1
|
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci 2019; 20:E1779. [PMID: 30974877 PMCID: PMC6479953 DOI: 10.3390/ijms20071779] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects derived from abnormalities in renal differentiation during embryogenesis. CAKUT is the major cause of end-stage renal disease and chronic kidney diseases in children, but its genetic causes remain largely unresolved. Here we discuss advances in the understanding of how mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity contributes to the regulation of ureteric bud branching morphogenesis, which dictates the final size, shape, and nephron number of the kidney. Recent studies also demonstrate that the MAPK/ERK pathway is directly involved in nephrogenesis, regulating both the maintenance and differentiation of the nephrogenic mesenchyme. Interestingly, aberrant MAPK/ERK signaling is linked to many cancers, and recent studies suggest it also plays a role in the most common pediatric renal cancer, Wilms' tumor.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
2
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
3
|
Farzaei MH, Tewari D, Momtaz S, Argüelles S, Nabavi SM. Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food Chem Toxicol 2018; 120:183-195. [PMID: 29981370 DOI: 10.1016/j.fct.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/23/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Numerous chemicals, such as phenolic compounds are strong radical scavengers, capable of alleviating oxidative stress induced neurodegeneration. Dietary antioxidants, especially flavonoids, are being considered as a promising approach to prevent or slow the pathological development of neurological illness and aging. One of the major advantage of natural products is that of their anti-amyloid effects over synthetic counterpart, however a healthy diet provides these beneficial natural substances as nutraceuticals. The extracellular-signal-regulated kinase (ERK) is one of the main pharmacological target of natural phenolic compounds, participating in several therapeutic effects. Mounting evidence revealed that numerous bioflavonoids, obtained from a variety of dietary fruits or plants as well as medicinal herbal sources, exhibit protective or therapeutic functions versus development of neurodegenerative diseases mainly through modulation of different compartments of ERK signaling pathway. Currently, there is remarkable interest in the beneficial effects of natural flavonoids to improve neural performance and prevent the onset and development of major neurodegenerative diseases. Natural products originated from medicinal plants, in particular antioxidants, have gained a great deal of attention due to their safe and non-toxic natures. Here, we summarized the effect of natural bioflavonoids on ERK signaling pathway and their molecular mechanism.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sasine JP, Himburg HA, Termini CM, Roos M, Tran E, Zhao L, Kan J, Li M, Zhang Y, de Barros SC, Rao DS, Counter CM, Chute JP. Wild-type Kras expands and exhausts hematopoietic stem cells. JCI Insight 2018; 3:98197. [PMID: 29875320 DOI: 10.1172/jci.insight.98197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Oncogenic Kras expression specifically in hematopoietic stem cells (HSCs) induces a rapidly fatal myeloproliferative neoplasm in mice, suggesting that Kras signaling plays a dominant role in normal hematopoiesis. However, such a conclusion is based on expression of an oncogenic version of Kras. Hence, we sought to determine the effect of simply increasing the amount of endogenous wild-type Kras on HSC fate. To this end, we utilized a codon-optimized version of the murine Kras gene (Krasex3op) that we developed, in which silent mutations in exon 3 render the encoded mRNA more efficiently translated, leading to increased protein expression without disruption to the normal gene architecture. We found that Kras protein levels were significantly increased in bone marrow (BM) HSCs in Krasex3op/ex3op mice, demonstrating that the translation of Kras in HSCs is normally constrained by rare codons. Krasex3op/ex3op mice displayed expansion of BM HSCs, progenitor cells, and B lymphocytes, but no evidence of myeloproliferative disease or leukemia in mice followed for 12 months. BM HSCs from Krasex3op/ex3op mice demonstrated increased multilineage repopulating capacity in primary competitive transplantation assays, but secondary competitive transplants revealed exhaustion of long-term HSCs. Following total body irradiation, Krasex3op/ex3op mice displayed accelerated hematologic recovery and increased survival. Mechanistically, HSCs from Krasex3op/ex3op mice demonstrated increased proliferation at baseline, with a corresponding increase in Erk1/2 phosphorylation and cyclin-dependent kinase 4 and 6 (Cdk4/6) activation. Furthermore, both the enhanced colony-forming capacity and in vivo repopulating capacity of HSCs from Krasex3op/ex3op mice were dependent on Cdk4/6 activation. Finally, BM transplantation studies revealed that augmented Kras expression produced expansion of HSCs, progenitor cells, and B cells in a hematopoietic cell-autonomous manner, independent from effects on the BM microenvironment. This study provides fundamental demonstration of codon usage in a mammal having a biological consequence, which may speak to the importance of codon usage in mammalian biology.
Collapse
Affiliation(s)
- Joshua P Sasine
- Division of Hematology/Oncology, Department of Medicine.,Molecular, Cellular and Integrative Physiology.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| | | | | | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| | - Evelyn Tran
- Division of Hematology/Oncology, Department of Medicine
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine
| | - Yurun Zhang
- Division of Hematology/Oncology, Department of Medicine
| | | | - Dinesh S Rao
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and.,Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North California, USA
| | - John P Chute
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| |
Collapse
|
5
|
Verma N, Keinan O, Selitrennik M, Karn T, Filipits M, Lev S. PYK2 sustains endosomal-derived receptor signalling and enhances epithelial-to-mesenchymal transition. Nat Commun 2015; 6:6064. [PMID: 25648557 DOI: 10.1038/ncomms7064] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a central developmental process implicated in cancer metastasis. Here we show that the tyrosine kinase PYK2 enhances cell migration and invasion and potentiates EMT in human breast carcinoma. EMT inducer, such as EGF, induces rapid phosphorylation of PYK2 and its translocation to early endosomes where it co-localizes with EGFR and sustains its downstream signals. Furthermore, PYK2 enhances EGF-induced STAT3-phosphorylation, while phospho-STAT3 directly binds to PYK2 promoter and regulates PYK2 transcription. STAT3 and PYK2 also enhance c-Met expression, while c-Met augments their phosphorylation, suggesting a positive feedback loop between PYK2-STAT3-c-Met. We propose that PYK2 sustains endosomal-derived receptor signalling and participates in a positive feedback that links cell surface receptor(s) to transcription factor(s) activation, thereby prolonging signalling duration and potentiating EMT. Given the role of EMT in breast cancer metastasis, we also found a significant correlation between PYK2 expression, tumour grade and lymph node metastasis, thus, demonstrating the clinicopathological implication of our findings.
Collapse
Affiliation(s)
- Nandini Verma
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omer Keinan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Selitrennik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Karn
- Department of Obstetrics and Gynecology, Goethe University Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt, Germany
| | - Martin Filipits
- Clinical Division of Oncology, Department of Medicine I, University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
6
|
Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:898-907. [PMID: 25497380 DOI: 10.1016/j.bbagrm.2014.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Savraj S Grewal
- Department of Biochemistry and Molecular Biology, Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
7
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
8
|
Jiménez G, Shvartsman SY, Paroush Z. The Capicua repressor--a general sensor of RTK signaling in development and disease. J Cell Sci 2013; 125:1383-91. [PMID: 22526417 DOI: 10.1242/jcs.092965] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signaling pathways control multiple cellular decisions in metazoans, often by regulating the expression of downstream genes. In Drosophila melanogaster and other systems, E-twenty-six (ETS) transcription factors are considered to be the predominant nuclear effectors of RTK pathways. Here, we highlight recent progress in identifying the HMG-box protein Capicua (CIC) as a key sensor of RTK signaling in both Drosophila and mammals. Several studies have shown that CIC functions as a repressor of RTK-responsive genes, keeping them silent in the absence of signaling. Following the activation of RTK signaling, CIC repression is relieved, and this allows the expression of the targeted gene in response to local or ubiquitous activators. This regulatory switch is essential for several RTK responses in Drosophila, from the determination of cell fate to cell proliferation. Furthermore, increasing evidence supports the notion that this mechanism is conserved in mammals, where CIC has been implicated in cancer and neurodegeneration. In addition to summarizing our current knowledge on CIC, we also discuss the implications of these findings for our understanding of RTK signaling specificity in different biological processes.
Collapse
Affiliation(s)
- Gerardo Jiménez
- Institució Catalana de Recerca i Estudis Avançats and Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona 08028, Spain.
| | | | | |
Collapse
|
9
|
Kim JM, Woo DH, Kim SH, Lee SY, Park HY, Seok HY, Chung WS, Moon YH. Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. PLANT CELL REPORTS 2012; 31:217-24. [PMID: 21969089 DOI: 10.1007/s00299-011-1157-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 05/08/2023]
Abstract
Plants have developed various regulatory pathways to adapt to environmental stresses. In this study, we identified Arabidopsis MKKK20 as a regulator in the response to osmotic stress. mkkk20 mutants were found to be sensitive to high concentration of salt and showed higher water loss rates than wild-type (WT) plants under dehydration conditions. In addition, mkkk20 mutants showed higher accumulation of superoxide, a reactive oxygen species (ROS), compared to WT plants under high salt condition. In contrast, transgenic plants overexpressing MKKK20 displayed tolerance to salt stress. MKKK20 transcripts were increased by the treatments with NaCl, mannitol, MV, sorbitol, and cold, suggesting that MKKK20 is involved in the response to osmotic, ROS, and cold stresses. In-gel kinase assay showed that MKKK20 regulates the activity of MPK6 under NaCl, cold, and H(2)O(2) treatments. Taken together, our results suggest that MKKK20 might be involved in the response to various abiotic stresses, especially osmotic stress, through its regulation of MPK6 activity.
Collapse
Affiliation(s)
- Jae-Min Kim
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Elgort MG, O'Shea JM, Jiang Y, Ayer DE. Transcriptional and Translational Downregulation of Thioredoxin Interacting Protein Is Required for Metabolic Reprogramming during G(1). Genes Cancer 2011; 1:893-907. [PMID: 21779470 DOI: 10.1177/1947601910389604] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/12/2010] [Accepted: 10/16/2010] [Indexed: 12/21/2022] Open
Abstract
Growth factor signaling drives increased glucose uptake and glycolysis-the Warburg effect-that supports macromolecular synthesis necessary for cell growth and proliferation. Thioredoxin interacting protein (TXNIP), a direct and glucose-induced transcriptional target of MondoA, is a potent negative regulator of glucose uptake and utilization. Thus, TXNIP may inhibit cell growth by restricting substrate availability for macromolecular synthesis. To determine TXNIP's contribution to metabolic reprogramming, we examined MondoA and TXNIP as cells exit quiescence and enter G(1). Serum stimulation of quiescent immortal diploid fibroblasts resulted in an acute upregulation of glucose uptake and glycolysis coinciding with downregulation of TXNIP expression. Ectopic expression of either MondoA or TXNIP restricted cell growth by blocking glucose uptake. Mechanistically, Ras-MAPK and PI3K/Akt signaling inhibit TXNIP translation and MondoA-dependent TXNIP transcription, respectively. We propose that the coordinated downregulation of MondoA transcriptional activity at the TXNIP promoter and inhibition of TXNIP translation are key components of metabolic reprogramming required for cells to exit quiescence.
Collapse
Affiliation(s)
- Marc G Elgort
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
11
|
Jung HS, Kim YH, Lee JW. Duration and magnitude of extracellular signal-regulated protein kinase phosphorylation determine adipogenesis or osteogenesis in human bone marrow-derived stem cells. Yonsei Med J 2011; 52:165-72. [PMID: 21155050 PMCID: PMC3017693 DOI: 10.3349/ymj.2011.52.1.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Imbalances between osteogenic and adipogenic differentiation leads to diseases such as osteoporosis. The aim of our study was to demonstrate the differences in extracellular signal-regulated kinase (ERK) phosphorylation during both adipogenesis and osteogenesis of human bone marrow-derived stem cells (BMSCs). MATERIALS AND METHODS Using troglitazone, GW9662 and U0126, we investigated their role in hBMSC differentiation to adipogenic and osteogenic fates. RESULTS ERK1/2 inhibition by U0126 suppressed proliferator-activated receptor (PPAR)γ expression and lipid accumulation, while it decreased the mRNA expression of adipogenic genes (lipoprotein lipase, PPARγ, and adipocyte protein) and osteogenic genes (type I collagen and osteopontin). ERK phosphorylation was transient and decreased during adipogenesis, whereas it occurred steadily during osteogenesis. Troglitazone, a PPARγ agonist, induced adipogenesis by inhibiting ERK phosphorylation even in an osteogenic medium, suggesting that ERK signaling needs to be shut off in order to proceed with adipose cell commitment. Cell proliferation was greatly increased in osteogenesis but was not changed during adipogenesis, indicating that ERK might play different roles in cellular proliferation and differentiation between the two committed cell types. CONCLUSION The duration and magnitude of ERK activation might be a crucial factor for the balance between adipogenesis and osteogenesis in human bone marrow-derived stem cells.
Collapse
Affiliation(s)
- Ho Sun Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Hee Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans. Biotechnol J 2010; 5:1261-76. [PMID: 21154667 DOI: 10.1002/biot.201000183] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 01/15/2023]
Abstract
Genes linked to human diseases often function in evolutionarily conserved pathways, which can be readily dissected in simple model organisms. Because of its short lifespan and well-known biology, coupled with a completely sequenced genome that shares extensive homology with that of mammals, Caenorhabditis elegans is one of the most versatile and powerful model organisms. Research in C. elegans has been instrumental for the elucidation of molecular pathways implicated in many human diseases. In this review, we introduce C. elegans as a model organism for biomedical research and we survey recent relevant findings that shed light on the basic molecular determinants of human disease pathophysiology. The nematode holds promise of providing clear leads towards the identification of potential targets for the development of new therapeutic interventions against human diseases.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | | |
Collapse
|
13
|
Haney S, Bardwell L, Nie Q. Ultrasensitive responses and specificity in cell signaling. BMC SYSTEMS BIOLOGY 2010; 4:119. [PMID: 20735856 PMCID: PMC2940771 DOI: 10.1186/1752-0509-4-119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/25/2010] [Indexed: 01/29/2023]
Abstract
Background Interconnected cell signaling pathways are able to efficiently and accurately transmit a multitude of different signals, despite an inherent potential for undesirable levels of cross-talk. To ensure that an appropriate response is produced, biological systems have evolved network-level mechanisms that insulate pathways from crosstalk and prevent 'leaking' or 'spillover' between pathways. Many signaling pathways have been shown to respond in an ultrasensitive (switch-like) fashion to graded input, and this behavior may influence specificity. The relationship of ultrasensitivity to signaling specificity has not been extensively explored. Results We studied the behavior of simple mathematical models of signaling networks composed of two interconnected pathways that share an intermediate component, asking if the two pathways in the network could exhibit both output specificity (preferentially activate their own output) and input fidelity (preferentially respond to their own input). Previous results with weakly-activated pathways indicated that neither mutual specificity nor mutual fidelity were obtainable in the absence of an insulating mechanism, such as cross-pathway inhibition, combinatorial signaling or scaffolding/compartmentalization. Here we found that mutual specificity is obtainable for hyperbolic or ultrasensitive pathways, even in the absence of an insulating mechanism. However, mutual fidelity is impossible at steady-state, even if pathways are hyperbolic or ultrasensitive. Nevertheless, ultrasensitivity does provide advantages in attaining specificity and fidelity to networks that contain an insulating mechanism. For networks featuring cross-pathway inhibition or combinatorial signaling, ultrasensitive activation can increase specificity in a limited way, and can only be utilized by one of the two pathways. In contrast, for networks featuring scaffolding/compartmentalization, ultrasensitive activation of both pathways can dramatically improve network specificity. Conclusions There are constraints to obtaining performance objectives associated with signaling specificity; such constraints may have influenced the evolution of signal transduction networks. Notably, input fidelity (preferential response to an authentic input) is a more difficult objective to achieve than output specificity (preferential targeting to an authentic output). Indeed, mutual fidelity is impossible in the absence of an insulating mechanism, even if pathways are ultrasensitive. Ultrasensitivity does, however, significantly enhance the performance of several insulating mechanisms. In particular, the ultrasensitive activation of both pathways can provide substantial improvement to networks containing scaffolding/compartmentalization.
Collapse
Affiliation(s)
- Seth Haney
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
14
|
Sahni N, Yi S, Daniels KJ, Huang G, Srikantha T, Soll DR. Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways. PLoS Biol 2010; 8:e1000363. [PMID: 20454615 PMCID: PMC2864266 DOI: 10.1371/journal.pbio.1000363] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/24/2010] [Indexed: 11/28/2022] Open
Abstract
The newly evolved pheromone response pathway of the white cell phenotype of the opportunistic human pathogen Candida albicans provides a unique view of how signal transduction pathways evolve. The way in which signal transduction pathways evolve remains a mystery, primarily because we have few examples of ones that have newly evolved. There are numerous examples of how signal transduction pathways in the same organism selectively share components, most notably between the signal transduction pathways in Saccharomyces cerevisiae for the mating process, the filamentation process, cell wall integrity, ascospore formation, and osmoregulation. These examples, however, have not provided insights into how such pathways evolve. Here, through construction of an overexpression library for 107 transcription factors, and through mutational analyses, we have identified the transcription factor Tec1 as the last component of the newly evolved signal transduction pathway that regulates the pheromone response of the white cell phenotype in Candida albicans. The elucidation of this last component, Tec1, establishes a comprehensive description of the pheromone response pathway in the white cell phenotype of C. albicans, providing a unique perspective on how new signal transduction pathways may evolve. The three portions of this new regulatory pathway appear to have been derived from three different ancestral programs still functional in C. albicans. The upstream portion, including signals, receptors, the trimeric G protein complex, and the MAP kinase cascade, was derived intact from the upstream portion of the opaque pheromone response pathway of the mating process; Tec1, the transcription factor targeted by the MAP kinase pathway, was derived from a filamentation pathway; and the white-specific downstream target genes were derived from an ancestral biofilm process. The evolution of this pheromone response pathway provides a possible paradigm for how such signal transduction pathways evolve. Signal transduction pathways regulate the response of cells to changes in the extracellular environment. Here, we report the identification of Tec1 as the single effector transcription factor of the pheromone response pathway of the human pathogen Candida albicans white cell type. This newly evolved pathway provides us with a unique opportunity to investigate signal transduction pathway evolution. In the C. albicans white-opaque transition, mating-competent opaque cells release mating pheromone that induces mating-incompetent white cells to form a biofilm which facilitates mating of the former. Each of the three major portions of the pathway that regulates white cell pheromone response appears to be derived from an ancestral pathway that is still intact and functional in C. albicans. The upstream portion—including the pheromone, its receptor, trimeric G protein complex, and a MAP kinase cascade—appears to be derived from the mating response pathway; transcription factor Tec1 from the filamentation pathway; and Tec1 target genes from the biofilm biosynthesis pathway. We posit that the sharing of upstream signaling components coordinates white and opaque cell pheromone responses, yet the divergence of downstream pathway components allows each cell type to elicit a unique phenotypic outcome. The white cell pheromone response pathway therefore provides a paradigm for how other such pathways may have evolved.
Collapse
Affiliation(s)
- Nidhi Sahni
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | | | | | | | | | | |
Collapse
|
15
|
Backert S, Kenny B, Gerhard R, Tegtmeyer N, Brandt S. PKA-mediated phosphorylation of EPEC-Tir at serine residues 434 and 463: A novel pathway in regulating Rac1 GTPase function. Cell Signal 2010; 21:462-9. [PMID: 19091303 DOI: 10.1016/j.cellsig.2008.11.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 11/15/2008] [Indexed: 01/29/2023]
Abstract
Type-III or type-IV secretion systems of many Gram-negative bacterial pathogens inject effector proteins into host cells that modulate cellular functions in their favour. A preferred target of these effectors is the actin-cytoskeleton as shown by studies using the gastric pathogens Helicobacter pylori (H. pylori) and enteropathogenic Escherichia coli (EPEC). We recently developed a co-infection approach to study effector protein function and molecular mechanisms by which they highjack cellular signalling cascades. This is exemplified by our observation that EPEC profoundly blocks H. pylori-induced epithelial cell scattering and elongation, a disease-related event requiring the activity of small Rho GTPase Rac1. While this suppressive effect is dependent on the effector protein Tir and the outer-membrane protein Intimin, it unexpectedly revealed evidence for Tir-signalling independent of phosphorylation of Tir at tyrosine residues 454 and 474. Instead, our studies revealed a previously unidentified function for protein kinase A (PKA)-mediated phosphorylation of Tir at serine residues 434 and 463. We demonstrated that EPEC infection activates PKA for Tir phosphorylation. Activated PKA then phosphorylates Rac1 at its serine residue 71 associated with reduced GTP-load and inhibited cell elongation. Phosphorylation of Rho GTPases such as Rac1 might be an interesting novel strategy in microbial pathogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- University College Dublin; School of Biomolecular and Biomedical Sciences; Dublin, Ireland
| | | | | | | | | |
Collapse
|
16
|
Chaudhri VK, Kumar D, Misra M, Dua R, Rao KVS. Integration of a phosphatase cascade with the mitogen-activated protein kinase pathway provides for a novel signal processing function. J Biol Chem 2010; 285:1296-310. [PMID: 19897477 PMCID: PMC2801257 DOI: 10.1074/jbc.m109.055863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/06/2009] [Indexed: 11/16/2022] Open
Abstract
We mathematically modeled the receptor-dependent mitogen-activated protein kinase (MAPK) signaling by incorporating the regulation through cellular phosphatases. Activation induced the alignment of a phosphatase cascade in parallel with the MAPK pathway. A novel regulatory motif was, thus, generated, providing for the combinatorial control of each MAPK intermediate. This ensured a non-linear mode of signal transmission with the output being shaped by the balance between the strength of input signal and the activity gradient along the phosphatase axis. Shifts in this balance yielded modulations in topology of the motif, thereby expanding the repertoire of output responses. Thus, we identify an added dimension to signal processing wherein the output response to an external stimulus is additionally filtered through indicators that define the phenotypic status of the cell.
Collapse
Affiliation(s)
- Virendra K. Chaudhri
- From the Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dhiraj Kumar
- From the Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manjari Misra
- From the Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Raina Dua
- From the Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kanury V. S. Rao
- From the Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
17
|
Abstract
Metazoans use a handful of highly conserved signaling pathways to create a signaling backbone that governs development. How these few signals have such a versatile action likely depends upon the larger-scale network they form through integration, as exemplified by cross-talk between the Notch and receptor tyrosine kinase (RTK) pathways. We examined the transcriptional output of Notch-RTK cross-talk during Drosophila development and present in vivo data supporting a role for selected mutually regulated genes in signal integration. Interestingly, Notch-RTK integration did not lead to general antagonism of either pathway, as is commonly believed. Instead, integration had a combinatorial effect on specific cross-regulated targets, which unexpectedly included numerous core components of the RTK and other major signaling pathways (TGF-beta, Hh, Jak/Stat, nuclear receptor and Wnt). We find the majority of Ras-responsive genes are also Notch-responsive, suggesting Notch may function to specify the response to Ras activation.
Collapse
|
18
|
Abstract
The mitogen-activated protein kinase (MAPK) pathway provides cells with the means to interpret external signal cues or conditions, and respond accordingly. This cascade regulates many cell functions such as differentiation, proliferation and migration. Through modulation of both the amplitude and duration of MAPK signalling, cells can control their responses to the multiple activators of the pathway. In addition, recent work has highlighted the importance of the cellular compartment from which the signalling occurs. Cells have developed intricate systems that enable them to localise MAPK components to specific subcellular domains in response to a particular stimulus. Consequently, different factors can activate the same kinase in separate locations. Crucial to this ability are molecular scaffolds, which act as signalling modules for MAPKs, confining them to the desired compartment. The participation of the MAPK network in fundamental physiological processes, such as cell proliferation and inflammation, and the derangement of the homeostasis that occurs in disease processes, renders MAPK a highly desirable target for therapeutic intervention. As we enhance our comprehension of scaffolds and other regulatory molecules, novel targets for drug design may be discovered that will afford selective and specific MAPK modulation.
Collapse
Affiliation(s)
- M D Brown
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Lovastatin enhances gefitinib activity in glioblastoma cells irrespective of EGFRvIII and PTEN status. J Neurooncol 2008; 90:9-17. [DOI: 10.1007/s11060-008-9627-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 05/28/2008] [Indexed: 01/09/2023]
|
20
|
Spellman DS, Deinhardt K, Darie CC, Chao MV, Neubert TA. Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 2008; 7:1067-76. [PMID: 18256212 DOI: 10.1074/mcp.m700387-mcp200] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cultured primary neurons are a well established model for the study of neuronal function in vitro. Here we demonstrated that stable isotope labeling by amino acids in cell culture (SILAC) can be applied to a differentiated, non-dividing cell type such as primary neurons, and we applied this technique to assess changes in the neuronal phosphotyrosine proteome in response to stimulation by brain-derived neurotrophic factor (BDNF), an important molecule for the development and regulation of neuronal connections. We found that 13 proteins had SILAC ratios above 1.50 or below 0.67 in phosphotyrosine immunoprecipitations comparing BDNF-treated and control samples, and an additional 18 proteins had ratios above 1.25 or below 0.80. These proteins include TrkB, the receptor tyrosine kinase for BDNF, and others such as hepatocyte growth factor-regulated tyrosine kinase substrate and signal-transducing adaptor molecule, which are proteins known to regulate intracellular trafficking of receptor tyrosine kinases. These results demonstrate that the combination of primary neuronal cell culture and SILAC can be a powerful tool for the study of the proteomes of neuronal molecular and cellular dynamics.
Collapse
Affiliation(s)
- Daniel S Spellman
- Department of Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
21
|
Cinnamon E, Helman A, Ben-Haroush Schyr R, Orian A, Jiménez G, Paroush Z. Multiple RTK pathways downregulate Groucho-mediated repression in Drosophila embryogenesis. Development 2008; 135:829-37. [PMID: 18216172 DOI: 10.1242/dev.015206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RTK pathways establish cell fates in a wide range of developmental processes. However, how the pathway effector MAPK coordinately regulates the expression of multiple target genes is not fully understood. We have previously shown that the EGFR RTK pathway causes phosphorylation and downregulation of Groucho, a global co-repressor that is widely used by many developmentally important repressors for silencing their various targets. Here, we use specific antibodies that reveal the dynamics of Groucho phosphorylation by MAPK, and show that Groucho is phosphorylated in response to several RTK pathways during Drosophila embryogenesis. Focusing on the regulation of terminal patterning by the Torso RTK pathway, we demonstrate that attenuation of Groucho's repressor function via phosphorylation is essential for the transcriptional output of the pathway and for terminal cell specification. Importantly, Groucho is phosphorylated by an efficient mechanism that does not alter its subcellular localisation or decrease its stability; rather, modified Groucho endures long after MAPK activation has terminated. We propose that phosphorylation of Groucho provides a widespread, long-term mechanism by which RTK signals control target gene expression.
Collapse
Affiliation(s)
- Einat Cinnamon
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Zou X, Peng T, Pan Z. Modeling specificity in the yeast MAPK signaling networks. J Theor Biol 2008; 250:139-55. [DOI: 10.1016/j.jtbi.2007.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 02/03/2023]
|
23
|
Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol Syst Biol 2007; 3:151. [PMID: 18059446 PMCID: PMC2174628 DOI: 10.1038/msb4100195] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/25/2007] [Indexed: 12/30/2022] Open
Abstract
Robust biological signaling networks evolved, through gene duplications, from simple, relatively fragile cascades. Architectural features such as layered configuration, branching and modularity, as well as functional characteristics (e.g., feedback control circuits), enable fail-safe performance in the face of internal and external perturbations. These universal features are exemplified here using the receptor tyrosine kinase (RTK) family. The RTK module is richly mutated and overexpressed in human malignancies, and pharmaceutical interception of its signaling effectively retards growth of specific tumors. Therapy-induced interception of RTK-signaling pathways and the common evolvement of drug resistance are respectively considered here as manifestations of fragility and plasticity of robust networks. The systems perspective we present views pathologies as hijackers of biological robustness and offers ways for identifying fragile hubs, as well as strategies to overcome drug resistance.
Collapse
|
24
|
Doroquez DB, Orr-Weaver TL, Rebay I. Split ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development. Mech Dev 2007; 124:792-806. [PMID: 17588724 PMCID: PMC2231642 DOI: 10.1016/j.mod.2007.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 04/03/2007] [Accepted: 05/14/2007] [Indexed: 01/08/2023]
Abstract
The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we reported that the gene split ends (spen) functions within or parallel to the EGFR pathway during midline glial cell development in the embryonic central nervous system. Here, we report that the cellular defects caused by loss of spen function in the developing eye imaginal disc place spen as both an antagonist of the Notch pathway and a positive contributor to EGFR signaling during retinal cell differentiation. Specifically, loss of spen results in broadened expression of Scabrous, ectopic activation of Notch signaling, and a corresponding reduction in Atonal expression at the morphogenetic furrow. Consistent with Spen's role in antagonizing Notch signaling, reduction of spen levels is sufficient to suppress Notch-dependent phenotypes. At least in part due to loss of Spen-dependent down-regulation of Notch signaling, loss of spen also dampens EGFR signaling as evidenced by reduced activity of MAP kinase (MAPK). This reduced MAPK activity in turn leads to a failure to limit expression of the EGFR pathway antagonist and the ETS-domain transcriptional repressor Yan and to a corresponding loss of cell fate specification in spen mutant ommatidia. We propose that Spen plays a role in modulating output from the Notch and EGFR pathways to ensure appropriate patterning during eye development.
Collapse
Affiliation(s)
- David B. Doroquez
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 USA
| | - Terry L. Orr-Weaver
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 USA
| | - Ilaria Rebay
- Ben May Institute for Cancer Research, University of Chicago, 929 E. 57 St., Chicago, IL 60637 USA
| |
Collapse
|
25
|
Abstract
Cellular signaling pathways transduce extracellular signals into appropriate responses. These pathways are typically interconnected to form networks, often with different pathways sharing similar or identical components. A consequence of this connectedness is the potential for cross talk, some of which may be undesirable. Indeed, experimental evidence indicates that cells have evolved insulating mechanisms to partially suppress "leaking" between pathways. Here we characterize mathematical models of simple signaling networks and obtain exact analytical expressions for two measures of cross talk called specificity and fidelity. The performance of several insulating mechanisms--combinatorial signaling, compartmentalization, the inhibition of one pathway by another, and the selective activation of scaffold proteins--is evaluated with respect to the trade-off between the specificity they provide and the constraints they place on the network. The effects of noise are also examined. The insights gained from this analysis are applied to understanding specificity in the yeast mating and invasive growth MAP kinase signaling network.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California 92697-2300, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Signal transduction networks allow cells to recognize and respond to changes in the extracellular environment. All eukaryotic cells have MAPK (mitogen-activated protein kinase) pathways that participate in diverse cellular functions, including differentiation, survival, transformation and movement. Five distinct groups of MAPKs have been characterized in mammals, the most extensively studied of which is the Ras/Raf/MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]/ERK cascade. Numerous stimuli, including growth factors and phorbol esters, activate MEK/ERK signalling. How disparate extracellular signals are translated by MEK/ERK into different cellular functions remains obscure. Originally identified in yeast, scaffold proteins are now recognized to contribute to the specificity of MEK/ERK pathways in mammalian cells. These scaffolds include KSR (kinase suppressor of Ras), beta-arrestin, MEK partner-1, Sef and IQGAP1. Scaffolds organize multiprotein signalling complexes. This targets MEK/ERK to specific substrates and facilitates communication with other pathways, thereby mediating diverse functions. The adaptor proteins regulate the kinetics, amplitude and localization of MEK/ERK signalling, providing an efficient mechanism that enables an individual extracellular stimulus to promote a specific biological response.
Collapse
Affiliation(s)
- D B Sacks
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Thorn 530, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Astigarraga S, Grossman R, Díaz-Delfín J, Caelles C, Paroush Z, Jiménez G. A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J 2007; 26:668-77. [PMID: 17255944 PMCID: PMC1794389 DOI: 10.1038/sj.emboj.7601532] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 12/07/2006] [Indexed: 11/09/2022] Open
Abstract
Early Drosophila development requires two receptor tyrosine kinase (RTK) pathways: the Torso and the Epidermal growth factor receptor (EGFR) pathways, which regulate terminal and dorsal-ventral patterning, respectively. Previous studies have shown that these pathways, either directly or indirectly, lead to post-transcriptional downregulation of the Capicua repressor in the early embryo and in the ovary. Here, we show that both regulatory effects are direct and depend on a MAPK docking site in Capicua that physically interacts with the MAPK Rolled. Capicua derivatives lacking this docking site cause dominant phenotypes similar to those resulting from loss of Torso and EGFR activities. Such phenotypes arise from inappropriate repression of genes normally expressed in response to Torso and EGFR signaling. Our results are consistent with a model whereby Capicua is the main nuclear effector of the Torso pathway, but only one of different effectors responding to EGFR signaling. Finally, we describe differences in the modes of Capicua downregulation by Torso and EGFR signaling, raising the possibility that such differences contribute to the tissue specificity of both signals.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Rona Grossman
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Julieta Díaz-Delfín
- Institut de Recerca Biomèdica, Parc Científic de Barcelona, Barcelona, Spain
| | - Carme Caelles
- Institut de Recerca Biomèdica, Parc Científic de Barcelona, Barcelona, Spain
| | - Ze'ev Paroush
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Gerardo Jiménez
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Molecular and Cellular Biology, Institut de Biologia Molecular de Barcelona-CSIC, Parc Cientific de Barcelona, Josep Samitier, 1-5, Barcelona 08028, Spain. Tel.: +34 934 034 970; Fax: +34 934 034 979; E-mail:
| |
Collapse
|
28
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
29
|
Boykevisch S, Zhao C, Sondermann H, Philippidou P, Halegoua S, Kuriyan J, Bar-Sagi D. Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr Biol 2007; 16:2173-9. [PMID: 17084704 DOI: 10.1016/j.cub.2006.09.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/05/2006] [Accepted: 09/11/2006] [Indexed: 12/20/2022]
Abstract
The RTK-Ras-ERK cascade is a central signaling module implicated in the control of diverse biological processes including cell proliferation, differentiation, and survival. The coupling of RTK to Ras is mediated by the Ras-specific nucleotide-exchange factor Son of Sevenless (Sos), which activates Ras by inducing the exchange of GDP for GTP . Considerable evidence indicates that the duration and amplitude of Ras signals are important determinants in controlling the biological outcome . However, the mechanisms that regulate the quantitative output of Ras signaling remain poorly understood. We define a previously unrecognized regulatory component of the machinery that specifies the kinetic properties of signals propagated through the RTK-Ras-ERK cascade. We demonstrate that the establishment of a positive feedback loop involving Ras.GTP and Sos leads to an increase in the amplitude and duration of Ras activation in response to EGF stimulation. This effect is propagated to downstream elements of the pathway as reflected by sustained EGF-induced ERK phosphorylation and enhanced SRE-dependent transcription. As a consequence, the physiological endpoint of EGF action is switched from proliferation to differentiation. We propose that the engagement of Ras/Sos positive feedback loop may contribute to the mechanism by which ligand stimulation is coupled to discrete biological responses.
Collapse
Affiliation(s)
- Sean Boykevisch
- Department of Molecular Genetics and Microbiology, State University of New York, at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Zak DE, Hao H, Vadigepalli R, Miller GM, Ogunnaike BA, Schwaber JS. Systems analysis of circadian time-dependent neuronal epidermal growth factor receptor signaling. Genome Biol 2006; 7:R48. [PMID: 16784547 PMCID: PMC1779538 DOI: 10.1186/gb-2006-7-6-r48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/05/2006] [Accepted: 05/04/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying the gene regulatory networks governing physiological signal integration remains an important challenge in circadian biology. Epidermal growth factor receptor (EGFR) has been implicated in circadian function and is expressed in the suprachiasmatic nuclei (SCN), the core circadian pacemaker. The transcription networks downstream of EGFR in the SCN are unknown but, by analogy to other SCN inputs, we expect the response to EGFR activation to depend on circadian timing. RESULTS We have undertaken a systems-level analysis of EGFR circadian time-dependent signaling in the SCN. We collected gene-expression profiles to study how the SCN response to EGFR activation depends on circadian timing. Mixed-model analysis of variance (ANOVA) was employed to identify genes with circadian time-dependent EGFR regulation. The expression data were integrated with transcription-factor binding predictions through gene group enrichment analyses to generate robust hypotheses about transcription-factors responsible for the circadian phase-dependent EGFR responses. CONCLUSION The analysis results suggest that the transcriptional response to EGFR signaling in the SCN may be partly mediated by established transcription-factors regulated via EGFR transcription-factors (AP1, Ets1, C/EBP), transcription-factors involved in circadian clock entrainment (CREB), and by core clock transcription-factors (Ror alpha). Quantitative real-time PCR measurements of several transcription-factor expression levels support a model in which circadian time-dependent EGFR responses are partly achieved by circadian regulation of upstream signaling components. Our study suggests an important role for EGFR signaling in SCN function and provides an example for gaining physiological insights through systems-level analysis.
Collapse
Affiliation(s)
- Daniel E Zak
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Thomas Jefferson University, Locust St, Philadelphia, PA, USA 19107
- Department of Chemical Engineering, University of Delaware, Academy St, Newark, DE, USA 19716
| | - Haiping Hao
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Thomas Jefferson University, Locust St, Philadelphia, PA, USA 19107
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Thomas Jefferson University, Locust St, Philadelphia, PA, USA 19107
| | - Gregory M Miller
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Thomas Jefferson University, Locust St, Philadelphia, PA, USA 19107
- Department of Chemical Engineering, University of Delaware, Academy St, Newark, DE, USA 19716
| | - Babatunde A Ogunnaike
- Department of Chemical Engineering, University of Delaware, Academy St, Newark, DE, USA 19716
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Thomas Jefferson University, Locust St, Philadelphia, PA, USA 19107
| |
Collapse
|
31
|
Abstract
How equipotent cells develop into complex tissues containing many diverse cell types is still a mystery. However, evidence is accumulating from different tissue systems in multiple organisms that many of the specific receptor families known to regulate cell fate decisions target conserved signaling pathways. A mechanism for preserving specificity in the cellular response that has emerged from these studies is one in which quantitative differences in receptor signaling regulate the cell fate decision. A signal strength model has recently gained support as a means to explain alphabeta/gammadelta lineage commitment. In this review, we compare the alphabeta/gammadelta fate decision with other cell fate decisions that occur outside of the lymphoid system to attain a better picture of the quantitative signaling mechanism for cell fate specification.
Collapse
Affiliation(s)
- Sandra M Hayes
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Dimitroulakos J, Lorimer IA, Goss G. Strategies to enhance epidermal growth factor inhibition: targeting the mevalonate pathway. Clin Cancer Res 2006; 12:4426s-4431s. [PMID: 16857822 DOI: 10.1158/1078-0432.ccr-06-0089] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mevalonate metabolites play an essential role in transducing epidermal growth factor (EGF) receptor (EGFR)-mediated signaling, as several of these metabolites are required for the function of this receptor and the components of its signaling cascades. Thus, the depletion of mevalonate metabolites may have a significant effect on EGFR function. Lovastatin is a specific and potent inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme of the mevalonate pathway. Targeting 3-hydroxy-3-methylglutaryl CoA reductase using lovastatin induces a potent tumor-specific apoptotic response in a variety of tumor types at therapeutically achievable levels of this drug. The effects of lovastatin on EGFR function and the potential combination effects with EGFR tyrosine kinase inhibitors, such as gefitinib, were evaluated. Lovastatin treatment inhibited EGF-induced EGFR autophosphorylation and its downstream signaling cascades by 24 hours. Combining lovastatin and gefitinib showed enhanced inhibition and cooperative cytotoxicity in a variety of cell lines that included all eight squamous cell carcinomas, four non-small cell lung carcinoma, and four colon carcinoma cell lines tested. Isobologram analyses confirmed that this combination was synergistic, inducing a potent apoptotic response. A phase I study has shown the safety and potential clinical benefit of high-dose lovastatin in patients with recurrent squamous cell carcinoma. The use of lovastatin, which is metabolized by CYP3A4, is contraindicated with drugs, such as gefitinib and erlotinib, which are also metabolized by CYP3A4 due to greatly enhanced toxicity. Rosuvastatin, a relatively novel potent mevalonate pathway inhibitor that is not metabolized significantly by CYP3A4, is a more appropriate statin to combine with either erlotinib or gefitinib. The combination of erlotinib and rosuvastatin has been proposed for a phase I/II study in advanced non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Jim Dimitroulakos
- Centre for Cancer Therapeutics, Ottawa Hospital Regional Cancer Centre and Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
33
|
Lauberth SM, Rauchman M. A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J Biol Chem 2006; 281:23922-31. [PMID: 16707490 DOI: 10.1074/jbc.m513461200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sall1 is a multi-zinc finger transcription factor that represses gene expression and regulates organogenesis. In this report, we further characterize the domain of Sall1 necessary for repression. We show that endogenous Sall1 binds to the nucleosome remodeling and deacetylase corepressor complex (NuRD) and confirm the functionality of the Sall1-associating macromolecular complex by showing that the complex possesses HDAC activity. NuRD is involved in global transcriptional repression and regulation of specific developmental processes. The mechanism by which sequence-specific DNA-binding proteins associate with NuRD is not well understood. We have identified a highly conserved 12-amino acid motif in the transcription factor Sall1 that is sufficient for the recruitment of NuRD. Single amino acid substitutions defined the critical amino acid peptide motif as RRKQXK-PXXF. This motif probably exhibits a more general role in regulating gene expression, since other proteins containing this domain, including all Sall family members and an unrelated zinc finger protein Ebfaz, mediate transcriptional repression and associate with NuRD. These results also have important implications for the pathogenesis of Townes-Brocks, a syndrome caused by SALL1 mutations.
Collapse
Affiliation(s)
- Shannon M Lauberth
- Department of Biochemistry and Molecular Biology, Veterans Affairs Medical Center, Saint Louis University, St. Louis, Missouri 63106, USA
| | | |
Collapse
|
34
|
Ebisuya M, Kondoh K, Nishida E. The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 2006; 118:2997-3002. [PMID: 16014377 DOI: 10.1242/jcs.02505] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ERK MAP kinase signaling plays a pivotal role in diverse cellular functions, including cell proliferation, differentiation, migration and survival. One of the central questions concerning this signaling is how activation of the same protein kinase, ERK, elicits distinct cellular outcomes. Recent progress has demonstrated that differences in the duration, magnitude and subcellular compartmentalization of ERK activity generate variations in signaling output that regulate cell fate decisions. Furthermore, several molecules have been identified as spatial, temporal or strength-controlling regulators of ERK activity. Signaling by various extracellular stimuli thus could be modulated by these regulators to give qualitative and quantitative differences in ERK activity, which are then interpreted by the cells as determinants for appropriate responses.
Collapse
Affiliation(s)
- Miki Ebisuya
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
35
|
Qiao F, Harada B, Song H, Whitelegge J, Courey AJ, Bowie JU. Mae inhibits Pointed-P2 transcriptional activity by blocking its MAPK docking site. EMBO J 2005; 25:70-9. [PMID: 16362034 PMCID: PMC1356365 DOI: 10.1038/sj.emboj.7600924] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 11/25/2005] [Indexed: 11/08/2022] Open
Abstract
During Drosophila melanogaster eye development, signaling through receptor tyrosine kinases (RTKs) leads to activation of a mitogen activated protein tyrosine kinase, called Rolled. Key nuclear targets of Rolled are two antagonistic transcription factors: Yan, a repressor, and Pointed-P2 (Pnt-P2), an activator. A critical regulator of this process, Mae, can interact with both Yan and Pnt-P2 through their SAM domains. Although earlier work showed that Mae derepresses Yan-regulated transcription by depolymerizing the Yan polymer, the mechanism of Pnt-P2 regulation by Mae remained undefined. We find that efficient phosphorylation and consequent activation of Pnt-P2 requires a three-dimensional docking surface on its SAM domain for the MAP kinase, Rolled. Mae binding to Pnt-P2 occludes this docking surface, thereby acting to downregulate Pnt-P2 activity. Docking site blocking provides a new mechanism whereby the cell can precisely modulate kinase signaling at specific targets, providing another layer of regulation beyond the more global changes effected by alterations in the activity of the kinase itself.
Collapse
Affiliation(s)
- Feng Qiao
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, CA, USA
- Molecular Biology Institute, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - Bryan Harada
- Molecular Biology Institute, Los Angeles, CA, USA
| | - Haiyun Song
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | | | - Albert J Courey
- Molecular Biology Institute, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - James U Bowie
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, CA, USA
- Molecular Biology Institute, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, Room 655, Boyer Hall, UCLA, 611 Charles E. Young Drive E., Los Angeles, CA 90095-1570, USA. Tel.: +1 310 206 4747; Fax: +1 310 206 4749; E-mail:
| |
Collapse
|
36
|
Galindo MI, Bishop SA, Couso JP. Dynamic EGFR-Ras signalling in Drosophila leg development. Dev Dyn 2005; 233:1496-508. [PMID: 15965980 DOI: 10.1002/dvdy.20452] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In Drosophila, as in many other animals, EGFR-Ras signalling has multiple developmental roles from oogenesis to differentiation. In leg development, in particular, it has been described to be responsible for the establishment of distal leg fates in a graded manner. Here, we investigate the patterns of expression of activators of EGFR-Ras signalling, as well as some of the effectors, in order to better understand the patterning of the distal leg, and to investigate further roles of this signalling pathway. These patterns, together with genetic data obtained by different mutant conditions for EGFR-Ras members and transgene expression, suggest two rounds of signalling in leg development. Early, the EGFR ligand Vein is the main player in distal leg patterning, possibly supported later by another ligand activated by Rhomboid. Later, in a second wave of signalling when all the proximal-distal leg fates have been specified, domains of EGFR/Ras activation appear inside each leg segment to regulate Notch-mediated joint development, and also some organs such as tendons and sensory organs. This second wave relies on a ligand activated by Rhomboid.
Collapse
Affiliation(s)
- M I Galindo
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | | | | |
Collapse
|
37
|
Row P, Clague M, Urbé S. Growth factors induce differential phosphorylation profiles of the Hrs-STAM complex: a common node in signalling networks with signal-specific properties. Biochem J 2005; 389:629-36. [PMID: 15828871 PMCID: PMC1180712 DOI: 10.1042/bj20050067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and STAM (signal-transducing adaptor molecule) form a heterodimeric complex that associates with endosomal membranes and is tyrosine-phosphorylated in response to a variety of growth factors including EGF (epidermal growth factor), HGF (hepatocyte growth factor) and PDGF (platelet-derived growth factor). Phosphorylation of the Hrs-STAM complex requires receptor endocytosis. We show that an intact UIM (ubiquitin interaction motif) within Hrs is a conserved requirement for Hrs phosphorylation downstream of both EGF and HGF stimulations. Consistent with this, expression of a dominant-negative form of the E3 ubiquitin ligase, c-Cbl, inhibits EGF- and HGF-dependent Hrs phosphorylation. Despite this conservation, kinase inhibitor profiles using PP1 (4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and SU6656 indicate that distinct non-receptor tyrosine kinases couple EGF, HGF and PDGF stimulation with the tyrosine phosphorylation of the Hrs-STAM complex. Crucially, analysis with phospho-specific antibodies indicates that these kinases generate a signal-specific, combinatorial phosphorylation profile of the Hrs-STAM complex, with the potential of diversifying tyrosine kinase receptor signalling through a common element.
Collapse
Affiliation(s)
- Paula E. Row
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Michael J. Clague
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Sylvie Urbé
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Abe T, Saigo Y, Hojo M, Kano T, Wakusawa R, Tokita Y, Tamai M. Protection of Photoreceptor Cells from Phototoxicity by Transplanted Retinal Pigment Epithelial Cells Expressing Different Neurotrophic Factors. Cell Transplant 2005; 14:799-808. [PMID: 16454354 DOI: 10.3727/000000005783982549] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of cells or tissues and the intravitreal injection of neurotrophic factors are two methods that have been used to treat retinal diseases. The purpose of this study was to examine the effects of combining both methods: the transplantation of retinal pigment epithelial (RPE) cells expressing different neurotrophic factors. The neutrophic factors were Axokine, brain derived-neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF). The enhanced green fluorescence protein (eGFP) gene was used as a reporter gene. These genes were transduced into RPE cells by lipofection, selected by antibiotics, and transplanted into the subretinal space of 108 rats. The rats were examined at 1 week and 3 months after the transplantation to determine whether the transduced cells were present, were expressing the protein, and were able to protect photoreceptors against phototoxicity. The survival of the transplanted cells was monitored by the presence of eGFP. The degree of protection was determined by the thickness of the outer nuclear layer. Our results showed that the degree of photoreceptor protection was different for the different types of neurotrophic factors at 1 week. After 3 months, the number of surviving transplanted cell was markedly reduced, and protection was observed only with the BDNF-transduced RPE cells. A significant degree of rescue was also observed by BDNF-transduced RPE cells in the nontransplanted area of the retina at both the early and late times. Lymphocytic infiltration was not detected in the vitreous, retina, and choroid at any time. We conclude that the transplantation of BDNF-transduced RPE cells can reduce the photoreceptor damage induced by phototoxicity in the transplanted area and weakly in the nontransplanted area.
Collapse
Affiliation(s)
- Toshiaki Abe
- Division of Clinical Cell Therapy, School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Molina DM, Grewal S, Bardwell L. Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J Biol Chem 2005; 280:42051-60. [PMID: 16246839 PMCID: PMC3017498 DOI: 10.1074/jbc.m510590200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient and specific signaling by mitogen-activated protein kinases (MAPKs) is enhanced by docking sites found on many MAPK substrates and regulators. Here we show that the MAPKs ERK1 and ERK2 form a stable complex (Kd approximately 6 microm) with their substrate the microphthalmia-associated transcription factor (MITF). Complex formation requires a domain of MITF of approximately 100 residues that is nearby, but C-terminal to, the MAPK phosphorylation site at Ser73. MITF derivatives lacking this ERK-binding domain do not bind ERK2 and are phosphorylated less efficiently by ERK2. The ERK-binding domain of MITF bears no obvious resemblance to previously characterized MAPK docking motifs; in particular, it does not contain a consensus D-site. Consistent with this, ERK2-MITF binding does not require the integrity of the CD/sevenmaker region of ERK2. Furthermore, D-site peptides, which are able to potently inhibit ERK2-mediated phosphorylation of the Elk-1 transcription factor (IC50= 3 microm), are relatively poor inhibitors of ERK2-mediated phosphorylation of MITF, exhibiting >15-fold selectivity for inhibition of Elk-1 versus MITF. These observations demonstrate substrate-selective kinase inhibition: the possibility that small molecules that target docking interactions may be used to selectively inhibit the phosphorylation of a subset of the substrates of a kinase.
Collapse
Affiliation(s)
| | | | - Lee Bardwell
- To whom correspondence should be addressed: Tel.: 949-824-6902; Fax: 949-824-4709;
| |
Collapse
|
40
|
Komarova NL, Zou X, Nie Q, Bardwell L. A theoretical framework for specificity in cell signaling. Mol Syst Biol 2005; 1:2005.0023. [PMID: 16729058 PMCID: PMC1681467 DOI: 10.1038/msb4100031] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/23/2005] [Indexed: 11/21/2022] Open
Abstract
Different cellular signal transduction pathways are often interconnected, so that the potential for undesirable crosstalk between pathways exists. Nevertheless, signaling networks have evolved that maintain specificity from signal to cellular response. Here, we develop a framework for the analysis of networks containing two or more interconnected signaling pathways. We define two properties, specificity and fidelity, that all pathways in a network must possess in order to avoid paradoxical situations where one pathway activates another pathway's output, or responds to another pathway's input, more than its own. In unembellished networks that share components, it is impossible for all pathways to have both mutual specificity and mutual fidelity. However, inclusion of either of two related insulating mechanisms—compartmentalization or the action of a scaffold protein—allows both properties to be achieved, provided deactivation rates are fast compared to exchange rates.
Collapse
Affiliation(s)
- Natalia L Komarova
- Department of Mathematics, University of California, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
- Departments of Mathematics and Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA. Tel.: +1 9498241268; Fax: +1 9498247993; E-mail:
| | - Xiufen Zou
- Department of Mathematics, University of California, Irvine, CA, USA
- College of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Developmental and Cell Biology, 5205 McGaugh Hall, University of California, Irvine, CA 92697-2300, USA. Tel.: +1 9498246902; Fax: +1 9498244709; E-mail:
| |
Collapse
|
41
|
Abstract
The Ras and Notch signaling pathways are used over and over again during development to control many different biological processes. Frequently, these two signaling pathways intersect to influence common processes, but sometimes they cooperate and sometimes they antagonize each other. The Caenorhabditis elegans vulva and the Drosophila eye are two classic paradigms for understanding how Ras and Notch affect cell fates, and how the two pathways work together to control biological pattern. Recent advances in these systems reveal some of the mechanisms by which Ras and Notch can interact. Similar types of interactions in mammals may be important for determining whether and how alterations in Ras or Notch lead to cancer.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
42
|
Apitz H, Strünkelnberg M, de Couet HG, Fischbach KF. Single-minded, Dmef2, Pointed, and Su(H) act on identified regulatory sequences of the roughest gene in Drosophila melanogaster. Dev Genes Evol 2005; 215:460-69. [PMID: 16096801 DOI: 10.1007/s00427-005-0005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
Roughest (Rst) is a cell adhesion molecule of the immunoglobulin superfamily that has multiple and diverse functions during the development of Drosophila melanogaster. The pleiotropic action of Rst is reflected by its complex and dynamic expression during the development of Drosophila. By an enhancer detection screen, we previously identified several cis-regulatory modules that mediate specific expression of the roughest gene in Drosophila developmental processes. To identify trans-regulators of rst expression, we used the Gal4/UAS system to screen for factors that were sufficient to activate Rst expression when ectopically expressed. By this method we identified the transcription factors Single-minded, Pointed.P1, and Su(H)-VP16. Furthermore, we showed that these factors and, in addition, Dmef2 are able to ectopically activate rst expression via the previously described rst cis-regulatory modules. This fact and the use of mutant analysis allocates the action of the transcription factors to specific developmental contexts. In the case of Sim, we could show that it regulates rst expression in the embryonic midline, but not in the optic lobes. Mutagenesis of Sim consensus binding sites in the regulatory module required for rst expression in the embryonic midline, abolished rst expression; indicating that the regulation of rst by Sim is direct.
Collapse
Affiliation(s)
- Holger Apitz
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestr.1, 79104, Freiburg, Germany
| | | | | | | |
Collapse
|
43
|
Song H, Nie M, Qiao F, Bowie JU, Courey AJ. Antagonistic regulation of Yan nuclear export by Mae and Crm1 may increase the stringency of the Ras response. Genes Dev 2005; 19:1767-72. [PMID: 16027171 PMCID: PMC1182338 DOI: 10.1101/gad.1327405] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/03/2005] [Indexed: 12/22/2022]
Abstract
Phosphorylation of Yan, a major target of Ras signaling, leads to Crm1-dependent Yan nuclear export, a response that is regulated by Yan polymerization. Yan SAM (sterile alpha motif) domain mutations preventing polymerization result in Ras-independent, but Crm1-dependent Yan nuclear export, suggesting that polymerization prevents Yan export. Mae, which depolymerizes Yan, competes with Crm1 for binding to Yan. Phosphorylation of Yan favors Crm1 in this competition and counteracts inhibition of nuclear export by Mae. These findings suggest that, prior to Ras activation, the Mae/Yan interaction blocks premature nuclear export of Yan monomers. After activation, transcriptional up-regulation of Mae apparently leads to complete depolymerization and export of Yan.
Collapse
Affiliation(s)
- Haiyun Song
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
44
|
Vivekanand P, Tootle TL, Rebay I. MAE, a dual regulator of the EGFR signaling pathway, is a target of the Ets transcription factors PNT and YAN. Mech Dev 2005; 121:1469-79. [PMID: 15511639 DOI: 10.1016/j.mod.2004.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 07/23/2004] [Accepted: 07/26/2004] [Indexed: 11/16/2022]
Abstract
Ets transcription factors play crucial roles in regulating diverse cellular processes including cell proliferation, differentiation and survival. Coordinated regulation of the Drosophila Ets transcription factors YAN and POINTED is required for eliciting appropriate responses to Receptor Tyrosine Kinase (RTK) signaling. YAN, a transcriptional repressor, and POINTED, a transcriptional activator, compete for regulatory regions of common target genes, with the ultimate outcome likely influenced by context-specific interactions with binding partners such as MAE. Previous work in cultured cells has led us to propose that MAE attenuates the transcriptional activity of both YAN and POINTED, although its effects on POINTED remain controversial. Here we describe a new layer of complexity to this regulatory hierarchy whereby mae expression is itself directly regulated by the opposing action of YAN and POINTED. In addition, we report that MAE can antagonize POINTED function during eye development; a finding that suggests MAE operates as a dual positive and negative regulator of RTK-mediated signaling in vivo. Together our results lead us to propose that a combination of protein-protein and transcriptional interactions between MAE, YAN and POINTED establishes a complex regulatory circuit that ensures that both down-regulation and activation of the RTK pathway occur appropriately according to specific developmental context.
Collapse
Affiliation(s)
- Pavithra Vivekanand
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
45
|
Qiao LY, Vizzard MA. Spinal cord injury-induced expression of TrkA, TrkB, phosphorylated CREB, and c-Jun in rat lumbosacral dorsal root ganglia. J Comp Neurol 2005; 482:142-54. [PMID: 15611995 DOI: 10.1002/cne.20394] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have demonstrated increased expression and phosphorylation of tyrosine kinase receptor (TrkA, TrkB) in lumbosacral DRG after chronic (6 weeks) spinal cord (T8-T10) injury. This study examined the effects of acute SCI (48 hours, 2 weeks) on TrkA and TrkB expression and phosphorylation, and CREB and c-Jun expression in DRG. A significant increase in the number of TrkA- (1.5-3-fold; P < or = 0.05), TrkB- (1.3-2.0-fold; P < or = 0.05), and phosphorylated Trk (pTrk)-immunoreactive (1.5-3-fold; P < or = 0.05) cells was observed in the L1, L6, and S1 DRG 48 hours, 2, or 6 weeks after SCI. A significant increase in the number of phosphorylated (p-) CREB-immunoreactive cells was observed in the L1, L2, L6, and S1 DRG 48 hours, 2, or 6 weeks after SCI. The largest changes in p-CREB-immunoreactivity were in L1 and L2 DRG (10-fold; P <or= 0.01) at 48 hours after SCI; however, changes were modest in bladder afferent neurons. After SCI, the overall number of c-Jun-immunoreactive cells in L1, L2, and S1 DRG was dramatically increased (3-10-fold; P < or = 0.01); however, only a low percentage of bladder afferent cells expressed c-Jun-IR before or after SCI. In summary, these results suggest that TrkA or TrkB may be involved in reorganization of micturition pathways after SCI. However, CREB or c-Jun may not be downstream transcription factors in Trk-mediated signaling cascades in micturition reflex pathways after SCI but may play a role in other, nonbladder SCI-induced changes.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Neurology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | |
Collapse
|
46
|
Li WX. Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 2005; 232:656-72. [PMID: 15704136 PMCID: PMC3092428 DOI: 10.1002/dvdy.20295] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Torso receptor tyrosine kinase (RTK) is required for cell fate specification in the terminal regions (head and tail) of the early Drosophila embryo. Torso contains a split tyrosine kinase domain and belongs to the type III subgroup of the RTK superfamily that also includes the platelet-derived growth factor receptors, stem cell or steel factor receptor c-Kit proto-oncoprotein, colony-stimulating factor-1 receptor, and vascular endothelial growth factor receptor. The Torso pathway has been a model system for studying RTK signal transduction. Genetic and biochemical studies of Torso signaling have provided valuable insights into the biological functions and mechanisms of RTK signaling during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
47
|
Poulin G, Nandakumar R, Ahringer J. Genome-wide RNAi screens in Caenorhabditis elegans: impact on cancer research. Oncogene 2004; 23:8340-5. [PMID: 15517014 DOI: 10.1038/sj.onc.1208010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genes linked to human cancers often function in evolutionary conserved pathways, and research in C. elegans has been instrumental in dissecting some of the pathways affected, such as apoptosis and Ras signalling. The advent of RNA interference (RNAi) technology has allowed high-throughput loss-of-function analyses of C. elegans gene functions. Here we review some of the most recent genome-wide RNAi screens that have been conducted and discuss their impact on cancer research and possibilities for future screens. We also show that genes causally implicated in human cancers are significantly more likely to have a C. elegans homologue than average, validating the use of C. elegans as a cancer gene discovery platform. We foresee that genome-wide RNAi screens in C. elegans will continue to be productive in identifying new cancer gene candidates and will provide further insights into cancer gene functions.
Collapse
Affiliation(s)
- Gino Poulin
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | |
Collapse
|
48
|
Brückner S, Köhler T, Braus GH, Heise B, Bolte M, Mösch HU. Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Curr Genet 2004; 46:331-42. [PMID: 15558284 DOI: 10.1007/s00294-004-0545-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 09/30/2004] [Accepted: 09/30/2004] [Indexed: 11/28/2022]
Abstract
Transcriptional regulation by mitogen-activated protein (MAP) kinase signaling cascades is a major control mechanism for eukaryotic development. In budding yeast, Fus3 and Kss1 are two MAP kinases that control two distinct developmental programs-mating and invasive growth. We investigated whether signal-specific activation of mating and invasive growth involves regulation of the transcription factor Tec1 by Fus3 and Kss1. We present evidence that, during mating, Fus3 phosphorylates Tec1 to downregulate this invasive growth-specific transcription factor and its target genes. This function of Fus3 is essential for correct execution of the mating program and is not shared by Kss1. We find that Kss1 controls the activity of Tec1 mainly during invasive growth by control of TEC1 gene expression. Our study suggests that signaling specificity can arise from differential regulation of a single transcription factor by two MAP kinases with shared functions in distinct developmental programs.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-University, Karl-von-Frisch-Strasse, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Sasson IE, Stern MJ. FGF and PI3 kinase signaling pathways antagonistically modulate sex muscle differentiation in C. elegans. Development 2004; 131:5381-92. [PMID: 15469970 DOI: 10.1242/dev.01423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myogenesis in vertebrate myocytes is promoted by activation of the phosphatidyl-inositol 3'-kinase (PI3 kinase) pathway and inhibited by fibroblast growth factor (FGF) signaling. We show that hyperactivation of the Caenorhabditis elegans FGF receptor, EGL-15, similarly inhibits the differentiation of the hermaphrodite sex muscles. Activation of the PI3 kinase signaling pathway can partially suppress this differentiation defect, mimicking the antagonistic relationship between these two pathways known to influence vertebrate myogenesis. When ectopically expressed in body wall muscle precursor cells, hyperactivated EGL-15 can also interfere with the proper development of the body wall musculature. Hyperactivation of EGL-15 has also revealed additional effects on a number of fundamental processes within the postembryonic muscle lineage, such as cell division polarity. These studies provide important in vivo insights into the contribution of FGF signaling events to myogenesis.
Collapse
Affiliation(s)
- Isaac E Sasson
- Yale University School of Medicine, Department of Genetics, I-354 SHM, PO Box 208005, New Haven, CT 06520-8005, USA
| | | |
Collapse
|
50
|
Dorrell C, Takenaka K, Minden MD, Hawley RG, Dick JE. Hematopoietic cell fate and the initiation of leukemic properties in primitive primary human cells are influenced by Ras activity and farnesyltransferase inhibition. Mol Cell Biol 2004; 24:6993-7002. [PMID: 15282300 PMCID: PMC479743 DOI: 10.1128/mcb.24.16.6993-7002.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ras pathway transduces divergent signals determining normal cell fate and is frequently activated in hematopoietic malignancies, but the manner in which activation contributes to human leukemia is poorly understood. We report that a high level of activated H-Ras signaling in transduced primary human hematopoietic progenitors reduced their proliferation and enhanced monocyte/macrophage differentiation. However, the exposure of these cells to a farnesyltransferase inhibitor and establishment of a moderate level of Ras activity showed increased proliferation, an elevated frequency of primitive blast-like cells, and progenitors with enhanced self-renewal capacity. These results suggest that the amplitude of Ras pathway signaling is a determinant of myeloid cell fate and that moderate Ras activation in primitive hematopoietic cells can be an early event in leukemogenesis.
Collapse
Affiliation(s)
- Craig Dorrell
- Department of Molecular and Cellular Biology, Princess Margaret Hospital, and Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|