1
|
Bashkirova EV, Klimpert N, Monahan K, Campbell CE, Osinski J, Tan L, Schieren I, Pourmorady A, Stecky B, Barnea G, Xie XS, Abdus-Saboor I, Shykind BM, Marlin BJ, Gronostajski RM, Fleischmann A, Lomvardas S. Opposing, spatially-determined epigenetic forces impose restrictions on stochastic olfactory receptor choice. eLife 2023; 12:RP87445. [PMID: 38108811 PMCID: PMC10727497 DOI: 10.7554/elife.87445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Collapse
Affiliation(s)
- Elizaveta V Bashkirova
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biology, Rutgers UniversityNewarkUnited States
| | - Christine E Campbell
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Jason Osinski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Longzhi Tan
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ira Schieren
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Ariel Pourmorady
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Beka Stecky
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Xiaoliang Sunney Xie
- Beijing Innovation Center for Genomics, Peking UniversityBeijingChina
- Biomedical Pioneering Innovation Center, Peking UniversityBeijingChina
| | - Ishmail Abdus-Saboor
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Benjamin M Shykind
- Prevail Therapeutics- a wholly-owned subsidiary of Eli Lilly and CompanyNew YorkUnited States
| | - Bianca J Marlin
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard M Gronostajski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Stavros Lomvardas
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
| |
Collapse
|
2
|
Bashkirova EV, Klimpert N, Monahan K, Campbell CE, Osinski JM, Tan L, Schieren I, Pourmorady A, Stecky B, Barnea G, Xie XS, Abdus-Saboor I, Shykind B, Jones-Marlin B, Gronostajski RM, Fleischmann A, Lomvardas S. Opposing, spatially-determined epigenetic forces impose restrictions on stochastic olfactory receptor choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532726. [PMID: 36993168 PMCID: PMC10055043 DOI: 10.1101/2023.03.15.532726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this "privileged" repertoire. Our experiments identify early transcription as a potential "epigenetic" contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Collapse
Affiliation(s)
- Elizaveta V Bashkirova
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biology, Rutgers University, NJ, USA
| | - Christine E Campbell
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Jason M Osinski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Longzhi Tan
- Department of Bioengineering, Stanford University, CA, USA
| | - Ira Schieren
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Ariel Pourmorady
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Beka Stecky
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - X Sunnie Xie
- Beijing Innovation Center for Genomics, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Ishmail Abdus-Saboor
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Benjamin Shykind
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bianca Jones-Marlin
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Richard M Gronostajski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Stavros Lomvardas
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
3
|
Kim JS, Kim BG. Neurogenesis and Regulation of Olfactory Epithelium. JOURNAL OF RHINOLOGY 2019. [DOI: 10.18787/jr.2019.26.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Ji-Sun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Eunpyeong St. Mar's, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Guk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Eunpyeong St. Mar's, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T. Transcriptional and Epigenetic Control of Mammalian Olfactory Epithelium Development. Mol Neurobiol 2018. [PMID: 29532253 DOI: 10.1007/s12035-018-0987-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration. Many factors, including transcription and epigenetic factors, have been identified as key regulators of the expression of such requisite genes to permit normal OE morphogenesis. Typically, specific interactive regulatory networks established between transcription and epigenetic factors/cofactors orchestrate histogenesis in the embryonic and adult OE. Hence, investigation of these regulatory networks critical for OE development promises to disclose strategies that may be employed in manipulating the stepwise transition of olfactory precursor cells to become fully differentiated and functional neuronal and non-neuronal cell types. Such strategies potentially offer formidable means of replacing injured or degenerated neural cells as therapeutics for nervous system perturbations. This review recapitulates the developmental cellular diversity of the olfactory neuroepithelium and discusses findings on how the precise and cooperative molecular control by transcriptional and epigenetic machinery is indispensable for OE ontogeny.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Eman Abbas
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| |
Collapse
|
5
|
Im S, Moon C. Transcriptional regulatory network during development in the olfactory epithelium. BMB Rep 2016; 48:599-608. [PMID: 26303973 PMCID: PMC4911201 DOI: 10.5483/bmbrep.2015.48.11.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.
Collapse
Affiliation(s)
- SeungYeong Im
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
6
|
Plachez C, Cato K, McLeay RC, Heng YHE, Bailey TL, Gronostasjki RM, Richards LJ, Puche AC, Piper M. Expression of nuclear factor one A and -B in the olfactory bulb. J Comp Neurol 2012; 520:3135-49. [DOI: 10.1002/cne.23081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Song HR, Gonzalez-Gomez I, Suh GS, Commins DL, Sposto R, Gilles FH, Deneen B, Erdreich-Epstein A. Nuclear factor IA is expressed in astrocytomas and is associated with improved survival. Neuro Oncol 2010; 12:122-32. [PMID: 20150379 DOI: 10.1093/neuonc/nop044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear factor IA (NFIA) is a transcription factor that specifies glial cell identity and promotes astrocyte differentiation during embryonic development. Its expression and function in gliomas are not known. Here, we examined NFIA protein expression in gliomas and its association with clinical outcome in pediatric malignant astrocytomas. We analyzed expression of NFIA by immunohistochemistry in 88 existing glioma specimens from Childrens Hospital Los Angeles and the University of Southern California. Association between NFIA expression and progression-free survival (PFS) was examined in high-grade astrocytomas for which clinical data were available (n = 23, all children). NFIA was highly expressed in astrocytomas of all grades, but only in a minority of cells in oligodendroglial tumors. NFIA was expressed on a higher percentage of tumor cells in low-grade astrocytomas (91 +/- 5% and 77 +/- 14% in World Health Organization [WHO] I and II, respectively) compared with high-grade astrocytomas (48 +/- 18% and 37 +/- 16% in WHO III and IV, respectively; P < .001, low- vs high-grade astrocytomas). There was a significant association between NFIA expression and PFS in children with astrocytoma WHO grade III or IV (Cox regression P = .019; logrank trend test for NFIA tertiles P = .0040 and NFIA quartiles P = .014). The association was not consistently significant in this small series of patients after adjustment was made for WHO grade III or IV. This is the first study to demonstrate expression of NFIA protein in astrocytomas and its association with grades of astrocytoma and PFS, suggesting that NFIA may play a role in astrocytoma biology.
Collapse
Affiliation(s)
- Hae-Ri Song
- Departments of Neurosurgery and Neurology, New York University, School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kumbasar A, Plachez C, Gronostajski RM, Richards LJ, Litwack ED. Absence of the transcription factor Nfib delays the formation of the basilar pontine and other mossy fiber nuclei. J Comp Neurol 2009; 513:98-112. [PMID: 19107796 DOI: 10.1002/cne.21943] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription factors of the Nuclear Factor I (Nfi) family are important for the development of specific neuronal and glial populations in the nervous system. One such population, the neurons of the basilar pontine nuclei, expresses high levels of Nfi proteins, and the pontine nuclei are greatly reduced in mice lacking a functional Nfib gene. Pontine neurons, along with other precerebellar neurons that populate the hindbrain, arise from precursors in the lower rhombic lip and migrate anteroventrally to reach their final location. Using immunohistochemistry, we find that NFI-B expression is specific for mossy fiber populations of the precerebellar system. Analysis of the Nfib(-/-) hindbrain indicates that the development of the basilar pontine nuclei is delayed, with pontine neurons migrating 1-2 days later than in control animals, and that significantly fewer pontine neurons are produced. While the mossy fiber nuclei of the caudal medulla do form, they also exhibit a developmental delay. Nfia and Nfix null mice exhibit no apparent pontine phenotype, implying specificity in the action of NFI family members. Collectively, these data demonstrate that Nfib plays an important role in the generation of precerebellar mossy fiber neurons, and may do so at least in part by regulating neurogenesis.
Collapse
Affiliation(s)
- Asli Kumbasar
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
9
|
Chung SH, Marzban H, Croci L, Consalez GG, Hawkes R. Purkinje cell subtype specification in the cerebellar cortex: early B-cell factor 2 acts to repress the zebrin II-positive Purkinje cell phenotype. Neuroscience 2008; 153:721-32. [PMID: 18403128 DOI: 10.1016/j.neuroscience.2008.01.090] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022]
Abstract
The mammalian cerebellar cortex is highly compartmentalized. First, it is subdivided into four transverse expression domains: the anterior zone (AZ), the central zone (CZ), the posterior zone (PZ), and the nodular zone (NZ). Within each zone, the cortex is further subdivided into a symmetrical array of parasagittal stripes. The most extensively studied compartmentation antigen is zebrin II/aldolase c, which is expressed by a subset of Purkinje cells forming parasagittal stripes. Stripe phenotypes are specified early in cerebellar development, in part through the action of early B-cell factor 2 (Ebf2), a member of the atypical helix-loop-helix transcription factor family Collier/Olf1/EBF. In the murine cerebellum, Ebf2 expression is restricted to the zebrin II-immunonegative (zebrin II-) Purkinje cell population. We have identified multiple cerebellar defects in the Ebf2 null mouse involving a combination of selective Purkinje cell death and ectopic expression of multiple genes normally restricted to the zebrin II- subset. The nature of the cerebellar defect in the Ebf2 null is different in each transverse zone. In contrast to the ectopic expression of genes characteristic of the zebrin II+ Purkinje cell phenotype, phospholipase Cbeta4 expression, restricted to zebrin II- Purkinje cells in control mice, is well maintained, and the normal number of stripes is present. Taken together, these data suggest that Ebf2 regulates the expression of genes associated with the zebrin II+ Purkinje cell phenotype and that the zebrin II- Purkinje cell subtype is specified independently.
Collapse
Affiliation(s)
- S-H Chung
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
10
|
Nicolay DJ, Doucette JR, Nazarali AJ. Transcriptional regulation of neurogenesis in the olfactory epithelium. Cell Mol Neurobiol 2006; 26:803-21. [PMID: 16708285 DOI: 10.1007/s10571-006-9058-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 03/14/2006] [Indexed: 11/30/2022]
Abstract
1. The olfactory epithelium (OE) is a simple structure that gives rise to olfactory sensory neurons (OSNs) throughout life. 2. Numerous transcription factors (TFs) are expressed in regions of the OE which contain progenitor cells and OSNs. The function of some of these TFs in OSN development has been elucidated with the aide of transgenic knockout mice. 3. We review here the current state of knowledge on the role of TFs in OE neurogenesis and relate the expression of these TFs, where possible, to the well-documented phenotype of the cells as they progress through the OSN lineage from progenitor cells to mature neurons.
Collapse
Affiliation(s)
- Danette J Nicolay
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | | | | |
Collapse
|
11
|
Füle T, Máthé M, Suba Z, Csapó Z, Szarvas T, Tátrai P, Paku S, Kovalszky I. The presence of human papillomavirus 16 in neural structures and vascular endothelial cells. Virology 2006; 348:289-96. [PMID: 16499942 DOI: 10.1016/j.virol.2005.12.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 11/17/2005] [Accepted: 12/01/2005] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV) is known as a strictly epitheliotropic pathogen. Our results raised the possibility that HPV 16 is present in neural cells and in the vascular endothelium. By in situ hybridization, we have detected HPV 16 E6 ORF sequence in small blood vessels and peripheral nerves adjacent to oral and cervical cancers. The same structures have clearly shown immunohistochemical reactivity for the E6 oncoprotein. These results were verified by PCR applied to E6 and L1 ORFs following microscopic laser dissection of the immunohistochemically positive nerves and vessels. These observations suggest that HPV 16 DNA and protein are present in neurons and endothelial cells in the vicinity of HPV-associated tumors. The HPV 16 genome presumably exists in a non-replicating form in the neurons and constitutively produces high levels of E6 and E7 proteins with an unknown neuropathological outcome.
Collapse
Affiliation(s)
- Tibor Füle
- Department of Molecular Pathology, Joint Research Organization of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gopalan SM, Wilczynska KM, Konik BS, Bryan L, Kordula T. Nuclear factor-1-X regulates astrocyte-specific expression of the alpha1-antichymotrypsin and glial fibrillary acidic protein genes. J Biol Chem 2006; 281:13126-13133. [PMID: 16565071 DOI: 10.1074/jbc.m601194200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Discrete tissue-specific changes in chromatin structure of the distal serpin subcluster on human chromosome 14q32.1 allow a single gene encoding alpha1-antichymotrypsin (ACT) to be expressed in astrocytes and glioma cells. This astrocyte-specific regulation involves activatory protein-1 (AP-1) because overexpression of dominant-negative c-jun(TAM67) abolishes ACT expression in glioma cells. Here we identify a new regulatory element, located within the -13-kb enhancer of the ACT gene, that binds nuclear factor-1 (NFI) and is indispensable for the full basal transcriptional activity of the ACT gene. Furthermore, down-regulation of NFI expression by siRNA abolishes basal ACT expression in glioma cells. However, NFI does not mediate astrocyte-specific expression by itself, but likely cooperates with AP-1. A detailed analysis of the 14-kb long 5'-flanking region of the ACT gene indicated the presence of adjacent NFI and AP-1 elements that colocalized with DNase I-hypersensitive sites found in astrocytes and glioma cells. Interestingly, knock-down of NFI expression also specifically abrogates the expression of glial acidic fibrillary protein (GFAP), which is an astrocyte-specific marker protein. Mutations introduced into putative NFI and AP-1 elements within the 5'-flanking region of the GFAP gene also diminished basal expression of the reporter. In addition, we found, using isoform-specific siRNAs, that NFI-X regulates the astrocyte-specific expression of ACT and GFAP. We propose that NFI-X cooperates with AP-1 by an unknown mechanism in astrocytes, which results in the expression of a subset of astrocyte-specific genes.
Collapse
Affiliation(s)
- Sunita M Gopalan
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Katarzyna M Wilczynska
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Barbara S Konik
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lauren Bryan
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Tomasz Kordula
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|
13
|
Lazakovitch E, Kalb JM, Matsumoto R, Hirono K, Kohara Y, Gronostajski RM. nfi-I affects behavior and life-span in C. elegans but is not essential for DNA replication or survival. BMC DEVELOPMENTAL BIOLOGY 2005; 5:24. [PMID: 16242019 PMCID: PMC1277823 DOI: 10.1186/1471-213x-5-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/20/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Nuclear Factor I (one) (NFI) family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. RESULTS C. elegans NFI protein (CeNFI) binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. CONCLUSION NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C. elegans, likely regulating genes that function in motility, egg-laying, pharyngeal pumping and lifespan maintenance.
Collapse
Affiliation(s)
- Elena Lazakovitch
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - John M Kalb
- Dept. of Biology, Canisius College, Buffalo, NY, USA
| | - Reiko Matsumoto
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - Keiko Hirono
- CREST and Gene Network Lab, National Institute of Genetics, Mishima, Japan
| | - Yuji Kohara
- CREST and Gene Network Lab, National Institute of Genetics, Mishima, Japan
| | - Richard M Gronostajski
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| |
Collapse
|
14
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
15
|
Ling G, Gu J, Genter MB, Zhuo X, Ding X. Regulation of cytochrome P450 gene expression in the olfactory mucosa. Chem Biol Interact 2004; 147:247-58. [PMID: 15135081 DOI: 10.1016/j.cbi.2004.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2004] [Indexed: 11/25/2022]
Abstract
The mammalian olfactory mucosa (OM) is unique among extrahepatic tissues in having high levels, and tissue-selective forms, of cytochrome P450 (CYP) enzymes. These enzymes may have important toxicological implications, as well as biological functions, in this chemosensory organ. In addition to a tissue-selective, abundant expression of CYP1A2, CYP2A, and CYP2G1, some of the OM CYPs are also known to have an early developmental expression, a resistance to xenobiotic inducers, and a lack of responsiveness to circadian rhythm. Efforts to fully characterize the regulation of CYP expression in the OM, and to identify the underlying mechanisms, are important for our understanding of the physiological functions and toxicological significance of these biotransformation enzymes, and may also shed unique light on the general mechanisms of CYP regulation. The aim of this mini-review is to provide a summary of current knowledge of the various modes of regulation of CYPs expressed in the OM, an update on our mechanistic studies on tissue-selective CYP expression, and a review of the literature on xenobiotic inducibility of OM CYPs. Our goal is to stimulate further studies in this exciting research area, which is of considerable importance, in view of the constant exposure of the human nasal tissues to inhaled, as well as systemically derived, chemicals, the prevalence of olfactory system damage in individuals with neurodegenerative diseases, and the current uncertainty in risk assessments for potential olfactory toxicants.
Collapse
Affiliation(s)
- Guoyu Ling
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | | | | | | | | |
Collapse
|
16
|
Ling G, Hauer CR, Gronostajski RM, Pentecost BT, Ding X. Transcriptional regulation of rat CYP2A3 by nuclear factor 1: identification of a novel NFI-A isoform, and evidence for tissue-selective interaction of NFI with the CYP2A3 promoter in vivo. J Biol Chem 2004; 279:27888-95. [PMID: 15123731 DOI: 10.1074/jbc.m403705200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat CYP2A3 and its mouse and human orthologs are expressed preferentially in the olfactory mucosa. We found previously that an element in the proximal promoter region of CYP2A3 (the nasal predominant transcriptional activating (NPTA) element), which is similar to a nuclear factor 1 (NFI)-binding site, is critical for transcriptional activation of CYP2A3 in vitro. We proposed that this element might be important for tissue-selective CYP2A3 expression. The goals of the present study were to characterize NPTA-binding proteins and to obtain more definitive evidence for the role of NFI in the transcriptional activation of CYP2A3. The NPTA-binding proteins were isolated by DNA-affinity purification from rat olfactory mucosa. Mass spectral analysis indicated that isoforms corresponding to all four NFI genes were present in the purified NPTA-binding fraction. Further analysis of NPTA-binding proteins led to the identification of a novel NFI-A isoform, NFI-A-short, which was derived from alternative splicing of the NFI-A transcript. Transient transfection assay showed that NFI-A2, an NFI isoform previously identified in the olfactory mucosa, transactivated the CYP2A3 promoter, whereas NFI-A-short, which lacks the transactivation domain, counteracted the activation. Chromatin immunoprecipitation assays indicated that NFI proteins are associated with the CYP2A3 promoter in vivo, in rat olfactory mucosa, but essentially not in the liver where the CYP2A3 promoter is hypermethylated and CYP2A3 is not expressed. These data strongly support a role for NFI transcription factors in the transcriptional activation of CYP2A3.
Collapse
Affiliation(s)
- Guoyu Ling
- New York State Department of Health, and School of Public Health, Wadsworth Center, State University of New York, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|
17
|
Murtagh J, Martin F, Gronostajski RM. The Nuclear Factor I (NFI) gene family in mammary gland development and function. J Mammary Gland Biol Neoplasia 2003; 8:241-54. [PMID: 14635798 DOI: 10.1023/a:1025909109843] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammary gland development and function require the coordinated spatial and temporal expression of a large fraction of the mammalian genome. A number of site-specific transcription factors are essential to achieve the appropriate growth, branching, expansion, and involution of the mammary gland throughout early postnatal development and the lactation cycle. One family of transcription factors proposed to play a major role in the mammary gland is encoded by the Nuclear Factor I (NFI) genes. The NFI gene family is found only in multicellular animals, with single genes being present in flies and worms and four genes in vertebrates. While the NFI family expanded and diversified prior to the evolution of the mammary gland, it is clear that several mammary-gland specific genes are regulated by NFI proteins. Here we address the structure and evolution of the NFI gene family and examine the role of the NFI transcription factors in the expression of mammary-gland specific proteins, including whey acidic protein and carboxyl ester lipase. We discuss current data showing that unique NFI proteins are expressed during lactation and involution and suggest that the NFI gene family likely has multiple important functions throughout mammary gland development.
Collapse
Affiliation(s)
- Janice Murtagh
- Conway Institute of Biomolecular and Biomedical Research and Department of Pharmacology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
18
|
Pan L, Glenn ST, Jones CA, Gronostajski RM, Gross KW. Regulation of renin enhancer activity by nuclear factor I and Sp1/Sp3. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:280-90. [PMID: 12591615 DOI: 10.1016/s0167-4781(03)00016-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcription of the mouse Ren-1(c) gene in kidney tumor-derived As4.1 cells, which express high levels of renin mRNA, is dependent on a proximal promoter element and a 242-bp enhancer region located 2.6 kb upstream of the transcription start site. We showed previously that the enhancer contains a cAMP responsive element (CRE) and an E-box. Mutation of either element resulted in almost complete loss of the Ren-1(c) expression. In this report we show that there are additional transcription factor-binding sites within the Ren-1(c) enhancer contributing to the enhancer activity. Electrophoretic mobility shift and supershift assays have identified four nuclear factor I (NFI)-binding sites, an Sp1/Sp3 site and an unidentified transcription factor-binding site (Ei) located upstream of the CRE and E-box. Mutation of the Sp1/Sp3 site or Ei reduced Ren-1(c) expression by 40% or 30%, respectively, while mutations of four NFI-binding sites resulted in an 89% decrease in expression. Thus, these protein-DNA interaction sites are essential for transcription of mouse renin genes. There are four homologous NFI genes (NFI-A, -B, -C and -X) in vertebrates and multiple alternatively spliced isoforms from each gene. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assays have demonstrated that NFI-X is the predominant NFI mRNA expressed in As4.1 cells. Direct study of involvement of NFI-X in regulation of renin genes is underway.
Collapse
Affiliation(s)
- Li Pan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et al., 1997; for review, see Gronostajski, 2000). All four NFI genes are expressed in embryonic mouse brain, with Nfia, Nfib, and Nfix being expressed highly in developing cortex (Chaudhry et al., 1997). Disruption of the Nfia gene causes agenesis of the corpus callosum (ACC), hydrocephalus, and reduced GFAP expression (das Neves et al., 1999). Three midline structures, the glial wedge, glia within the indusium griseum, and the glial sling are involved in development of the corpus callosum (Silver et al., 1982; Silver and Ogawa, 1983; Shu and Richards, 2001). Because Nfia(-)/- mice show glial abnormalities and ACC, we asked whether defects in midline glial structures occur in Nfia(-)/- mice. NFI-A protein is expressed in all three midline populations. In Nfia(-)/-, mice sling cells are generated but migrate abnormally into the septum and do not form a sling. Glia within the indusium griseum and the glial wedge are greatly reduced or absent and consequently Slit2 expression is also reduced. Although callosal axons approach the midline, they fail to cross and extend aberrantly into the septum. The hippocampal commissure is absent or reduced, whereas the ipsilaterally projecting perforating axons (Hankin and Silver, 1988; Shu et al., 2001) appear relatively normal. These results support an essential role for midline glia in callosum development and a role for Nfia in the formation of midline glial structures.
Collapse
|
20
|
Baldisseri DM, Margolis JW, Weber DJ, Koo JH, Margolis FL. Olfactory marker protein (OMP) exhibits a beta-clam fold in solution: implications for target peptide interaction and olfactory signal transduction. J Mol Biol 2002; 319:823-37. [PMID: 12054873 DOI: 10.1016/s0022-2836(02)00282-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Olfactory marker protein (OMP) is a ubiquitous, cytoplasmic protein found in mature olfactory receptor neurons of all vertebrates. Electrophysiological and behavioral studies demonstrate that it is a modulator of the olfactory signal transduction pathway. Here, we demonstrate that the solution structure of OMP, as determined by NMR studies, is a single globular domain protein comprised of eight beta-strands forming two beta-sheets oriented orthogonally to one another, thus exhibiting a "beta-clam" or "beta-sandwich" fold: beta-sheet 1 is comprised of beta3-beta8-beta1-beta2 and beta-sheet 2 contains beta6-beta5-beta4-beta7. Insertions include two, long alpha-helices located on opposite sides of the beta-clam and three flexible loops. The juxtaposition of beta-strands beta6-beta5-beta4-beta7-beta2-beta1-beta8-beta3 forms a continuously curved surface and encloses one side of the beta-clam. The "cleft" formed by the two beta-sheets is opposite to the closed end of the beta-clam. Using a peptide titration series, we have identified this cleft as the binding surface for a peptide derived from the Bex1 protein. The highly conserved Omega-loop structure adjacent to the Bex1 peptide-binding surface found in OMP may be the site of additional OMP-protein interactions related to its role in modulating olfactory signal transduction. Thus, the interaction between the OMP and Bex1 proteins could facilitate the interaction between OMP and other components of the olfactory signaling pathway.
Collapse
Affiliation(s)
- Donna M Baldisseri
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | | | |
Collapse
|
21
|
Göttgens B, Barton LM, Chapman MA, Sinclair AM, Knudsen B, Grafham D, Gilbert JGR, Rogers J, Bentley DR, Green AR. Transcriptional regulation of the stem cell leukemia gene (SCL)--comparative analysis of five vertebrate SCL loci. Genome Res 2002; 12:749-59. [PMID: 11997341 PMCID: PMC186570 DOI: 10.1101/gr.45502] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Accepted: 03/19/2002] [Indexed: 12/25/2022]
Abstract
The stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hematopoiesis and vasculogenesis and a pattern of expression that is highly conserved between mammals and zebrafish. Here we report the isolation and characterization of the zebrafish SCL locus together with the identification of three neighboring genes, IER5, MAP17, and MUPP1. This region spans 68 kb and comprises the longest zebrafish genomic sequence currently available for comparison with mammalian, chicken, and pufferfish sequences. Our data show conserved synteny between zebrafish and mammalian SCL and MAP17 loci, thus suggesting the likely genomic domain necessary for the conserved pattern of SCL expression. Long-range comparative sequence analysis/phylogenetic footprinting was used to identify noncoding conserved sequences representing candidate transcriptional regulatory elements. The SCL promoter/enhancer, exon 1, and the poly(A) region were highly conserved, but no homology to other known mouse SCL enhancers was detected in the zebrafish sequence. A combined homology/structure analysis of the poly(A) region predicted consistent structural features, suggesting a conserved functional role in mRNA regulation. Analysis of the SCL promoter/enhancer revealed five motifs, which were conserved from zebrafish to mammals, and each of which is essential for the appropriate pattern or level of SCL transcription.
Collapse
Affiliation(s)
- Berthold Göttgens
- Cambridge Institute for Medical Research, Cambridge University, Cambridge, CB2 2XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Celik A, Fuss SH, Korsching SI. Selective targeting of zebrafish olfactory receptor neurons by the endogenous OMP promoter. Eur J Neurosci 2002; 15:798-806. [PMID: 11906521 DOI: 10.1046/j.1460-9568.2002.01913.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The olfactory nervous system of fish, in particular zebrafish, has become a valid model for that of higher vertebrates. However, no genetic markers for olfactory specific cell types, e.g. the olfactory receptor neurons, have been established in this species. Olfactory marker protein (OMP) is a reliable marker for olfactory receptor neurons in several other vertebrates. We have cloned zOMP, the zebrafish homologue of olfactory marker protein. During development, zOMP is expressed exclusively in the olfactory placode, presumably in olfactory receptor neurons, as shown by in situ hybridization. In the adult nasal epithelium zOMP is found restricted to the sensory region. zOMP appears to be a single gene, without close family members. The 5'-flanking region lacks most of the expected regulatory sequence motifs, both general and cell type-specific ones. Nevertheless, it drives reporter gene expression strongly and specifically in olfactory receptor neurons during the whole developmental period examined. Thus the zOMP promoter constitutes a powerful tool which should be useful to selectively introduce a wide variety of genetic modifications into olfactory receptor neurons.
Collapse
Affiliation(s)
- Arzu Celik
- Institut für Genetik, Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany.
| | | | | |
Collapse
|
23
|
Dowell P, Cooke DW. Olf-1/early B cell factor is a regulator of glut4 gene expression in 3T3-L1 adipocytes. J Biol Chem 2002; 277:1712-8. [PMID: 11696544 DOI: 10.1074/jbc.m108589200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A negative regulatory element in the 5'-flanking region of the murine glut4 gene mediates chronic insulin- and cAMP-induced repression in 3T3-L1 adipocytes. Previous work demonstrated that members of the nuclear factor 1 (NF1) family of transcription factors and an unidentified factor bind to and mediate repression from this regulatory element. By using a yeast one-hybrid screen, Olf-1/Early B cell factor (O/E-1) was isolated as a candidate for this unidentified factor. A protein complex from 3T3-L1 adipocyte nuclear extract that bound the negative regulatory element was recognized by O/E-specific antiserum, and binding activity was competed effectively by distinct O/E-binding sequences. O/E binding activity was also detected in nuclear extracts from insulin-responsive, GLUT4-expressing tissues including adipose, skeletal muscle, and heart. Mutations within the negative regulatory element that abolish binding of O/E proteins concomitantly blocked insulin-induced repression in reporter gene assays. These results suggest that one or more members of the O/E transcription factor family function as important regulators of glut4 gene expression and therefore may play a heretofore unanticipated role in glucose homeostasis and insulin signaling.
Collapse
Affiliation(s)
- Paul Dowell
- Departments of Biological Chemistry and Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
24
|
Xie Y, Madelian V, Zhang J, Ling G, Ding X. Activation of the NPTA element of the CYP2A3 gene by NFI-A2, a nasal mucosa-selective nuclear factor 1 isoform. Biochem Biophys Res Commun 2001; 289:1225-8. [PMID: 11741324 DOI: 10.1006/bbrc.2001.6084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine whether the NPTA element of the olfactory mucosa-predominant CYP2A3 gene can be activated by NFI-A2, a recently identified member of the nuclear factor 1 family of transcription factors. Isoform-specific RNA-PCR confirmed that NFI-A2 is mainly expressed in rat olfactory mucosa. A full-length NFI-A2 cDNA was isolated from a cDNA library of rat olfactory mucosa and was used for preparation of a construct encoding a fusion protein of NFI-A2 with the yeast GAL4 activation domain. Expression of the fusion protein in yeast was detected with an antibody to NFI-A. The fusion protein activated the expression of a LacZ reporter gene in yeast one-hybrid assays with a reporter construct containing the NPTA element, but not with other constructs lacking the NPTA element. These findings suggest that NFI-A2 may be involved in the tissue-selective transcriptional activation of the CYP2A3 gene in the olfactory mucosa.
Collapse
Affiliation(s)
- Y Xie
- Wadsworth Center, State University of New York, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
25
|
Franco MD, Pape MP, Swiergiel JJ, Burd GD. Differential and overlapping expression patterns of X-dll3 and Pax-6 genes suggest distinct roles in olfactory system development of the African clawed frog Xenopus laevis. J Exp Biol 2001; 204:2049-61. [PMID: 11441047 DOI: 10.1242/jeb.204.12.2049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In Xenopus laevis, the formation of the adult olfactory epithelium involves embryonic, larval and metamorphic phases. The olfactory epithelium in the principal cavity (PC) develops during embryogenesis from the olfactory placode and is thought to respond to water-borne odorants throughout larval life. During metamorphosis, the PC undergoes major transformations and is exposed to air-borne odorants. Also during metamorphosis, the middle cavity (MC) develops de novo. The olfactory epithelium in the MC has the same characteristics as that in the larval PC and is thought to respond to water-borne odorants. Using in situ hybridization, we analyzed the expression pattern of the homeobox genes X-dll3 and Pax-6 within the developing olfactory system. Early in development, X-dll3 is expressed in both the neuronal and non-neuronal ectoderm of the sense plate and in all cell layers of the olfactory placode and larval PC. Expression becomes restricted to the neurons and basal cells of the PC by mid-metamorphosis. During metamorphosis, X-dll3 is also expressed throughout the developing MC epithelium and becomes restricted to neurons and basal cells at metamorphic climax. This expression pattern suggests that X-dll3 is first involved in the patterning and genesis of all cells forming the olfactory tissue and is then involved in neurogenesis or neuronal maturation in putative water- and air-sensing epithelia. In contrast, Pax-6 expression is restricted to the olfactory placode, larval PC and metamorphic MC, suggesting that Pax-6 is specifically involved in the formation of water-sensing epithelium. The expression patterns suggest that X-dll3 and Pax-6 are both involved in establishing the olfactory placode during embryonic development, but subtle differences in cellular and temporal expression patterns suggest that these genes have distinct functions.
Collapse
Affiliation(s)
- M D Franco
- University of Arizona, Department of Molecular and Cellular Biology, Life Sciences South Building 444, PO Box 210106, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
26
|
Kaminski WE, Piehler A, Püllmann K, Porsch-Ozcürümez M, Duong C, Bared GM, Büchler C, Schmitz G. Complete coding sequence, promoter region, and genomic structure of the human ABCA2 gene and evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun 2001; 281:249-58. [PMID: 11178988 DOI: 10.1006/bbrc.2001.4305] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the human ABC transporter A subfamily have gained considerable attention based on the recent findings that ABCA1 and ABCR (ABCA4) cause familial HDL-deficiency syndromes and distinct forms of hereditary retinopathies, respectively. Here we report the complete cDNA and the genomic organization of ABCA2, another member of the human ABC A transporter subfamily. The ABCA2 coding region is 7.3 kb in size and codes for a 2436 amino acid polypeptide that bears the typical features of a full-size ABC transporter. Among the known members of the ABC A subfamily ABCA2 shares highest homology with the cholesterol-responsive transporters ABCA1 (50%) and the recently cloned ABCA7 (44%). The ABCA2 gene comprises 48 exons which are localized within a genomic region of only 21 kb. Analysis of the putative ABCA2 promoter sequence revealed potential binding sites for transcription factors that are involved in the differentiation of myeloid and neural cells. Gene expression analysis in human macrophages showed that ABCA2 mRNA is induced during cholesterol import indicating that ABCA2 is a cholesterol-responsive gene. Our results suggest a potential role for ABCA2 in macrophage lipid metabolism and neural development.
Collapse
Affiliation(s)
- W E Kaminski
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, 93042, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The genomic and cDNA structures were studied for eight human olfactory receptor (OR) genes within the chromosome 17p13.3 cluster. A common gene structure was revealed, which included an approximately 1-kb intronless coding region terminated by a signal for polyadenylation and a variable number of upstream noncoding exons. The latter were found to be alternatively spliced, giving rise to different isoforms of OR mRNA. While the initial exons mostly agreed with previous computer predictions and were conserved within OR subfamilies, other upstream exons were novel and idiosyncratic. In some cases, repetitive sequences were involved in the generation of splice sites and putative transcription control elements. Such gene structure is consistent with early repertoire enhancement by retrogene generation, which was likely followed by extensive genomic duplication. Each OR gene had a unique signature of transcription factor elements, consistent with a combinatorial expression control mechanism.
Collapse
Affiliation(s)
- A Sosinsky
- Department of Molecular Genetics, The Crown Human Genome Center, Rehovot, 76100, Israel
| | | | | |
Collapse
|
28
|
Abstract
The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development.
Collapse
Affiliation(s)
- R M Gronostajski
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University, OH 44195, USA.
| |
Collapse
|
29
|
Behrens M, Venkatraman G, Gronostajski RM, Reed RR, Margolis FL. NFI in the development of the olfactory neuroepithelium and the regulation of olfactory marker protein gene expression. Eur J Neurosci 2000; 12:1372-84. [PMID: 10762365 DOI: 10.1046/j.1460-9568.2000.00032.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear factor I (NFI) proteins are DNA-binding transcription factors that participate in the tissue specific expression of various genes. They are encoded by four different genes (NFI-A, B, C, and X) each of which generates multiple isoforms by alternative RNA splicing. NFI-like binding sites have been identified in several genes preferentially expressed in olfactory receptor neurons. Our prior demonstration that NFI binds to these elements led to the hypothesis that NFI is involved in the regulation of these genes. To analyse the role of NFI in the regulation of olfactory neuron gene expression we have performed transient transfection experiments in HEK 293 cells using constructs that place luciferase expression under the control of an olfactory marker protein (OMP)-promoter fragment containing the NFI binding site. In vitro mutagenesis of this site revealed a negative modulation of luciferase expression by endogenous NFI proteins in HEK 293 cells. In addition, we have used in situ hybridization to analyse the tissue and cellular distribution of the four NFI gene transcripts during pre- and postnatal mouse development. We have simultaneously characterized the expression of Pax-6, and O/E-1, transcription factors known to regulate the phenotype of olfactory receptor neurons. We demonstrate that all of these transcription factors vary in specific spatio-temporal patterns during the development of the olfactory system. These data on NFI activity, and on transcription factor expression, provide a basis to understand the role of NFI in regulating gene expression in olfactory receptor neurons.
Collapse
Affiliation(s)
- M Behrens
- Department of Anatomy and Neurobiology, University of Maryland at Baltimore, School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
30
|
Zhang J, Zhang QY, Guo J, Zhou Y, Ding X. Identification and functional characterization of a conserved, nuclear factor 1-like element in the proximal promoter region of CYP1A2 gene specifically expressed in the liver and olfactory mucosa. J Biol Chem 2000; 275:8895-902. [PMID: 10722736 DOI: 10.1074/jbc.275.12.8895] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CYP1A2 is a major cytochrome P-450 isoform in the liver and the olfactory mucosa but is essentially not expressed in other tissues. A nuclear factor 1 (NF-1) -like element was identified in the proximal promoter region of rat, mouse, rabbit, and human CYP1A2 genes through data base analysis. In vitro DNase I footprinting with a -211 to +81 probe from the rat CYP1A2 gene and nuclear extracts from rat liver and olfactory mucosa revealed a single protected region corresponding to the NF-1-like element at -129 to -111. Protein binding to this NF-1-like element was tissue-selective and was confirmed by in vivo footprinting in native chromatin from rat liver. Multiple DNA-binding complexes were detected in gel-shift assays using the CYP1A2 NF-1-like element and nuclear extracts from liver and olfactory mucosa, all of which were supershifted in the presence of an anti-NF1 antibody. The NF-1-like element was essential for transcriptional activity of the CYP1A2 gene in an in vitro transcription assay using nuclear extracts from the two tissues. Thus, members of the NF-1 family of transcription factors may play an important role in the tissue-selective expression of the CYP1A2 gene in the liver and olfactory mucosa.
Collapse
Affiliation(s)
- J Zhang
- Wadsworth Center, New York State Department of Health and the Department of Environmental Health and Toxicology, School of Public Health, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | |
Collapse
|
31
|
Glusman G, Sosinsky A, Ben-Asher E, Avidan N, Sonkin D, Bahar A, Rosenthal A, Clifton S, Roe B, Ferraz C, Demaille J, Lancet D. Sequence, structure, and evolution of a complete human olfactory receptor gene cluster. Genomics 2000; 63:227-45. [PMID: 10673334 DOI: 10.1006/geno.1999.6030] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor (OR) gene cluster on human chromosome 17p13.3 was subjected to mixed shotgun automated DNA sequencing. The resulting 412 kb of genomic sequence include 17 OR coding regions, 6 of which are pseudogenes. Six of the coding regions were discovered only upon genomic sequencing, while the others were previously reported as partial sequences. A comparison of DNA sequences in the vicinity of the OR coding regions revealed a common gene structure with an intronless coding region and at least one upstream noncoding exon. Potential gene control regions including specific pyrimidine:purine tracts and Olf-1 sites have been identified. One of the pseudogenes apparently has evolved into a CpG island. Four extensive CpG islands can be discerned within the cluster, not coupled to specific OR genes. The cluster is flanked at its telomeric end by an unidentified open reading frame (C17orf2) with no significant similarity to any known protein. A high proportion of the cluster sequence (about 60%) belongs to various families of interspersed repetitive elements, with a clear predominance of LINE repeats. The OR genes in the cluster belong to two families and seven subfamilies, which show a relatively high degree of intermixing along the cluster, in seemingly random orientations. This genomic organization may be best accounted for by a complex series of evolutionary events.
Collapse
Affiliation(s)
- G Glusman
- Department of Molecular Genetics and The Crown Human Genome Center, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|