMCID: PMC9495674 DOI: 10.3390/antiox11091695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21WAF, p16INK4a and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders.
Collapse
|
5
|
Tong Y, Zhang Z, Wang S. Role of Mitochondria in Retinal Pigment Epithelial Aging and Degeneration. FRONTIERS IN AGING 2022; 3:926627. [PMID: 35912040 PMCID: PMC9337215 DOI: 10.3389/fragi.2022.926627] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 12/17/2022]
Abstract
Retinal pigment epithelial (RPE) cells form a monolayer between the neuroretina and choroid. It has multiple important functions, including acting as outer blood-retina barrier, maintaining the function of neuroretina and photoreceptors, participating in the visual cycle and regulating retinal immune response. Due to high oxidative stress environment, RPE cells are vulnerable to dysfunction, cellular senescence, and cell death, which underlies RPE aging and age-related diseases, including age-related macular degeneration (AMD). Mitochondria are the powerhouse of cells and a major source of cellular reactive oxygen species (ROS) that contribute to mitochondrial DNA damage, cell death, senescence, and age-related diseases. Mitochondria also undergo dynamic changes including fission/fusion, biogenesis and mitophagy for quality control in response to stresses. The role of mitochondria, especially mitochondrial dynamics, in RPE aging and age-related diseases, is still unclear. In this review, we summarize the current understanding of mitochondrial function, biogenesis and especially dynamics such as morphological changes and mitophagy in RPE aging and age-related RPE diseases, as well as in the biological processes of RPE cellular senescence and cell death. We also discuss the current preclinical and clinical research efforts to prevent or treat RPE degeneration by restoring mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Yao Tong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Zunyi Zhang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Department of Ophthalmology, Tulane University, New Orleans, LA, United States
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
6
|
Tong X, Liu S, Stein R, Imai Y. Lipid Droplets' Role in the Regulation of β-Cell Function and β-Cell Demise in Type 2 Diabetes. Endocrinology 2022; 163:6516108. [PMID: 35086144 PMCID: PMC8826878 DOI: 10.1210/endocr/bqac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/29/2023]
Abstract
During development of type 2 diabetes (T2D), excessive nutritional load is thought to expose pancreatic islets to toxic effects of lipids and reduce β-cell function and mass. However, lipids also play a positive role in cellular metabolism and function. Thus, proper trafficking of lipids is critical for β cells to maximize the beneficial effects of these molecules while preventing their toxic effects. Lipid droplets (LDs) are organelles that play an important role in the storage and trafficking of lipids. In this review, we summarize the discovery of LDs in pancreatic β cells, LD lifecycle, and the effect of LD catabolism on β-cell insulin secretion. We discuss factors affecting LD formation such as age, cell type, species, and nutrient availability. We then outline published studies targeting critical LD regulators, primarily in rat and human β-cell models, to understand the molecular effect of LD formation and degradation on β-cell function and health. Furthermore, based on the abnormal LD accumulation observed in human T2D islets, we discuss the possible role of LDs during the development of β-cell failure in T2D. Current knowledge indicates that proper formation and clearance of LDs are critical to normal insulin secretion, endoplasmic reticulum homeostasis, and mitochondrial integrity in β cells. However, it remains unclear whether LDs positively or negatively affect human β-cell demise in T2D. Thus, we discuss possible research directions to address the knowledge gap regarding the role of LDs in β-cell failure.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Siming Liu
- Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Roland Stein
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Yumi Imai
- Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, USA
- Correspondence: Yumi Imai, MD, Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 200 Hawkins Dr, PBDB Rm 3318, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Abstract
Significance: During aging, excessive production of reactive species in the liver leads to redox imbalance with consequent oxidative damage and impaired organ homeostasis. Nevertheless, slight amounts of reactive species may modulate several transcription factors, acting as second messengers and regulating specific signaling pathways. These redox-dependent alterations may impact the age-associated decline in liver regeneration. Recent Advances: In the last few decades, relevant findings related to redox alterations in the aging liver were investigated. Consistently, recent research broadened understanding of redox modifications and signaling related to liver regeneration. Other than reporting the effect of oxidative stress, epigenetic and post-translational modifications, as well as modulation of specific redox-sensitive cellular signaling, were described. Among them, the present review focuses on Wnt/β-catenin, the nuclear factor (erythroid-derived 2)-like 2 (NRF2), members of the Forkhead box O (FoxO) family, and the p53 tumor suppressor. Critical Issues: Even though alteration in redox homeostasis occurs both in aging and in impaired liver regeneration, the associative mechanisms are not clearly defined. Of note, antioxidants are not effective in slowing hepatic senescence, and do not clearly improve liver repopulation after hepatectomy or transplant in humans. Future Directions: Further investigations are needed to define mutual redox-dependent molecular pathways involved both in aging and in the decline of liver regeneration. Preclinical studies aimed at the characterization of these pathways would define possible therapeutic targets for human trials. Antioxid. Redox Signal. 35, 832-847.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
8
|
Wáng YXJ. Gender-specific liver aging and magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:2893-2904. [PMID: 34249621 DOI: 10.21037/qims-21-227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
The number of imaging studies performed on elderly individuals will increase in the next several decades. It is important to understand normal age-related changes in the structural and functional imaging appearance of the liver. This article highlights a number of liver aging aspects which are particularly relevant to magnetic resonance imaging (MRI). Physiology of aging liver is associated with a reduction in size, in perfusion, and in function. Pulsed echo-Doppler showed substantial reduction of portal flow in elderly subjects, particularly those after the age of 75 years old. An MRI biomarker diffusion derived vessel density (DDVD) demonstrated that liver microperfusion volume in healthy females starts to decrease even before menopause age. Liver fat content and iron content increase with aging, and the change is more substantial in women after menopause. Adult men have higher liver fat and iron contents than women from the start and change less during aging. Nonalcoholic fatty liver disease (NAFLD) is very common among assumed healthy subjects. There is a male predominance of NAFLD from the paediatric population up to fifth decade of life in adults. After the age of 60 years, women overtake their male counterparts in prevalence of NAFLD. Higher liver fat leads to decreased apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM)-Dslow measures. Higher liver iron content shortens T2* measure, lower ADC and IVIM-Dslow measures, increases imaging noises and decreases liver visibility. Young women have high liver T1rho value and then decrease substantially, while liver T1rho in men remains relatively unchanged with aging. In positron emission tomography (PET) studies, aging is associated with an increase of both liver fluorine-18-fluorodeoxyglucose maximum standard uptake and mean standard uptake values.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
9
|
Su H, Liu D, Shao J, Li Y, Wang X, Gao Q. Aging Liver: Can Exercise be a Better Way to Delay the Process than Nutritional and Pharmacological Intervention? Focus on Lipid Metabolism. Curr Pharm Des 2021; 26:4982-4991. [PMID: 32503400 DOI: 10.2174/1381612826666200605111232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nowadays, the world is facing a common problem that the population aging process is accelerating. How to delay metabolic disorders in middle-aged and elderly people, has become a hot scientific and social issue worthy of attention. The liver plays an important role in lipid metabolism, and abnormal lipid metabolism may lead to liver diseases. Exercise is an easily controlled and implemented intervention, which has attracted extensive attention in improving the health of liver lipid metabolism in the elderly. This article reviewed the body aging process, changes of lipid metabolism in the aging liver, and the mechanism and effects of different interventions on lipid metabolism in the aging liver, especially focusing on exercise intervention. METHODS A literature search was performed using PubMed-NCBI, EBSCO Host and Web of Science, and also a report from WHO. In total, 143 studies were included from 1986 to 15 February 2020. CONCLUSION Nutritional and pharmacological interventions can improve liver disorders, and nutritional interventions are less risky relatively. Exercise intervention can prevent and improve age-related liver disease, especially the best high-intensity interval training intensity and duration is expected to be one of the research directions in the future.
Collapse
Affiliation(s)
- Hao Su
- The School of Sport Science, Beijing Sport University, Beijing, China
| | - Dongsen Liu
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jia Shao
- The Graduate School, Beijing Sport University, Beijing, China
| | - Yinuo Li
- The Graduate School, Beijing Sport University, Beijing, China
| | - Xiaoxia Wang
- The School of Physical Education and Art Education, Beijing Technology and Business University, Beijing, China
| | - Qi Gao
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
10
|
Machado-Oliveira G, Ramos C, Marques ARA, Vieira OV. Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis. Cells 2020; 9:E2146. [PMID: 32977446 PMCID: PMC7598292 DOI: 10.3390/cells9102146] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is an age-related disorder associated with long-term exposure to cardiovascular risk factors. The asymptomatic progression of atherosclerotic plaques leads to major cardiovascular diseases (CVD), including acute myocardial infarctions or cerebral ischemic strokes in some cases. Senescence, a biological process associated with progressive structural and functional deterioration of cells, tissues and organs, is intricately linked to age-related diseases. Cell senescence involves coordinated modifications in cellular compartments and has been demonstrated to contribute to different stages of atheroma development. Senescence-based therapeutic strategies are currently being pursued to treat and prevent CVD in humans in the near-future. In addition, distinct experimental settings allowed researchers to unravel potential approaches to regulate anti-apoptotic pathways, facilitate excessive senescent cell clearance and eventually reverse atherogenesis to improve cardiovascular function. However, a deeper knowledge is required to fully understand cellular senescence, to clarify senescence and atherogenesis intertwining, allowing researchers to establish more effective treatments and to reduce the cardiovascular disorders' burden. Here, we present an objective review of the key senescence-related alterations of the major intracellular organelles and analyze the role of relevant cell types for senescence and atherogenesis. In this context, we provide an updated analysis of therapeutic approaches, including clinically relevant experiments using senolytic drugs to counteract atherosclerosis.
Collapse
Affiliation(s)
- Gisela Machado-Oliveira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| | | | | | - Otília V. Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| |
Collapse
|
11
|
Xu F, Hua C, Tautenhahn HM, Dirsch O, Dahmen U. The Role of Autophagy for the Regeneration of the Aging Liver. Int J Mol Sci 2020; 21:ijms21103606. [PMID: 32443776 PMCID: PMC7279469 DOI: 10.3390/ijms21103606] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Age is one of the key risk factors to develop malignant diseases leading to a high incidence of hepatic tumors in the elderly population. The only curative treatment for hepatic tumors is surgical removal, which initiates liver regeneration. However, liver regeneration is impaired with aging, leading to an increased surgical risk for the elderly patient. Due to the increased risk, those patients are potentially excluded from curative surgery. Aging impairs autophagy via lipofuscin accumulation and inhibition of autophagosome formation. Autophagy is a recycling mechanism for eukaryotic cells to maintain homeostasis. Its principal function is to degrade endogenous bio-macromolecules for recycling cellular substances. A number of recent studies have shown that the reduced regenerative capacity of the aged remnant liver can be restored by promoting autophagy. Autophagy can be activated via multiple mTOR-dependent and mTOR-independent pathways. However, inducing autophagy through the mTOR-dependent pathway alone severely impairs liver regeneration. In contrast, recent observations suggest that inducing autophagy via mTOR-independent pathways might be promising in promoting liver regeneration. Conclusion: Activation of autophagy via an mTOR-independent autophagy inducer is a potential therapy for promoting liver regeneration, especially in the elderly patients at risk.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Chuanfeng Hua
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09111 Chemnitz, Germany;
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
- Correspondence: ; Tel.: +49-03641-9325350
| |
Collapse
|
12
|
Lu JQ, Monaco CMF, Hawke TJ, Yan C, Tarnopolsky MA. Increased intra-mitochondrial lipofuscin aggregates with spherical dense body formation in mitochondrial myopathy. J Neurol Sci 2020; 413:116816. [PMID: 32272361 DOI: 10.1016/j.jns.2020.116816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
Lipofuscin aggregation may result from incomplete degradation of damaged mitochondria by autophagy-lysosome pathway, and intra-mitochondrial lipofuscin aggregation may exacerbate mitochondrial abnormalities in mitochondrial myopathy (MM) and mitochondrial disease. We examined vastus lateralis muscle biopsies from 24 patients with pathologically diagnosed MM and clinically diagnosed chronic progressive external ophthalmoplegia, in comparison to the biopsies from 3 other groups:10 patients with inclusion body myositis (IBM), 11 younger adults, and 10 older subjects with no to minimal myopathic changes. Lipofuscin aggregation in muscle fibres was assessed on autofluorescence microscopy, some histochemical stains, and electron microscopy (EM). EM analyses demonstrated intra-mitochondrial lipofuscin aggregates, spherical dense bodies (SDBs), and paracrystalline inclusions (PCIs) which were semi-quantitatively assessed. Intra-mitochondrial lipofuscin aggregates showed no significant differences between groups of MM patients and older subjects or IBM patients, but significant differences between groups of younger adults and others with associated age-related changes. Intra-mitochondrial SDBs were significantly more in MM patients than in older subjects, IBM patients, and younger adults. There was a significant positive correlation between intra-mitochondrial lipofuscin aggregates and SDBs. These findings suggest that intra-mitochondrial formation of lipofuscin SDBs is more in MM and contributing to the pathophysiology of mitochondrial disease.
Collapse
Affiliation(s)
- Jian-Qiang Lu
- Department of Pathology and Molecular Medicine/Neuropathology, McMaster University, Hamilton, Ontario, Canada.
| | - Cynthia M F Monaco
- Department of Pathology and Molecular Medicine/Anatomy, McMaster University, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine/Anatomy, McMaster University, Hamilton, Ontario, Canada
| | - Chuanzhu Yan
- Neuromuscular Center, Qilu Hospital, Shandong University, Shandong, China; Mitochondrial Medicine Laboratory, Qilu Hospital, Shandong University, Shandong, China
| | - Mark A Tarnopolsky
- Department of Medicine/Neurology, McMaster University, Hamilton, Ontario, Canada; Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Morsiani C, Bacalini MG, Santoro A, Garagnani P, Collura S, D'Errico A, de Eguileor M, Grazi GL, Cescon M, Franceschi C, Capri M. The peculiar aging of human liver: A geroscience perspective within transplant context. Ageing Res Rev 2019; 51:24-34. [PMID: 30772626 DOI: 10.1016/j.arr.2019.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
An appraisal of recent data highlighting aspects inspired by the new Geroscience perspective are here discussed. The main findings are summarized as follows: i) liver has to be considered an immunological organ, and new studies suggest a role for the recently described cells named telocytes; ii) the liver-gut axis represents a crucial connection with environment and life style habits and may influence liver diseases onset; iii) the physiological aging of liver shows relatively modest alterations. Nevertheless, several molecular changes appear to be relevant: a) an increase of microRNA-31-5p; -141-3p; -200c-3p expressions after 60 years of age; b) a remodeling of genome-wide DNA methylation profile evident until 60 years of age and then plateauing; c) changes in transcriptome including the metabolic zones of hepatocyte lobules; d) liver undergoes an accelerated aging in presence of chronic inflammation/liver diseases in a sort of continuum, largely as a consequence of unhealthy life styles and exposure to environmental noxious agents. We argue that chronic liver inflammation has all the major characteristics of "inflammaging" and likely sustains the onset and progression of liver diseases. Finally, we propose to use a combination of parameters, mostly obtained by omics such as transcriptomics and epigenomics, to evaluate in deep both the biological age of liver (in comparison with the chronological age) and the effects of donor-recipient age-mismatches in the context of liver transplant.
Collapse
Affiliation(s)
- Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | | | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Salvatore Collura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Antonia D'Errico
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Magda de Eguileor
- DBSV-Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | | | - Matteo Cescon
- DIMEC-Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, Russian Federation
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy; CSR-Centro di Studio per la Ricerca dell'Invecchiamento, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Pignolo RJ, Samsonraj RM, Law SF, Wang H, Chandra A. Targeting Cell Senescence for the Treatment of Age-Related Bone Loss. Curr Osteoporos Rep 2019; 17:70-85. [PMID: 30806947 DOI: 10.1007/s11914-019-00504-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We review cell senescence in the context of age-related bone loss by broadly discussing aging mechanisms in bone, currently known inducers and markers of senescence, the senescence-associated secretory phenotype (SASP), and the emerging roles of senescence in bone homeostasis and pathology. RECENT FINDINGS Cellular senescence is a state of irreversible cell cycle arrest induced by insults or stressors including telomere attrition, oxidative stress, DNA damage, oncogene activation, and other intrinsic or extrinsic triggers and there is mounting evidence for the role of senescence in aging bone. Cellular aging also instigates a SASP that exerts detrimental paracrine and likely systemic effects. With aging, multiple cell types in the bone microenvironment become senescent, with osteocytes and myeloid cells as primary contributors to the SASP. Targeting undesired senescent cells may be a favorable strategy to promote bone anabolic and anti-resorptive functions in aging bone, with the possibility of improving bone quality and function with normal aging and/or disease.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | | | - Susan F Law
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Haitao Wang
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Abhishek Chandra
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
15
|
Press M, Jung T, König J, Grune T, Höhn A. Protein aggregates and proteostasis in aging: Amylin and β-cell function. Mech Ageing Dev 2018; 177:46-54. [PMID: 29580826 DOI: 10.1016/j.mad.2018.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023]
Abstract
The ubiquitin-proteasomal-system (UPS) and the autophagy-lysosomal-system (ALS) are both highly susceptible for disturbances leading to the accumulation of cellular damage. A decline of protein degradation during aging results in the formation of oxidatively damaged and aggregated proteins finally resulting in failure of cellular functionality. Besides protein aggregation in response to oxidative damage, amyloids are a different type of protein aggregates able to distract proteostasis and interfere with cellular functionality. Amyloids are clearly linked to the pathogenesis of age-related degenerative diseases such as Alzheimer's disease. Human amylin is one of the peptides forming fibrils in β-sheet conformation finally leading to amyloid formation. In contrast to rodent amylin, human amylin is prone to form amyloidogenic aggregates, proposed to play a role in the pathogenesis of Type 2 Diabetes by impairing β-cell functionality. Since aggregates such as lipofuscin and β-amyloid are known to impair proteostasis, it is likely to assume similar effects for human amylin. In this review, we focus on the effects of IAPP on UPS and ALS and their role in amylin degradation, since both systems play a crucial role in maintaining proteome balance thereby influencing, at least in part, cellular fate and aging.
Collapse
Affiliation(s)
- Michaela Press
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany; Institute of Nutrition, University of Potsdam, 14558 Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany.
| |
Collapse
|
16
|
Yzydorczyk C, Li N, Chehade H, Mosig D, Bidho M, Keshavjee B, Armengaud JB, Nardou K, Siddeek B, Benahmed M, Vergely C, Simeoni U. Transient postnatal overfeeding causes liver stress-induced premature senescence in adult mice. Sci Rep 2017; 7:12911. [PMID: 29018245 PMCID: PMC5635041 DOI: 10.1038/s41598-017-11756-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
Unbalanced nutrition early in life is increasingly recognized as an important factor in the development of chronic, non-communicable diseases at adulthood, including metabolic diseases. We aimed to determine whether transient postnatal overfeeding (OF) leads to liver stress-induced premature senescence (SIPS) of hepatocytes in association with liver structure and hepatic function alterations. Litters sizes of male C57BL/6 mice were adjusted to 9 pups (normal feeding, NF) or reduced to 3 pups during the lactation period to induce transient postnatal OF. Compared to the NF group, seven-month-old adult mice transiently overfed during the postnatal period were overweight and developed glucose intolerance and insulin resistance. Their livers showed microsteatosis and fibrosis, while hepatic insulin signaling and glucose transporter protein expressions were altered. Increased hepatic oxidative stress (OS) was observed, with increased superoxide anion production, glucose-6-phosphate dehydrogenase protein expression, oxidative DNA damage and decreased levels of antioxidant defense markers, such as superoxide dismutase and catalase proteins. Hepatocyte senescence was characterized by increased p21WAF, p53, Acp53, p16INK4a and decreased pRb/Rb and Sirtuin-1 (SIRT-1) protein expression levels. Transient postnatal OF induces liver OS at adulthood, associated with hepatocyte SIPS and alterations in liver structure and hepatic functions, which could be mediated by a SIRT-1 deficiency.
Collapse
Affiliation(s)
- Catherine Yzydorczyk
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | - Na Li
- Equipe: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (AE 7460, PEC2), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Hassib Chehade
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Dolores Mosig
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mickael Bidho
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Basile Keshavjee
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Jean Baptiste Armengaud
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Katya Nardou
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Benazir Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mohamed Benahmed
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Catherine Vergely
- Equipe: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (AE 7460, PEC2), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Umberto Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Gupta T, Saini N, Arora J, Sahni D. Age-Related Changes in the Chorioretinal Junction: An Immunohistochemical Study. J Histochem Cytochem 2017; 65:567-577. [PMID: 28813619 DOI: 10.1369/0022155417726507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The chorioretinal junction comprises the retinal pigment epithelium, Bruch's membrane (BM), and adjacent choroidal capillaries. Its significance lies in its ability to support the retina mechanically and metabolically. The aim of this cross-sectional study was to record the senescent changes affecting all the constituents of the chorioretinal junction in 40 histological specimens across the whole spectrum of the adult age range. This study included light microscopy, with hematoxylin and eosin and PAS stains, and fluorescent microscopy. Immunohistochemistry was done using antibodies against neurofilament, synaptophysin, S-100, and collagen IV. The descriptive microanatomy was corroborated by morphometry. The amount of melanin and lipofuscin granule and drusens were noted. The ratio of thickness of BM to capillary diameter reduced from 1:6 or less in the 2nd decade to 1:3 in the 10th decade. Complete hyalinization of intercapillary pillars was seen in the 10th decade. The accumulation of lipofuscin with age was documented with the diminution in the size of epithelial cells. The subepithelial accumulation of drusen was first noted in the specimen from the late 60s. We have described all senescent changes in the chorioretinal junction chronologically. Similar changes are found in a more pronounced form in age-related macular degeneration. These data might serve as a reference baseline for clinicians and pathologists.
Collapse
Affiliation(s)
- Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Narbada Saini
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jasbir Arora
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Verstegen MMA, Willemse J, van den Hoek S, Kremers GJ, Luider TM, van Huizen NA, Willemssen FEJA, Metselaar HJ, IJzermans JNM, van der Laan LJW, de Jonge J. Decellularization of Whole Human Liver Grafts Using Controlled Perfusion for Transplantable Organ Bioscaffolds. Stem Cells Dev 2017; 26:1304-1315. [PMID: 28665233 DOI: 10.1089/scd.2017.0095] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver transplantation is the only effective treatment for end-stage liver disease, but absolute donor shortage remains a limiting factor. Recent advances in tissue engineering focus on generation of native extracellular matrix (ECM) by decellularized complete livers in animal models. Although proof of concept has been reported for human livers, this study aims to perform whole liver decellularization in a clinically relevant series using controlled machine perfusion. In this study, we describe a mild nondestructive decellularization protocol, effective in 11 discarded human whole liver grafts to generate constructs that reliably maintain hepatic architecture and ECM components using machine perfusion, while completely removing cellular DNA and RNA. The decellularization process preserved the ultrastructural ECM components confirmed by histology, electron microscopy, and proteomic analysis. Anatomical characteristics of the native microvascular network and biliary drainage of the liver were confirmed by contrast computed tomography scanning. Decellularized vascular matrix remained suitable for normal suturing and no major histocompatibility complex molecules were detected, suggesting absence of allo-reactivity when used for transplantation. After extensive washing, decellularized scaffolds were nontoxic for cells after reseeding human mesenchymal stromal or umbilical vein endothelial endothelium cells. Indeed, evidence of effective recellularization of the vascular lining was obtained. In conclusion, we established an effective method to generate clinically applicable liver scaffolds from human discarded whole liver grafts and show proof of concept that reseeding of normal human cells in the scaffold is feasible. This supports new opportunities for bioengineering of transplantable grafts in the future.
Collapse
Affiliation(s)
- Monique M A Verstegen
- 1 Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Jorke Willemse
- 1 Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Sjoerd van den Hoek
- 1 Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Gert-Jan Kremers
- 2 Erasmus Optical Imaging Centre, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Theo M Luider
- 3 Department of Neurology, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Nick A van Huizen
- 1 Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands .,3 Department of Neurology, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | | | - Herold J Metselaar
- 5 Department of Gastroentrology and Hepatology, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Jan N M IJzermans
- 1 Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Luc J W van der Laan
- 1 Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Jeroen de Jonge
- 1 Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| |
Collapse
|
19
|
Xiao CY, Wang YQ, Li JH, Tang GC, Xiao SS. Transformation, migration and outcome of residual bodies in the seminiferous tubules of the rat testis. Andrologia 2017; 49. [DOI: 10.1111/and.12786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2016] [Indexed: 01/23/2023] Open
Affiliation(s)
- C.-Y. Xiao
- Department of Histology & Embryology; Medical College of China Three Gorges University; Yichang 443002 China
| | - Y.-Q. Wang
- Department of Histology & Embryology; Medical College of China Three Gorges University; Yichang 443002 China
| | - J.-H. Li
- Department of Histology & Embryology; Medical College of China Three Gorges University; Yichang 443002 China
| | - G.-C. Tang
- Department of Histology & Embryology; Medical College of China Three Gorges University; Yichang 443002 China
| | - S.-S. Xiao
- Department of Histology & Embryology; Medical College of China Three Gorges University; Yichang 443002 China
| |
Collapse
|
20
|
High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart. Sci Rep 2017; 7:40620. [PMID: 28094777 PMCID: PMC5240626 DOI: 10.1038/srep40620] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023] Open
Abstract
Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following β-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown. We present evidence that lysosomes are intimately associated with the sarcoplasmic reticulum (SR) in ventricular myocytes; a median separation of 20 nm in 2D electron microscopy and 3.3 nm in 3D electron tomography indicates a genuine signalling microdomain between these organelles. Fourier analysis of immunolabelled lysosomes suggests a sarcomeric pattern (dominant wavelength 1.80 μm). Furthermore, we show that lysosomes form close associations with mitochondria (median separation 6.2 nm in 3D studies) which may provide a basis for the recently-discovered role of NAADP in reperfusion-induced cell death. The trigger hypothesis for NAADP action proposes that calcium release from acidic stores subsequently acts to enhance calcium release from the SR. This work provides structural evidence in cardiac myocytes to indicate the formation of microdomains between acidic and SR calcium stores, supporting emerging interpretations of NAADP physiology and pharmacology in heart.
Collapse
|
21
|
Berridge BR, Mowat V, Nagai H, Nyska A, Okazaki Y, Clements PJ, Rinke M, Snyder PW, Boyle MC, Wells MY. Non-proliferative and Proliferative Lesions of the Cardiovascular System of the Rat and Mouse. J Toxicol Pathol 2016; 29:1S-47S. [PMID: 27621537 PMCID: PMC5013710 DOI: 10.1293/tox.29.3s-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria
for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic
Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP)
to develop an internationally-accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The primary purpose of this publication
is to provide a standardized nomenclature for characterizing lesions observed in the
cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety
assessment. The standardized nomenclature presented in this document is also available
electronically for society members on the internet (http://goreni.org). Accurate and
precise morphologic descriptions of changes in the CV system are important for
understanding the mechanisms and pathogenesis of those changes, differentiation of natural
and induced injuries and their ultimate functional consequence. Challenges in nomenclature
are associated with lesions or pathologic processes that may present as a temporal or
pathogenic spectrum or when natural and induced injuries share indistinguishable features.
Specific nomenclature recommendations are offered to provide a consistent approach.
Collapse
Affiliation(s)
| | | | - Hirofumi Nagai
- Takeda Pharmaceutical Co, Ltd, Fujisawa, Kanagawa, Japan
| | - Abraham Nyska
- Consultant in Toxicologic Pathology and Sackler School of Medicine, Tel Aviv University, Timrat, Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Mahmoud YI, Hegazy HG. Ginger and alpha lipoic acid ameliorate age-related ultrastructural changes in rat liver. Biotech Histochem 2015; 91:86-95. [PMID: 26528730 DOI: 10.3109/10520295.2015.1076578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.
Collapse
Affiliation(s)
- Y I Mahmoud
- a Zoology Department, Faculty of Science , Ain Shams University , Cairo , Egypt
| | - H G Hegazy
- a Zoology Department, Faculty of Science , Ain Shams University , Cairo , Egypt
| |
Collapse
|
23
|
Abstract
Hepatitis C virus (HCV) infection in the elderly population is a global medical burden and healthcare utilization concern. The majority of patients with hepatitis C in the USA are "baby boomers," who were born between 1945 and 1965. Consistently worldwide, HCV infection in elderly population is overrepresented and poses public health concerns. These individuals have been infected now for over two decades and are presenting with advanced liver disease. Traditionally, the use of pegylated interferon-based therapy has been limited in the elderly because of its adverse effects. The sustained virologic responses have also tended to be lower in the elderly than in younger adults. The emergence of non-interferon-based therapy with direct acting antiviral agents has expanded the pool of patients eligible for treatment. These agents have been found to be effective, tolerable, and safe in the elderly population.
Collapse
|
24
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
25
|
Piano A, Titorenko VI. The Intricate Interplay between Mechanisms Underlying Aging and Cancer. Aging Dis 2015; 6:56-75. [PMID: 25657853 PMCID: PMC4306474 DOI: 10.14336/ad.2014.0209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/30/2014] [Accepted: 02/09/2014] [Indexed: 12/15/2022] Open
Abstract
Age is the major risk factor in the incidence of cancer, a hyperplastic disease associated with aging. Here, we discuss the complex interplay between mechanisms underlying aging and cancer as a reciprocal relationship. This relationship progresses with organismal age, follows the history of cell proliferation and senescence, is driven by common or antagonistic causes underlying aging and cancer in an age-dependent fashion, and is maintained via age-related convergent and divergent mechanisms. We summarize our knowledge of these mechanisms, outline the most important unanswered questions and suggest directions for future research.
Collapse
Affiliation(s)
- Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
26
|
A neuronal aging pattern unique to humans and common chimpanzees. Brain Struct Funct 2014; 221:647-64. [DOI: 10.1007/s00429-014-0931-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022]
|
27
|
Bitto A, Lerner CA, Nacarelli T, Crowe E, Torres C, Sell C. P62/SQSTM1 at the interface of aging, autophagy, and disease. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9626. [PMID: 24557832 PMCID: PMC4082582 DOI: 10.1007/s11357-014-9626-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/28/2014] [Indexed: 06/02/2023]
Abstract
Advanced age is characterized by increased incidence of many chronic, noninfectious diseases that impair the quality of living of the elderly and pose a major burden on the healthcare systems of developed countries. These diseases are characterized by impaired or altered function at the tissue and cellular level, which is a hallmark of the aging process. Age-related impairments are likely due to loss of homeostasis at the cellular level, which leads to the accumulation of dysfunctional organelles and damaged macromolecules, such as proteins, lipids, and nucleic acids. Intriguingly, aging and age-related diseases can be delayed by modulating nutrient signaling pathways converging on the target of rapamycin (TOR) kinase, either by genetic or dietary intervention. TOR signaling influences aging through several potential mechanisms, such as autophagy, a degradation pathway that clears the dysfunctional organelles and damaged macromolecules that accumulate with aging. Autophagy substrates are targeted for degradation by associating with p62/SQSTM1, a multidomain protein that interacts with the autophagy machinery. p62/SQSTM1 is involved in several cellular processes, and its loss has been linked to accelerated aging and to age-related pathologies. In this review, we describe p62/SQSTM1, its role in autophagy and in signaling pathways, and its emerging role in aging and age-associated pathologies. Finally, we propose p62/SQSTM1 as a novel target for aging studies and age-extending interventions.
Collapse
Affiliation(s)
- Alessandro Bitto
- />Department of Pathology, University of Washington, Health Science Building D-514, Box 357470, Seattle, WA USA
| | | | - Timothy Nacarelli
- />Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Elizabeth Crowe
- />Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Claudio Torres
- />Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Christian Sell
- />Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| |
Collapse
|
28
|
Tower J, Landis G, Gao R, Luan A, Lee J, Sun Y. Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. J Gerontol A Biol Sci Med Sci 2014; 69:253-9. [PMID: 23723429 PMCID: PMC3976136 DOI: 10.1093/gerona/glt078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 01/10/2023] Open
Abstract
The cytoplasmic chaperone gene Hsp70 and the mitochondrial chaperone gene Hsp22 are upregulated during normal aging in Drosophila in tissue-general patterns. In addition, Hsp22 reporters are dramatically upregulated during aging in a subset of the oenocytes (liver-like cells). Hsp22 reporter expression varied dramatically between individual oenocytes and between groups of oenocytes located in adjacent body segments, and was negatively correlated with accumulation of age pigment, indicating cell-specific and cell-lineage-specific patterns of oenocyte aging. Conditional transgenic systems were used to express 88 transgenes to search for trans-regulators of the Hsp70 and Hsp22 reporters during aging. The wingless gene increased tissue-general upregulation of both Hsp70 and Hsp22 reporters. In contrast, the mitochondrial genes MnSOD and Hsp22 increased expression of Hsp22 reporters in the oenocytes and decreased accumulation of age pigment in these cells. The data suggest that cell-specific and cell lineage-specific patterns of mitochondrial malfunction contribute to oenocyte aging.
Collapse
Affiliation(s)
- John Tower
- University of Southern California, 1050 Childs Way, RRI 201, Los Angeles, CA 90089-2910.
| | | | | | | | | | | |
Collapse
|
29
|
Tajiri K, Shimizu Y. Liver physiology and liver diseases in the elderly. World J Gastroenterol 2013; 19:8459-8467. [PMID: 24379563 PMCID: PMC3870491 DOI: 10.3748/wjg.v19.i46.8459] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/02/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
The liver experiences various changes with aging that could affect clinical characteristics and outcomes in patients with liver diseases. Both liver volume and blood flow decrease significantly with age. These changes and decreased cytochrome P450 activity can affect drug metabolism, increasing susceptibility to drug-induced liver injury. Immune responses against pathogens or neoplastic cells are lower in the elderly, although these individuals may be predisposed to autoimmunity through impairment of dendritic cell maturation and reduction of regulatory T cells. These changes in immune functions could alter the pathogenesis of viral hepatitis and autoimmune liver diseases, as well as the development of hepatocellular carcinoma. Moreover, elderly patients have significantly decreased reserve functions of various organs, reducing their tolerability to treatments for liver diseases. Collectively, aged patients show various changes of the liver and other organs that could affect the clinical characteristics and management of liver diseases in these patients.
Collapse
|
30
|
Kim YM, Song I, Seo YH, Yoon G. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells. Endocrinol Metab (Seoul) 2013; 28:297-308. [PMID: 24396695 PMCID: PMC3871034 DOI: 10.3803/enm.2013.28.4.297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/14/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. METHODS We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. RESULTS In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. CONCLUSION GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.
Collapse
Affiliation(s)
- You-Mie Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Insun Song
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Yong-Hak Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, The Graduate School of Ajou University, Suwon, Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, The Graduate School of Ajou University, Suwon, Korea
| |
Collapse
|
31
|
Cogger VC, Svistounov D, Warren A, Zykova S, Melvin RG, Solon-Biet SM, O'Reilly JN, McMahon AC, Ballard JWO, De Cabo R, Le Couteur DG, Lebel M. Liver aging and pseudocapillarization in a Werner syndrome mouse model. J Gerontol A Biol Sci Med Sci 2013; 69:1076-86. [PMID: 24149428 DOI: 10.1093/gerona/glt169] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Werner syndrome is a progeric syndrome characterized by premature atherosclerosis, diabetes, cancer, and death in humans. The knockout mouse model created by deletion of the RecQ helicase domain of the mouse Wrn homologue gene (Wrn(∆hel/∆hel)) is of great interest because it develops atherosclerosis and hypertriglyceridemia, conditions associated with aging liver and sinusoidal changes. Here, we show that Wrn(∆hel/∆hel) mice exhibit increased extracellular matrix, defenestration, decreased fenestration diameter, and changes in markers of liver sinusoidal endothelial cell inflammation, consistent with age-related pseudocapilliarization. In addition, hepatocytes are larger, have increased lipofuscin deposition, more frequent nuclear morphological anomalies, decreased mitochondria number, and increased mitochondrial diameter compared to wild-type mice. The Wrn(∆hel/∆hel) mice also have altered mitochondrial function and altered nuclei. Microarray data revealed that the Wrn(∆hel/∆hel) genotype does not affect the expression of many genes within the isolated hepatocytes or liver sinusoidal endothelial cells. This study reveals that Wrn(∆hel/∆hel) mice have accelerated typical age-related liver changes including pseudocapillarization. This confirms that pseudocapillarization of the liver sinusoid is a consistent feature of various aging models. Moreover, it implies that DNA repair may be implicated in normal aging changes in the liver.
Collapse
Affiliation(s)
- Victoria C Cogger
- Centre for Education and Research on Aging and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Dmitri Svistounov
- Centre for Education and Research on Aging and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Alessandra Warren
- Centre for Education and Research on Aging and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Svetlana Zykova
- Centre for Education and Research on Aging and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Richard G Melvin
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Samantha M Solon-Biet
- Centre for Education and Research on Aging and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia. School of Biological Sciences, University of Sydney, New South Wales, Australia
| | - Jennifer N O'Reilly
- Centre for Education and Research on Aging and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Aisling C McMahon
- Centre for Education and Research on Aging and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - J William O Ballard
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Rafa De Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - David G Le Couteur
- Centre for Education and Research on Aging and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Michel Lebel
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hotel-Dieu de Quebec, Canada
| |
Collapse
|
32
|
Gilissen EP, Staneva-Dobrovski L. Distinct types of lipofuscin pigment in the hippocampus and cerebellum of aged cheirogaleid primates. Anat Rec (Hoboken) 2013; 296:1895-906. [PMID: 24124014 DOI: 10.1002/ar.22809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
The formation of autofluorescent lipopigment or lipofuscin is a highly consistent and reliable cytological change that correlates with cellular aging in postmitotic cells. One causal factor of lipofuscinogenesis involves free radical-induced lipid peroxidation. In mammals, dentate gyrus neurons and Purkinje cells are usually affected widely. In this study, we investigated the ultrastructure of lipofuscin deposits in large neurons of the dentate gyrus and in Purkinje cells of aged fat-tailed dwarf lemurs (Cheirogaleus medius Geoffroy, 1812) with electron and confocal microscopy and compared it with previous observations in other species. Cheirogaleid primates such as mouse and dwarf lemurs are archaic primates that provide interesting nonhuman models of aging. Our study revealed region-specific as well as species-specific characteristics of lipofuscin ultrastructure. This suggests differences in cellular metabolism and/or in organelles involved in lipofuscin production in cerebellar Purkinje cells and in hippocampal dentate gyrus neurons.
Collapse
Affiliation(s)
- Emmanuel P Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium; School of Medicine, Laboratory of Histology and Neuropathology, Université libre de Bruxelles, Brussels, Belgium; Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| | | |
Collapse
|
33
|
Kim Y, Byun H, Jee BA, Cho H, Seo Y, Kim Y, Park MH, Chung H, Woo HG, Yoon G. Implications of time-series gene expression profiles of replicative senescence. Aging Cell 2013; 12:622-34. [PMID: 23590226 DOI: 10.1111/acel.12087] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2013] [Indexed: 12/21/2022] Open
Abstract
Although senescence has long been implicated in aging-associated pathologies, it is not clearly understood how senescent cells are linked to these diseases. To address this knowledge gap, we profiled cellular senescence phenotypes and mRNA expression patterns during replicative senescence in human diploid fibroblasts. We identified a sequential order of gain-of-senescence phenotypes: low levels of reactive oxygen species, cell mass/size increases with delayed cell growth, high levels of reactive oxygen species with increases in senescence-associated β-galactosidase activity (SA-β-gal), and high levels of SA-β-gal activity. Gene expression profiling revealed four distinct modules in which genes were prominently expressed at certain stages of senescence, allowing us to divide the process into four stages: early, middle, advanced, and very advanced. Interestingly, the gene expression modules governing each stage supported the development of the associated senescence phenotypes. Senescence-associated secretory phenotype-related genes also displayed a stage-specific expression pattern with three unique features during senescence: differential expression of interleukin isoforms, differential expression of interleukins and their receptors, and differential expression of matrix metalloproteinases and their inhibitory proteins. We validated these phenomena at the protein level using human diploid fibroblasts and aging Sprague-Dawley rat skin tissues. Finally, disease-association analysis of the modular genes also revealed stage-specific patterns. Taken together, our results reflect a detailed process of cellular senescence and provide diverse genome-wide information of cellular backgrounds for senescence.
Collapse
Affiliation(s)
- You‐Mie Kim
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon 443‐721 Korea
| | - Hae‐Ok Byun
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon 443‐721 Korea
| | | | | | - Yong‐Hak Seo
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon 443‐721 Korea
| | - You‐Sun Kim
- Institute for Medical Sciences Ajou University School of Medicine Suwon 443‐721Korea
| | - Min Hi Park
- College of Pharmacy Pusan National University Pusan 609‐735Korea
| | - Hae‐Young Chung
- College of Pharmacy Pusan National University Pusan 609‐735Korea
| | | | - Gyesoon Yoon
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon 443‐721 Korea
| |
Collapse
|
34
|
Svistounov D, Oteiza A, Zykova SN, Sørensen KK, McCourt P, McLachlan AJ, McCuskey RS, Smedsrød B. Hepatic disposal of advanced glycation end products during maturation and aging. Exp Gerontol 2013; 48:549-56. [PMID: 23531498 DOI: 10.1016/j.exger.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/06/2013] [Accepted: 03/16/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED Aging is characterized by progressive loss of metabolic and biochemical functions and accumulation of metabolic by-products, including advanced glycation end products (AGEs), which are observed in several pathological conditions. A number of waste macromolecules, including AGEs are taken up from the circulation by endocytosis mainly into liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs). However, AGEs still accumulate in different tissues with aging, despite the presence of this clearance mechanism. The aim of the present study was to determine whether the efficiency of LSECs and KCs for disposal of AGEs changes through aging. RESULTS After intravenous administration of (14)C-AGE-albumin in pre-pubertal, young adult, middle aged and old mice, more than 90% of total recovered (14)C-AGE was liver associated, irrespective of age. LSECs and KCs represented the main site of uptake. A fraction of the (14)C-AGE degradation products ((14)C-AGE-DPs) was stored for months in the lysosomes of these cells after uptake. The overall rate of elimination of (14)C-AGE-DPs from the liver was markedly faster in pre-pubertal than in all post-pubertal age groups. The ability to eliminate (14)C-AGE-DPs decreased to similar extents after puberty in LSECs and KCs. A rapid early removal phase was characteristic for all age groups except the old group, where this phase was absent. CONCLUSIONS Removal of AGE-DPs from the liver scavenger cells is a very slow process that changes with age. The ability of these cells to dispose of AGEs declines after puberty. Decreased AGE removal efficiency early in life may lead to AGE accumulation.
Collapse
Affiliation(s)
- Dmitri Svistounov
- Department of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Teplyuk NM. Near-to-perfect homeostasis: examples of universal aging rule which germline evades. J Cell Biochem 2012; 113:388-96. [PMID: 21928349 DOI: 10.1002/jcb.23366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging is considered to be a progressive decline in an organism's functioning over time and is almost universal throughout the living world. Currently, many different aging mechanisms have been reported at all levels of biological organization, with a variety of biochemical, metabolic, and genetic pathways involved. Some of these mechanisms are common across species, and others work different, but each of them is constitutive. This review describes the common characteristics of the aging processes, which are consistent changes over time that involve either the accumulation or depletion of particular system components. These accumulations and depletions may result from imperfect homeostasis, which is the incomplete compensation of a particular biological process with another process evolved to compensate it. In accordance with disposable-soma theory, this imperfection in homeostasis may originate as a function of cell differentiation as early as in yeasts. It may result either from antagonistic pleiotropy mechanisms, or be simply negligible as a subject of natural selection if an adverse effect of the accumulation phenotypically manifests in organism's post-reproductive age. If this phenomenon holds true for many different functions it would lead to the occurrence of a wide variety of aging mechanisms, some of which are common among species, while others unique, because aging is the inherent property of most biological processes that have not yet evolved to be perfectly in balance. Examples of imperfect homeostasis mechanisms of aging, the ways in which germ line escapes from them, and the possibilities of anti-aging treatment are discussed in this review.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
36
|
Gregg SQ, Gutiérrez V, Robinson AR, Woodell T, Nakao A, Ross MA, Michalopoulos GK, Rigatti L, Rothermel CE, Kamileri I, Garinis G, Stolz DB, Niedernhofer LJ. A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology 2012; 55:609-21. [PMID: 21953681 PMCID: PMC3250572 DOI: 10.1002/hep.24713] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED The liver changes with age, leading to an impaired ability to respond to hepatic insults and increased incidence of liver disease in the elderly. Therefore, there is critical need for rapid model systems to study aging-related liver changes. One potential opportunity is murine models of human progerias or diseases of accelerated aging. Ercc1(-/Δ) mice model a rare human progeroid syndrome caused by inherited defects in DNA repair. To determine whether hepatic changes that occur with normal aging occur prematurely in Ercc1(-/Δ) mice, we systematically compared liver from 5-month-old progeroid Ercc1(-/Δ) mice to old (24-36-month-old) wild-type (WT) mice. Both displayed areas of necrosis, foci of hepatocellular degeneration, and acute inflammation. Loss of hepatic architecture, fibrosis, steatosis, pseudocapillarization, and anisokaryosis were more dramatic in Ercc1(-/Δ) mice than in old WT mice. Liver enzymes were significantly elevated in serum of Ercc1(-/Δ) mice and old WT mice, whereas albumin was reduced, demonstrating liver damage and dysfunction. The regenerative capacity of Ercc1(-/Δ) liver after partial hepatectomy was significantly reduced. There was evidence of increased oxidative damage in Ercc1(-/Δ) and old WT liver, including lipofuscin, lipid hydroperoxides and acrolein, as well as increased hepatocellular senescence. There was a highly significant correlation in genome-wide transcriptional changes between old WT and 16-week-old, but not 5-week-old, Ercc1(-/Δ) mice, emphasizing that the Ercc1(-/Δ) mice acquire an aging profile in early adulthood. CONCLUSION There are strong functional, regulatory, and histopathological parallels between accelerated aging driven by a DNA repair defect and normal aging. This supports a role for DNA damage in driving aging and validates a murine model for rapidly testing hypotheses about causes and treatment for aging-related hepatic changes.
Collapse
Affiliation(s)
- Siobhán Q. Gregg
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 USA
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213 USA
| | - Verónica Gutiérrez
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 USA
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213 USA
| | - Andria Rasile Robinson
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213 USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15261 USA
| | - Tyler Woodell
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213 USA
| | - Atsunori Nakao
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Mark A. Ross
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S362 Biomedical Science Towers, 3500 Terrace Street, Pittsburgh, PA 15261 USA
| | - George K. Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, S-417 Biomedical Science Towers, 200 Lothrop Street, Pittsburgh, PA 15216 USA
| | - Lora Rigatti
- Department of Pathology, University of Pittsburgh School of Medicine, S-417 Biomedical Science Towers, 200 Lothrop Street, Pittsburgh, PA 15216 USA
| | - Carrie E. Rothermel
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S362 Biomedical Science Towers, 3500 Terrace Street, Pittsburgh, PA 15261 USA
| | - Irene Kamileri
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409, Heraklion, Crete, Greece
| | - George Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409, Heraklion, Crete, Greece
| | - Donna Beer Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S362 Biomedical Science Towers, 3500 Terrace Street, Pittsburgh, PA 15261 USA
| | - Laura J. Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 USA
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213 USA
| |
Collapse
|
37
|
Abstract
Pancreatic islet cell regeneration is considered to be important in the onset and progression of diabetes and as a potential cell therapy. Current hypotheses, largely based on rodent studies, indicate continuous turnover and plasticity of α- and β-cells in adults; cell populations in rodents respond to increased secretory demand in obesity (30-fold β-cell increase) and pregnancy. Turnover and plasticity of islet cells decrease in mice within >1 year. In man, morphometric observations on postmortem pancreas have indicated that the cellular expansion is much smaller than the increased insulin secretion that accompanies obesity. Longevity of β-cells in humans >20-30 years has been shown by (14) C measurements and bromo-deoxyuridine (BrdU) incorporation and there is an age-related decline in the expression of proteins associated with cell division and regeneration including cyclin D3 and PDX-1. Quantitative estimation and mathematical modelling of the longevity marker, cellular lipofuscin body content, in islets of subjects aged 1-84 years indicated an age-related increase and that 97% of the human β-cell population was established by the age of 20. New data show that human α-cell lipofuscin content is less than that seen in β-cells, but the age-related accumulation is similar; lipofuscin-positive (aged) cells form ≥ 95% of the population after 20 years. Increased turnover of cellular organelles such as mitochondria and endoplasmic reticulum could contribute to lipofuscin accumulation with age in long-lived cells. Induction of regeneration of human islet cells will require understanding of the mechanisms associated with age-related senescence.
Collapse
Affiliation(s)
- M Cnop
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Liver regeneration and aging: a current perspective. Curr Gerontol Geriatr Res 2011; 2011:526379. [PMID: 21912543 PMCID: PMC3170699 DOI: 10.1155/2011/526379] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022] Open
Abstract
Many organ systems exhibit significant age-related deficits, but,
based on studies in old rodents and elderly humans, the liver
appears to be relatively protected from such changes. A
remarkable feature of the liver is its capacity to regenerate its
mass following partial hepatectomy. Reports suggests that aging
compromises the liver's regenerative capacity, both in the
rate and to the extent the organ's original volume is
restored. There has been modest definitive information as to which
cellular and molecular mechanisms regulating hepatic regeneration
are affected by aging. Changes in hepatic sensitivity to growth
factors, for example, epidermal growth factor (EGF), appear to influence
regeneration in old animals. Studies have demonstrated (a) a 60%
decline in EGF binding to hepatocyte plasma membranes, (b) reduced
expression of the hepatic high affinity EGF receptor and (c) a
block between G1 and S-phases of the cell cycle in old rats
following EGF stimulation. Recent studies suggest that reduced
phosphorylation and dimerization of the EGF receptor, critical
steps in the activation of the extracellular signal-regulated
kinase pathway and subsequent cell proliferation are responsible.
Other studies have demonstrated that aging affects the
upregulation of a Forkhead Box transcription factor, FoxM1B, which
is essential for growth hormone-stimulated liver regeneration in
hepatectomized mice. Aging appears to compromise liver
regeneration by influencing several pathways, the result of which
is a reduction in the rate of regeneration, but not in the
capacity to restore the organ to its original volume.
Collapse
|
39
|
Fiel MI, Deniz K, Elmali F, Schiano TD. Increasing hepatic arteriole wall thickness and decreased luminal diameter occur with increasing age in normal livers. J Hepatol 2011; 55:582-586. [PMID: 21236310 DOI: 10.1016/j.jhep.2010.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS There is no data to suggest that the size of bile ducts, portal venules, and hepatic arterioles varies according to age in the normal human liver. We sought to examine whether hepatic arteriolar size, wall thickness, and luminal diameter change with increasing age. METHODS Histologically normal liver specimens from 90 live and deceased donors were separated into three groups of thirty: donor age<30, 31-60, and>60years old. Trichrome-stained slides were de-identified and assessed by a liver pathologist blinded to donor age. Morphometric measurements were taken of the hepatic arteriole, the cross-sectional diameter, and its wall thickness. The arteriole was measured at its widest diameter, the arteriolar wall at its thickest portion, and the luminal diameter between its widest points. RESULTS There was no difference in number of arterioles or bile ducts or in arteriolar cross-sectional diameter among the groups and no correlation with age was found. An increasing arteriolar wall thickness and a decrease in luminal diameter with advancing age were noted; no difference in bile duct size among the groups was found. There was a significant difference in wall thickness/total cross-sectional diameter with extremes in age (21-30 age group vs. 71-80 age group, p=0.0009) with an accompanying significant decrease in luminal diameter/cross-sectional diameter between the same groups (p=0.00002). CONCLUSIONS Increasing hepatic arteriolar wall thickness and decreased arteriolar cross-sectional diameter occur with increasing age in the normal human liver.
Collapse
Affiliation(s)
- M Isabel Fiel
- The Lillian and Henry M. Stratton-Hans Popper Department of Pathology, The Mount Sinai Medical Center, New York, NY, USA.
| | - Kemal Deniz
- Erciyes University, Faculty of Medicine, Department of Pathology, Kayseri, Turkey
| | - Ferhan Elmali
- Erciyes University, Faculty of Medicine, Department of Biostatistics, Kayseri, Turkey
| | - Thomas D Schiano
- Division of Liver Diseases, Department of Medicine, The Mount Sinai Medical Center, New York, NY, USA
| |
Collapse
|
40
|
Cho S, Hwang ES. Fluorescence-based detection and quantification of features of cellular senescence. Methods Cell Biol 2011; 103:149-88. [PMID: 21722803 DOI: 10.1016/b978-0-12-385493-3.00007-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular senescence is a spontaneous organismal defense mechanism against tumor progression which is raised upon the activation of oncoproteins or other cellular environmental stresses that must be circumvented for tumorigenesis to occur. It involves growth-arrest state of normal cells after a number of active divisions. There are multiple experimental routes that can drive cells into a state of senescence. Normal somatic cells and cancer cells enter a state of senescence upon overexpression of oncogenic Ras or Raf protein or by imposing certain kinds of stress such as cellular tumor suppressor function. Both flow cytometry and confocal imaging analysis techniques are very useful in quantitative analysis of cellular senescence phenomenon. They allow quantitative estimates of multiple different phenotypes expressed in multiple cell populations simultaneously. Here we review the various types of fluorescence methodologies including confocal imaging and flow cytometry that are frequently utilized to study a variety of senescence. First, we discuss key cell biological changes occurring during senescence and review the current understanding on the mechanisms of these changes with the goal of improving existing protocols and further developing new ones. Next, we list specific senescence phenotypes associated with each cellular trait along with the principles of their assay methods and the significance of the assay outcomes. We conclude by selecting appropriate references that demonstrate a typical example of each method.
Collapse
Affiliation(s)
- Sohee Cho
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | | |
Collapse
|
41
|
Ageing, telomeres, senescence, and liver injury. J Hepatol 2010; 53:950-61. [PMID: 20739078 DOI: 10.1016/j.jhep.2010.06.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/24/2010] [Accepted: 06/26/2010] [Indexed: 02/08/2023]
Abstract
Populations in developed countries continue to grow older and an understanding of the ageing process to allow healthy ageing carries important medical implications. Older individuals are more susceptible to most acquired liver disorders and more vulnerable to the consequences of liver disease. Accordingly, age is a critical determinant of outcome for hepatitis C virus infection and liver transplantation. In this review we describe changes in the ageing liver and discuss mechanisms of senescence at the cellular level. In particular, we focus on mechanisms by which inflammation, oxidative stress, and oncogenic stress accelerate cellular senescence. In the setting of chronic hepatic injury and inflammation, cellular senescence functions as an essential stress-response mechanism to limit the proliferation of damaged cells and reduce the risk of malignancy, but this benefit is achieved at the expense of senescence-related organ dysfunction. The dual role of cell senescence in chronic liver disease will make this an intriguing but challenging area for future clinical interventions.
Collapse
|
42
|
Kim YM, Shin HT, Seo YH, Byun HO, Yoon SH, Lee IK, Hyun DH, Chung HY, Yoon G. Sterol regulatory element-binding protein (SREBP)-1-mediated lipogenesis is involved in cell senescence. J Biol Chem 2010; 285:29069-77. [PMID: 20615871 DOI: 10.1074/jbc.m110.120386] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Increased cell mass is one of the characteristics of senescent cells, but this event has not been clearly defined. When subcellular organellar mass was estimated with organelle-specific fluorescence dyes, we observed that most membranous organelles progressively increase in mass during cell senescence. This increase was accompanied by an increase in membrane lipids and augmented expression of lipogenic enzymes, such as fatty acid synthase (FAS), ATP citrate lyase, and acetyl-CoA carboxylase. The mature form of sterol regulatory element-binding protein (SREBP)-1 was also elevated. Increased expression of these lipogenic effectors was further observed in the liver tissues of aging Fischer 344 rats. Ectopic expression of mature form of SREBP-1 in both Chang cells and primary young human diploid fibroblasts was enough to induce senescence. Blocking lipogenesis with FAS inhibitors (cerulenin and C75) and via siRNA-mediated silencing of SREBP-1 and ATP citrate lyase significantly attenuated H(2)O(2)-induced senescence. Finally, old human diploid fibroblasts were effectively reversed to young-like cells by challenging with FAS inhibitors. Our results suggest that enhanced lipogenesis is not only a common event, but also critically involved in senescence via SREBP-1 induction, thereby contributing to the increase in organelle mass (as a part of cell mass), a novel indicator of senescence.
Collapse
Affiliation(s)
- You-Mie Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Ajou University, Suwon 443-721, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cnop M, Hughes SJ, Igoillo-Esteve M, Hoppa MB, Sayyed F, van de Laar L, Gunter JH, de Koning EJP, Walls GV, Gray DWG, Johnson PRV, Hansen BC, Morris JF, Pipeleers-Marichal M, Cnop I, Clark A. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 2010; 53:321-30. [PMID: 19855953 DOI: 10.1007/s00125-009-1562-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/24/2009] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Defects in pancreatic beta cell turnover are implicated in the pathogenesis of type 2 diabetes by genetic markers for diabetes. Decreased beta cell neogenesis could contribute to diabetes. The longevity and turnover of human beta cells is unknown; in rodents <1 year old, a half-life of 30 days is estimated. Intracellular lipofuscin body (LB) accumulation is a hallmark of ageing in neurons. To estimate the lifespan of human beta cells, we measured beta cell LB accumulation in individuals aged 1-81 years. METHODS LB content was determined by electron microscopical morphometry in sections of beta cells from human (non-diabetic, n = 45; type 2 diabetic, n = 10) and non-human primates (n = 10; 5-30 years) and from 15 mice aged 10-99 weeks. Total cellular LB content was estimated by three-dimensional (3D) mathematical modelling. RESULTS LB area proportion was significantly correlated with age in human and non-human primates. The proportion of human LB-positive beta cells was significantly related to age, with no apparent differences in type 2 diabetes or obesity. LB content was low in human insulinomas (n = 5) and alpha cells and in mouse beta cells (LB content in mouse <10% human). Using 3D electron microscopy and 3D mathematical modelling, the LB-positive human beta cells (representing aged cells) increased from >or=90% (<10 years) to >or=97% (>20 years) and remained constant thereafter. CONCLUSIONS/INTERPRETATION Human beta cells, unlike those of young rodents, are long-lived. LB proportions in type 2 diabetes and obesity suggest that little adaptive change occurs in the adult human beta cell population, which is largely established by age 20 years.
Collapse
Affiliation(s)
- M Cnop
- Laboratory of Experimental Medicine and Division of Endocrinology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hwang ES, Yoon G, Kang HT. A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 2009; 66:2503-24. [PMID: 19421842 PMCID: PMC11115533 DOI: 10.1007/s00018-009-0034-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/02/2009] [Accepted: 04/15/2009] [Indexed: 01/10/2023]
Abstract
Various intracellular organelles, such as lysosomes, mitochondria, nuclei, and cytoskeletons, change during replicative senescence, but the utility of these changes as general markers of senescence and their significance with respect to functional alterations have not been comprehensively reviewed. Furthermore, the relevance of these alterations to cellular and functional changes in aging animals is poorly understood. In this paper, we review the studies that report these senescence-associated changes in various aging cells and their underlying mechanisms. Changes associated with lysosomes and mitochondria are found not only in cells undergoing replicative or induced senescence but also in postmitotic cells isolated from aged organisms. In contrast, other changes occur mainly in cells undergoing in vitro senescence. Comparison of age-related changes and their underlying mechanisms in in vitro senescent cells and aged postmitotic cells would reveal the relevance of replicative senescence to the physiological processes occurring in postmitotic cells as individuals age.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Republic of Korea.
| | | | | |
Collapse
|
45
|
Schwenzer NF, Martirosian P, Machann J, Schraml C, Steidle G, Claussen CD, Schick F. Aging effects on human calf muscle properties assessed by MRI at 3 Tesla. J Magn Reson Imaging 2009; 29:1346-54. [PMID: 19472391 DOI: 10.1002/jmri.21789] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Nina F Schwenzer
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang X, Liao Y, Li G, Yin D, Sheng S. A comparative study of artificial ceroid/lipofuscin from different tissue materials of rats. Exp Aging Res 2008; 34:282-95. [PMID: 18568984 DOI: 10.1080/03610730802070282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The artificial ceroid/lipofuscin pigments originated from different organ tissues, including liver, brain, heart, and kidney of rats, and biomaterials were studied with improved fluorometric techniques. With all tissue materials exposed under ultraviolet (UV) light, a series of similar fluorescent colors were observed under microfluorometer. Analogous fluorescence spectra were also demonstrated with a three-dimensional (3-D) front-surface fluorometric technique despite of the tissue differences. Measured with 3-D fluorometry, relatively simple lipofuscin-like fluorophores were observed from the reactions of malondialdehyde (MDA) with critical biological macromolecules, such as bovine serum albumin (BSA) and DNA. Our results demonstrated that the biomaterials from different tissues have a similar fate under accelerated oxidative/carbonyl stresses but may be differentiated by a fluorescence intensity ratio.
Collapse
Affiliation(s)
- Xinhui Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
47
|
Abstract
As the retinal pigment epithelium (RPE) ages, a number of structural changes occur, including loss of melanin granules, increase in the density of residual bodies, accumulation of lipofuscin, accumulation of basal deposits on or within Bruch's membrane, formation of drusen (between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane), thickening of Bruch's membrane, microvilli atrophy and disorganization of the basal infoldings. Although these changes are well known, the basic mechanisms involved in them are frequently poorly understood. These age-related changes progress slowly and vary in severity in different individuals. These changes are also found in age-related macular degeneration (AMD), a late onset disease that severely impacts the RPE, but they are much more pronounced than during normal aging. However, the changes in AMD lead to severe loss of vision. Given the many supporting functions which the RPE serves for the retina, it is important to decipher the age-related changes in this epithelium in order to understand age-related changes in vision.
Collapse
Affiliation(s)
- Vera L Bonilha
- Cole Eye Institute, The Cleveland Clinic, Cleveland, 9500 Euclid Avenue, OH, USA.
| |
Collapse
|
48
|
Park SK, Page GP, Kim K, Allison DB, Meydani M, Weindruch R, Prolla TA. alpha- and gamma-Tocopherol prevent age-related transcriptional alterations in the heart and brain of mice. J Nutr 2008; 138:1010-8. [PMID: 18492827 PMCID: PMC2768425 DOI: 10.1093/jn/138.6.1010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used high-density oligonucleotide arrays to measure transcriptional alterations in the heart and brain (neocortex) of 30-mo-old B6C3F(1) mice supplemented with alpha-tocopherol (alphaT) and gamma-tocopherol (gammaT) since middle age (15 mo). Gene expression profiles were obtained from 5- and 30-mo-old control mice and 30-mo-old mice supplemented with alphaT (1 g/kg) or a mixture of alphaT and gammaT (500 mg/kg of each tocopherol) from middle age (15 mo). In the heart, both tocopherol-supplemented diets were effective in inhibiting the expression of genes previously associated with cardiomyocyte hypertrophy and increased innate immunity. In the brain, induction of genes encoding ribosomal proteins and proteins involved in ATP biosynthesis was observed with aging and was markedly prevented by the mixture of alphaT and gammaT supplementation but not by alphaT alone. These results demonstrate that middle age-onset dietary supplementation with alphaT and gammaT can partially prevent age-associated transcriptional changes and that these effects are tissue and tocopherol specific.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Genetics and Medical Genetics, University of Wisconsin, Madison, WI 53706
| | - Grier P. Page
- Department of Biostatistics, Section on Statistical Genetics and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294
| | - Kyoungmi Kim
- Department of Biostatistics, Section on Statistical Genetics and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294
| | - David B. Allison
- Department of Biostatistics, Section on Statistical Genetics and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294
| | - Mohsen Meydani
- Vascular Biology Laboratory, Jean Mayer USDA HNRCA at Tufts University, Boston, MA 02111
| | - Richard Weindruch
- Veterans Administration Hospital, Department of Medicine and Wisconsin Primate Research Center, University of Wisconsin, Madison, WI 53706
| | - Tomas A. Prolla
- Department of Genetics and Medical Genetics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
49
|
Johnson WT, Newman SM. Hearts in adult offspring of copper-deficient dams exhibit decreased cytochrome c oxidase activity, increased mitochondrial hydrogen peroxide generation and enhanced formation of intracellular residual bodies. J Nutr Biochem 2006; 18:97-104. [PMID: 16713228 DOI: 10.1016/j.jnutbio.2006.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/27/2006] [Accepted: 03/08/2006] [Indexed: 11/15/2022]
Abstract
The long-term effects of low dietary copper (Cu) intake during pregnancy and lactation on cardiac mitochondria in first-generation adult rats was examined. Rat dams were fed diets containing either low (1 mg/kg Cu) or adequate (6 mg/kg Cu) levels of dietary Cu beginning 3 weeks before conception and ending 3 weeks after birth. Cytochrome c oxidase (CCO) activity was 51% lower in isolated cardiac mitochondria from 21-day-old offspring of Cu-deficient dams than in the offspring of Cu-adequate dams. CCO activities in the cardiac mitochondria of 63- and 290-day-old offspring were 22% lower and 14% lower, respectively, in the offspring of Cu-deficient dams after they had been repleted with adequate dietary Cu from the time they were 21 days old. Electron micrographs showed that the size of residual bodies and the cellular volume they occupied in cardiomyocytes rose significantly between 63 and 290 days in the Cu-repleted offspring of Cu-deficient dams, but not in the offspring of Cu-adequate dams. The rate of hydrogen peroxide generation by cardiac mitochondria also was 24% higher in the 290-day-old repleted offspring of Cu-deficient dams than in the offspring of Cu-adequate dams. The increase in hydrogen peroxide production by cardiac mitochondria and in the relative volume and size of dense deposits in cardiomyocytes is consistent with increased oxidative stress and damage resulting from prolonged reduction of CCO activity in the offspring of Cu-deficient dams.
Collapse
Affiliation(s)
- W Thomas Johnson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Grand Forks, ND 58202-9034, USA.
| | | |
Collapse
|
50
|
Schmucker DL. Age-related changes in liver structure and function: Implications for disease ? Exp Gerontol 2006; 40:650-9. [PMID: 16102930 DOI: 10.1016/j.exger.2005.06.009] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/21/2005] [Indexed: 12/14/2022]
Abstract
The geriatric populations of many countries are growing rapidly and they present major problems to healthcare infrastructures from both medical and economic perspectives. The elderly are predisposed to a variety of diseases, which contribute to a marked increase in morbidity in this subpopulation. The incidence of liver disease increases in the elderly, but the cellular and subcellular perturbations that underlie this suspected predisposition to pathology remain unresolved. Several age-related changes have been documented, including (a) a decline in liver volume, (b) an increase in the hepatic dense body compartment (lipofuscin), (c) moderate declines in the Phase I metabolism of certain drugs, (d) shifts in the expression of a variety of proteins and (e) diminished hepatobiliary functions. Other more subtle changes (e.g., muted responses to oxidative stress, reduced expression of growth regulatory genes, diminished rates of DNA repair, telomere shortening) may contribute to reduced hepatic regenerative capacity, shorter post-liver transplant survival and increased susceptibility to certain liver diseases in the elderly.
Collapse
Affiliation(s)
- Douglas L Schmucker
- Cell Biology AND Aging Section, Veterans Affairs Medical Center, and The Department of Anatomy, University of California, San Francisco, CA 94121, USA.
| |
Collapse
|