1
|
Boulogne I, Petit P, Desfontaines L, Durambur G, Deborde C, Mirande-Ney C, Arnaudin Q, Plasson C, Grivotte J, Chamot C, Bernard S, Loranger-Merciris G. Biological and Chemical Characterization of Musa paradisiaca Leachate. BIOLOGY 2023; 12:1326. [PMID: 37887036 PMCID: PMC10604775 DOI: 10.3390/biology12101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
There is a growing demand for molecules of natural origin for biocontrol and biostimulation, given the current trend away from synthetic chemical products. Leachates extracted from plantain stems were obtained after biodegradation of the plant material. To characterize the leachate, quantitative determinations of nitrogen, carbon, phosphorus, and cations (K+, Ca2+, Mg2+, Na+), Q2/4, Q2/6, and Q4/6 absorbance ratios, and metabolomic analysis were carried out. The potential role of plantain leachates as fungicide, elicitor of plant defense, and/or plant biostimulant was evaluated by agar well diffusion method, phenotypic, molecular, and imaging approaches. The plant extracts induced a slight inhibition of fungal growth of an aggressive strain of Colletotrichum gloeosporioides, which causes anthracnose. Organic compounds such as cinnamic, ellagic, quinic, and fulvic acids and indole alkaloid such as ellipticine, along with some minerals such as potassium, calcium, and phosphorus, may be responsible for the inhibition of fungal growth. In addition, jasmonic, benzoic, and salicylic acids, which are known to play a role in plant defense and as biostimulants in tomato, were detected in leachate extract. Indeed, foliar application of banana leachate induced overexpression of LOXD, PPOD, and Worky70-80 genes, which are involved in phenylpropanoid metabolism, jasmonic acid biosynthesis, and salicylic acid metabolism, respectively. Leachate also activated root growth in tomato seedlings. However, the main impact of the leachate was observed on mature plants, where it caused a reduction in leaf area and fresh weight, the remodeling of stem cell wall glycopolymers, and an increase in the expression of proline dehydrogenase.
Collapse
Affiliation(s)
- Isabelle Boulogne
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Philippe Petit
- Université des Antilles, UMR ISYEB-MNHN-CNRS-Sorbonne Université-EPHE, UFR Sciences Exactes et Naturelles, Campus de Fouillole, F-97157 Pointe-à-Pitre, Guadeloupe, France;
| | | | - Gaëlle Durambur
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Catherine Deborde
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44300 Nantes, France;
- INRAE, UR1268 BIA Biopolymères Interactions Assemblages F-44300 Nantes, France
| | - Cathleen Mirande-Ney
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Quentin Arnaudin
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Carole Plasson
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Julie Grivotte
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Christophe Chamot
- Université de Rouen Normandie, Normandie Univ, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, F-76000 Rouen, France;
| | - Sophie Bernard
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
- Université de Rouen Normandie, Normandie Univ, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, F-76000 Rouen, France;
| | - Gladys Loranger-Merciris
- Université des Antilles, UMR ISYEB-MNHN-CNRS-Sorbonne Université-EPHE, UFR Sciences Exactes et Naturelles, Campus de Fouillole, F-97157 Pointe-à-Pitre, Guadeloupe, France;
| |
Collapse
|
2
|
Han J, Liu Y, Shen Y, Li W. A Surprising Diversity of Xyloglucan Endotransglucosylase/Hydrolase in Wheat: New in Sight to the Roles in Drought Tolerance. Int J Mol Sci 2023; 24:9886. [PMID: 37373033 DOI: 10.3390/ijms24129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Drought has become a major limiting factor for wheat productivity, and its negative impact on crop growth is anticipated to increase with climate deterioration in arid areas. Xyloglucan endoglycosylases/hydrolases (XTHs) are involved in constructing and remodeling cell wall structures and play an essential role in regulating cell wall extensibility and stress responses. However, there are no systematic studies on the wheat XTH gene family. In this study, 71 wheat XTH genes (TaXTHs) were characterized and classified into three subgroups through phylogenetic analysis. Genomic replication promoted the expansion of TaXTHs. We found a catalytically active motif and a potential N-linked glycosylation domain in all TaXTHs. Further expression analysis revealed that many TaXTHs in the roots and shoots were significantly associated with drought stress. The wheat TaXTH12.5a gene was transferred into Arabidopsis to verify a possible role of TaXTHs in stress response. The transgenic plants possessed higher seed germination rates and longer roots and exhibited improved tolerance to drought. In conclusion, bioinformatics and gene expression pattern analysis indicated that the TaXTH genes played a role in regulating drought response in wheat. The expression of TaXTH12.5a enhanced drought tolerance in Arabidopsis and supported the XTH genes' role in regulating drought stress response in plants.
Collapse
Affiliation(s)
- Junjie Han
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yichen Liu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yiting Shen
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Weihua Li
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| |
Collapse
|
3
|
De Caroli M, Rampino P, Curci LM, Pecatelli G, Carrozzo S, Piro G. CiXTH29 and CiLEA4 Role in Water Stress Tolerance in Cichorium intybus Varieties. BIOLOGY 2023; 12:444. [PMID: 36979136 PMCID: PMC10045840 DOI: 10.3390/biology12030444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Drought causes massive crop quality and yield losses. Limiting the adverse effects of water deficits on crop yield is an urgent goal for a more sustainable agriculture. With this aim, six chicory varieties were subjected to drought conditions during seed germination and at the six week-old plant growth stage, in order to identify some morphological and/or molecular markers of drought resistance. Selvatica, Zuccherina di Trieste and Galatina varieties, with a high vegetative development, showed a major germination index, greater seedling development (6 days of growth) and a greater dehydration resistance (6 weeks of growth plus 10 days without water) than the other ones (Brindisina, Esportazione and Rossa Italiana). Due to the reported involvement, in the abiotic stress response, of xyloglucan endotransglucosylase/hydrolases (XTHs) and late embryogenesis abundant (LEA) multigene families, XTH29 and LEA4 expression profiles were investigated under stress conditions for all analyzed chicory varieties. We showed evidence that chicory varieties with high CiXTH29 and CiLEA4 basal expression and vegetative development levels better tolerate drought stress conditions than varieties that show overexpression of the two genes only in response to drought. Other specific morphological traits characterized almost all chicory varieties during dehydration, i.e., the appearance of lysigen cavities and a general increase of the amount of xyloglucans in the cell walls of bundle xylem vessels. Our results highlighted that high CiXTH29 and CiLEA4 basal expression, associated with a high level of vegetative growth, is a potential marker for drought stress tolerance.
Collapse
Affiliation(s)
- Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Patrizia Rampino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Lorenzo M. Curci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Gabriele Pecatelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Sara Carrozzo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- NBCF National Biodiversity Future Center, 90133 Palermo, Italy
| | - Gabriella Piro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- NBCF National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
4
|
Saleem A, Roldán-Ruiz I, Aper J, Muylle H. Genetic control of tolerance to drought stress in soybean. BMC PLANT BIOLOGY 2022; 22:615. [PMID: 36575367 PMCID: PMC9795773 DOI: 10.1186/s12870-022-03996-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Drought stress limits the production of soybean [Glycine max (L.) Merr.], which is the most grown high-value legume crop worldwide. Breeding for drought tolerance is a difficult endeavor and understanding the genetic basis of drought tolerance in soybean is therefore crucial for harnessing the genomic regions involved in the tolerance mechanisms. A genome-wide association study (GWAS) analysis was applied in a soybean germplasm collection (the EUCLEG collection) of 359 accessions relevant for breeding in Europe, to identify genomic regions and candidate genes involved in the response to short duration and long duration drought stress (SDS and LDS respectively) in soybean. RESULTS The phenotypic response to drought was stronger in the long duration drought (LDS) than in the short duration drought (SDS) experiment. Over the four traits considered (canopy wilting, leaf senescence, maximum absolute growth rate and maximum plant height) the variation was in the range of 8.4-25.2% in the SDS, and 14.7-29.7% in the LDS experiments. The GWAS analysis identified a total of 17 and 22 significant marker-trait associations for four traits in the SDS and LDS experiments, respectively. In the genomic regions delimited by these markers we identified a total of 12 and 16 genes with putative functions that are of particular relevance for drought stress responses including stomatal movement, root formation, photosynthesis, ABA signaling, cellular protection and cellular repair mechanisms. Some of these genomic regions co-localized with previously known QTLs for drought tolerance traits including water use efficiency, chlorophyll content and photosynthesis. CONCLUSION Our results indicate that the mechanism of slow wilting in the SDS might be associated with the characteristics of the root system, whereas in the LDS, slow wilting could be due to low stomatal conductance and transpiration rates enabling a high WUE. Drought-induced leaf senescence was found to be associated to ABA and ROS responses. The QTLs related to WUE contributed to growth rate and canopy height maintenance under drought stress. Co-localization of several previously known QTLs for multiple agronomic traits with the SNPs identified in this study, highlights the importance of the identified genomic regions for the improvement of agronomic performance in addition to drought tolerance in the EUCLEG collection.
Collapse
Affiliation(s)
- Aamir Saleem
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jonas Aper
- Protealis, Technologiepark-Zwijnaarde, Ghent, Belgium
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium.
| |
Collapse
|
5
|
Chen X, Li N, Liu C, Wang H, Li Y, Xie Y, Ma F, Liang J, Li C. Exogenous GABA improves the resistance of apple seedlings to long-term drought stress by enhancing GABA shunt and secondary cell wall biosynthesis. TREE PHYSIOLOGY 2022; 42:2563-2577. [PMID: 35972819 DOI: 10.1093/treephys/tpac096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is an important factor limiting apple production. γ-Aminobutyric acid (GABA) exists widely in plants and participates in the response to abiotic stress as a metabolite or signaling molecule. The role of exogenous GABA in apple plants, response to long-term drought stress remains unclear. Our study confirmed that exogenous GABA affects the drought resistance of apple plants under long-term drought stress. We found that 1 mM exogenous GABA improved the resistance of apple seedlings to long-term drought stress. The plants showed better growth, less reactive oxygen radical accumulation, less damage to cell membranes and greater active photosynthetic capacity. Under long-term drought stress, exogenous GABA facilitated GABA shunt, resulting in more accumulation of organic acids, namely citric acid, succinic acid and malic acid, in roots and stems of apple seedlings. In addition, exogenous GABA upregulated the expression of cellulose-related genes and lignin-related genes, and activated secondary cell wall-related transcription factors to synthesize more cellulose and lignin. A multiple factorial analysis confirmed that the GABA shunt and the biosynthesis of cellulose and lignin substantially contributed to the growth of apple seedlings with the application of exogenous GABA under long-term drought stress. Our results suggested that exogenous GABA improved the resistance of apple seedlings to long-term drought stress by enhancing GABA shunt and secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenlu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongtao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanmei Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiakai Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Chen Y, Zhu C, Zhao Y, Zhang S, Wang W. Transcriptomics Integrated with Changes in Cell Wall Material of Chestnut (Castanea mollissima Blume) during Storage Provides a New Insight into the “Calcification” Process. Foods 2022; 11:foods11081136. [PMID: 35454723 PMCID: PMC9030872 DOI: 10.3390/foods11081136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Chestnut “calcification” is the result of a series of physiological and biochemical changes during postharvest storage; however, the associated mechanisms are unclear. In this study, several potential calcification-related physicochemical parameters in chestnut, including moisture, cell wall materials, cellulose, lignin, and pectin, were measured. Transcriptome analysis was performed on chestnut seeds during different stages of storage. The results showed that the degree of calcification in the chestnut seeds was significantly negatively correlated with the moisture content (r = −0.961) at room temperature (20–25 °C) and a relative humidity of 50–60%. The accumulation of cell wall material in completely calcified seeds was 5.3 times higher than that of fresh seeds. The total content of cellulose and lignin increased during the storage process. Transcriptome analysis of 0% and 50% calcified chestnut was performed; a total of 1801 differentially expressed genes consisting of 805 up-regulated and 996 down-regulated genes were identified during the calcification process. Furthermore, response to water, water deprivation, and salt stress were most enriched by gene ontology (GO) and gene set enrichment analysis (GSEA). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to chestnut calcification included purine metabolism, RNA degradation, the mRNA surveillance pathway, starch and sucrose metabolism, arginine and proline metabolism, and fatty acid metabolism, and were detected. Most of the genes involved in cellulose synthase, lignin catabolism, and pectin catabolism were down-regulated, while only two important genes, scaffold11300 and scaffold0412, were up-regulated, which were annotated as cellulose and pectin synthase genes, respectively. These two genes may contribute to the increase of total cell wall material accumulation during chestnut calcification. The results provided new insights into chestnut calcification process and laid a foundation for further chestnut preservation.
Collapse
|
7
|
Bartlett MK, Sinclair G, Fontanesi G, Knipfer T, Walker MA, McElrone AJ. Root pressure-volume curve traits capture rootstock drought tolerance. ANNALS OF BOTANY 2022; 129:389-402. [PMID: 34668965 PMCID: PMC8944712 DOI: 10.1093/aob/mcab132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/18/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Living root tissues significantly constrain plant water uptake under drought, but we lack functional traits to feasibly screen diverse plants for variation in the drought responses of these tissues. Water stress causes roots to lose volume and turgor, which are crucial to root structure, hydraulics and growth. Thus, we hypothesized that root pressure-volume (p-v) curve traits, which quantify the effects of water potential on bulk root turgor and volume, would capture differences in rootstock drought tolerance. METHODS We used a greenhouse experiment to evaluate relationships between root p-v curve traits and gas exchange, whole-plant hydraulic conductance and biomass under drought for eight grapevine rootstocks that varied widely in drought performance in field trials (101-14, 110R, 420A, 5C, 140-Ru, 1103P, Ramsey and Riparia Gloire), grafted to the same scion variety (Vitis vinifera 'Chardonnay'). KEY RESULTS The traits varied significantly across rootstocks, and droughted vines significantly reduced root turgor loss point (πtlp), osmotic potential at full hydration (πo) and capacitance (C), indicating that roots became less susceptible to turgor loss and volumetric shrinkage. Rootstocks that retained a greater root volume (i.e. a lower C) also maintained more gas exchange under drought. The rootstocks that previous field trials have classified as drought tolerant exhibited significantly lower πtlp, πo and C values in well-watered conditions, but significantly higher πo and πtlp values under water stress, than the varieties classified as drought sensitive. CONCLUSIONS These findings suggest that acclimation in root p-v curve traits improves gas exchange in persistently dry conditions, potentially through impacts on root hydraulics or root to shoot chemical signalling. However, retaining turgor and volume in previously unstressed roots, as these roots deplete wet soil to moderately negative water potentials, could be more important to drought performance in the deep, highly heterogenous rooting zones which grapevines develop under field conditions.
Collapse
Affiliation(s)
| | - G Sinclair
- Department of Viticulture & Enology, University of
California, Davis, CA, USA
| | - G Fontanesi
- Department of Viticulture & Enology, University of
California, Davis, CA, USA
| | - T Knipfer
- Department of Viticulture & Enology, University of
California, Davis, CA, USA
- Faculty of Land and Food Systems, The University of British
Columbia, Vancouver, British Columbia, Canada
| | - M A Walker
- Department of Viticulture & Enology, University of
California, Davis, CA, USA
| | - A J McElrone
- Department of Viticulture & Enology, University of
California, Davis, CA, USA
- USDA-ARS, Crops Pathology and Genetics Research Unit,
Davis, CA, USA
| |
Collapse
|
8
|
North GB. A time-honoured technique goes underground to investigate root drought tolerance. A commentary on: 'Root pressure-volume curve traits capture rootstock drought tolerance'. ANNALS OF BOTANY 2022; 129:i-ii. [PMID: 35039822 PMCID: PMC8944705 DOI: 10.1093/aob/mcab156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article comments on: M. K. Bartlett, G. Sinclair, G. Fontanesi, T. Knipfer, M. A. Walker and A. J. McElrone, Root pressure–volume curve traits capture rootstock drought tolerance, Annals of Botany, Volume 129, Issue 4, 1 April 2022, Pages 389–402 https://doi.org/10.1093/aob/mcab132
Collapse
|
9
|
Forand AD, Finfrock YZ, Lavier M, Stobbs J, Qin L, Wang S, Karunakaran C, Wei Y, Ghosh S, Tanino KK. With a Little Help from My Cell Wall: Structural Modifications in Pectin May Play a Role to Overcome Both Dehydration Stress and Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:385. [PMID: 35161367 PMCID: PMC8838300 DOI: 10.3390/plants11030385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/06/2023]
Abstract
Cell wall structural modifications through pectin cross-linkages between calcium ions and/or boric acid may be key to mitigating dehydration stress and fungal pathogens. Water loss was profiled in a pure pectin system and in vivo. While calcium and boron reduced water loss in pure pectin standards, the impact on Allium species was insignificant (p > 0.05). Nevertheless, synchrotron X-ray microscopy showed the localization of exogenously applied calcium to the apoplast in the epidermal cells of Allium fistulosum. Exogenous calcium application increased viscosity and resistance to shear force in Allium fistulosum, suggesting the formation of calcium cross-linkages ("egg-box" structures). Moreover, Allium fistulosum (freezing tolerant) was also more tolerant to dehydration stress compared to Allium cepa (freezing sensitive). Furthermore, the addition of boric acid (H3BO3) to pure pectin reduced water loss and increased viscosity, which indicates the formation of RG-II dimers. The Arabidopsis boron transport mutant, bor1, expressed greater water loss and, based on the lesion area of leaf tissue, a greater susceptibility to Colletotrichum higginsianum and Botrytis cinerea. While pectin modifications in the cell wall are likely not the sole solution to dehydration and biotic stress resistance, they appear to play an important role against multiple stresses.
Collapse
Affiliation(s)
- Ariana D. Forand
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (A.D.F.); (S.W.)
| | - Y. Zou Finfrock
- Advanced Photo Source, Lemont, IL 60439, USA;
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (M.L.); (J.S.); (C.K.)
| | - Miranda Lavier
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (M.L.); (J.S.); (C.K.)
| | - Jarvis Stobbs
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (M.L.); (J.S.); (C.K.)
| | - Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (L.Q.); (Y.W.)
| | - Sheng Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (A.D.F.); (S.W.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Chithra Karunakaran
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (M.L.); (J.S.); (C.K.)
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (L.Q.); (Y.W.)
| | - Supratim Ghosh
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Karen K. Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (A.D.F.); (S.W.)
| |
Collapse
|
10
|
Yuan H, Hu B, Liu Z, Sun H, Zhou M, Rennenberg H. Physiological responses of black locust-rhizobia symbiosis to water stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13641. [PMID: 35112359 DOI: 10.1111/ppl.13641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The present study explores the interaction of water supply and rhizobia inoculation on CO2 and H2 O gas exchange characteristics, physiological and biochemical traits in seedlings of Robinia pseudoacacia L. originating from two provenances with contrasting climate and soil backgrounds: the Gansu Province (GS) in northwest China and the Dongbei region (DB) of northeast China. Rhizobia strains were isolated from the 50-years old Robinia forest sites grown in the coastal region of east China. Robinia seedlings with and without rhizobia inoculation were exposed to normal water supply, moderate drought, and rewatering treatments, respectively. After 2 weeks of drought treatment, photosynthetic and physiological traits (net photosynthetic rate, stomatal conductance, stable isotope signature of carbon, malondialdehyde and hydrogen peroxide content) of Robinia leaves were significantly altered, but after rewatering, a general recovery was observed. Rhizobia inoculation significantly increased the drought resistance of both Robinia provenances by promoting photosynthesis, increasing the foliar N content and reducing the accumulation of malondialdehyde and hydrogen peroxide. Among the two provenances, DB plants developed more nodules than GS plants, but GS plants were more drought-tolerant than DB plants, both inoculated or noninoculated, indicated by the foliar gas exchange parameters and biochemical traits studied. Our results also show that inoculation of rhizobia could significantly improve the drought resistance of Robinia in both provenances. The present study contributes to the scientific background for the selection of drought-resistant varieties of Robinia to ensure the success of future afforestation projects in degraded terrestrial ecosystems under global climate change.
Collapse
Affiliation(s)
- Hui Yuan
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhenshan Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Hongguang Sun
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Mi Zhou
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Singh PK, Indoliya Y, Agrawal L, Awasthi S, Deeba F, Dwivedi S, Chakrabarty D, Shirke PA, Pandey V, Singh N, Dhankher OP, Barik SK, Tripathi RD. Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. CURRENT PLANT BIOLOGY 2022; 29:100239. [DOI: 10.1016/j.cpb.2022.100239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
12
|
Scavuzzo-Duggan T, Varoquaux N, Madera M, Vogel JP, Dahlberg J, Hutmacher R, Belcher M, Ortega J, Coleman-Derr D, Lemaux P, Purdom E, Scheller HV. Cell Wall Compositions of Sorghum bicolor Leaves and Roots Remain Relatively Constant Under Drought Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:747225. [PMID: 34868130 PMCID: PMC8632824 DOI: 10.3389/fpls.2021.747225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Renewable fuels are needed to replace fossil fuels in the immediate future. Lignocellulosic bioenergy crops provide a renewable alternative that sequesters atmospheric carbon. To prevent displacement of food crops, it would be advantageous to grow biofuel crops on marginal lands. These lands will likely face more frequent and extreme drought conditions than conventional agricultural land, so it is crucial to see how proposed bioenergy crops fare under these conditions and how that may affect lignocellulosic biomass composition and saccharification properties. We found that while drought impacts the plant cell wall of Sorghum bicolor differently according to tissue and timing of drought induction, drought-induced cell wall compositional modifications are relatively minor and produce no negative effect on biomass conversion. This contrasts with the cell wall-related transcriptome, which had a varied range of highly variable genes (HVGs) within four cell wall-related GO categories, depending on the tissues surveyed and time of drought induction. Further, many HVGs had expression changes in which putative impacts were not seen in the physical cell wall or which were in opposition to their putative impacts. Interestingly, most pre-flowering drought-induced cell wall changes occurred in the leaf, with matrix and lignin compositional changes that did not persist after recovery from drought. Most measurable physical post-flowering cell wall changes occurred in the root, affecting mainly polysaccharide composition and cross-linking. This study couples transcriptomics to cell wall chemical analyses of a C4 grass experiencing progressive and differing drought stresses in the field. As such, we can analyze the cell wall-specific response to agriculturally relevant drought stresses on the transcriptomic level and see whether those changes translate to compositional or biomass conversion differences. Our results bolster the conclusion that drought stress does not substantially affect the cell wall composition of specific aerial and subterranean biomass nor impede enzymatic hydrolysis of leaf biomass, a positive result for biorefinery processes. Coupled with previously reported results on the root microbiome and rhizosphere and whole transcriptome analyses of this study, we can formulate and test hypotheses on individual gene candidates' function in mediating drought stress in the grass cell wall, as demonstrated in sorghum.
Collapse
Affiliation(s)
- Tess Scavuzzo-Duggan
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nelle Varoquaux
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
- Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, United States
| | - Mary Madera
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - John P. Vogel
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- DOE Joint Genome Institute, Berkeley, CA, United States
| | - Jeffery Dahlberg
- Kearney Agricultural Research and Extension Center, University of California, Parlier, Parlier, CA, United States
| | - Robert Hutmacher
- West Side Research and Extension Center, University of California, Five Points, Five Points, CA, United States
| | - Michael Belcher
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jasmine Ortega
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Devin Coleman-Derr
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Peggy Lemaux
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
| | - Henrik V. Scheller
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
13
|
Plant Transcriptome Reprograming and Bacterial Extracellular Metabolites Underlying Tomato Drought Resistance Triggered by a Beneficial Soil Bacteria. Metabolites 2021; 11:metabo11060369. [PMID: 34207663 PMCID: PMC8230097 DOI: 10.3390/metabo11060369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Water deficit is one of the major constraints to crop production and food security worldwide. Some plant growth-promoting rhizobacteria (PGPR) strains are capable of increasing plant drought resistance. Knowledge about the mechanisms underlying bacteria-induced plant drought resistance is important for PGPR applications in agriculture. In this study, we show the drought stress-mitigating effects on tomato plants by the Bacillus megaterium strain TG1-E1, followed by the profiling of plant transcriptomic responses to TG1-E1 and the profiling of bacterial extracellular metabolites. Comparison between the transcriptomes of drought-stressed plants with and without TG1-E1 inoculation revealed bacteria-induced transcriptome reprograming, with highlights on differentially expressed genes belonging to the functional categories including transcription factors, signal transduction, and cell wall biogenesis and organization. Mass spectrometry-based analysis identified over 40 bacterial extracellular metabolites, including several important regulators or osmoprotectant precursors for increasing plant drought resistance. These results demonstrate the importance of plant transcriptional regulation and bacterial metabolites in PGPR-induced plant drought resistance.
Collapse
|
14
|
Remodeling of the cell wall as a drought-tolerance mechanism of a soybean genotype revealed by global gene expression analysis. ABIOTECH 2021; 2:14-31. [PMID: 36304479 PMCID: PMC9590462 DOI: 10.1007/s42994-021-00043-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Drought stress is major abiotic stress that affects soybean production. Therefore, it is widely desirable that soybean becomes more tolerant to stress. To provide insights into regulatory mechanisms of the stress response, we compared the global gene expression profiles from leaves of two soybean genotypes that display different responses to water-deficit (BR 16 and Embrapa 48, drought-sensitive and drought-tolerant, respectively). After the RNA-seq analysis, a total of 5335 down-regulated and 3170 up-regulated genes were identified in the BR16. On the other hand, the number of genes differentially expressed was markedly lower in the Embrapa 48, 355 up-regulated and 471 down-regulated genes. However, induction and expression of protein kinases and transcription factors indicated signaling cascades involved in the drought tolerance. Overall, the results suggest that the metabolism of pectin is differently modulated in response to drought stress and may play a role in the soybean defense mechanism against drought. This occurs via an increase of the cell wall plasticity and crosslink, which contributed to a higher hydraulic conductance (K f) and relative water content (RWC%). The drought-tolerance mechanism of the Embrapa 48 genotype involves remodeling of the cell wall and increase of the hydraulic conductance to the maintenance of cell turgor and metabolic processes, resulting in the highest leaf RWC, photosynthetic rate (A), transpiration (E) and carboxylation (A/C i). Thus, we concluded that the cell wall adjustment under drought is important for a more efficient water use which promoted a more active photosynthetic metabolism, maintaining higher plant growth under drought stress. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00043-4.
Collapse
|
15
|
Hori C, Yu X, Mortimer JC, Sano R, Matsumoto T, Kikuchi J, Demura T, Ohtani M. Impact of abiotic stress on the regulation of cell wall biosynthesis in Populus trichocarpa. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:273-283. [PMID: 33088190 PMCID: PMC7557660 DOI: 10.5511/plantbiotechnology.20.0326a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/26/2020] [Indexed: 05/22/2023]
Abstract
Growth of biomass for lignocellulosic biofuels and biomaterials may take place on land unsuitable for foods, meaning the biomass plants are exposed to increased abiotic stresses. Thus, the understanding how this affects biomass composition and quality is important for downstream bioprocessing. Here, we analyzed the effect of drought and salt stress on cell wall biosynthesis in young shoots and xylem tissues of Populus trichocarpa using transcriptomic and biochemical methods. Following exposure to abiotic stress, stem tissues reduced vessel sizes, and young shoots increased xylem formation. Compositional analyses revealed a reduction in the total amount of cell wall polysaccharides. In contrast, the total lignin amount was unchanged, while the ratio of S/G lignin was significantly decreased in young shoots. Consistent with these observations, transcriptome analyses show that the expression of a subset of cell wall-related genes is tightly regulated by drought and salt stresses. In particular, the expression of a part of genes encoding key enzymes for S-lignin biosynthesis, caffeic acid O-methyltransferase and ferulate 5-hydroxylase, was decreased, suggesting the lower S/G ratio could be partly attributed to the down-regulation of these genes. Together, our data identifies a transcriptional abiotic stress response strategy in poplar, which results in adaptive changes to the plant cell wall.
Collapse
Affiliation(s)
- Chiaki Hori
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Research Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido 060-8628, Japan
| | - Xiang Yu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jenny C. Mortimer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Joint BioEnergy Institute, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Tomoko Matsumoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- E-mail: Tel: +81-743-72-5460 Fax: +81-743-72-5469
| | - Misato Ohtani
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- E-mail: Tel: +81-4-7136-3673 Fax: +81-4-7136-3674
| |
Collapse
|
16
|
Salem H, Kirsch R, Pauchet Y, Berasategui A, Fukumori K, Moriyama M, Cripps M, Windsor D, Fukatsu T, Gerardo NM. Symbiont Digestive Range Reflects Host Plant Breadth in Herbivorous Beetles. Curr Biol 2020; 30:2875-2886.e4. [PMID: 32502409 DOI: 10.1016/j.cub.2020.05.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Numerous adaptations are gained in light of a symbiotic lifestyle. Here, we investigated the obligate partnership between tortoise leaf beetles (Chrysomelidae: Cassidinae) and their pectinolytic Stammera symbionts to detail how changes to the bacterium's streamlined metabolic range can shape the digestive physiology and ecological opportunity of its herbivorous host. Comparative genomics of 13 Stammera strains revealed high functional conservation, highlighted by the universal presence of polygalacturonase, a primary pectinase targeting nature's most abundant pectic class, homogalacturonan (HG). Despite this conservation, we unexpectedly discovered a disparate distribution for rhamnogalacturonan lyase, a secondary pectinase hydrolyzing the pectic heteropolymer, rhamnogalacturonan I (RG-I). Consistent with the annotation of rhamnogalacturonan lyase in Stammera, cassidines are able to depolymerize RG-I relative to beetles whose symbionts lack the gene. Given the omnipresence of HG and RG-I in foliage, Stammera that encode pectinases targeting both substrates allow their hosts to overcome a greater diversity of plant cell wall polysaccharides and maximize access to the nutritionally rich cytosol. Possibly facilitated by their symbionts' expanded digestive range, cassidines additionally endowed with rhamnogalacturonan lyase appear to utilize a broader diversity of angiosperms than those beetles whose symbionts solely supplement polygalacturonase. Our findings highlight how symbiont metabolic diversity, in concert with host adaptations, may serve as a potential source of evolutionary innovations for herbivorous lineages.
Collapse
Affiliation(s)
- Hassan Salem
- Department of Biology, Emory University, Atlanta, GA 30322, USA; National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Mutualisms Research Group, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Kayoko Fukumori
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Minoru Moriyama
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Michael Cripps
- AgResearch, Lincoln Research Centre, Lincoln 7608, New Zealand
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Takema Fukatsu
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | | |
Collapse
|
17
|
Guo Y, Ping W, Chen J, Zhu L, Zhao Y, Guo J, Huang Y. Meta-analysis of the effects of overexpression of WRKY transcription factors on plant responses to drought stress. BMC Genet 2019; 20:63. [PMID: 31349781 PMCID: PMC6660937 DOI: 10.1186/s12863-019-0766-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors play important roles in plants, allowing them to adapt to environmental conditions that are not normally conducive to plant growth; in particular, drought. There has been extensive research on WRKY transcription factors and the effects of their overexpression in plants on resistance to drought stress. However, due to the materials (the type and species of donor and receptor, promoters) and treatments (the type and time of stress) used, different and often confounding results have been obtained between studies. Meta-analysis is a powerful statistical tool that can be used to summarize results from numerous independent experiments on the same research topic while accounting for variability across experiments. RESULTS We carried out a meta-analysis of 16 measured parameters that affect drought resistance in plants overexpressing WRKY transcription factors and wild-type plants. We found that only one of these parameters was significantly different between transgenic and wild-type plants under drought and control conditions at a 95% confidence interval (p = 0.000, p = 0.009, respectively). Eleven of the sixteen parameters were obviously different in WRKY transgenic plants under drought and control conditions (SV, p = 0.023, SSC, p = 0.000, SOD, p = 0.012, SFW, p = 0.000, RL, p = 0.016, Pro, p = 0.000, POD, p = 0.027, MDA, p = 0.000, H2O2, p = 0.003, EL, p = 0.000, CHC, p = 0.000, respectively), seven of the eleven obviously different parameters showed positive effect (SSC, SOD, Pro, POD, MDA, H2O2, EL), four of them revealed negative effect (SV, SFW, RL, CHC). CONCLUSION We have found that only one of these parameters was significantly different between transgenic and wild-type plants under drought and control conditions respectively, at a 95% confidence interval. And eleven of sixteen parameters showed obviously different of WRKY-overexpressed plants under different conditions (water-stressed and normal), suggesting that WRKY transcription factors play an important role in plant responses to drought stress. These findings also provide a theoretical basis for further study of the role of WRKY transcription factors in the regulation of plant responses to environmental stress.
Collapse
Affiliation(s)
- Yuan Guo
- Hebei Branch of Chinese National Maize Improvement Center, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Wenjing Ping
- Hebei Branch of Chinese National Maize Improvement Center, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Jingtang Chen
- Hebei Branch of Chinese National Maize Improvement Center, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Liying Zhu
- Hebei Branch of Chinese National Maize Improvement Center, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Yongfeng Zhao
- Hebei Branch of Chinese National Maize Improvement Center, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Jinjie Guo
- Hebei Branch of Chinese National Maize Improvement Center, Hebei Agricultural University, Baoding, People’s Republic of China
| | - Yaqun Huang
- Hebei Branch of Chinese National Maize Improvement Center, Hebei Agricultural University, Baoding, People’s Republic of China
| |
Collapse
|
18
|
Marček T, Hamow KÁ, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS One 2019; 14:e0212411. [PMID: 30779775 PMCID: PMC6380608 DOI: 10.1371/journal.pone.0212411] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/02/2019] [Indexed: 12/13/2022] Open
Abstract
Wheat is one of the most important cereals, whose growth and development is strongly limited by drought. This study investigated the physiological and metabolic response of six winter wheat cultivars to drought with the emphasis on the induction of dominant metabolites affected by the treatment and genotypes or both. The plants were exposed to a moderate (non-lethal) drought stress, which was induced by withholding watering for six days under controlled greenhouse conditions. A decline in CO2 assimilation (Pn) and transpiration rate, stomata closure, a decrease in relative water content (RWC) and increase of malondialdehyde content were observed in drought-treated plants of all cultivars. These changes were most pronounced in Ellvis, while Soissons was able to retain the higher RWC and Pn. Among the studied metabolites, sugars (sucrose, glucose, fructose, several disaccharides), organic acids (malic acid, oxalic acids), amino acids (proline, threonine, gamma-aminobutyric acid (GABA), glutamine) and sugar alcohols such as myo-inositol accumulated to higher levels in the plants exposed to drought stress in comparison with the control. The accumulation of several metabolites in response to drought differed between the genotypes. Drought induced the production of sucrose, malic acid and oxalic acid, unknown organic acid 1, unknown disaccharide 1, 2 and 3, GABA, L-threonine, glutamic acid in four (Soissons, Žitarka, Antonija or Toborzó) out of six genotypes. In addition, Soissons, which was the most drought tolerant genotype, accumulated the highest amount of unknown disaccharide 5, galactonic and phosphoric acids. The two most drought sensitive cultivars, Srpanjka and Ellvis, demonstrated different metabolic adjustment in response to the stress treatment. Srpanjka responded to drought by increasing the amount of glucose and fructose originated from hydrolyses of sucrose and accumulating unidentified sugar alcohols 1 and 2. In Ellvis, drought caused inhibition of photosynthetic carbon metabolism, as evidence by the decreased Pn, gs, RWC and accumulation levels of sugar metabolites (sucrose, glucose and fructose). The results revealed the differences in metabolic response to drought among the genotypes, which drew attention on metabolites related with general response and on those metabolites which are part of specific response that may play an important role in drought tolerance.
Collapse
Affiliation(s)
- Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kamirán Áron Hamow
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Végh
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
19
|
Gayen D, Gayali S, Barua P, Lande NV, Varshney S, Sengupta S, Chakraborty S, Chakraborty N. Dehydration-induced proteomic landscape of mitochondria in chickpea reveals large-scale coordination of key biological processes. J Proteomics 2019; 192:267-279. [PMID: 30243939 DOI: 10.1016/j.jprot.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
Mitochondria play crucial roles in regulating multiple biological processes particularly electron transfer and energy metabolism in eukaryotic cells. Exposure to water-deficit or dehydration may affect mitochondrial function, and dehydration response may dictate cell fate decisions. iTRAQ-based quantitative proteome of a winter legume, chickpea, demonstrated the central metabolic alterations in mitochondria, presumably involved in dehydration adaptation. Three-week-old chickpea seedlings were subjected to progressive dehydration and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical characteristics and mitochondrial architecture. The proteomics analysis led to the identification of 40 dehydration-responsive proteins whose expressions were significantly modulated by dehydration. The differentially expressed proteins were implicated in different metabolic processes, with obvious functional tendencies toward purine-thiamine metabolic network, pathways of carbon fixation and oxidative phosphorylation. The linearity of dehydration-induced proteome alteration was examined with transcript abundance of randomly selected candidates under multivariate stress conditions. The differentially regulated proteins were validated through sequence analysis. An extensive sequence based localization prediction revealed >62.5% proteins to be mitochondrial resident by, at least, one prediction algorithm. The results altogether provide intriguing insights into the dehydration-responsive metabolic pathways and useful clues to identify crucial proteins linked to stress tolerance. BIOLOGICAL SIGNIFICANCE: Investigation on plant mitochondrial proteome is of significance because it would allow a better understanding of mitochondrial function in plant adaptation to stress. Mitochondria are the unique organelles, which play a crucial role in energy metabolism and cellular homeostasis, particularly when exposed to stress conditions. Chickpea is one of the cultivated winter legumes, which enriches soil nitrogen and has very low water footprint and thus contributes to fortification of sustainable agriculture. We therefore examined the dehydration-responsive mitochondrial proteome landscape of chickpea and queried whether molecular interplay of mitochondrial proteins modulate dehydration tolerance. A total of 40 dehydration-induced mitochondrial proteins were identified, predicted to be involved in key metabolic processes. Our future efforts would focus on understanding both posttranslational modification and processing for comprehensive characterization of mitochondrial protein function. This approach will facilitate mining of more biomarkers linked to the tolerance trait and contribute to crop adaptation to climate change.
Collapse
Affiliation(s)
- Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
20
|
Dalal M, Sahu S, Tiwari S, Rao AR, Gaikwad K. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:482-492. [PMID: 30081325 DOI: 10.1016/j.plaphy.2018.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 05/08/2023]
Abstract
The ability of roots to grow under drought stress is an adaptive trait for crop plants especially under rain fed and restricted irrigation regime. To unravel the molecular mechanism of drought induced-root growth, root transcriptomes of two wheat genotypes viz. Raj3765 and HD2329, with contrasting root growth under drought stress were analyzed. Drought stress significantly enhanced total root length in Raj3765 as compared to that of HD2329. RNA-seq analysis led to the identification of 2783 and 2638 differentially expressed genes (DEGs) in Raj3765 and HD2329, respectively, under drought stress as compared with non-stress conditions. Functional annotation, gene ontology and MapMan analysis of the DEGs revealed differential regulation of genes for pathways associated with root growth and stress tolerance. Drought stress significantly upregulated auxin receptor (AFB2) and ABA responsive transcription factors (MYB78, WRKY18 and GBF3) in roots of Raj3765. Although certain genes for ethylene pathway were downregulated in both the genotypes, ACC oxidase and 2OG-Fe(II) oxygenase were upregulated only in Raj3765 which might contribute to maintenance of a basal ethylene level to maintain root growth. Several genes related to cell wall biosynthesis and ROS metabolism were significantly upregulated in Raj3765. Genes related to gibberellic acid, jasmonic acid and phenylpropanoid pathways were downregulated in roots of both the genotypes under drought stress. Our analysis suggests that a coordinated yet complex interplay between hormones, cellular tolerance, cell wall synthesis and ROS metabolism are required for drought induced root growth in wheat.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Sneha Tiwari
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| | - Atmakuri R Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
21
|
Missaoui T, Smiri M, Chemingui H, Jbira E, Hafiane A. Regulation of Mitochondrial and Cytosol Antioxidant Systems of Fenugreek (Trigonella foenum graecum L.) Exposed to Nanosized Titanium Dioxide. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:326-337. [PMID: 30099613 DOI: 10.1007/s00128-018-2414-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
In the present study, the interactions between nanoparticle (NP) exposure, root application and plants were examined. NPs are potentially responsible for conformational changes in polysaccharides, lipids, proteins, pectin, suberin and lignin molecules. 4 days of treatment with metal oxide caused a statistically significant increase in nicotinamide adénine dinucléotide oxidase activity in mitochondria and cytosol. Following exposure to TiO2NP, even lipid peroxidation levels decreased in the mitochondria (leaves, stem and root) and in the cytosol (leaves and root), although it increased in the cytosol of the stem. Malondialdehyde accumulation was found to be higher in the cytosol compared to the mitochondria of stems, and in the cytosol of leaves and roots. NPs caused alterations in metabolism, antioxidant enzyme activities (guaiacol peroxidase, catalase and ascorbate peroxidase) and the generation of oxidative stress. Effects caused by exposures to NPs were influenced by differences in metabolic responses in plant parts, plant compartments, the period of exposure and the NP doses.
Collapse
Affiliation(s)
- Takwa Missaoui
- Laboratory of Water, Membranes and Environment Biotechnology (LEMBE) Technopole of Borj Cedria (CERTE), 2050, Hammam-Lif, Tunisia.
- National Agronomy Institute of Tunis, 43 Avenue Charles Nicolle, 1082, Tunis, Tunisia.
| | - Moêz Smiri
- Laboratory of Water, Membranes and Environment Biotechnology (LEMBE) Technopole of Borj Cedria (CERTE), 2050, Hammam-Lif, Tunisia
- Department of Biology, University of Carthage, Higher Institute of Environmental Science and Technology of Borj Cedria, B.P. no. 1003, 2050, Hammam-Lif, Tunisia
| | - Hajer Chemingui
- Laboratory of Water, Membranes and Environment Biotechnology (LEMBE) Technopole of Borj Cedria (CERTE), 2050, Hammam-Lif, Tunisia
| | - Elyes Jbira
- Laboratory of Smart Grid and Nanotechnology, National School of Sciences and Advanced Technologies of Borj Cédria, 2050, Hammam-Lif, Tunisia
| | - Amor Hafiane
- Laboratory of Water, Membranes and Environment Biotechnology (LEMBE) Technopole of Borj Cedria (CERTE), 2050, Hammam-Lif, Tunisia
| |
Collapse
|
22
|
Byrt CS, Munns R, Burton RA, Gilliham M, Wege S. Root cell wall solutions for crop plants in saline soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:47-55. [PMID: 29606216 DOI: 10.1016/j.plantsci.2017.12.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 12/27/2017] [Indexed: 05/05/2023]
Abstract
The root growth of most crop plants is inhibited by soil salinity. Roots respond by modulating metabolism, gene expression and protein activity, which results in changes in cell wall composition, transport processes, cell size and shape, and root architecture. Here, we focus on the effects of salt stress on cell wall modifying enzymes, cellulose microfibril orientation and non-cellulosic polysaccharide deposition in root elongation zones, as important determinants of inhibition of root elongation, and highlight cell wall changes linked to tolerance to salt stressed and water limited roots. Salt stress induces changes in the wall composition of specific root cell types, including the increased deposition of lignin and suberin in endodermal and exodermal cells. These changes can benefit the plant by preventing water loss and altering ion transport pathways. We suggest that binding of Na+ ions to cell wall components might influence the passage of Na+ and that Na+ can influence the binding of other ions and hinder the function of pectin during cell growth. Naturally occurring differences in cell wall structure may provide new resources for breeding crops that are more salt tolerant.
Collapse
Affiliation(s)
- Caitlin S Byrt
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia. http://twitter.com/BotanicGeek
| | - Rana Munns
- ARC Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stefanie Wege
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
23
|
Methane protects against polyethylene glycol-induced osmotic stress in maize by improving sugar and ascorbic acid metabolism. Sci Rep 2017; 7:46185. [PMID: 28387312 PMCID: PMC5384014 DOI: 10.1038/srep46185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 01/04/2023] Open
Abstract
Although aerobic methane (CH4) release from plants leads to an intense scientific and public controversy in the recent years, the potential functions of endogenous CH4 production in plants are still largely unknown. Here, we reported that polyethylene glycol (PEG)-induced osmotic stress significantly increased CH4 production and soluble sugar contents in maize (Zea mays L.) root tissues. These enhancements were more pronounced in the drought stress-tolerant cultivar Zhengdan 958 (ZD958) than in the drought stress-sensitive cultivar Zhongjiangyu No.1 (ZJY1). Exogenously applied 0.65 mM CH4 not only increased endogenous CH4 production, but also decreased the contents of thiobarbituric acid reactive substances. PEG-induced water deficit symptoms, such as decreased biomass and relative water contents in both root and shoot tissues, were also alleviated. These beneficial responses paralleled the increases in the contents of soluble sugar and the reduced ascorbic acid (AsA), and the ratio of AsA/dehydroascorbate (DHA). Further comparison of transcript profiles of some key enzymes in sugar and AsA metabolism suggested that CH4 might participate in sugar signaling, which in turn increased AsA production and recycling. Together, these results suggested that CH4 might function as a gaseous molecule that enhances osmotic stress tolerance in maize by modulating sugar and AsA metabolism.
Collapse
|
24
|
Iurlaro A, De Caroli M, Sabella E, De Pascali M, Rampino P, De Bellis L, Perrotta C, Dalessandro G, Piro G, Fry SC, Lenucci MS. Drought and Heat Differentially Affect XTH Expression and XET Activity and Action in 3-Day-Old Seedlings of Durum Wheat Cultivars with Different Stress Susceptibility. FRONTIERS IN PLANT SCIENCE 2016; 7:1686. [PMID: 27891140 PMCID: PMC5102909 DOI: 10.3389/fpls.2016.01686] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
Heat and drought stress have emerged as major constraints for durum wheat production. In the Mediterranean area, their negative effect on crop productivity is expected to be exacerbated by the occurring climate change. Xyloglucan endotransglucosylase/hydrolases (XTHs) are chief enzymes in cell wall remodeling, whose relevance in cell expansion and morphogenesis suggests a central role in stress responses. In this work the potential role of XTHs in abiotic stress tolerance was investigated in durum wheat. The separate effects of dehydration and heat exposure on XTH expression and its endotransglucosylase (XET) in vitro activity and in vivo action have been monitored, up to 24 h, in the apical and sub-apical root regions and shoots excised from 3-day-old seedlings of durum wheat cultivars differing in stress susceptibility/tolerance. Dehydration and heat stress differentially influence the XTH expression profiles and the activity and action of XET in the wheat seedlings, depending on the degree of susceptibility/tolerance of the cultivars, the organ, the topological region of the root and, within the root, on the gradient of cell differentiation. The root apical region was the zone mainly affected by both treatments in all assayed cultivars, while no change in XET activity was observed at shoot level, irrespective of susceptibility/tolerance, confirming the pivotal role of the root in stress perception, signaling, and response. Conflicting effects were observed depending on stress type: dehydration evoked an overall increase, at least in the apical region of the root, of XET activity and action, while a significant inhibition was caused by heat treatment in most cultivars. The data suggest that differential changes in XET action in defined portions of the root of young durum wheat seedlings may have a role as a response to drought and heat stress, thus contributing to seedling survival and crop establishment. A thorough understanding of the mechanisms underlying these variations could represent the theoretical basis for implementing breeding strategies to develop new highly productive hybrids adapted to future climate scenarios.
Collapse
Affiliation(s)
- Andrea Iurlaro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Erika Sabella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Mariarosaria De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Patrizia Rampino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Carla Perrotta
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Giuseppe Dalessandro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| | - Marcello S. Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| |
Collapse
|
25
|
Sharifi M, Khoshgoftarmanesh AH, Hadadzadeh H. Changes in the chemical properties and swelling coefficient of alfalfa root cell walls in the presence of toluene as a toxic agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7022-7031. [PMID: 26728292 DOI: 10.1007/s11356-015-6008-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
The influence of toluene pollution on the chemical properties and swelling coefficient of root cell walls in alfalfa (Medicago sativa L.) was investigated. Two sets of alfalfa seedlings were selected and one set was treated with 450 mg L(-1) toluene in the nutrient solution under hydroponic culture. Thirty days after treatment with toluene, alfalfa plants were harvested and the root cell walls were isolated. Fourier-transform infrared (FTIR) spectroscopy was carried out for the characterization of the root cell walls composition. The cation exchange capacity (CEC) and the swelling coefficient of the root cell walls (Kcw) were estimated at various pH values. The toluene contamination significantly reduced the mass of the cell wall material in the alfalfa roots. According to the FTIR spectra, the toluene pollution can change the alfalfa root cell wall properties by reducing the cell wall functional groups. These functional groups are probably related to the proteins and polysaccharides in the cell wall. Also, toluene pollution strongly reduced CEC and Kcw of the root cell walls. The results show that the decrease in the active sites of adsorption on the root cell walls as a response to toluene pollution can affect the water flow rate and the mineral nutrients uptake by roots.
Collapse
Affiliation(s)
- M Sharifi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - A H Khoshgoftarmanesh
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - H Hadadzadeh
- Department of Chemistry, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| |
Collapse
|
26
|
Kwasniewski M, Daszkowska-Golec A, Janiak A, Chwialkowska K, Nowakowska U, Sablok G, Szarejko I. Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1079-94. [PMID: 26585228 PMCID: PMC4753848 DOI: 10.1093/jxb/erv498] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar 'Karat' and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions.
Collapse
Affiliation(s)
- Miroslaw Kwasniewski
- Department of Genetics, University of Silesia in Katowice, 40-032 Katowice, Poland
| | | | - Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, 40-032 Katowice, Poland
| | | | - Urszula Nowakowska
- Department of Genetics, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
27
|
Serra-Soriano M, Navarro JA, Genoves A, Pallás V. Comparative proteomic analysis of melon phloem exudates in response to viral infection. J Proteomics 2015; 124:11-24. [PMID: 25892132 DOI: 10.1016/j.jprot.2015.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/03/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Phloem vasculature is the route that most plant viruses use to spread widely around the plant. In addition, phloem sap transports signals that trigger systemic defense responses to infection. We investigated the proteome-level changes that occur in phloem sap during virus infection using the 2D-DIGE technique. Total proteins were extracted from phloem exudates of healthy and Melon necrotic spot virus infected melon plants and analyzed by 2D-DIGE. A total of 1046 spots were detected but only 25 had significant changes in abundance. After mass spectrometry, 19 different proteins corresponding to 22 spots were further identified (13 of them up-accumulated and 9 down-accumulated). Most of them were involved in controlling redox balance and cell death. Only two of the differentially altered proteins had never been described to be present in the phloem before: a carboxylesterase and the fumarylacetoacetate hydrolase 1, both considered negative regulators of cell death. RT-PCR analysis of phloem sap RNAs revealed that the transcripts corresponding to some of the identified protein could be also loaded into the sieve elements. The impact of these proteins in the host response against viral infections and the potential involvement in regulating development, growth and stress response in melon plants is discussed. BIOLOGICAL SIGNIFICANCE Despite the importance of phloem as an integrative pathway for resource distribution, signaling and plant virus transport little is known about the modifications induced by these pathogens in phloem sap proteome. Only one previous study has actually examined the phloem sap proteome during viral infection using conventional two-dimensional electrophoresis. Since the major limitation of this technique has been its low sensitivity, the authors only identified five phloem proteins with altered abundance. To circumvent this issue we use two-dimensional difference in-gel electrophoresis (2D DIGE) technique, which combined with DeCyder Differential Analysis Software allows a more accurate and sensitive quantitative analysis than with conventional 2D PAGE. We identified 19 different proteins which accumulation in phloem sap was altered during a compatible plant virus infection including redox and hypersensitivity response-related proteins. Therefore, this work would help to understand the basic processes that occur in phloem during plant-virus interaction.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Ainhoa Genoves
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| |
Collapse
|
28
|
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2015; 4:112-66. [PMID: 27135320 PMCID: PMC4844334 DOI: 10.3390/plants4010112] [Citation(s) in RCA: 589] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.
Collapse
Affiliation(s)
- Hyacinthe Le Gall
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Françoise Gillet
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|
29
|
Tenhaken R. Cell wall remodeling under abiotic stress. FRONTIERS IN PLANT SCIENCE 2014; 5:771. [PMID: 25709610 PMCID: PMC4285730 DOI: 10.3389/fpls.2014.00771] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 05/18/2023]
Abstract
Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs.
Collapse
Affiliation(s)
- Raimund Tenhaken
- *Correspondence: Raimund Tenhaken, Department of Cell Biology, Plant Physiology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria e-mail:
| |
Collapse
|
30
|
Atkinson NJ, Lilley CJ, Urwin PE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. PLANT PHYSIOLOGY 2013; 162:2028-41. [PMID: 23800991 PMCID: PMC3729780 DOI: 10.1104/pp.113.222372] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 05/18/2023]
Abstract
In field conditions, plants may experience numerous environmental stresses at any one time. Research suggests that the plant response to multiple stresses is different from that for individual stresses, producing nonadditive effects. In particular, the molecular signaling pathways controlling biotic and abiotic stress responses may interact and antagonize one another. The transcriptome response of Arabidopsis (Arabidopsis thaliana) to concurrent water deficit (abiotic stress) and infection with the plant-parasitic nematode Heterodera schachtii (biotic stress) was analyzed by microarray. A unique program of gene expression was activated in response to a combination of water deficit and nematode stress, with 50 specifically multiple-stress-regulated genes. Candidate genes with potential roles in controlling the response to multiple stresses were selected and functionally characterized. RAPID ALKALINIZATION FACTOR-LIKE8 (AtRALFL8) was induced in roots by joint stresses but conferred susceptibility to drought stress and nematode infection when overexpressed. Constitutively expressing plants had stunted root systems and extended root hairs. Plants may produce signal peptides such as AtRALFL8 to induce cell wall remodeling in response to multiple stresses. The methionine homeostasis gene METHIONINE GAMMA LYASE (AtMGL) was up-regulated by dual stress in leaves, conferring resistance to nematodes when overexpressed. It may regulate methionine metabolism under conditions of multiple stresses. AZELAIC ACID INDUCED1 (AZI1), involved in defense priming in systemic plant immunity, was down-regulated in leaves by joint stress and conferred drought susceptibility when overexpressed, potentially as part of abscisic acid-induced repression of pathogen response genes. The results highlight the complex nature of multiple stress responses and confirm the importance of studying plant stress factors in combination.
Collapse
Affiliation(s)
| | - Catherine J. Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
31
|
Lenucci MS, Durante M, Anna M, Dalessandro G, Piro G. Possible use of the carbohydrates present in tomato pomace and in byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bioethanol production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3683-3692. [PMID: 23517025 DOI: 10.1021/jf4005059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study provides information about the carbohydrate present in tomato pomace (skins, seeds, and vascular tissues) as well as in the byproducts of the lycopene supercritical carbon dioxide extraction (SC-CO₂) such as tomato serum and exhausted matrix and reports their conversion into bioethanol. The pomace, constituting approximately 4% of the tomato fruit fresh weight, and the SC-CO₂-exhausted matrix were enzyme saccharified with 0.1% Driselase leading to sugar yields of ~383 and ~301 mg/g dw, respectively. Aliquots of the hydrolysates and of the serum (80% tomato sauce fw) were fermented by Saccharomyces cerevisiae . The bioethanol produced from each waste was usually >50% of the calculated theoretical amount, with the exception of the exhausted matrix hydolysate, where a sugar concentration >52.8 g/L inhibited the fermentation process. Furthermore, no differences in the chemical solubility of cell wall polysaccharides were evidenced between the SC-CO₂-lycopene extracted and unextracted matrices. The deduced glycosyl linkage composition and the calculated amount of cell wall polysaccharides remained similar in both matrices, indicating that the SC-CO₂ extraction technology does not affect their structure. Therefore, tomato wastes may well be considered as potential alternatives and low-cost feedstock for bioethanol production.
Collapse
Affiliation(s)
- Marcello S Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy.
| | | | | | | | | |
Collapse
|
32
|
Lee BR, Jin YL, Jung WJ, Avice JC, Morvan-Bertrand A, Ourry A, Park CW, Kim TH. Water-deficit accumulates sugars by starch degradation--not by de novo synthesis--in white clover leaves (Trifolium repens). PHYSIOLOGIA PLANTARUM 2008; 134:403-11. [PMID: 18785903 DOI: 10.1111/j.1399-3054.2008.01156.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Labeling 13CO2 in steady-state condition was used to estimate quantitative mobilization of recently fixed carbon or stored sugar during water-deficit in white clover (Trifolium repens L.). Water-deficient gradually decreased leaf-water parameters and total amount of recently fixed carbon. Amount of 13C incorporated into glucose, sucrose and soluble sugars fraction rapidly decreased after 3 days of water-deficit treatment. In contrast, the previously stored soluble sugars significantly increased after 5 days of water-deficit with a coincidence of significant decrease in starch concentration. A highly significant (P < or = 0.001) relationship between the decrease in leaf-water potential caused by water-deficit and the increase in ratio of soluble sugar/starch concentration was observed in water deficit-stressed plants. The data indicate that soluble carbohydrate accumulated by water-deficit treatment is mainly because of the hydrolysis of previously stored starch rather than to de novo synthesis.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Institute of Agricultural Science and Technology, BK21 Research Team for the Control of Animal Hazards using Biotechnology, College of Agriculture & Life Science, Chonnam National University, Buk-Gwangju P.O. Box 205, Gwangju 500-600, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Leucci MR, Lenucci MS, Piro G, Dalessandro G. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1168-80. [PMID: 18155804 DOI: 10.1016/j.jplph.2007.09.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 05/19/2023]
Abstract
Glycosyl composition and linkage analysis of cell wall polysaccharides were examined in apical root zones excised from water-stressed and unstressed wheat seedlings (Triticum durum Desf.) cv. Capeiti ("drought-tolerant") and cv. Creso ("drought sensitive"). Wall polysaccharides were sequentially solubilized to obtain three fractions: CDTA+Na(2)CO(3) extract, KOH extract and the insoluble residue (alpha-cellulose). A comparison between the two genotypes showed only small variations in the percentages of matrix polysaccharides (CDTA+Na(2)CO(3) plus KOH extract) and of the insoluble residues (alpha-cellulose) in water-stressed and unstressed conditions. Xylosyl, glucosyl and arabinosyl residues represented more than 90 mol% of the matrix polysaccharides. The linkage analysis of matrix polysaccharides showed high levels of xyloglucans (23-39 mol%), and arabinoxylans (38-48 mol%) and a low amount of pectins and (1-->3), (1-->4)-beta-D-glucans. The high level of xyloglucans was supported by the release of the diagnostic disaccharide isoprimeverose after Driselase digestion of KOH-extracted polysaccharides. In the "drought-tolerant" cv. Capeiti the mol% of side chains of rhamnogalacturonan I and II significantly increased in response to water stress, whereas in cv. Creso, this increase did not occur. The results support a role of the pectic side chains during water stress response in a drought-tolerant wheat cultivar.
Collapse
Affiliation(s)
- Maria Rosaria Leucci
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | | | | | | |
Collapse
|
34
|
Konno H, Yamasaki Y, Sugimoto M, Takeda K. Differential changes in cell wall matrix polysaccharides and glycoside-hydrolyzing enzymes in developing wheat seedlings differing in drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:745-54. [PMID: 17765362 DOI: 10.1016/j.jplph.2007.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/11/2007] [Accepted: 07/12/2007] [Indexed: 05/17/2023]
Abstract
The growth kinetics and variations in cell wall matrix polysaccharides and glycoside hydrolases during seedling development of the drought-tolerant wheat cultivar (cv. Hong Mang Mai) were compared with the drought-sensitive cultivar (cv. Shirasagikomugi). After 15 d of culture in water at 22 degrees C under constant irradiance of 98 micromol m(-2) s(-1), the length of the coleoptile and leaf sheath of Hong Mang Mai seedlings was 1.7 times longer than those of Shirasagikomugi seedlings. In the cell walls isolated from coleoptiles and leaf sheaths of the seedling of the two cultivars, the contents of arabinose, xylose, and glucose changed during development. The cell walls were fractionated progressively with 50 mM CDTA, 50 mM Na(2)CO(3), 1 M KOH and 4 M KOH, and sugar composition was determined. The amount of CDTA-soluble fraction from the Hong Mang Mai cell walls was 2.4-fold higher than that from the Shirasagikomugi cell walls at 6 d of culture, and a considerable decrease was observed during development. The ratio of arabinose to xylose in 1 M KOH-soluble fraction from the two cultivars decreased. The amount of 4 M KOH-soluble fraction from the Shirasagikomugi cell walls was affected much more than those of the Hong Mang Mai cell walls. Many glycoside hydrolase activities were detected in the protein fractions from coleoptiles and leaf sheaths of the two cultivars, and the activities of licheninase, 1,3-1,4-beta-glucanase, and 1,3-beta-glucanase in the LiCl-soluble protein fraction increased drastically during development of the Shirasagikomugi seedlings. These findings suggest that the metabolism of the cell wall matrix polysaccharides of the drought-tolerant wheat cultivar is far different from that of the drought-sensitive wheat cultivar during seedling development.
Collapse
Affiliation(s)
- Haruyoshi Konno
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | | | | | | |
Collapse
|
35
|
|
36
|
Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B. Banana (Musa spp.) as a model to study the meristem proteome: Acclimation to osmotic stress. Proteomics 2007; 7:92-105. [PMID: 17149779 DOI: 10.1002/pmic.200600533] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Banana (Musa spp.) multiple shoot meristems are an excellent model to study the meristem proteome. Using a 2-DE protocol developed for small amounts of tissue and MS-based cross species polypeptide identification, we have revealed the meristem proteome and investigated the influence of sucrose-mediated osmotic stress in a dehydration-tolerant variety. Proteins that were significantly up- or down-regulated due to the high-sucrose treatment were classified using non-parametric univariate statistics. Our results suggest that the maintenance of an osmoprotective intracellular sucrose concentration, the enhanced expression of particular genes of the energy-conserving glycolysis and the conservation of the cell wall integrity are essential to maintain homeostasis, to acclimate and to survive dehydration. By comparing the dehydration-tolerant variety with a dehydration-sensitive variety, we were able to distinguish several genotype-specific proteins (isoforms), and could associate the dehydration-tolerant variety with proteins involved in energy metabolism (e.g., phosphoglycerate kinase, phosphoglucomutase, UDP-glucose pyrophosphorylase) and proteins that are associated with stress adaptation (e.g., OSR40-like protein, abscisic stress ripening protein-like protein). This work shows that proteome analysis can be used successfully to perform quantitative difference analysis and to characterize genetic variations in a recalcitrant crop.
Collapse
Affiliation(s)
- Sebastien C Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
37
|
Boscariol-Camargo RL, Berger IJ, Souza AA, Amaral AMD, Carlos EF, Freitas-Astúa J, Takita MA, Targon MLP, Medina CL, Reis MS, Machado MA. In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck) under water stress. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Alexandre M. do Amaral
- Instituto Agronômico de Campinas, Brazil; EMBRAPA Recursos Genéticos e Biotecnologia, Brazil
| | | | - Juliana Freitas-Astúa
- Instituto Agronômico de Campinas, Brazil; EMBRAPA Mandioca e Fruticultura Tropical, Brazil
| | | | | | | | | | | |
Collapse
|