1
|
Gao R, Pascua PNQ, Chesnokov A, Nguyen HT, Uyeki TM, Mishin VP, Zanders N, Cui D, Jang Y, Jones J, La Cruz JD, Di H, Davis CT, Gubareva LV. Antiviral Susceptibility of Swine-Origin Influenza A Viruses Isolated from Humans, United States. Emerg Infect Dis 2024; 30:2303-2312. [PMID: 39378870 PMCID: PMC11521183 DOI: 10.3201/eid3011.240892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor-resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence-matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin's stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures.
Collapse
MESH Headings
- Humans
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Influenza, Human/drug therapy
- Drug Resistance, Viral/genetics
- United States/epidemiology
- Animals
- Swine
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Dibenzothiepins
- Morpholines/pharmacology
- Influenza A virus/drug effects
- Influenza A virus/genetics
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Pyridones/pharmacology
- Triazines/pharmacology
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/drug effects
Collapse
|
2
|
Alberts F, Berke O, Maboni G, Petukhova T, Poljak Z. Utilizing machine learning and hemagglutinin sequences to identify likely hosts of influenza H3Nx viruses. Prev Vet Med 2024; 233:106351. [PMID: 39353303 DOI: 10.1016/j.prevetmed.2024.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Influenza is a disease that represents both a public health and agricultural risk with pandemic potential. Among the subtypes of influenza A virus, H3 influenza virus can infect many avian and mammalian species and is therefore a virus of interest to human and veterinary public health. The primary goal of this study was to train and validate classifiers for the identification of the most likely host species using the hemagglutinin gene segment of H3 viruses. A five-step process was implemented, which included training four machine learning classifiers, testing the classifiers on the validation dataset, and further exploration of the best-performing model on three additional datasets. The gradient boosting machine classifier showed the highest host-classification accuracy with a 98.0 % (95 % CI [97.01, 98.73]) correct classification rate on an independent validation dataset. The classifications were further analyzed using the predicted probability score which highlighted sequences of particular interest. These sequences were both correctly and incorrectly classified sequences that showed considerable predicted probability for multiple hosts. This showed the potential of using these classifiers for rapid sequence classification and highlighting sequences of interest. Additionally, the classifiers were tested on a separate swine dataset composed of H3N2 sequences from 1998 to 2003 from the United States of America, and a separate canine dataset composed of canine H3N2 sequences of avian origin. These two datasets were utilized to look at the applications of predicted probability and host convergence over time. Lastly, the classifiers were used on an independent dataset of environmental sequences to explore the host identification of environmental sequences. The results of these classifiers show the potential for machine learning to be used as a host identification technique for viruses of unknown origin on a species-specific level.
Collapse
Affiliation(s)
- Famke Alberts
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Olaf Berke
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Advancing Responsible and Ethical Artificial Intelligence, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Grazieli Maboni
- Athens Veterinary Diagnostic Laboratory, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W.Brooks Drive Athens, GA, USA.
| | - Tatiana Petukhova
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Curran SJ, Griffin EF, Ferreri LM, Kyriakis CS, Howerth EW, Perez DR, Tompkins SM. Swine influenza A virus isolates containing the pandemic H1N1 origin matrix gene elicit greater disease in the murine model. Microbiol Spectr 2024; 12:e0338623. [PMID: 38299860 PMCID: PMC10913740 DOI: 10.1128/spectrum.03386-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Since the 1990s, endemic North American swine influenza A viruses (swFLUAVs) contained an internal gene segment constellation, the triple reassortment internal gene (TRIG) cassette. In 2009, the H1N1 pandemic (pdmH1N1) virus spilled back into swine but did not become endemic. However, the pdmH1N1 contributed the matrix gene (pdmM) to the swFLUAVs circulating in the pig population, which replaced the classical swine matrix gene (swM) found in the TRIG cassette, suggesting the pdmM has a fitness benefit. Others have shown that swFLUAVs containing the pdmM have greater transmission efficiency compared to viruses containing the swM gene segment. We hypothesized that the matrix (M) gene could also affect disease and utilized two infection models, resistant BALB/c and susceptible DBA/2 mice, to assess pathogenicity. We infected BALB/c and DBA/2 mice with H1 and H3 swFLUAVs containing the swM or pdmM and measured lung virus titers, morbidity, mortality, and lung histopathology. H1 influenza strains containing the pdmM gene caused greater morbidity and mortality in resistant and susceptible murine strains, while H3 swFLUAVs caused no clinical disease. However, both H1 and H3 swFLUAVs containing the pdmM replicated to higher viral titers in the lungs and pdmM containing H1 viruses induced greater histological changes compared to swM H1 viruses. While the surface glycoproteins and other gene segments may contribute to swFLUAV pathogenicity in mice, these data suggest that the origin of the matrix gene also contributes to pathogenicity of swFLUAV in mice, although we must be cautious in translating these conclusions to their natural host, swine. IMPORTANCE The 2009 pandemic H1N1 virus rapidly spilled back into North American swine, reassorting with the already genetically diverse swFLUAVs. Notably, the M gene segment quickly replaced the classical M gene segment, suggesting a fitness benefit. Here, using two murine models of infection, we demonstrate that swFLUAV isolates containing the pandemic H1N1 origin M gene caused increased disease compared to isolates containing the classical swine M gene. These results suggest that, in addition to other influenza virus gene segments, the swFLUAV M gene segment contributes to pathogenesis in mammals.
Collapse
Affiliation(s)
- Shelly J. Curran
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Emily F. Griffin
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Constantinos S. Kyriakis
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Elizabeth W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| |
Collapse
|
4
|
Papatsiros VG, Papakonstantinou GI, Meletis E, Koutoulis K, Athanasakopoulou Z, Maragkakis G, Labronikou G, Terzidis I, Kostoulas P, Billinis C. Seroprevalence of Swine Influenza A Virus (swIAV) Infections in Commercial Farrow-to-Finish Pig Farms in Greece. Vet Sci 2023; 10:599. [PMID: 37888551 PMCID: PMC10610732 DOI: 10.3390/vetsci10100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Swine influenza is a highly contagious respiratory disease caused by influenza A virus infection. Pigs play an important role in the overall epidemiology of influenza because of their ability to transmit influenza viruses of avian and human origin, which plays a potential role in the emergence of zoonotic strains with pandemic potential. The aim of our study was to assess the seroprevalence of Swine Influenza Viruses (swIAVs) in commercial pig farms in Greece. A total of 1416 blood samples were collected from breeding animals (gilts and sows) and pigs aged 3 weeks to market age from 40 different swIAV vaccinated and unvaccinated commercial farrow-to-finish pig farms. For the detection of anti-SIV antibodies, sera were analyzed using an indirect ELISA kit CIVTEST SUIS INFLUENZA®, Hipra (Amer, Spain). Of the total 1416 animals tested, 498 were seropositive, indicating that the virus circulates in both vaccinated (54% seroprevalence) and unvaccinated Greek pig farms (23% seroprevalence). In addition, maternally derived antibody (MDA) levels were lower in pigs at 4 and 7 weeks of age in unvaccinated farms than in vaccinated farms. In conclusion, our results underscore the importance of vaccination as an effective tool for the prevention of swIAV infections in commercial farrow-to-finish pig farms.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (G.M.)
| | - Georgios I. Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (G.M.)
| | - Eleftherios Meletis
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Konstantinos Koutoulis
- Department of Poultry Diseases, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece;
| | - Zoi Athanasakopoulou
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (C.B.)
| | - Georgios Maragkakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (G.M.)
| | - Georgia Labronikou
- Swine Technical Support, Hipra Hellas SA, 10441 Athens, Greece; (G.L.); (I.T.)
| | - Ilias Terzidis
- Swine Technical Support, Hipra Hellas SA, 10441 Athens, Greece; (G.L.); (I.T.)
| | - Polychronis Kostoulas
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Charalambos Billinis
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (C.B.)
| |
Collapse
|
5
|
Griffin EF, Tompkins SM. Fitness Determinants of Influenza A Viruses. Viruses 2023; 15:1959. [PMID: 37766365 PMCID: PMC10535923 DOI: 10.3390/v15091959] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A (IAV) is a major human respiratory pathogen that causes illness, hospitalizations, and mortality annually worldwide. IAV is also a zoonotic pathogen with a multitude of hosts, allowing for interspecies transmission, reassortment events, and the emergence of novel pandemics, as was seen in 2009 with the emergence of a swine-origin H1N1 (pdmH1N1) virus into humans, causing the first influenza pandemic of the 21st century. While the 2009 pandemic was considered to have high morbidity and low mortality, studies have linked the pdmH1N1 virus and its gene segments to increased disease in humans and animal models. Genetic components of the pdmH1N1 virus currently circulate in the swine population, reassorting with endemic swine viruses that co-circulate and occasionally spillover into humans. This is evidenced by the regular detection of variant swine IAVs in humans associated with state fairs and other intersections of humans and swine. Defining genetic changes that support species adaptation, virulence, and cross-species transmission, as well as mutations that enhance or attenuate these features, will improve our understanding of influenza biology. It aids in surveillance and virus risk assessment and guides the establishment of counter measures for emerging viruses. Here, we review the current understanding of the determinants of specific IAV phenotypes, focusing on the fitness, transmission, and virulence determinants that have been identified in swine IAVs and/or in relation to the 2009 pdmH1N1 virus.
Collapse
Affiliation(s)
- Emily Fate Griffin
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Stephen Mark Tompkins
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), Athens, GA 30602, USA
| |
Collapse
|
6
|
Cheung J, Bui AN, Younas S, Edwards KM, Nguyen HQ, Pham NT, Bui VN, Peiris M, Dhanasekaran V. Long-Term Epidemiology and Evolution of Swine Influenza Viruses, Vietnam. Emerg Infect Dis 2023; 29:1397-1406. [PMID: 37347532 PMCID: PMC10310380 DOI: 10.3201/eid2907.230165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Influenza A viruses are a One Health threat because they can spill over between host populations, including among humans, swine, and birds. Surveillance of swine influenza virus in Hanoi, Vietnam, during 2013-2019 revealed gene pool enrichment from imported swine from Asia and North America and showed long-term maintenance, persistence, and reassortment of virus lineages. Genome sequencing showed continuous enrichment of H1 and H3 diversity through repeat introduction of human virus variants and swine influenza viruses endemic in other countries. In particular, the North American H1-δ1a strain, which has a triple-reassortant backbone that potentially results in increased human adaptation, emerged as a virus that could pose a zoonotic threat. Co-circulation of H1-δ1a viruses with other swine influenza virus genotypes raises concerns for both human and animal health.
Collapse
Affiliation(s)
- Jonathan Cheung
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Anh Ngoc Bui
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Sonia Younas
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Kimberly M. Edwards
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Huy Quang Nguyen
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Ngoc Thi Pham
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Vuong Nghia Bui
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | | | | |
Collapse
|
7
|
Hufnagel DE, Young KM, Arendsee ZW, Gay LC, Caceres CJ, Rajão DS, Perez DR, Vincent Baker AL, Anderson TK. Characterizing a century of genetic diversity and contemporary antigenic diversity of N1 neuraminidase in influenza A virus from North American swine. Virus Evol 2023; 9:vead015. [PMID: 36993794 PMCID: PMC10041950 DOI: 10.1093/ve/vead015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Influenza A viruses (IAVs) of the H1N1 classical swine lineage became endemic in North American swine following the 1918 pandemic. Additional human-to-swine transmission events after 1918, and a spillover of H1 viruses from wild birds in Europe, potentiated a rapid increase in genomic diversity via reassortment between introductions and the endemic classical swine lineage. To determine mechanisms affecting reassortment and evolution, we conducted a phylogenetic analysis of N1 and paired HA swine IAV genes in North America between 1930 and 2020. We described fourteen N1 clades within the N1 Eurasian avian lineage (including the N1 pandemic clade), the N1 classical swine lineage, and the N1 human seasonal lineage. Seven N1 genetic clades had evidence for contemporary circulation. To assess antigenic drift associated with N1 genetic diversity, we generated a panel of representative swine N1 antisera and quantified the antigenic distance between wild-type viruses using enzyme-linked lectin assays and antigenic cartography. Within the N1 genes, the antigenic similarity was variable and reflected shared evolutionary history. Sustained circulation and evolution of N1 genes in swine had resulted in a significant antigenic distance between the N1 pandemic clade and the classical swine lineage. Between 2010 and 2020, N1 clades and N1-HA pairings fluctuated in detection frequency across North America, with hotspots of diversity generally appearing and disappearing within 2 years. We also identified frequent N1-HA reassortment events (n = 36), which were rarely sustained (n = 6) and sometimes also concomitant with the emergence of new N1 genetic clades (n = 3). These data form a baseline from which we can identify N1 clades that expand in range or genetic diversity that may impact viral phenotypes or vaccine immunity and subsequently the health of North American swine.
Collapse
Affiliation(s)
- David E Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Katharine M Young
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Zebulun W Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Daniela S Rajão
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| |
Collapse
|
8
|
Osorio-Zambrano WF, Ospina-Jimenez AF, Alvarez-Munoz S, Gomez AP, Ramirez-Nieto GC. Zooming in on the molecular characteristics of swine influenza virus circulating in Colombia before and after the H1N1pdm09 virus. Front Vet Sci 2022; 9:983304. [PMID: 36213398 PMCID: PMC9533064 DOI: 10.3389/fvets.2022.983304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza is one of the most critical viral agents involved in the respiratory disease complex affecting swine production systems worldwide. Despite the absence of vaccination against swine influenza virus in Colombia, the serologic reactivity to classic H1N1 and H3N2 subtypes reported since 1971 indicates the virus has been circulating in the country's swine population for several decades. However, successful isolation and sequencing of field virus from pigs was nonexistent until 2008, when H1N1 classical influenza virus was identified. One year later, due to the emergence of the influenza A (H1N1) pdm09 virus, responsible for the first global flu pandemic of the 21st century, it was introduced in the country. Therefore, to understand the impact of the introduction of the H1N1pdm09 virus in Colombia on the complexity and dynamics of influenza viruses previously present in the swine population, we carried out a study aiming to characterize circulating viruses genetically and establish possible reassortment events that might have happened between endemic influenza viruses before and after the introduction of the pandemic virus. A phylogenetic analysis of ten swine influenza virus isolates from porcine samples obtained between 2008 and 2015 was conducted. As a result, a displacement of the classical swine influenza virus with the pdmH1N1 virus in the swine population was confirmed. Once established, the pandemic subtype exhibited phylogenetic segregation based on a geographic pattern in all the evaluated segments. The evidence presents reassortment events with classic viruses in one of the first H1N1pdm09 isolates. Thus, this study demonstrates complex competition dynamics and variations in Colombian swine viruses through Drift and Shift.
Collapse
|
9
|
Rochman ND, Wolf YI, Koonin EV. Molecular adaptations during viral epidemics. EMBO Rep 2022; 23:e55393. [PMID: 35848484 PMCID: PMC9346483 DOI: 10.15252/embr.202255393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 07/20/2023] Open
Abstract
In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Yuri I Wolf
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Eugene V Koonin
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| |
Collapse
|
10
|
Ogun OJ, Thaller G, Becker D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. BIOLOGY 2022; 11:biology11060903. [PMID: 35741423 PMCID: PMC9219854 DOI: 10.3390/biology11060903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Humans frequently interact with pigs and porcine meat is the most consumed red meat in the world. In addition, due to the many physiological and anatomical similarities shared between pigs and humans, in contrast to most mammalian species, pigs are a suitable model organism and pig organs can be used for xenotransplantation. However, one major challenge of porcine meat consumption and xenotransplantation is the xenoreactivity between red meat Neu5Gc sialic acid and human anti-Neu5Gc antibodies, which are associated with certain diseases and disorders. Furthermore, pigs express both α2-3 and α2-6 Sia linkages that could serve as viable receptors for viral infections, reassortments, and cross-species transmission of viruses. Therefore, pigs play a significant role in sialic acid research and, in general, in human health. Abstract Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
- Correspondence: (O.J.O.); (D.B.)
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Correspondence: (O.J.O.); (D.B.)
| |
Collapse
|
11
|
Point-of-Care and Label-Free Detection of Porcine Reproductive and Respiratory Syndrome and Swine Influenza Viruses Using a Microfluidic Device with Photonic Integrated Circuits. Viruses 2022; 14:v14050988. [PMID: 35632730 PMCID: PMC9144544 DOI: 10.3390/v14050988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Swine viral diseases challenge the sector’s sustainability by affecting productivity and the health and welfare of the animals. The lack of antiviral drugs and/or effective vaccines renders early and reliable diagnosis the basis of viral disease management, underlining the importance of point-of-care (POC) diagnostics. A novel POC diagnostic device utilizing photonic integrated circuits (PICs), microfluidics, and information and communication technologies for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A (SIV) was validated using spiked and clinical oral fluid samples. Metrics including sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device. For PRRSV, the device achieved a sensitivity of 83.5%, specificity of 77.8%, and DOR values of 17.66, whereas the values for SIV were 81.8%, 82.2%, and 20.81, respectively. The POC device and PICs can be used for the detection of PRRSV and SIV in the field, paving the way for the introduction of novel technologies in the field of animal POC diagnostics to further optimize livestock biosecurity.
Collapse
|
12
|
Harima H, Okuya K, Kajihara M, Ogawa H, Simulundu E, Bwalya E, Qiu Y, Mori-Kajihara A, Munyeme M, Sakoda Y, Saito T, Hang'ombe BM, Sawa H, Mweene AS, Takada A. Serological and molecular epidemiological study on swine influenza in Zambia. Transbound Emerg Dis 2021; 69:e931-e943. [PMID: 34724353 DOI: 10.1111/tbed.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Influenza A viruses (IAVs) cause highly contagious respiratory diseases in humans and animals. In 2009, a swine-origin pandemic H1N1 IAV, designated A(H1N1)pdm09 virus, spread worldwide, and has since frequently been introduced into pig populations. Since novel reassortant IAVs with pandemic potential may emerge in pigs, surveillance for IAV in pigs is therefore necessary not only for the pig industry but also for public health. However, epidemiological information on IAV infection of pigs in Africa remains sparse. In this study, we collected 246 serum and 605 nasal swab samples from pigs in Zambia during the years 2011-2018. Serological analyses revealed that 49% and 32% of the sera collected in 2011 were positive for hemagglutination-inhibition (HI) and neutralizing antibodies against A(H1N1)pdm09 virus, respectively, whereas less than 5.3% of sera collected during the following period (2012-2018) were positive in both serological tests. The positive rate and the neutralization titres to A(H1N1)pdm09 virus were higher than those to classical swine H1N1 and H1N2 IAVs. On the other hand, the positive rate for swine H3N2 IAV was very low in the pig population in Zambia in 2011-2018 (5.3% and 0% in HI and neutralization tests, respectively). From nasal swab samples, we isolated one H3N2 and eight H1N1 IAV strains with an isolation rate of 1.5%. Phylogenetic analyses of all eight gene segments revealed that the isolated IAVs were closely related to human IAV strains belonging to A(H1N1)pdm09 and seasonal H3N2 lineages. Our findings indicate that reverse zoonotic transmission from humans to pigs occurred during the study period in Zambia and highlight the need for continued surveillance to monitor the status of IAVs circulating in swine populations in Africa.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kosuke Okuya
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirohito Ogawa
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,Macha Research Trust, Choma, Zambia
| | - Eugene Bwalya
- Department of Clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takehiko Saito
- Department of Animal Disease Control and Prevention, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Bernard M Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia.,Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,One Health Research Center, Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| |
Collapse
|
13
|
Predicting Cross-Species Infection of Swine Influenza Virus with Representation Learning of Amino Acid Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6985008. [PMID: 34671417 PMCID: PMC8523279 DOI: 10.1155/2021/6985008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Swine influenza viruses (SIVs) can unforeseeably cross the species barriers and directly infect humans, which pose huge challenges for public health and trigger pandemic risk at irregular intervals. Computational tools are needed to predict infection phenotype and early pandemic risk of SIVs. For this purpose, we propose a feature representation algorithm to predict cross-species infection of SIVs. We built a high-quality dataset of 1902 viruses. A feature representation learning scheme was applied to learn feature representations from 64 well-trained random forest models with multiple feature descriptors of mutant amino acid in the viral proteins, including compositional information, position-specific information, and physicochemical properties. Class and probabilistic information were integrated into the feature representations, and redundant features were removed by feature space optimization. High performance was achieved using 20 informative features and 22 probabilistic information. The proposed method will facilitate SIV characterization of transmission phenotype.
Collapse
|
14
|
Bakre AA, Jones LP, Murray J, Reneer ZB, Meliopoulos VA, Cherry S, Schultz-Cherry S, Tripp RA. Innate Antiviral Cytokine Response to Swine Influenza Virus by Swine Respiratory Epithelial Cells. J Virol 2021; 95:e0069221. [PMID: 33980596 PMCID: PMC8274599 DOI: 10.1128/jvi.00692-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
Swine influenza virus (SIV) can cause respiratory illness in swine. Swine contribute to influenza virus reassortment, as avian, human, and/or swine influenza viruses can infect swine and reassort, and new viruses can emerge. Thus, it is important to determine the host antiviral responses that affect SIV replication. In this study, we examined the innate antiviral cytokine response to SIV by swine respiratory epithelial cells, focusing on the expression of interferon (IFN) and interferon-stimulated genes (ISGs). Both primary and transformed swine nasal and tracheal respiratory epithelial cells were examined following infection with field isolates. The results show that IFN and ISG expression is maximal at 12 h postinfection (hpi) and is dependent on cell type and virus genotype. IMPORTANCE Swine are considered intermediate hosts that have facilitated influenza virus reassortment events that have given rise pandemics or genetically related viruses have become established in swine. In this study, we examine the innate antiviral response to swine influenza virus in primary and immortalized swine nasal and tracheal epithelial cells, and show virus strain- and host cell type-dependent differential expression of key interferons and interferon-stimulated genes.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Les P Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Z Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Yu Y, Wu M, Cui X, Xu F, Wen F, Pan L, Li S, Sun H, Zhu X, Lin J, Feng Y, Li M, Liu Y, Yuan S, Liao M, Sun H. Pathogenicity and transmissibility of current H3N2 swine influenza virus in Southern China: A zoonotic potential. Transbound Emerg Dis 2021; 69:2052-2064. [PMID: 34132051 DOI: 10.1111/tbed.14190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 11/27/2022]
Abstract
Swine are considered as 'mixing vessels' of influenza A viruses and play an important role in the generation of novel influenza pandemics. In this study, we described that the H3N2 swine influenza (swH3N2) viruses currently circulating in pigs in Guangdong province carried six internal genes from 2009 pandemic H1N1 virus (pmd09), and their antigenicity was obviously different from that of current human H3N2 influenza viruses or recommended vaccine strains (A/Guangdong/1194/2019, A/Hong Kong/4801/2014). These swH3N2 viruses preferentially bonded to the human-like receptors, and efficiently replicated in human, canine and swine cells. In addition, the virus replicated in turbinate and trachea of guinea pigs, and efficiently transmitted among guinea pigs, and virus shedding last for 6 days post-infection (dpi). The virus replicated in the respiratory tract of pigs, effectively transmitted among pigs, and virus shedding last until 9 dpi. Taken together, these current swH3N2 viruses might have the zoonotic potential. Strengthening surveillance and monitoring the pathogenicity of such swH3N2 viruses are urgently needed.
Collapse
Affiliation(s)
- Yanan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xinxin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liangqi Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Huapeng Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xuhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Jiate Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yaling Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Mingliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shaohua Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| |
Collapse
|
16
|
Bakre AA, Jones LP, Bennett HK, Bobbitt DE, Tripp RA. Detection of swine influenza virus in nasal specimens by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 2021; 288:114015. [PMID: 33271254 PMCID: PMC7799534 DOI: 10.1016/j.jviromet.2020.114015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Detection of swine influenza virus (SIV) in commercial swine herds is important for understanding the infection status of the herd and for controlling disease. Current molecular diagnostics require that specimens be submitted to a laboratory which provides results to the growers after some time which is generally too late to intercede in disease control. Moreover, current diagnostic assays are time-consuming, typically costly, and require skilled technical expertise. We have instituted a reverse transcription loop-mediated isothermal amplification (RT-LAMP) diagnostic assay based on conserved regions of the SIV matrix (M) gene and H1N1 hemagglutinin (HA) sequences. The RT-LAMP assay was optimized to use both colorimetric and fluorescent endpoints and was validated. The M and HA RT-LAMP assays have a limit-of-detection (LOD) sensitive to 11 and 8-log-fold dilutions of viral RNA, respectively, and are capable of discriminating between H1 and H3 strains of SIV. Additionally, the RT-LAMP assay was optimized for direct amplification of SIV from field samples without the need for viral RNA isolation. The direct RT-LAMP detected >86 % of qRT-PCR validated SIV samples, and >66 % of negative samples when spiked with viral RNA or SIV. The diagnostic RT-LAMP assay is a rapid, sensitive, specific, and cost-effective method for the detection of SIV in herds substantially aiding diagnosis and surveillance.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Les P Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Hailey K Bennett
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Davis E Bobbitt
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.
| |
Collapse
|
17
|
Landreth S, Detmer S, Gerdts V, Zhou Y. A bivalent live attenuated influenza virus vaccine protects against H1N2 and H3N2 viral infection in swine. Vet Microbiol 2020; 253:108968. [PMID: 33418392 DOI: 10.1016/j.vetmic.2020.108968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 11/26/2022]
Abstract
Swine Influenza A virus (swIAV) poses a substantial burden to the swine industry due to its highly contagious nature, acute viral disease, and ability to cause up to 100 % morbidity. Currently, North American swine are predominately infected with three subtypes of swIAV: H1N1, H1N2, and H3N2. The ability of influenza viruses to cross both directions between humans and swine means that both human and swine-origin viruses as well as new reassortant viruses can pose a substantial public health or pandemic threat. Since the primary method of protection and control against influenza is through vaccination, more effective, new vaccine platforms need to be developed. This study uses two Canadian swIAV isolates, A/Swine/Alberta/SD0191/2016 (H1N2) [SD191] and A/Swine/Saskatchewan/SD0069/2015 (H3N2) [SD69] to design a bivalent live attenuated influenza virus vaccine (LAIV) through reverse genetics. The hemagglutinin (HA) cleavage site from both SD191-WT and SD69-WT were engineered from a trypsin-sensitive to an elastase-sensitive motif, to generate SD191-R342V and SD69-K345V, respectively. The elastase dependent SD191-R342V virus possesses a mutation from arginine to valine at amino acid (aa) 342 on HA, whereas the elastase dependent SD69-K345V virus possesses a mutation from lysine to valine at aa 345 on HA. Both elastase dependent swIAVs are completely dependent on elastase, display comparable growth properties to the wild type (WT) viruses, are genetically stable in vitro, and entirely non-virulent in pigs. Moreover, when these elastase dependent swIAVs were administered together in pigs, they were found to stimulate antibody responses and IFN-γ secreting cells, as well as prevent viral replication and lung pathology associated with WT H1N2 and H3N2 swIAV challenge. Therefore, this bivalent LAIV demonstrates the strong candidacy to protect swine against the predominant influenza subtypes in North America.
Collapse
Affiliation(s)
- Shelby Landreth
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| | - Susan Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| | - Yan Zhou
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| |
Collapse
|
18
|
Olaniyi MO, Adebiyi AA, Ajayi OL, Alaka OO, Akpavie SO. Localization and immunohistochemical detection of swine influenza A virus subtype H1N1 antigen in formalin-fixed, paraffin-embedded lung tissues from naturally infected pigs. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-0039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Swine influenza A viruses (SIV) infection is among the leading causes of respiratory diseases in a number of animal species and human, and has been reported to cause substantial losses to pig industry. Previous reports of serological, molecular, and surveillance studies in commercial piggeries in Nigeria indicated the presence of SIV subtypes H1N1 and H3N2 in infected pigs; hitherto, there exists lack of studies on the pulmonary pathology and pathogenicity of SIV in Nigeria. This study investigates the presence of SIV subtype H1N1 antigen in the formalin-fixed paraffin-embedded lung sections obtained from apparently healthy pigs slaughtered at abattoirs located in Lagos, Ogun, and Oyo States, Southwest Nigeria using a streptavidin-biotin (ABC) immunoperoxidase (IP) staining. Two hundred four lungs consisting of 144 grossly pneumonic lungs and 60 apparently normal lungs were randomly collected, fixed in 10% neutral-buffered formalin, embedded in paraffin wax, and processed for histopathological examination and immunohistochemistry.
Results
The main gross lesions were marked pulmonary edema and mild bilateral consolidation of cranial lobes. Histopathology revealed suppurative bronchitis, and bronchiolitis with or without concurrent widespread degeneration and necrosis of epithelial cells (52.08%) and thickening of alveolar septa due to cellular infiltration consisting predominantly of neutrophils and mononuclear cells (macrophages and plasma cells) (39.58%). The lumina of most airways contained exudate consisting of neutrophils, desquamated epithelia cells, and necrotic debris. SIV antigen was immunohistochemically detected in 7/204 (3.43%) samples using SIV-specific (H1N1) monoclonal antibody. Positive cells exhibited a typical dark-brown reaction in the infected cells. A strong positive immunohistochemical staining was detected mainly in the alveolar macrophages and bronchial submucosal glandular epithelial cells while less intense staining was observed in the bronchiolar epithelial cells.
Conclusions
The present study describes the distribution and localization of SIV subtype H1N1 antigens in the lung tissues of the infected pigs and provides public awareness on the presence of the virus in pig population in Nigeria and the risk factors associated with the infection. Therefore, people working in pig farms should maintain high level of biosafety and personal hygiene. This is the first report of immunohistochemical detection of SIV subtype H1N1 antigen in naturally infected pigs in Nigeria and may indicate rapid dissemination of the virus in susceptible pigs in the study area. A further molecular epidemiological study to investigate other SIV subtypes circulating in Nigerian pig population is warranted.
Collapse
|
19
|
Ma W. Swine influenza virus: Current status and challenge. Virus Res 2020; 288:198118. [PMID: 32798539 PMCID: PMC7587018 DOI: 10.1016/j.virusres.2020.198118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Since swine influenza virus was first isolated in 1930, it has become endemic in pigs worldwide. Although large amount of swine influenza vaccines has been used in swine industry, swine influenza still cannot be efficiently controlled and has been an important economic disease for swine industry. The high diversity and varied distribution of different subtypes and genotypes of swine influenza viruses circulating in pigs globally is a major challenge to produce broadly effective vaccines and control disease. Importantly, swine influenza virus is able to cross species barrier to infect humans and even caused influenza pandemic in 2009. Herein, current status and challenge of swine influenza viruses is reviewed and discussed.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
20
|
Soda K, Kashiwabara M, Miura K, Ung TTH, Nguyen HLK, Ito H, Le MQ, Ito T. Characterization of H3 subtype avian influenza viruses isolated from poultry in Vietnam. Virus Genes 2020; 56:712-723. [PMID: 32996077 DOI: 10.1007/s11262-020-01797-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
To date, avian influenza viruses (AIVs) have persisted in domestic poultry in wet markets in East Asian countries. We have performed ongoing virus surveillance in poultry populations in Vietnam since 2011, with the goal of controlling avian influenza. Throughout this study, 110 H3 AIVs were isolated from 2760 swab samples of poultry in markets and duck farms. H3 hemagglutinin (HA) genes of the isolates were phylogenetically classified into eight groups (I-VIII). Genetic diversity was also observed in the other seven gene segments. Groups I-IV also included AIVs from wild waterbirds. The epidemic strains in poultry switched from groups I-III and VI to groups I, IV, V, and VIII around 2013. H3 AIVs in groups I and V were maintained in poultry until at least 2016, which likely accompanied their dissemination from the northern to the southern regions of Vietnam. Groups VI-VIII AIVs were antigenically distinct from the other groups. Some H3 AIV isolates had similar N6 neuraminidase and matrix genes as H5 highly pathogenic avian influenza viruses (HPAIVs). These results reveal that genetically and antigenically different H3 AIVs have been co-circulating in poultry in Vietnam. Poultry is usually reared outside in this country and is at risk of infection with wild waterbird-originating AIVs. In poultry flocks, the intruded H3 AIVs must have experienced antigenic drift/shift and genetic reassortment, which could contribute to the emergence of H5 HPAIVs with novel gene constellations.
Collapse
Affiliation(s)
- Kosuke Soda
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan.,Faculty of Agriculture, Avian Zoonosis Research Center, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| | - Mina Kashiwabara
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| | - Kozue Miura
- Vietnam Research Station, Nagasaki University, c/o National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi, Vietnam
| | - Trang T H Ung
- Department of Virology, National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi, Vietnam
| | - Hang L K Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi, Vietnam
| | - Hiroshi Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan.,Faculty of Agriculture, Avian Zoonosis Research Center, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| | - Mai Q Le
- Department of Virology, National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi, Vietnam
| | - Toshihiro Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan. .,Faculty of Agriculture, Avian Zoonosis Research Center, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan.
| |
Collapse
|
21
|
The Impact of COVID-19 on the Insurance Industry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165766. [PMID: 32784978 PMCID: PMC7459729 DOI: 10.3390/ijerph17165766] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
This study investigated the impact of COVID-19 on the insurance industry by studying the case of Ghana from March to June 2020. With a parallel comparison to previous pandemics such as SARS-CoV, H1N1 and MERS, we developed outlines for simulating the impact of the pandemic on the insurance industry. The study used qualitative and quantitative interviews to estimate the impact of the pandemic. Presently, the trend is an economic recession with decreasing profits but increasing claims. Due to the cancellation of travels, events and other economic losses, the Ghanaian insurance industry witnessed a loss currently estimated at GH Ȼ112 million. Our comparison and forecast predicts a normalization of economic indicators from January 2021. In the meantime, while the pandemic persists, insurers should adapt to working from remote locations, train and equip staff to work under social distancing regulations, enhance cybersecurity protocols and simplify claims/premium processing using e-payment channels. It will require the collaboration of the Ghana Ministry of Health, Banking Sector, Police Department, Customs Excise and Preventive Service, other relevant Ministries and the international community to bring the pandemic to a stop.
Collapse
|
22
|
Guo F, Yang J, Pan J, Liang X, Shen X, Irwin DM, Chen RA, Shen Y. Origin and Evolution of H1N1/pdm2009: A Codon Usage Perspective. Front Microbiol 2020; 11:1615. [PMID: 32760376 PMCID: PMC7372903 DOI: 10.3389/fmicb.2020.01615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
The H1N1/pdm2009 virus is a new triple-reassortant virus. While Eurasian avian-like and triple-reassortant swine influenza viruses are the direct ancestors of H1N1/pdm2009, the classic swine influenza virus facilitate the spectrum of influenza A diversity in pig population when the reassortant events occurred during 1998 to April 2009. The factors that facilitate the final formation of this gene constellation for H1N1/pdm2009 virus from this complex gene pool remain unknown. Since a novel successful virus should efficiently replicate and transmit in their hosts, in this study, we estimated the adaptability of the codon usage patterns of the pool of genes from these lineages of swine influenza viruses to the human expression system. We found that the MP and NA genes of Eurasian avian-like swine influenza viruses, and the PB2, PB1 and PA genes of triple-reassortant swine influenza viruses were best adapted to the human codon usage pattern. As these genes participated in the development of H1N1/pdm2009, they might help in viral replication and strengthen its competitiveness during its emergence. After its emergence in the human population, a gradual optimization of codon usage patterns between 2009 and 2019 to the human codon usage for the H1N1/pdm2009 genes was detected. This reveals that ongoing adaptive evolution, after its original incursion, occurred to further increase the adaptability of overall gene cassette to human expression system.
Collapse
Affiliation(s)
- Fucheng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinjin Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junbin Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xianghui Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Rui-Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biological Products, Zhaoqing, China
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
23
|
Nirmala J, Perez A, Culhane MR, Allerson MW, Sreevatsan S, Torremorell M. Genetic variability of influenza A virus in pigs at weaning in Midwestern United States swine farms. Transbound Emerg Dis 2020; 68:62-75. [PMID: 32187882 DOI: 10.1111/tbed.13529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Suckling piglets play an important role at maintaining influenza A virus (IAV) infections in breeding herds and disseminating them to other farms at weaning. However, the role they play at weaning to support and promote genetic variability of IAV is not fully understood. The objective here was to evaluate the genetic diversity of IAV in pigs at weaning in farms located in the Midwestern USA. Nasal swabs (n = 9,090) collected from piglets in breed-to-wean farms (n = 52) over a six-month period across seasons were evaluated for the presence of IAV. Nasal swabs (n = 391) from 23 IAV-positive farms were whole-genome sequenced. Multiple lineages of HA (n = 7) and NA (n = 3) were identified in 96% (22/23) and 61% (237/391) of the investigated farms and individual piglets, respectively. Co-circulation of multiple types of functional HA and NA was identified in most (83%) farms. Whole IAV genomes were completed for 126 individual piglet samples and 25 distinct and 23 mixed genotypes were identified, highlighting significant genetic variability of IAV in piglets. Co-circulation of IAV in the farms and co-infection of individual piglets at weaning was observed at multiple time points over the investigation period and appears to be common in the investigated farms. Statistically significant genetic variability was estimated within and between farms by AMOVA, and varying levels of diversity between farms were detected using the Shannon-Weiner Index. Results reported here demonstrate previously unreported levels of molecular complexity and genetic variability among IAV at the farm and piglet levels at weaning. Movement of such piglets infected at weaning may result in emergence of new strains and maintenance of endemic IAV infection in the US swine herds. Results presented here highlight the need for developing and implementing novel, effective strategies to prevent or control the introduction and transmission of IAV within and between farms in the country.
Collapse
Affiliation(s)
| | - Andres Perez
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Matthew W Allerson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
24
|
Sobolev I, Kurskaya O, Leonov S, Kabilov M, Alikina T, Alekseev A, Yushkov Y, Saito T, Uchida Y, Mine J, Shestopalov A, Sharshov K. Novel reassortant of H1N1 swine influenza virus detected in pig population in Russia. Emerg Microbes Infect 2020; 8:1456-1464. [PMID: 31603050 PMCID: PMC6818105 DOI: 10.1080/22221751.2019.1673136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pigs play an important role in interspecies transmission of the influenza virus, particularly as "mixing vessels" for reassortment. Two influenza A/H1N1 virus strains, A/swine/Siberia/1sw/2016 and A/swine/Siberia/4sw/2017, were isolated during a surveillance of pigs from private farms in Russia from 2016 to 2017. There was a 10% identity difference between the HA and NA nucleotide sequences of isolated strains and the most phylogenetically related sequences (human influenza viruses of 1980s). Simultaneously, genome segments encoding internal proteins were found to be phylogenetically related to the A/H1N1pdm09 influenza virus. In addition, two amino acids (129-130) were deleted in the HA of A/swine/Siberia/4sw/2017 compared to that of A/swine/Siberia/1sw/2016 HA.
Collapse
Affiliation(s)
- Ivan Sobolev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| | - Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| | - Sergey Leonov
- Siberian Federal Scientific Centre of Agro- BioTechnologies , Krasnoobsk , Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia
| | - Alexander Alekseev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| | - Yuriy Yushkov
- Siberian Federal Scientific Centre of Agro- BioTechnologies , Krasnoobsk , Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health , Tsukuba , Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health , Tsukuba , Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health , Tsukuba , Japan
| | - Alexander Shestopalov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| | - Kirill Sharshov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| |
Collapse
|
25
|
Zell R, Groth M, Krumbholz A, Lange J, Philipps A, Dürrwald R. Displacement of the Gent/1999 human-like swine H1N2 influenza A virus lineage by novel H1N2 reassortants in Germany. Arch Virol 2019; 165:55-67. [PMID: 31696308 DOI: 10.1007/s00705-019-04457-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022]
Abstract
A swine influenza survey was conducted between 2003 and 2015 in Germany. During this period, 8122 snout swabs or other respiratory specimens from pigs of 5178 herds, mainly from Germany, were investigated for the presence of swine influenza A virus (S-IAV). In total, 1310 S-IAV isolates were collected. Of this collection, the complete genome of 267 H1N2 S-IAV isolates was sequenced and phylogenetically analyzed. The data demonstrate the incursion of human-like swine H1N2 viruses (Gent/1999-like) in 2000 and prevalent circulation until 2010. From 2008 onward, a sustained and broad change of the genetic constellation of the swine H1N2 subtype commenced. The Gent/1999-like swine H1N2 viruses ceased and several new swine H1N2 reassortants emerged and became prevalent in Germany. Of these, the upsurge of the Diepholz/2008-like, Emmelsbuell/2009-like and Papenburg/2010-like viruses is notable. The data reveal the importance of reassortment events in S-IAV evolution. The strong circulation of S-IAV of different lineages in the swine population throughout the year underlines that pigs are important reservoir hosts.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.
| | - Marco Groth
- CF DNA Sequencing, Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Andi Krumbholz
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Institute of Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Jeannette Lange
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Anja Philipps
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Thermo Fisher Scientific GENEART GmbH, 93059, Regensburg, Germany
| | - Ralf Dürrwald
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Robert Koch Institute, 13353, Berlin, Germany
| |
Collapse
|
26
|
Zhang H, Miller BL. Immunosensor-based label-free and multiplex detection of influenza viruses: State of the art. Biosens Bioelectron 2019; 141:111476. [PMID: 31272058 PMCID: PMC6717022 DOI: 10.1016/j.bios.2019.111476] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
The ability of influenza viruses to rapidly evolve has caused significant challenges in viral surveillance, diagnosis, and therapeutic development. Molecular sequencing methods, though powerful tools for monitoring influenza evolution at the genetic level, are not able to fully characterize the antigenic properties of influenza viruses. Understanding influenza virus antigenicity is critical to vaccine development and disease prevention. Traditional immunoassays which have been widely used for evaluating influenza antigenicity have limited throughput. To alleviate these problems, new bioanalytical tools to investigate influenza antigenicity by measuring antibody-antigen binding are an active area of research. Herein, we review immunosensor technologies from the aspects of various sensing principles, while highlighting recent developments in multiplex, label-free detection strategies. Highlighted technologies include electrochemical immunosensors relying on impedimetric detection; these demonstrate simple design and cost effectiveness for mass production. Antibody arrays implemented on an optical interferometric sensor system allow systematic characterization of influenza antigenicity. Quartz microbalance immunosensors are highly sensitive but have yet to be explored for multiplex sensing. Immunosensors made on lateral flow strips have shown promise in rapid diagnosis of influenza subtypes. We anticipate that these and other technologies discussed in the review will facilitate advances in the study of influenza, and other viral pathogens.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Avenue Box 697, Rochester, NY, 14642, USA; Materials Science Program, University of Rochester, 500 Joseph C. Wilson Blvd. Box 270216, Rochester, NY, 14627, USA
| | - Benjamin L Miller
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Avenue Box 697, Rochester, NY, 14642, USA; Materials Science Program, University of Rochester, 500 Joseph C. Wilson Blvd. Box 270216, Rochester, NY, 14627, USA.
| |
Collapse
|
27
|
Lin RW, Chen GW, Sung HH, Lin RJ, Yen LC, Tseng YL, Chang YK, Lien SP, Shih SR, Liao CL. Naturally occurring mutations in PB1 affect influenza A virus replication fidelity, virulence, and adaptability. J Biomed Sci 2019; 26:55. [PMID: 31366399 PMCID: PMC6668090 DOI: 10.1186/s12929-019-0547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022] Open
Abstract
Background Mutations in the PB1 subunit of RNA-dependent RNA polymerase (RdRp) of influenza A virus can affect replication fidelity. Before the influenza A/H1N1 pandemic in 2009, most human influenza A/H1N1 viruses contained the avian-associated residue, serine, at position 216 in PB1. However, near the onset of the 2009 pandemic, human viruses began to acquire the mammalian-associated residue, glycine, at PB1–216, and PB1–216G became predominant in human viruses thereafter. Methods Using entropy-based analysis algorithm, we have previously identified several host-specific amino-acid signatures that separated avian and swine viruses from human influenza viruses. The presence of these host-specific signatures in human influenza A/H1N1 viruses suggested that these mutations were the result of adaptive genetic evolution that enabled these influenza viruses to circumvent host barriers, which resulted in cross-species transmission. We investigated the biological impact of this natural avian-to-mammalian signature substitution at PB1–216 in human influenza A/H1N1 viruses. Results We found that PB1–216G viruses had greater mutation potential, and were more sensitive to ribavirin than PB1–216S viruses. In oseltamivir-treated HEK293 cells, PB1–216G viruses generated mutations in viral neuraminidase at a higher rate than PB1–216S viruses. By contrast, PB1–216S viruses were more virulent in mice than PB1–216G viruses. These results suggest that the PB1-S216G substitution enhances viral epidemiological fitness by increasing the frequency of adaptive mutations in human influenza A/H1N1 viruses. Conclusions Our results thus suggest that the increased adaptability and epidemiological fitness of naturally arising human PB1–216G viruses, which have a canonical low-fidelity replicase, were the biological mechanisms underlying the replacement of PB1–216S viruses with a high-fidelity replicase following the emergence of pdmH1N1. We think that continued surveillance of such naturally occurring PB1–216 variants among others is warranted to assess the potential impact of changes in RdRp fidelity on the adaptability and epidemiological fitness of human A/H1N1 influenza viruses. Electronic supplementary material The online version of this article (10.1186/s12929-019-0547-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruey-Wen Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161 Section 6, Minquan E. Road, Taipei, 114, Taiwan
| | - Guang-Wu Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, No. 5 Fu Hsing Street, Kwei-Shan, Taoyuan, 333, Taiwan.,Department of Computer Science and Information Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, No. 259, Wen Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, Nation Applied Research Laboratory, No.106, Sec. 2, Heping E. Rd., Taipei, 10622, Taiwan
| | - Ren-Jye Lin
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, 10 F, Bldg F, 3 Yuanqu Street, Taipei, 11503, Taiwan
| | - Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chaun E. Road, Taipei, 114, Taiwan
| | - Yu-Ling Tseng
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chaun E. Road, Taipei, 114, Taiwan
| | - Yung-Kun Chang
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chaun E. Road, Taipei, 114, Taiwan
| | - Shu-Pei Lien
- National institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, No. 5 Fu Hsing Street, Kwei-Shan, Taoyuan, 333, Taiwan.,Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Ching-Len Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161 Section 6, Minquan E. Road, Taipei, 114, Taiwan. .,National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, 10 F, Bldg F, 3 Yuanqu Street, Taipei, 11503, Taiwan. .,Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chaun E. Road, Taipei, 114, Taiwan. .,National institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
28
|
Stewart RJ, Rossow J, Eckel S, Bidol S, Ballew G, Signs K, Conover JT, Burns E, Bresee JS, Fry AM, Olsen SJ, Biggerstaff M. Text-Based Illness Monitoring for Detection of Novel Influenza A Virus Infections During an Influenza A (H3N2)v Virus Outbreak in Michigan, 2016: Surveillance and Survey. JMIR Public Health Surveill 2019; 5:e10842. [PMID: 31025948 PMCID: PMC6658270 DOI: 10.2196/10842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 01/23/2023] Open
Abstract
Background Rapid reporting of human infections with novel influenza A viruses accelerates detection of viruses with pandemic potential and implementation of an effective public health response. After detection of human infections with influenza A (H3N2) variant (H3N2v) viruses associated with agricultural fairs during August 2016, the Michigan Department of Health and Human Services worked with the US Centers for Disease Control and Prevention (CDC) to identify infections with variant influenza viruses using a text-based illness monitoring system. Objective To enhance detection of influenza infections using text-based monitoring and evaluate the feasibility and acceptability of the system for use in future outbreaks of novel influenza viruses. Methods During an outbreak of H3N2v virus infections among agricultural fair attendees, we deployed a text-illness monitoring (TIM) system to conduct active illness surveillance among households of youth who exhibited swine at fairs. We selected all fairs with suspected H3N2v virus infections. For fairs without suspected infections, we selected only those fairs that met predefined criteria. Eligible respondents were identified and recruited through email outreach and/or on-site meetings at fairs. During the fairs and for 10 days after selected fairs, enrolled households received daily, automated text-messages inquiring about illness; reports of illness were investigated by local health departments. To understand the feasibility and acceptability of the system, we monitored enrollment and trends in participation and distributed a Web-based survey to households of exhibitors from five fairs. Results Among an estimated 500 households with a member who exhibited swine at one of nine selected fairs, representatives of 87 (17.4%) households were enrolled, representing 392 household members. Among fairs that were ongoing when the TIM system was deployed, the number of respondents peaked at 54 on the third day of the fair and then steadily declined throughout the rest of the monitoring period; 19 out of 87 household representatives (22%) responded through the end of the 10-day monitoring period. We detected 2 H3N2v virus infections using the TIM system, which represents 17% (2/12) of all H3N2v virus infections detected during this outbreak in Michigan. Of the 70 survey respondents, 16 (23%) had participated in the TIM system. A total of 73% (11/15) participated because it was recommended by fair coordinators and 80% (12/15) said they would participate again. Conclusions Using a text-message system, we monitored for illness among a large number of individuals and households and detected H3N2v virus infections through active surveillance. Text-based illness monitoring systems are useful for detecting novel influenza virus infections when active monitoring is necessary. Participant retention and testing of persons reporting illness are critical elements for system improvement.
Collapse
Affiliation(s)
- Rebekah J Stewart
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John Rossow
- Epidemiology Elective Program, Division of Scientific Education and Professional Development, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, United States.,College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Seth Eckel
- Michigan Department of Health and Human Services, Lansing, MI, United States
| | - Sally Bidol
- Michigan Department of Health and Human Services, Lansing, MI, United States
| | - Grant Ballew
- Compliant Campaign, Scottsdale, AZ, United States
| | - Kimberly Signs
- Michigan Department of Health and Human Services, Lansing, MI, United States
| | | | - Erin Burns
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joseph S Bresee
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sonja J Olsen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Matthew Biggerstaff
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
29
|
Mamerow S, Scheffter R, Röhrs S, Stech O, Blohm U, Schwaiger T, Schröder C, Ulrich R, Schinköthe J, Beer M, Mettenleiter TC, Stech J. Double-attenuated influenza virus elicits broad protection against challenge viruses with different serotypes in swine. Vet Microbiol 2019; 231:160-168. [PMID: 30955804 DOI: 10.1016/j.vetmic.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Influenza A viruses (IAV) have caused seasonal epidemics and severe pandemics in humans. Novel pandemic strains as in 2009 may emerge from pigs, serving as perpetual virus reservoir. However, reliably effective vaccination has remained a key issue for humans and swine. Here, we generated a novel double-attenuated influenza live vaccine by reverse genetics and subjected immunized mice and pigs to infection with the homologous wild-type, another homosubtypic H1N1, or a heterosubtypic H3N2 virus to address realistic challenge constellations. This attenuated mutant contains an artificial, strictly elastase-dependent hemagglutinin cleavage site and a C-terminally truncated NS1 protein from the IAV A/Bayern/74/2009 (H1N1pdm09). Prior to challenge, we immunized mice once and pigs twice intranasally. In vitro, the double-attenuated mutant replicated strictly elastase-dependently. Immunized mice and pigs developed neither clinical symptoms nor detectable virus replication after homologous challenge. In pigs, we observed considerably reduced clinical signs and no nasal virus shedding after homosubtypic and reduced viral loads in respiratory tracts after heterosubtypic infection. Protection against homosubtypic challenge suggests that an optimized backbone strain may require less frequent updates with recent HA and NA genes and still induce robust protection in relevant IAV hosts against drifted viruses.
Collapse
Affiliation(s)
- Svenja Mamerow
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Robert Scheffter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Susanne Röhrs
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Olga Stech
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Theresa Schwaiger
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Jan Schinköthe
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Jürgen Stech
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| |
Collapse
|
30
|
Prost K, Kloeze H, Mukhi S, Bozek K, Poljak Z, Mubareka S. Bioaerosol and surface sampling for the surveillance of influenza A virus in swine. Transbound Emerg Dis 2019; 66:1210-1217. [PMID: 30715792 DOI: 10.1111/tbed.13139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/19/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
Influenza A virus in swine is of significant importance to human and veterinary public health. Environmental sampling techniques that prove practical would enhance surveillance for influenza viruses in swine. The primary objective of this study was to demonstrate the feasibility of bioaerosol and surface sampling for the detection of influenza virus in swine barns with a secondary objective of piloting a mobile application for data collection. Sampling was conducted at a large swine operation between July 2016 and August 2017. Swine oral fluids and surface swabs were collected from multiple rooms. Room-level air samples were collected using four bioaerosol samplers: a low volume polytetrafluoroethylene (PTFE) filter sampler, the National Institute for Occupational Safety and Health's low volume cyclone sampler, a 2-stage Andersen impactor and/or one high volume cyclonic sampler. Samples were analysed using quantitative RT-PCR. Data and results were reported using a mobile data application. Eighty-nine composite oral fluid samples, 70 surface swabs and 122 bioaerosol samples were analysed. Detection rates for influenza virus RNA in swine barn samples were 71.1% for oral fluids, 70.8% for surface swabs and 71.1% for the PTFE sampler. Analysis revealed a statistically significant relationship between the results of the PTFE sampler and the surface swabs with oral fluid results (p < 0.001 and p < 0.01 respectively). In addition, both the PTFE sampler (p < 0.01) and surface swabs (p = 0.03) significantly correlated with, and predicted oral fluid results. Bioaerosol sampling using PTFE samplers is an effective hands-off approach for detecting influenza virus activity among swine. Further study is required for the implementation of this approach for surveillance and risk assessment of circulating influenza viruses of swine origin. In addition, mobile data collection stands to be an invaluable tool in the field by allowing secure, real-time reporting of sample collection and results.
Collapse
Affiliation(s)
- Karren Prost
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Harold Kloeze
- Canadian Network for Public Health Intelligence, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Shamir Mukhi
- Canadian Network for Public Health Intelligence, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Katie Bozek
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Rajao DS, Vincent AL, Perez DR. Adaptation of Human Influenza Viruses to Swine. Front Vet Sci 2019; 5:347. [PMID: 30723723 PMCID: PMC6349779 DOI: 10.3389/fvets.2018.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
A large diversity of influenza A viruses (IAV) within the H1N1/N2 and H3N2 subtypes circulates in pigs globally, with different lineages predominating in specific regions of the globe. A common characteristic of the ecology of IAV in swine in different regions is the periodic spillover of human seasonal viruses. Such human viruses resulted in sustained transmission in swine in several countries, leading to the establishment of novel IAV lineages in the swine host and contributing to the genetic and antigenic diversity of influenza observed in pigs. In this review we discuss the frequent occurrence of reverse-zoonosis of IAV from humans to pigs that have contributed to the global viral diversity in swine in a continuous manner, describe host-range factors that may be related to the adaptation of these human-origin viruses to pigs, and how these events could affect the swine industry.
Collapse
Affiliation(s)
- Daniela S Rajao
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Amy L Vincent
- Virus and Prion Research Unit, USDA-ARS, National Animal Disease Center, Ames, IA, United States
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA, United States
| |
Collapse
|
32
|
Skarlupka AL, Owino SO, Suzuki-Williams LP, Crevar CJ, Carter DM, Ross TM. Computationally optimized broadly reactive vaccine based upon swine H1N1 influenza hemagglutinin sequences protects against both swine and human isolated viruses. Hum Vaccin Immunother 2019; 15:2013-2029. [PMID: 31448974 PMCID: PMC6773400 DOI: 10.1080/21645515.2019.1653743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
Swine H1 influenza viruses were stable within pigs for nearly 70 years until in 1998 when a classical swine virus reassorted with avian and human influenza viruses to generate the novel triple reassortant H1N1 strain that eventually led to the 2009 influenza pandemic. Previously, our group demonstrated broad protection against a panel of human H1N1 viruses using HA antigens derived by the COBRA methodology. In this report, the effectiveness of COBRA HA antigens (SW1, SW2, SW3 and SW4), which were designed using only HA sequences from swine H1N1 and H1N2 isolates, were tested in BALB/c mice. The effectiveness of these vaccines were compared to HA sequences designed using both human and swine H1 HA sequences or human only sequences. SW2 and SW4 elicited antibodies that detected the pandemic-like virus, A/California/07/2009 (CA/09), had antibodies with HAI activity against almost all the classical swine influenza viruses isolated from 1973-2015 and all of the Eurasian viruses in our panel. However, sera collected from mice vaccinated with SW2 or SW4 had HAI activity against ~25% of the human seasonal-like influenza viruses isolated from 2009-2015. In contrast, the P1 COBRA HA vaccine (derived from both swine and human HA sequences) elicited antibodies that had HAI activity against both swine and human H1 viruses and protected against CA/09 challenge, but not a human seasonal-like swine H1N2 virus challenge. However, the SW1 vaccine protected against this challenge as well as the homologous vaccine. These results support the idea that a pan-swine-human H1 influenza virus vaccine is possible.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Computers, Molecular
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Swine
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
| | - Simon O. Owino
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Corey J. Crevar
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | - Donald M. Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Belser JA, Maines TR, Tumpey TM. Importance of 1918 virus reconstruction to current assessments of pandemic risk. Virology 2018; 524:45-55. [PMID: 30142572 PMCID: PMC9036538 DOI: 10.1016/j.virol.2018.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023]
Abstract
Reconstruction of the 1918 influenza virus has facilitated considerable advancements in our understanding of this extraordinary pandemic virus. However, the benefits of virus reconstruction are not limited to this one strain. Here, we provide an overview of laboratory studies which have evaluated the reconstructed 1918 virus, and highlight key discoveries about determinants of virulence and transmissibility associated with this virus in mammals. We further discuss recent and current pandemic threats from avian and swine reservoirs, and provide specific examples of how reconstruction of the 1918 pandemic virus has improved our ability to contextualize research employing novel and emerging strains. As influenza viruses continue to evolve and pose a threat to human health, studying past pandemic viruses is key to future preparedness efforts.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
34
|
Comparative In Vitro and In Vivo Analysis of H1N1 and H1N2 Variant Influenza Viruses Isolated from Humans between 2011 and 2016. J Virol 2018; 92:JVI.01444-18. [PMID: 30158292 DOI: 10.1128/jvi.01444-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus pandemics are rare events caused by novel viruses which have the ability to spread in susceptible human populations. With respect to H1 subtype viruses, swine H1N1 and H1N2 viruses occasionally cross the species barrier to cause human infection. Recently isolated from humans (termed variants), swine viruses were shown to display great genetic and antigenic diversity, hence posing considerable public health risk. Here, we utilized in vitro and in vivo approaches to provide characterization of H1 subtype variant viruses isolated since the 2009 pandemic and discuss the findings in context with previously studied H1 subtype human isolates. The variant viruses were well adapted to replicate in the human respiratory cell line Calu-3 and the respiratory tracts of mice and ferrets. However, with respect to hemagglutinin (HA) activation pH, the variant viruses had fusion pH thresholds closer to that of most classical swine and triple-reassortant H1 isolates rather than viruses that had adapted to humans. Consistent with previous observations for swine isolates, the tested variant viruses were capable of efficient transmission between cohoused ferrets but could transmit via respiratory droplets to differing degrees. Overall, this investigation demonstrates that swine H1 viruses that infected humans possess adaptations required for robust replication and, in some cases, efficient respiratory droplet transmission in a mammalian model and therefore need to be closely monitored for additional molecular changes that could facilitate transmission among humans. This work highlights the need for risk assessments of emerging H1 viruses as they continue to evolve and cause human infections.IMPORTANCE Influenza A virus is a continuously evolving respiratory pathogen. Endemic in swine, H1 and H3 subtype viruses sporadically cause human infections. As each zoonotic infection represents an opportunity for human adaptation, the emergence of a transmissible influenza virus to which there is little or no preexisting immunity is an ongoing threat to public health. Recently isolated variant H1 subtype viruses were shown to display extensive genetic diversity and in many instances were antigenically distinct from seasonal vaccine strains. In this study, we provide characterization of representative H1N1v and H1N2v viruses isolated since the 2009 pandemic. Our results show that although recent variant H1 viruses possess some adaptation markers of concern, these viruses have not fully adapted to humans and require further adaptation to present a pandemic threat. This investigation highlights the need for close monitoring of emerging variant influenza viruses for molecular changes that could facilitate efficient transmission among humans.
Collapse
|
35
|
Etbaigha F, R Willms A, Poljak Z. An SEIR model of influenza A virus infection and reinfection within a farrow-to-finish swine farm. PLoS One 2018; 13:e0202493. [PMID: 30248106 PMCID: PMC6152865 DOI: 10.1371/journal.pone.0202493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 08/03/2018] [Indexed: 11/23/2022] Open
Abstract
Influenza A virus (IAV) in swine is a pathogen that causes a threat to the health as well as to the production of swine. Moreover, swine can spread this virus to other species including humans. The virus persists in different types of swine farms as evident in a number of studies. The core objectives of this study are (i) to analyze the dynamics of influenza infection of a farrow-to-finish swine farm, (ii) to explore the reinfection at the farm level, and finally (iii) to examine the effectiveness of two control strategies: vaccination and reduction of indirect contact. The analyses are conducted using a deterministic Susceptible-Exposed-Infectious-Recovered (SEIR) model. Simulation results show that the disease is maintained in gilts and piglets because of new susceptible pigs entering the population on a weekly basis. A sensitivity analysis shows that the results are not sensitive to variation in the parameters. The results of the reinfection simulation indicate that the virus persists in the entire farm. The control strategies studied in this work are not successful in eliminating the virus within the farm.
Collapse
Affiliation(s)
- Fatima Etbaigha
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Allan R Willms
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Zvonimir Poljak
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| |
Collapse
|
36
|
|
37
|
Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. Int J Mol Sci 2017; 18:ijms18122706. [PMID: 29236050 PMCID: PMC5751307 DOI: 10.3390/ijms18122706] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals.
Collapse
|
38
|
Nolting JM, Midla J, Whittington MS, Scheer SD, Bowman AS. Educating youth swine exhibitors on influenza A virus transmission at agricultural fairs. Zoonoses Public Health 2017; 65:e143-e147. [PMID: 29150910 DOI: 10.1111/zph.12422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 11/28/2022]
Abstract
Influenza A virus (IAV) is a major zoonotic pathogen that threatens global public health. Novel strains of influenza A viruses pose a significant risk to public health due to their pandemic potential, and transmission of influenza A viruses from animals to humans is an important mechanism in the generation and introduction of IAVs that threaten human health. The purpose of this descriptive correlational study was to develop real-life training scenarios to better inform swine exhibitors of the risks they may encounter when influenza A viruses are present in swine. Educational activities were implemented in five Ohio counties where exhibition swine had historically been shedding influenza A viruses during the county fair. A total of 146 youth swine exhibitors participated in the educational programme, and an increase in the knowledge base of these youth was documented. It is expected that educating youth exhibitors about exposure to influenza A virus infections in the swine they are exhibiting will result in altered behaviours and animal husbandry practices that will improve both human and animal health.
Collapse
Affiliation(s)
- J M Nolting
- The Ohio State University, Columbus, OH, USA
| | - J Midla
- The Ohio State University, Columbus, OH, USA
| | | | - S D Scheer
- The Ohio State University, Columbus, OH, USA
| | - A S Bowman
- The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Nelson MI, Culhane MR, Trovão NS, Patnayak DP, Halpin RA, Lin X, Shilts MH, Das SR, Detmer SE. The emergence and evolution of influenza A (H1α) viruses in swine in Canada and the United States. J Gen Virol 2017; 98:2663-2675. [PMID: 29058649 DOI: 10.1099/jgv.0.000924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Swine are a key reservoir host for influenza A viruses (IAVs), with the potential to cause global pandemics in humans. Gaps in surveillance in many of the world's largest swine populations impede our understanding of how novel viruses emerge and expand their spatial range in pigs. Although US swine are intensively sampled, little is known about IAV diversity in Canada's population of ~12 million pigs. By sequencing 168 viruses from multiple regions of Canada, our study reveals that IAV diversity has been underestimated in Canadian pigs for many years. Critically, a new H1 clade has emerged in Canada (H1α-3), with a two-amino acid deletion at H1 positions 146-147, that experienced rapid growth in Manitoba's swine herds during 2014-2015. H1α-3 viruses also exhibit a higher capacity to invade US swine herds, resulting in multiple recent introductions of the virus into the US Heartland following large-scale movements of pigs in this direction. From the Heartland, H1α-3 viruses have disseminated onward to both the east and west coasts of the United States, and may become established in Appalachia. These findings demonstrate how long-distance trading of live pigs facilitates the spread of IAVs, increasing viral genetic diversity and complicating pathogen control. The proliferation of novel H1α-3 viruses also highlights the need for expanded surveillance in a Canadian swine population that has long been overlooked, and may have implications for vaccine design.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Nídia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.,Icahn School of Medicine at Mount Sinai University, New York, USA
| | | | | | - Xudong Lin
- J. Craig Venter Institute, Rockville, MD, USA
| | - Meghan H Shilts
- J. Craig Venter Institute, Rockville, MD, USA.,Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Suman R Das
- J. Craig Venter Institute, Rockville, MD, USA.,Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
40
|
Adams DA, Thomas KR, Jajosky RA, Foster L, Baroi G, Sharp P, Onweh DH, Schley AW, Anderson WJ. Summary of Notifiable Infectious Diseases and Conditions - United States, 2015. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2017; 64:1-143. [PMID: 28796757 DOI: 10.15585/mmwr.mm6453a1] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Summary of Notifiable Infectious Diseases and Conditions - United States, 2015 (hereafter referred to as the summary) contains the official statistics, in tabular and graphical form, for the reported occurrence of nationally notifiable infectious diseases and conditions in the United States for 2015. Unless otherwise noted, data are final totals for 2015 reported as of June 30, 2016. These statistics are collected and compiled from reports sent by U.S. state and territories, New York City, and District of Columbia health departments to the National Notifiable Diseases Surveillance System (NNDSS), which is operated by CDC in collaboration with the Council of State and Territorial Epidemiologists (CSTE). This summary is available at https://www.cdc.gov/MMWR/MMWR_nd/index.html. This site also includes summary publications from previous years.
Collapse
Affiliation(s)
- Deborah A Adams
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Kimberly R Thomas
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Ruth Ann Jajosky
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Loretta Foster
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Gitangali Baroi
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Pearl Sharp
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Diana H Onweh
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Alan W Schley
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Willie J Anderson
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | | |
Collapse
|
41
|
Saavedra-Montañez M, Castillo-Juárez H, Sánchez-Betancourt I, Rivera-Benitez JF, Ramírez-Mendoza H. Serological study of influenza viruses in veterinarians working with swine in Mexico. Arch Virol 2017; 162:1633-1640. [PMID: 28233143 DOI: 10.1007/s00705-017-3282-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
Humans and swine are both affected by influenza viruses, and swine are considered a potential source of new influenza viruses. Transmission of influenza viruses across species is well documented. The aim of this study was to evaluate the seroprevalence of different influenza virus subtypes in veterinarians working for the Mexican swine industry, using a hemagglutination inhibition test. All sera tested were collected in July 2011. The data were analysed using a generalized linear model and a linear model to study the possible association of seroprevalence with the age of the veterinarian, vaccination status, and biosecurity level of the farm where they work. The observed seroprevalence was 12.3%, 76.5%, 46.9%, and 11.1% for the human subtypes of pandemic influenza virus (pH1N1), seasonal human influenza virus (hH1N1), the swine subtypes of classical swine influenza virus (swH1N1), and triple-reassortant swine influenza virus (swH3N2), respectively. Statistical analysis indicated that age was associated with hH1N1 seroprevalence (P < 0.05). Similarly, age and vaccination were associated with pH1N1 seroprevalence (P < 0.05). On the other hand, none of the studied factors were associated with swH1N1 and swH3N2 seroprevalence. All of the pH1N1-positive sera were from vaccinated veterinarians, whereas all of those not vaccinated tested negative for this subtype. Our findings suggest that, between the onset of the 2009 pandemic and July 2011, the Mexican veterinarians working in the swine industry did not have immunity to the pH1N1 virus; hence, they would have been at risk for infection with this virus if this subtype had been circulating in swine in Mexico prior to 2011.
Collapse
Affiliation(s)
- Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, FMVZ-UNAM, Av. Universidad No. 3000. Copilco, Del. Coyoacán, CP 04510, Mexico City, Mexico
| | - Héctor Castillo-Juárez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, CP 04960, Mexico City, Mexico
| | | | | | - Humberto Ramírez-Mendoza
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, FMVZ-UNAM, Av. Universidad No. 3000. Copilco, Del. Coyoacán, CP 04510, Mexico City, Mexico.
| |
Collapse
|
42
|
Raghunath S, Pudupakam RS, Deventhiran J, Tevatia R, Leroith T. Pathogenicity and transmission of triple reassortant H3N2 swine influenza A viruses is attenuated following Turkey embryo propagation. Vet Microbiol 2017; 201:208-215. [PMID: 28284612 DOI: 10.1016/j.vetmic.2017.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Genetic lineages of swine influenza A viruses (SIVs) have recently been established in Turkeys in the United States. To identify molecular determinants that are involved in virulence and transmission of SIVs to Turkeys, we sequentially passaged two triple reassortant H3N2 SIV isolates from Minnesota in ten day old specific-pathogen free (SPF) Turkey embryos and tested them in seven-day old Turkey poults. We found that SIV replication in Turkey embryos led to minimal mutations in and around the receptor binding and antigenic sites of the HA molecule, while other gene segments were unchanged. The predominant changes associated with Turkey embryo passage were A223V, V226A and T248I mutations in the receptor-binding and glycosylation sites of the HA molecule. Furthermore, Turkey embryo propagation altered receptor specificity in SIV strain 07-1145. Embryo passaged 07-1145 virus showed a decrease in α2, 6 sialic acid receptor binding compared to the wild type virus. Intranasal infection of wild type SIVs in one-week-old Turkey poults resulted in persistent diarrhea and all the infected birds seroconverted at ten days post infection. The 07-1145 wild type virus also transmitted to age matched in-contact birds introduced one-day post infection. Turkeys infected with embryo passaged viruses displayed no clinical signs and were not transmitted to in-contact poults. Our results suggest that Turkey embryo propagation attenuates recent TR SIVs for infectivity and transmission in one week old Turkeys. Our findings will have important implications in identifying molecular determinants that control the transmission and virulence of TR SIVs in Turkeys and other species.
Collapse
Affiliation(s)
- Shobana Raghunath
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States; Vajra Instruments Inc., Lincoln, NE, United States.
| | - Raghavendra Sumanth Pudupakam
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jagadeeswaran Deventhiran
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Rahul Tevatia
- Dept of Chemical and Bioengineering, University of Nebraska, Lincoln, NE, United States
| | - Tanya Leroith
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
43
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
44
|
Two years of surveillance of influenza a virus infection in a swine herd. Results of virological, serological and pathological studies. Comp Immunol Microbiol Infect Dis 2016; 50:110-115. [PMID: 28131371 DOI: 10.1016/j.cimid.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/16/2022]
Abstract
Swine farms provide a dynamic environment for the evolution of influenza A viruses (IAVs). The present report shows the results of a surveillance effort of IAV infection in one commercial swine farm in Argentina. Two cross-sectional serological and virological studies (n=480) were carried out in 2011 and 2012. Virus shedding was detected in nasal samples from pigs from ages 7, 21 and 42-days old. More than 90% of sows and gilts but less than 40% of 21-days old piglets had antibodies against IAV. In addition, IAV was detected in 8/17 nasal swabs and 10/15 lung samples taken from necropsied pigs. A subset of these samples was further processed for virus isolation resulting in 6 viruses of the H1N2 subtype (δ2 cluster). Pathological studies revealed an association between suppurative bronchopneumonia and necrotizing bronchiolitis with IAV positive samples. Statistical analyses showed that the degree of lesions in bronchi, bronchiole, and alveoli was higher in lungs positive to IAV. The results of this study depict the relevance of continuing long-term active surveillance of IAV in swine populations to establish IAV evolution relevant to swine and humans.
Collapse
|
45
|
Anderson TK, Macken CA, Lewis NS, Scheuermann RH, Van Reeth K, Brown IH, Swenson SL, Simon G, Saito T, Berhane Y, Ciacci-Zanella J, Pereda A, Davis CT, Donis RO, Webby RJ, Vincent AL. A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. mSphere 2016; 1:e00275-16. [PMID: 27981236 PMCID: PMC5156671 DOI: 10.1128/msphere.00275-16] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
The H1 subtype of influenza A viruses (IAVs) has been circulating in swine since the 1918 human influenza pandemic. Over time, and aided by further introductions from nonswine hosts, swine H1 viruses have diversified into three genetic lineages. Due to limited global data, these H1 lineages were named based on colloquial context, leading to a proliferation of inconsistent regional naming conventions. In this study, we propose rigorous phylogenetic criteria to establish a globally consistent nomenclature of swine H1 virus hemagglutinin (HA) evolution. These criteria applied to a data set of 7,070 H1 HA sequences led to 28 distinct clades as the basis for the nomenclature. We developed and implemented a web-accessible annotation tool that can assign these biologically informative categories to new sequence data. The annotation tool assigned the combined data set of 7,070 H1 sequences to the correct clade more than 99% of the time. Our analyses indicated that 87% of the swine H1 viruses from 2010 to the present had HAs that belonged to 7 contemporary cocirculating clades. Our nomenclature and web-accessible classification tool provide an accurate method for researchers, diagnosticians, and health officials to assign clade designations to HA sequences. The tool can be updated readily to track evolving nomenclature as new clades emerge, ensuring continued relevance. A common global nomenclature facilitates comparisons of IAVs infecting humans and pigs, within and between regions, and can provide insight into the diversity of swine H1 influenza virus and its impact on vaccine strain selection, diagnostic reagents, and test performance, thereby simplifying communication of such data. IMPORTANCE A fundamental goal in the biological sciences is the definition of groups of organisms based on evolutionary history and the naming of those groups. For influenza A viruses (IAVs) in swine, understanding the hemagglutinin (HA) genetic lineage of a circulating strain aids in vaccine antigen selection and allows for inferences about vaccine efficacy. Previous reporting of H1 virus HA in swine relied on colloquial names, frequently with incriminating and stigmatizing geographic toponyms, making comparisons between studies challenging. To overcome this, we developed an adaptable nomenclature using measurable criteria for historical and contemporary evolutionary patterns of H1 global swine IAVs. We also developed a web-accessible tool that classifies viruses according to this nomenclature. This classification system will aid agricultural production and pandemic preparedness through the identification of important changes in swine IAVs and provides terminology enabling discussion of swine IAVs in a common context among animal and human health initiatives.
Collapse
Affiliation(s)
- Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | | | - Nicola S. Lewis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Richard H. Scheuermann
- J. Craig Venter Institute, La Jolla, California, USA
- Department of Pathology, University of California, San Diego, California, USA
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ian H. Brown
- Animal and Plant Health Agency, Weybridge, United Kingdom
| | | | - Gaëlle Simon
- ANSES, Ploufragan-Plouzané Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | - Janice Ciacci-Zanella
- Embrapa Swine and Poultry, Animal Health and Genetic Laboratory, Concórdia, SC, Brazil
| | - Ariel Pereda
- Instituto de Patobiología, CICVyA INTA, Hurlingham, Buenos Aires, Argentina
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ruben O. Donis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| |
Collapse
|
46
|
Almeida HMDS, Storino GY, Pereira DA, Gatto IRH, Mathias LA, Montassier HJ, de Oliveira LG. A cross-sectional study of swine influenza in intensive and extensive farms in the northeastern region of the state of São Paulo, Brazil. Trop Anim Health Prod 2016; 49:25-30. [PMID: 27637594 DOI: 10.1007/s11250-016-1153-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Swine influenza (SI) is a seasonal infectious disease highly important to the world pig industry. Loss of daily weight gain, increased costs for the prevention and treatment of secondary infections are the main economic losses associated with the presence of this disease. However, some epidemiological features of SI remain quite unclear. This study focused on assessing the prevalence of swine influenza virus (SIV) infection in intensive and extensive pig herds and associating risk factors. A set of 601 blood samples of five intensive farrow-to-finish farms and 361 blood samples from 56 extensive farms were analyzed using an indirect ELISA kit CIVTEST SUIS INFLUENZA®, Hipra (Amer, Spain), in order to detect anti-SIV antibodies. In total, 24.13 % of samples from intensive herds were positive, while no positive samples were detected in extensive rearing herds. Sow and weaning piglets had the highest prevalence values. In the intensive rearing system, occurrence of reproductive disorders and exposure to recently introduced animals were positively associated with the disease occurrence in swine herds. The findings highlight the importance of sows in the epidemiology of the disease and bring information about risk factors involved in the occurrence of swine influenza in intensive herds.
Collapse
Affiliation(s)
- Henrique Meiroz de Souza Almeida
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Gabriel Yuri Storino
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Daniele Araújo Pereira
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Igor Renan Honorato Gatto
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Luis Antonio Mathias
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Hélio José Montassier
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Luís Guilherme de Oliveira
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
47
|
Poulson RL, Tompkins SM, Berghaus RD, Brown JD, Stallknecht DE. Environmental Stability of Swine and Human Pandemic Influenza Viruses in Water under Variable Conditions of Temperature, Salinity, and pH. Appl Environ Microbiol 2016; 82:3721-3726. [PMID: 27084011 PMCID: PMC4907172 DOI: 10.1128/aem.00133-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The movement of influenza A viruses (IAVs) from wild bird reservoirs to domestic animals and humans is well established, but the transmission mechanisms that facilitate efficient movement across and within these host populations are not fully defined. Although predominant routes of transmission vary between host populations, the extent of environmental stability needed for efficient IAV transmission also may vary. Because of this, we hypothesized that virus stability would differ in response to varied host-related transmission mechanisms; if correct, such phenotypic variation might represent a potential marker for the emergence of novel animal or human influenza viruses. Here, the objective was to evaluate the ability of eight swine and six human IAV isolates to remain infective under various pH, temperature, and salinity conditions using a preestablished distilled water system. Swine and human viruses persisted longest at near-neutral pH, at cold temperatures, or under "freshwater" conditions. Additionally, no significant differences in persistence were observed between pandemic and nonpandemic IAVs. Our results indicate that there have been no apparent changes in the environmental stability of the viruses related to host adaptation. IMPORTANCE This study assessed the environmental stability of eight swine and six human influenza A viruses (IAVs), including viruses associated with the 2009 H1N1 pandemic, in a distilled water system. The important findings of this work are that IAV persistence can be affected by environmental variables and that no marked changes were noted between human and swine IAVs or between pandemic and nonpandemic IAVs.
Collapse
Affiliation(s)
- R L Poulson
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - S M Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - R D Berghaus
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - J D Brown
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - D E Stallknecht
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
48
|
Fragaszy E, Ishola DA, Brown IH, Enstone J, Nguyen‐Van‐Tam JS, Simons R, Tucker AW, Wieland B, Williamson SM, Hayward AC, Wood JLN. Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort. Influenza Other Respir Viruses 2016; 10:291-300. [PMID: 26611769 PMCID: PMC4910179 DOI: 10.1111/irv.12364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pigs are mixing vessels for influenza viral reassortment, but the extent of influenza transmission between swine and humans is not well understood. OBJECTIVES To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses. METHODS UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titres ≥ 40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity. RESULTS Forty-two percent of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CIs), adjusted odds ratio after accounting for possible cross-reactivity with other swine A(H1) viruses (aOR) 25·3, 95% CI (1·4-536·3), P = 0·028. CONCLUSION The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunisation of pig industry workers may reduce transmission and the potential for virus reassortment.
Collapse
Affiliation(s)
- Ellen Fragaszy
- Department of Infectious Disease InformaticsFarr Institute of Health Informatics ResearchUniversity College LondonLondonUK
- Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - David A. Ishola
- Department of Infectious Disease InformaticsFarr Institute of Health Informatics ResearchUniversity College LondonLondonUK
- Immunisation DepartmentPublic Health EnglandLondonUK
| | - Ian H. Brown
- Animal and Plant Health Agency (formerly Animal Health and Veterinary Laboratories Agency)WeybridgeUK
| | - Joanne Enstone
- Health Protection and Influenza Research GroupDivision of Epidemiology and Public HealthUniversity of NottinghamNottinghamUK
| | - Jonathan S. Nguyen‐Van‐Tam
- Health Protection and Influenza Research GroupDivision of Epidemiology and Public HealthUniversity of NottinghamNottinghamUK
| | - Robin Simons
- Animal and Plant Health Agency (formerly Animal Health and Veterinary Laboratories Agency)WeybridgeUK
| | - Alexander W. Tucker
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Barbara Wieland
- Royal Veterinary CollegeNorth MymmsUK
- ILRI: International Livestock Research InstituteAddis AbabaEthiopia
| | - Susanna M. Williamson
- Animal and Plant Health Agency (formerly Animal Health and Veterinary Laboratories Agency)WeybridgeUK
| | - Andrew C. Hayward
- Department of Infectious Disease InformaticsFarr Institute of Health Informatics ResearchUniversity College LondonLondonUK
| | | | - James L. N. Wood
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
49
|
Jung K, Chae C. Expression of Mx Protein and Interferon-α in Pigs Experimentally Infected with Swine Influenza Virus. Vet Pathol 2016; 43:161-7. [PMID: 16537933 DOI: 10.1354/vp.43-2-161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of Mx protein and interferon-α (IFN-α) was examined by immunohistochemistry in pigs experimentally infected with swine influenza virus. In infected pigs euthanatized at 1 day postinoculation (dpi), the lumen of bronchioles were filled with large numbers of mononuclear cells, small numbers of neutrophils, sloughing epithelial cells, and proteinaceous fluid. Lesions at 3 and 5 dpi were similar but less severe. Alveolar spaces were filled with neutrophils. By 7 and 10 dpi, microscopic lesions were resolved. The immunohistochemical signals for Mx protein and IFN-α antigen were confined to cells in areas that had hybridization signal for swine influenza virus. In situ hybridization and immunohistochemistry of serial sections of lung indicated that areas containing numerous swine influenza virus RNA-positive cells also have numerous Mx and IFN-α antigen-positive cells. Mean immunohistochemical scores for Mx protein-positive cells were correlated with mean immunohistochemical scores for IFN-α antigen-positive cells ( rs = 0.8799, p < 0.05). These results indicated that Mx protein and IFN-α antigen were expressed in the lung from pigs experimentally infected with swine influenza virus, but their biological functions remain to be examined.
Collapse
Affiliation(s)
- K Jung
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu 151-742, Seoul, Republic of Korea
| | | |
Collapse
|
50
|
Richt JA, Lager KM, Clouser DF, Spackman E, Suarez DL, Yoon KJ. Real–Time Reverse Transcription–Polymerase Chain Reaction Assays for the Detection and Differentiation of North American Swine Influenza Viruses. J Vet Diagn Invest 2016; 16:367-73. [PMID: 15460317 DOI: 10.1177/104063870401600501] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Swine influenza is an acute respiratory disease of swine caused by type A influenza viruses. Before 1998, mainly “classical” H1N1 swine influenza viruses (SIVs) were isolated from swine in the United States. Since then, antigenically distinct reassortant H3 and H1 SIVs have been identified as causative agents of respiratory disease in pigs on US farms. Improvement in SIV diagnostics is needed in light of the recently observed rapid evolution of H1 and H3 SIVs and their zoonotic potential. To address this need, real-time reverse transcription–polymerase chain reaction (RT-PCR) assays for the detection of SIVs were developed. A highly sensitive matrix (M) gene–based RT-PCR assay that is able to detect both the H1 and H3 subtypes of SIVs, with a sensitivity per reaction of approximately 2 copies of in vitro–generated M-specific negative-sense RNA molecules and approximately 0.05 TCID50 in lung lavage of experimentally SIV-infected pigs, was established. This RT-PCR assay can be performed within a few hours and showed a sensitivity of 94% and a specificity of 85% when compared with virus isolation. In addition, H1-, H3-, N1-, and N2-specific primer and probe sets were designed for use in the differentiation of different SIV subtypes. The hemagglutinin (H)- and neuraminidase (N)-specific primer and probe sets were less sensitive than the M-specific assay, although they were found to be specific for their respective viral genes and able to distinguish between their respective SIV subtypes.
Collapse
Affiliation(s)
- Jürgen A Richt
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA Agricultural Research Service, Ames, IA 50010, USA
| | | | | | | | | | | |
Collapse
|