1
|
Lee SY, Thow SY, Abdullah S, Ng MH, Mohamed Haflah NH. Advancement of Electrospun Nerve Conduit for Peripheral Nerve Regeneration: A Systematic Review (2016-2021). Int J Nanomedicine 2022; 17:6723-6758. [PMID: 36600878 PMCID: PMC9805954 DOI: 10.2147/ijn.s362144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/05/2022] [Indexed: 12/29/2022] Open
Abstract
Peripheral nerve injury (PNI) is a worldwide problem which hugely affects the quality of patients' life. Nerve conduits are now the alternative for treatment of PNI to mimic the gold standard, autologous nerve graft. In that case, with the advantages of electrospun micro- or nano-fibers nerve conduit, the peripheral nerve growth can be escalated, in a better way. In this systematic review, we focused on 39 preclinical studies of electrospun nerve conduit, which include the in vitro and in vivo evaluation from animal peripheral nerve defect models, to provide an update on the progress of the development of electrospun nerve conduit over the last 5 years (2016-2021). The physical characteristics, biocompatibility, functional and morphological outcomes of nerve conduits from different studies would be compared, to give a better strategy for treatment of PNI.
Collapse
Affiliation(s)
- Shin Yee Lee
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Soon Yong Thow
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Shalimar Abdullah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Min Hwei Ng
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Nor Hazla Mohamed Haflah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur,Correspondence: Nor Hazla Mohamed Haflah, Department of Orthopedic & Traumatology’s Faculty of Medicine, UKM, Cheras, Kuala Lumpur, Tel +6012-3031316, Email
| |
Collapse
|
2
|
Wu F, Zhang R, Meng W, Liu L, Tang Y, Lu L, Xia L, Zhang H, Feng Z, Chen D. Platelet derived growth factor promotes the recovery of traumatic brain injury by inhibiting endoplasmic reticulum stress and autophagy-mediated pyroptosis. Front Pharmacol 2022; 13:862324. [PMID: 36339541 PMCID: PMC9629145 DOI: 10.3389/fphar.2022.862324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/26/2022] [Indexed: 04/13/2024] Open
Abstract
Autophagy and endoplasmic reticulum stress (ER stress) are important in numerous pathological processes in traumatic brain injury (TBI). Growing evidence has indicated that pyroptosis-associated inflammasome is involved in the pathogenesis of TBI. Platelet derived growth factor (PDGF) has been reported to be as a potential therapeutic drug for neurological diseases. However, the roles of PDGF, autophagy and ER stress in pyroptosis have not been elucidated in the TBI. This study investigated the roles of ER stress and autophagy after TBI at different time points. We found that the ER stress and autophagy after TBI were inhibited, and the expressions of pyroptosis-related proteins induced by TBI, including NLRP3, Pro-Caspase1, Caspase1, GSDMD, GSDMD P30, and IL-18, were decreased upon PDGF treatment. Moreover, the rapamycin (RAPA, an autophagy activator) and tunicamycin (TM, an ER stress activator) eliminated the PDGF effect on the pyroptosis after TBI. Interestingly, the sodium 4-phenylbutyrate (4-PBA, an ER stress inhibitor) suppressed autophagy but 3-methyladenine (3-MA, an autophagy inhibitor) not for ER stress. The results revealed that PDGF improved the functional recovery after TBI, and the effects were markedly reversed by TM and RAPA. Taken together, this study provides a new insight that PDGF is a potential therapeutic strategy for enhancing the recovery of TBI.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Renkan Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Meng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lei Liu
- The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yingdan Tang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leilei Lu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leilei Xia
- Department of Emergency, Wenzhou People’s Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Feng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Scott XO, Chen SH, Hadad R, Yavagal D, Peterson EC, Starke RM, Dietrich WD, Keane RW, de Rivero Vaccari JP. Cohort study on the differential expression of inflammatory and angiogenic factors in thrombi, cerebral and peripheral plasma following acute large vessel occlusion stroke. J Cereb Blood Flow Metab 2022; 42:1827-1839. [PMID: 35673992 PMCID: PMC9536118 DOI: 10.1177/0271678x221106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Inflammation plays an important role in the pathogenesis of stroke. The differential expression of inflammatory and angiogenic factors in thrombi and plasma remain undefined. In this observational cohort study, we evaluated angiogenic factors and inflammatory cytokines, in cerebral thrombi, local cerebral plasma (CP), and peripheral plasma (PP) in patients with acute ischemic stroke. Protein analysis of thrombi, CP and PP were used to measure angiogenic and inflammatory proteins using electrochemiluminescence. Our data indicate that VEGF-A, VEGF-C, bFGF, IL-4, IL-13, IL-1β, IL-2, IL-8, IL-16, IL-6 and IL-12p70 were higher in the thrombi of acute ischemic stroke patients than in the CP and PP of stroke patients. Moreover, the protein levels of GM-CSF were lower in the PP than in the CP and the clot. Moreover, VEGF-D, Flt-1, PIGF, TIE-2, IL-5, TNF-β, IL-15, IL-12/IL-23p40, IFN-γ and IL-17A were higher in PP and CP than in thrombi. Our results show that cytokines mediating the inflammatory response and proteins involved in angiogenesis are differentially expressed in thrombi within the cerebral and peripheral circulations. These data highlight the importance of identifying new biomarkers in different compartments of the circulatory system and in thrombi that may be used for the diagnosis and treatment of stroke patients.
Collapse
Affiliation(s)
- Xavier O Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie H Chen
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric C Peterson
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Starke
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
5
|
Suppression of PDGF induces neuronal apoptosis after neonatal cerebral hypoxia and ischemia by inhibiting P-PI3K and P-AKT signaling pathways. Brain Res 2019; 1719:77-88. [PMID: 31082354 DOI: 10.1016/j.brainres.2019.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) always results in severe neurologic dysfunction, nevertheless effective treatments are limited and the underlying mechanism also remains unclear. In this study, we firstly established the neonatal HIE model in the postnatal day 7 SD rats, Zea-Longa score and TTC staining were employed to assess the neurological behavior and infarct volume of the brain after cerebral hypoxia-ischemia (HI). Afterwards, protein chip was adopted to detect the differential proteins in the right cortex, hippocampus and lung, ultimately, PDGF was noticed. Then, immunohistochemistry, immunofluorescence double staining of NeuN/PDGF, and western blot were used to validate the expression level of PDGF in the cortex and hippocampus at 6 hours (h), 12 h and 24 h after HI. To determine the role of PDGF, the primary cortical neurons were prepared and performed PDGF shRNA administration. The results showed that HIE induced a severe behavioral dysfunction and brain infarction in neonatal rats, and the expression of PDGF in right cortex and hippocampus was remarkably increased after HI. Whereas, suppressing PDGF resulted in a significant loss of neurons and inhibition of neurite growth. Moreover, the protein level of P-PI3K and P-AKT signaling pathways were largely decreased following PDGF-shRNA application in the cortical neurons. In conclusion, PDGF suppression aggravated neuronal dysfunction, and the underlying mechanism is associated with inhibiting the phosphorylation of P-PI3K and P-AKT. Together, PDGF regulating PI3K and AKT may be an important panel in HIE events and therefore may provide possible strategy for the treatment of HIE in future clinic trail.
Collapse
|
6
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
7
|
Hong MH, Hong HJ, Pang H, Lee HJ, Yi S, Koh WG. Controlled Release of Growth Factors from Multilayered Fibrous Scaffold for Functional Recoveries in Crushed Sciatic Nerve. ACS Biomater Sci Eng 2018; 4:576-586. [PMID: 33418747 DOI: 10.1021/acsbiomaterials.7b00801] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we designed and fabricated a multilayered fibrous scaffold capable of the controlled release of multiple growth factors for sciatic nerve regeneration in rats. The scaffold consists of three layers prepared by sequential electrospinning, where the first layer is fabricated using polycaprolactone (PCL)-aligned electrospun nanofibers for the attachment and differentiation of cells toward the direction of the sciatic nerve. The second and third layers are fabricated using poly(lactic-co-glycolic acid) 6535 (PLGA 6535) and 8515 (PLGA 8515), respectively. The resultant three nanofiber layers were stacked and fixed by incorporating hydrogel micropatterns at both ends of nanofiber scaffold, which also facilitated the surgical handling of the multilayered scaffolds. The PLGA layers acted as reservoirs to release growth factors neurotrophin (NT-3), brain-derived neurotrophic factor (BDNF), and platelet-derived growth factor (PDGF). The different biodegradation rate of each PLGA layer enabled the controlled release of multiple growth factors such as NT-3, BDNF, and PDGF with different patterns. In a rat model, the injured nerve was rolled up with the multilayered scaffold loading growth factors, and behavior tests were performed five weeks after surgery. Sciatic functional index (SFI) and mechanical allodynia analysis revealed that the fast release of NT-3 and BDNF from PLGA 6535 and subsequent slow release of PDGF from PLGA 8515 proved to be the greatest aid to neural tissue regeneration. In addition to the biochemical cues from growth factors, the aligned PCL layer that directly contacts the injured nerve could provide topographical stimulation, offering practical assistance to new tissue and cells for directional growth parallel to the sciatic nerve. This study demonstrated that our multilayered scaffold performs a function that can be used to promote locomotor activity and enhance nerve regeneration in combination with align-patterned topography and the controlled release of growth factors.
Collapse
Affiliation(s)
- Min-Ho Hong
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Haejeong Pang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jung Lee
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Yi
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Lee JC, Kim YH, Lee TK, Kim IH, Cho JH, Cho GS, Shin BN, Park JH, Ahn JH, Shin MC, Cho JH, Kang IJ, Won MH, Seo JY. Effects of ischemic preconditioning on PDGF-BB expression in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 2017. [PMID: 28627606 PMCID: PMC5562056 DOI: 10.3892/mmr.2017.6799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic preconditioning (IPC) is induced by exposure to brief durations of transient ischemia, which results in ischemic tolerance to a subsequent longer or lethal period of ischemia. In the present study, the effects of IPC (2 min of transient cerebral ischemia) were examined on immunoreactivity of platelet‑derived growth factor (PDGF)‑BB and on neuroprotection in the gerbil hippocampal CA1 region following lethal transient cerebral ischemia (LTCI; 5 min of transient cerebral ischemia). IPC was subjected to a 2‑min sublethal ischemia and a LTCI was given 5‑min transient ischemia. The animals in all of the groups were given recovery times of 1, 2 and 5 days and change in PDGF‑BB immunoreactivity was examined as was the neuronal damage/death in the hippocampus induced by LTCI. LTCI induced a significant loss of pyramidal neurons in the hippocampal CA1 region 5 days after LTCI, and significantly decreased PDGF‑BB immunoreactivity in the CA1 pyramidal neurons from day 1 after LTCI. Conversely, IPC effectively protected the CA1 pyramidal neurons from LTCI and increased PDGF‑BB immunoreactivity in the CA1 pyramidal neurons post‑LTCI. In conclusion, the results demonstrated that LTCI significantly altered PDGF‑BB immunoreactivity in pyramidal neurons in the hippocampal CA1 region, whereas IPC increased the immunoreactivity. These findings indicated that PDGF‑BB may be associated with IPC‑mediated neuroprotection.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Geum-Sil Cho
- Pharmacology and Toxicology Department, Shinpoong Pharmaceutical Co., Ltd., Ansan, Gyeonggi 15610, Republic of Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jeong Yeol Seo
- Department of Emergency Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
9
|
Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med 2016; 5:jcm5060056. [PMID: 27275837 PMCID: PMC4929411 DOI: 10.3390/jcm5060056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Stroke is one of the major causes of death and adult disability worldwide. The underlying pathophysiology of stroke is highly complicated, consisting of impairments of multiple signalling pathways, and numerous pathological processes such as acidosis, glutamate excitotoxicity, calcium overload, cerebral inflammation and reactive oxygen species (ROS) generation. The current treatment for ischemic stroke is limited to thromolytics such as recombinant tissue plasminogen activator (tPA). tPA has a very narrow therapeutic window, making it suitable to only a minority of stroke patients. Hence, there is great urgency to develop new therapies that can protect brain tissue from ischemic damage. Recent studies have shown that new vessel formation after stroke not only replenishes blood flow to the ischemic area of the brain, but also promotes neurogenesis and improves neurological functions in both animal models and patients. Therefore, drugs that can promote angiogenesis after ischemic stroke can provide therapeutic benefits in stroke management. In this regard, Chinese herbal medicine (CHM) has a long history in treating stroke and the associated diseases. A number of studies have demonstrated the pro-angiogenic effects of various Chinese herbs and herbal formulations in both in vitro and in vivo settings. In this article, we present a comprehensive review of the current knowledge on angiogenesis in the context of ischemic stroke and discuss the potential use of CHM in stroke management through modulation of angiogenesis.
Collapse
|
10
|
Yin KJ, Hamblin M, Chen YE. Angiogenesis-regulating microRNAs and Ischemic Stroke. Curr Vasc Pharmacol 2015; 13:352-65. [PMID: 26156265 PMCID: PMC4079753 DOI: 10.2174/15701611113119990016] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. Ischemic stroke is the dominant subtype of stroke and results from focal cerebral ischemia due to occlusion of major cerebral arteries. Thus, the restoration or improvement of reduced regional cerebral blood supply in a timely manner is very critical for improving stroke outcomes and poststroke functional recovery. The recovery from ischemic stroke largely relies on appropriate restoration of blood flow via angiogenesis. Newly formed vessels would allow increased cerebral blood flow, thus increasing the amount of oxygen and nutrients delivered to affected brain tissue. Angiogenesis is strictly controlled by many key angiogenic factors in the central nervous system, and these molecules have been well-documented to play an important role in the development of angiogenesis in response to various pathological conditions. Promoting angiogenesis via various approaches that target angiogenic factors appears to be a useful treatment for experimental ischemic stroke. Most recently, microRNAs (miRs) have been identified as negative regulators of gene expression in a post-transcriptional manner. Accumulating studies have demonstrated that miRs are essential determinants of vascular endothelial cell biology/angiogenesis as well as contributors to stroke pathogenesis. In this review, we summarize the knowledge of stroke-associated angiogenic modulators, as well as the role and molecular mechanisms of stroke-associated miRs with a focus on angiogenesis-regulating miRs. Moreover, we further discuss their potential impact on miR-based therapeutics in stroke through targeting and enhancing post-ischemic angiogenesis.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Milton Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL83, New Orleans, Louisiana 70112, USA
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
Hu M, Zhang X, Liu W, Cui H, Di N. Longitudinal changes of defensive and offensive factors in focal cerebral ischemia-reperfusion in rats. Brain Res Bull 2009; 79:371-5. [PMID: 19446608 DOI: 10.1016/j.brainresbull.2009.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 11/27/2022]
Abstract
The cerebral ischemia-reperfusion injury remains a major medical problem due to the lack of effective treatment. The mechanism of brain injury is still unknown. The defensive and offensive factors, such as platelet-derived growth factor-BB (PDGF-BB), 5-lipoxygenase (5-LO), aquaporin-4 (AQP-4) and insulin-like growth factor-1 (IGF-1) may play important roles. So far, only individual factors were reported. What are the relationships among them in brain ischemia-reperfusion injury remains obscure. The present study is to investigate simultaneously the expression of PDGF-BB, 5-LO, AQP-4 and IGF-1 in middle cerebral artery occlusion/reperfusion (MCAO/R) in rats. We found that 5-LO and IGF-1 reached the peak level at 24h after reperfusion, AQP-4 at 72 h and PDGF-BB at 7 days. With these results we inferred that both defensive factors, such as PDGF-BB, AQP-4 and IGF-1, and offensive factor, like 5-LO, play some roles in the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ming Hu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | | | | | | | | |
Collapse
|
12
|
Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J Neuroinflammation 2008; 5:32. [PMID: 18671877 PMCID: PMC2518142 DOI: 10.1186/1742-2094-5-32] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis is a chronic inflammatory disease of the central nervous system with a pronounced neurodegenerative component. It has been suggested that novel treatment options are needed that target both aspects of the disease. Evidence from basic and clinical studies suggests that testosterone has an immunomodulatory as well as a potential neuroprotective effect that could be beneficial in MS. METHODS Ten male MS patients were treated with 10 g of gel containing 100 mg of testosterone in a cross-over design (6 month observation period followed by 12 months of treatment). Blood samples were obtained at three-month intervals during the observation and the treatment period. Isolated blood peripheral mononuclear cells (PBMCs) were used to examine lymphocyte subpopulation composition by flow cytometry and ex vivo protein production of cytokines (IL-2, IFNgamma, TNFalpha, IL-17, IL-10, IL-12p40, TGFbeta1) and growth factors (brain-derived neurotrophic factor BDNF, platelet-derived growth factor PDGF-BB, nerve growth factor NGF, and ciliary neurotrophic factor CNTF). Delayed type hypersensitivity (DTH) skin recall tests were obtained before and during treatment as an in vivo functional immune measure. RESULTS Testosterone treatment significantly reduced DTH recall responses and induced a shift in peripheral lymphocyte composition by decreasing CD4+ T cell percentage and increasing NK cells. In addition, PBMC production of IL-2 was significantly decreased while TGFbeta1 production was increased. Furthermore, PBMCs obtained during the treatment period produced significantly more BDNF and PDGF-BB. CONCLUSION These results are consistent with an immunomodulatory effect of testosterone treatment in MS. In addition, increased production of BDNF and PDGF-BB suggests a potential neuroprotective effect. TRIAL REGISTRATION NCT00405353 http://www.clinicaltrials.gov.
Collapse
|
13
|
Harvey BK, Chen GJ, Schoen CJ, Lee CT, Howard DB, Dillon-Carter O, Coggiano M, Freed WJ, Wang Y, Hoffer BJ, Sanchez JF. An immortalized rat ventral mesencephalic cell line, RTC4, is protective in a rodent model of stroke. Cell Transplant 2007; 16:483-91. [PMID: 17708338 PMCID: PMC2494860 DOI: 10.3727/000000007783464984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One therapeutic approach to stroke is the transplantation of cells capable of trophic support, reinnervation, and/or regeneration. Previously, we have described the use of novel truncated isoforms of SV40 large T antigen to generate unique cell lines from several primary rodent tissue types. Here we describe the generation of two cell lines, RTC3 and RTC4, derived from primary mesencephalic tissue using a fragment of mutant T antigen, T155c (cDNA) expressed from the RSV promoter. Both lines expressed the glial markers vimentin and S100beta, but not the neuronal markers NeuN, MAP2, or beta-III-tubulin. A screen for secreted trophic factors revealed substantially elevated levels of platelet-derived growth factor (PDGF) in RTC4, but not RTC3 cells. When transplanted into rat cortex, RTC4 cells survived for at least 22 days and expressed PDGF. Because PDGF has been reported to reduce ischemic injury, we examined the protective functions of RTC4 cells in an animal model of stroke. RTC4 or RTC3 cells, or vehicle, were injected into rat cortex 15-20 min prior to a 60-min middle cerebral artery ligation. Forty-eight hours later, animals were sacrificed and the stroke volume was assessed by triphenyl-tetrazolium chloride (TTC) staining. Compared to vehicle or RTC3 cells, transplanted RTC4 cells significantly reduced stroke volume. Overall, we generated a cell line with glial properties that produces PDGF and reduces ischemic injury in a rat model of stroke.
Collapse
Affiliation(s)
- B K Harvey
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mohapel P, Frielingsdorf H, Häggblad J, Zachrisson O, Brundin P. Platelet-derived growth factor (PDGF-BB) and brain-derived neurotrophic factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions. Neuroscience 2005; 132:767-76. [PMID: 15837137 DOI: 10.1016/j.neuroscience.2004.11.056] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2004] [Indexed: 12/11/2022]
Abstract
The effects of i.c.v. infused platelet-derived growth factor and brain-derived neurotrophic factor on cell genesis, as assessed with bromodeoxyuridine (BrdU) incorporation, were studied in adult rats with unilateral 6-hydroxydopamine lesions. Both growth factors increased the numbers of newly formed cells in the striatum and substantia nigra to an equal extent following 10 days of treatment. At 3 weeks after termination of growth factor treatment, immunostaining of BrdU-labeled cells with the neuronal marker NeuN revealed a significant increase in newly generated neurons in the striatum. In correspondence, many doublecortin-labeled neuroblasts were also observed in the denervated striatum following growth factor treatment. Further evaluation suggested that a subset of these new neurons expresses the early marker for striatal neurons Pbx. However, no BrdU-positive cells were co-labeled with DARPP-32, a protein expressed by mature striatal projection neurons. Both in the striatum and in the substantia nigra there were no indications of any newly born cells differentiating into dopaminergic neurons following growth factor treatment, such that BrdU-labeled cells never co-expressed tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. In conclusion, our results suggest that administration of these growth factors is capable of recruiting new neurons into the striatum of hemiparkinsonian rats.
Collapse
Affiliation(s)
- P Mohapel
- Section for Neuronal Survival, Wallenberg Neuroscience Center, BMC A-10, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Kang DE, Yoon IS, Repetto E, Busse T, Yermian N, Ie L, Koo EH. Presenilins mediate phosphatidylinositol 3-kinase/AKT and ERK activation via select signaling receptors. Selectivity of PS2 in platelet-derived growth factor signaling. J Biol Chem 2005; 280:31537-47. [PMID: 16014629 DOI: 10.1074/jbc.m500833200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Alzheimer's disease-linked genes, PS1 and PS2, are required for intramembrane proteolysis of multiple type I proteins, including Notch and amyloid precursor protein. In addition, it has been documented that PS1 positively regulates, whereas PS1 familial Alzheimer disease mutations suppress, phosphatidylinositol 3-kinase (PI3K)/Akt activation, a pathway known to inactivate glycogen synthase kinase-3 and reduce tau phosphorylation. In this study, we show that the loss of presenilins not only inhibits PI3K/Akt signaling and increases tau phosphorylation but also suppresses the MEK/ERK pathway. The deficits in Akt and ERK activation in cells deficient in both PS1 and PS2 (PS-/-) are evident after serum withdrawal and stimulation with fetal bovine serum or ligands of select receptor tyrosine kinases, platelet-derived growth factor receptor beta (PDGFR beta) and PDGFR alpha, but not insulin-like growth factor-1R and epidermal growth factor receptor. The defects in PDGF signaling in PS-/- cells are due to reduced expression of PDGF receptors. Whereas fetal bovine serum-induced Akt activation is reconstituted by both PS1 and PS2 in PS-/- cells, PDGF signaling is selectively restored by PS2 but not PS1 and is dependent on the N-terminal fragment of PS2 but not gamma-secretase activity or the hydrophilic loop of PS2. The rescue of PDGF receptor expression and activation by PS2 is facilitated by FHL2, a PS2-interacting transcriptional co-activator. Finally, we present evidence that PS1 mutations interfere with this PS2-mediated activity by reducing PS2 fragments. These findings highlight important roles of both presenilins in Akt and ERK signaling via select signaling receptors.
Collapse
Affiliation(s)
- David E Kang
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Xing H, Azimi-Zonooz A, Shuttleworth CW, Connor JA. Caffeine releasable stores of Ca2+ show depletion prior to the final steps in delayed CA1 neuronal death. J Neurophysiol 2004; 92:2960-7. [PMID: 15201305 DOI: 10.1152/jn.00015.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In addition to their role in signaling, Ca2+ ions in the endoplasmic reticulum also regulate important steps in protein processing and trafficking that are critical for normal cell function. Chronic depletion of Ca2+ in the endoplasmic reticulum has been shown to lead to cell degeneration and has been proposed as a mechanism underlying delayed neuronal death following ischemic insults to the CNS. Experiments here have assessed the relative content of ryanodine receptor-gated stores in CA1 neurons by measuring cytoplasmic Ca2+ increases induced by caffeine. These measurements were performed on CA1 neurons, in slice, from normal gerbils, and compared with responses from this same population of neurons 54-60 h after animals had undergone a standard ischemic insult: 5-min bilateral occlusion of the carotid arteries. The mean amplitude of responses in the postischemic population were less than one-third of those in control or sham-operated animals, and 35% of the neurons from postischemic animals showed very small responses that were approximately 10% of the control population mean. Refilling of these stores after caffeine challenges was also impaired in postischemic neurons. These observations are consistent with our earlier finding that voltage-gated influx is sharply reduced in postischemic in CA1 neurons and the hypothesis that the resulting depletion in endosomal Ca2+ is an important cause of delayed neuronal death.
Collapse
Affiliation(s)
- Hong Xing
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
17
|
Egawa-Tsuzuki T, Ohno M, Tanaka N, Takeuchi Y, Uramoto H, Faigle R, Funa K, Ishii Y, Sasahara M. The PDGF B-chain is involved in the ontogenic susceptibility of the developing rat brain to NMDA toxicity. Exp Neurol 2004; 186:89-98. [PMID: 14980813 DOI: 10.1016/j.expneurol.2003.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Revised: 10/31/2003] [Accepted: 11/05/2003] [Indexed: 11/27/2022]
Abstract
Hypoxic-ischemic (H-I) injury to neonatal brains can cause a life-long neuronal deficit because of increased susceptibility in the neonatal period. Excitotoxicity due to overstimulation of the N-methyl-d-aspartate receptor (NMDAR) is assumed to be the basis of the injury. However, the ontogenic profile of the susceptibility does not directly correlate with the levels of NMDAR expression. Platelet-derived growth factor B-chain (PDGF-B) has been reported to protect neurons by suppressing the NMDA-evoked current and translocating the glutamate transporter to the cell membrane. Thus, we assessed the relationship between the susceptibility to H-I injury and the expression of PDGF-B in neonatal rat brain. PDGF-B infusion before and after an intrastriatal NMDA injection significantly reduced the size of the lesions in 7-day-old rats, when they are most susceptible and the neuronal expression of PDGF-B is low. Fourteen-day-old neonatal rats were found to be resistant to NMDA injury, even though NMDARs are expressed at high levels in the brain at this age. Inhibition of PDGF-B protein synthesis by antisense oligodeoxynucleotides increased the size of the NMDA-induced lesions up to 6-fold at postnatal day 14, when PDGF-B is expressed at high levels in neurons. These data suggest that PDGF-B is an important physiological modulator of NMDAR excitability in the developing brain, and that the balance between the expression of NMDAR and PDGF-B partly determines the ontogenic susceptibility to brain injury. Enhancement of the PDGF-B/receptor signal pathway might rescue neonatal brains at risk of H-I injury.
Collapse
|
18
|
Miller MW. Balance of cell proliferation and death among dynamic populations: a mathematical model. ACTA ACUST UNITED AC 2003; 57:172-82. [PMID: 14556283 DOI: 10.1002/neu.10265] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developmental changes in cell numbers represent the dynamic balance between cell proliferation and death. One obstacle to assessing this balance is an inability to quantify the total amount of cell death, i.e., with a positive indicator such as terminal dUTP nick end labeling (TUNEL) or caspase activity. A novel mathematical model is described wherein data on daily cell growth (the change in cell number) and cell cycle kinetics can be used to determine the total amount of cell death. Two sets of data from previously published studies were tested in this model; primary cultured cortical neurons and B104 neuroblastoma cells. These two preparations have contrasting features: neuronal cultures are heterogeneous and have relatively few cells that are actively cycling (i.e., the growth fraction for these cells is low), whereas B104 cells are relatively homogeneous cultures in which the growth fraction is high. In primary cortical cultures, there was a balance in cell production and death. Treatment with a potent anti-mitogen, ethanol (400 mg/dl), affected this balance principally by reducing cell production, although the rate of cell death was also increased. In untreated B104 cells, there was eight-fold more cell production than cell death. Growth factors such as platelet-derived growth factor BB doubled cell production. Ethanol reduced cell production by >60%, and it eliminated growth factor-mediated cell production. All of these changes occurred in the absence of an effect on the amount of cell death. Thus, the model is ideal for predicting the effects of an epigenetic factor (e.g., a growth factor, toxin, or pharmacological agent) on cell development and can be useful in determining the consequences of a genetic manipulation as well.
Collapse
Affiliation(s)
- Michael W Miller
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA.
| |
Collapse
|
19
|
Renner O, Tsimpas A, Kostin S, Valable S, Petit E, Schaper W, Marti HH. Time- and cell type-specific induction of platelet-derived growth factor receptor-beta during cerebral ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 113:44-51. [PMID: 12750005 DOI: 10.1016/s0169-328x(03)00085-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During cerebral ischemia, angiogenesis occurs inside and around the infarcted area. The growth of new blood vessels may contribute to a better outcome after stroke due to accelerated and increased delivery of nutrients and oxygen to the ischemic tissue. The platelet-derived growth factor (PDGF)-B/PDGF receptor (PDGFR)-beta system, hitherto thought to contribute mainly to neuroprotection, may also support angiogenesis and vascular remodeling by mediating interactions of endothelial cells with pericytes after cerebral ischemia. While platelet-derived growth factor (PDGF)-B and its receptor PDGFR-beta are essential factors for the recruitment of pericytes to brain capillaries during embryonic development, their role in blood vessel maturation during cerebral ischemia is not clear. The aim of the present study was to investigate the time course and location of PDGF-B and PDGFR-beta expression in a mouse model of focal cerebral ischemia. In contrast to the early and continuous induction of PDGF-B, PDGFR-beta mRNA was specifically upregulated in vascular structures in the infarcted area 48 h after occlusion of the middle cerebral artery. Immunohistology and confocal microscopy analysis revealed the specific upregulation of PDGFR-beta on blood vessels and suggested expression mainly on pericytes. Our results imply PDGFR-beta as a key factor in vascular remodeling during stroke and suggest that the pleiotropic functions of PDGF-B may be regulated via the expression of its receptor. Influencing the PDGF system therapeutically might improve angiogenesis, cellular protection, and edema inhibition.
Collapse
Affiliation(s)
- Oliver Renner
- Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Irie K, Mishima K, Ishibashi D, Egashira N, Iwasaki K, Fujiwara M. Involvement of bcl-family expression in the spatial memory impairment induced by repeated ischemia. Life Sci 2002; 72:621-9. [PMID: 12467903 DOI: 10.1016/s0024-3205(02)02270-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we examined the effects of repeated ischemia (10 min x 2, 1 hr interval) on spatial memory in rats in an 8-arm radial maze test compared with single ischemia (10 min x 1). Repeated ischemia produced more severe impairment of spatial memory and stronger TUNEL-positive immunoreactivity in the hippocampal CA1 region than single ischemia at 7 days after reperfusion. Moreover, repeated ischemia altered bcl-family expression, which is related to apoptosis, while this was not affected by single ischemia. These results suggest that spatial memory impairment at 7 days after repeated ischemia may be related to apoptosis in hippocampal CA1 cells.
Collapse
Affiliation(s)
- Keiichi Irie
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 814-0180, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Weisenhorn DM, Roback J, Young AN, Wainer BH. Cellular aspects of trophic actions in the nervous system. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:177-265. [PMID: 10333580 DOI: 10.1016/s0074-7696(08)61388-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past three decades the number of molecules exhibiting trophic actions in the brain has increased drastically. These molecules promote and/or control proliferation, differentiation, migration, and survival (sometimes even the death) of their target cells. In this review a comprehensive overview of small diffusible factors showing trophic actions in the central nervous system (CNS) is given. The factors discussed are neurotrophins, epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, insulin-like growth factors, ciliary neurotrophic factor and related molecules, glial-derived growth factor and related molecules, transforming growth factor-beta and related molecules, neurotransmitters, and hormones. All factors are discussed with respect to their trophic actions, their expression patterns in the brain, and molecular aspects of their receptors and intracellular signaling pathways. It becomes evident that there does not exist "the" trophic factor in the CNS but rather a multitude of them interacting with each other in a complicated network of trophic actions forming and maintaining the adult nervous system.
Collapse
Affiliation(s)
- D M Weisenhorn
- Wesley Woods Laboratory for Brain Science, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|