1
|
Bogdziewicz M, Chybicki I, Szymkowiak J, Ulaszewski B, Burczyk J, Szarek-Łukaszewska G, Meyza K, Sztupecka E, Ledwoń M, Piechnik Ł, Seget B, Kondrat K, Holeksa J, Żywiec M. Masting and Efficient Production of Seedlings: Balancing Costs of Variation Through Synchronised Fruiting. Ecol Lett 2024; 27:e14514. [PMID: 39354913 DOI: 10.1111/ele.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024]
Abstract
The efficient conversion of tissues into reproductive success is a crucial aspect affecting the evolution of life histories. Masting, the interannually variable and synchronous seed production in perennial plants, is a strategy that can enhance reproductive efficiency by mitigating seed predation and pollen limitation. However, evaluating benefits is insufficient to establish whether efficiency has improved, as such assessments neglect the associated costs of masting, particularly during the critical seed-to-seedling stage. We conducted a parentage analysis of seedlings and adults in a population of 209 Sorbus aucuparia trees, monitored over 23 years, providing pioneering documentation of the effects of masting on the fitness of individual trees beyond the seed stage. Our results show high costs of interannual variation that can be mitigated by high synchrony and reveal the existence of phenotypes that appear to reap the benefits of masting while avoiding its costs through regular reproduction.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Igor Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jakub Szymkowiak
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | | | - Katarzyna Meyza
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Ewa Sztupecka
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kondrat
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jan Holeksa
- Department of Plant Ecology and Environmental Protection, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
2
|
Bogdziewicz M, Kelly D, Ascoli D, Caignard T, Chianucci F, Crone EE, Fleurot E, Foest JJ, Gratzer G, Hagiwara T, Han Q, Journé V, Keurinck L, Kondrat K, McClory R, LaMontagne JM, Mundo IA, Nussbaumer A, Oberklammer I, Ohno M, Pearse IS, Pesendorfer MB, Resente G, Satake A, Shibata M, Snell RS, Szymkowiak J, Touzot L, Zwolak R, Zywiec M, Hacket-Pain AJ. Evolutionary ecology of masting: mechanisms, models, and climate change. Trends Ecol Evol 2024; 39:851-862. [PMID: 38862358 DOI: 10.1016/j.tree.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland.
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Davide Ascoli
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy
| | - Thomas Caignard
- University of Bordeaux, INRAE, BIOGECO, F-33610 Cestas, France
| | - Francesco Chianucci
- CREA - Research Centre for Forestry and Wood, viale S. Margherita 80, Arezzo, Italy
| | - Elizabeth E Crone
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Emilie Fleurot
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy; Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Tomika Hagiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Qingmin Han
- Department of Plant Ecology, Forestry, and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Léa Keurinck
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Katarzyna Kondrat
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Ryan McClory
- School of Agriculture, Policy, and Development, University of Reading, Reading, UK
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Ignacio A Mundo
- Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA-CONICET, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | - Iris Oberklammer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Misuzu Ohno
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ian S Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Mario B Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Giulia Resente
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry, and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Laura Touzot
- Institut National de Recherche Pour Agriculture (INRAE), Alimentation et Environnement (IN23-RAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Université Grenoble Alpes, St Martin-d'Hères, 38402, France
| | - Rafal Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Andrew J Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
3
|
Stephens RB, Willems JS, Yamasaki M, Costello CA, Rowe RJ. Resource availability alters breeding strategies in a small mammal community. J Anim Ecol 2024; 93:1303-1315. [PMID: 39073110 DOI: 10.1111/1365-2656.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
Following a resource pulse, animals may finance reproduction by consuming concurrently available resources (income breeding) or by storing resources for future reproduction (capital breeding). Understanding how these reproductive strategies are used is important for determining the ecological mechanisms that structure timing of reproduction and that drive interannual population fluctuations in animals. We gathered a reproductive dataset for five small mammal species over a 12-year period in Northeastern USA during which six masting events of American beech (Fagus grandifolia) and eastern hemlock (Tsuga canadensis) occurred. Masting created alternate years where seeds were either available late (masting year) or early (cached from the previous year) in the breeding season. The small mammal species differed in reliance on seeds and overwintering strategies. We quantified the diet using stable isotopes and recorded reproduction timing, proportion breeding and litter size in females and testes size in males. Timing of seed availability minimally affected litter size but strongly affected proportion breeding and timing of reproduction. During masting years (late seed availability), a higher proportion of females reproduced, with breeding taking place later in the season (lactation timed with peak seed availability), although the delay was restricted in Napaeozapus insignis, an obligate hibernator. After a fall mast, cached seeds were used as capital in the following spring (early seed availability) to support a litter that, depending on the species, occurred 24-79 days sooner than a mast year. No late-season reproduction occurred in years with early seed availability except for Myodes gapperi which produced a second litter, likely financed by fungal consumption. Males also showed strong responses to seed availability, mirroring female reproduction with testes size staying constant in years with late seed availability and sharply decreasing over the breeding season in years with early seed availability. Our results highlight that although photoperiod and temperature broadly set bounds of the breeding season in temperate environments, resource availability influences the reproductive strategies that species use, which in turn alters reproductive timing and can drive large inter-annual population fluctuations. Differences in overwintering strategies and diet may further modulate reproductive timing and output relative to resource pulses.
Collapse
Affiliation(s)
- Ryan B Stephens
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Joshua S Willems
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Mariko Yamasaki
- Forest Sciences Laboratory, USDA Forest Service Northern Research Station, Durham, New Hampshire, USA
| | - Christine A Costello
- Forest Sciences Laboratory, USDA Forest Service Northern Research Station, Durham, New Hampshire, USA
| | - Rebecca J Rowe
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
4
|
Yu F, Zhang M, Yang Y, Wang Y, Yi X. Seed size and dispersal mode select mast seeding in perennial plants. Integr Zool 2024. [PMID: 39048928 DOI: 10.1111/1749-4877.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Reproduction by perennial plants varies from being relatively constant over years to the production of massive and synchronous seed crops at irregular intervals, a reproductive strategy called mast seeding. The sources of interspecific differences in the extent of interannual variation in seed production are largely unknown. We conducted a global meta-analysis of animal-dispersed species to quantify how the interannual variability in seed crops produced by plants can be explained by the seed mass, dispersal mode, phylogeny, and climate. Phylogenetic analysis indicated that the interannual variations in seed production and seed mass tended to be similar in related species due to their shared evolution. The interannual variation in seed production was 1.22 times higher in synzoochorous species dispersed by scatter-hoarders compared with endozoochorous species dispersed by frugivores. Furthermore, the production of small seeds was associated with higher interannual variation in seed production, although synzoochorous species produced larger seeds than endozoochorous species. Precipitation rather than temperature had a significant positive effect on the interannual variation in seed production. The seed mass and dispersal mode contributed more to the interannual variation in seed production than phylogeny, climate, and fruit type. Our findings support a long-standing hypothesis that interspecific variation in the masting intensity is largely shaped by interactions between plants and animals.
Collapse
Affiliation(s)
- Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Mingming Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, China
| | - Yueqin Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
5
|
Jensen AJ, Muthersbaugh M, Ruth CR, Butfiloski JW, Cantrell J, Adams J, Waits L, Kilgo JC, Jachowski DS. Resource pulses shape seasonal and individual variation in the diet of an omnivorous carnivore. Ecol Evol 2024; 14:e11632. [PMID: 38966241 PMCID: PMC11222735 DOI: 10.1002/ece3.11632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Resource pulses are ecologically important phenomenon that occur in most ecosystems globally. Following optimal foraging theory, many consumers switch to pulsatile foods when available, examples of which include fruit mast and vulnerable young prey. Yet how the availability of resource pulses shapes the ecology of predators is still an emerging area of research; and how much individual variation there is in response to pulses is not well understood. We hypothesized that resource pulses would lead to dietary convergence in our population, which we tested by tracking both population-level and individual coyote diets for 3 years in South Carolina, USA. We (1) described seasonal dietary shifts in relation to resource pulses; (2) compared male and female diets across seasons; and (3) tested this dietary convergence hypothesis by quantifying individual dietary variation both across and within periods when resource pulses were available. We found that pulses of white-tailed deer fawns and blackberries composed over half of coyote diet in summer, and persimmon fruits were an important component in fall. Male and female coyotes generally had similar diets, but males consumed more deer in fall, perhaps driven by scavenging more. We found support for our dietary convergence hypothesis, where individuals had more similar diets during resource pulses compared to a non-pulse period. We also found that this convergence happened before peak availability, suggesting a non-symmetric response to pulse availability. We show that nearly all coyotes eat fawns, suggesting that targeted efforts to remove "fawn killers" would be in vain. Instead, given how quickly coyotes collectively converge on resource pulses, our findings show that resource pulses could potentially be used by managers to alter the behavior of apex predators. More broadly, we open a new line of inquiry into how variation in individual foraging decisions scales up to shape the effects of resource pulses on ecological communities.
Collapse
Affiliation(s)
- Alex J. Jensen
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSouth CarolinaUSA
- North Carolina Museum of Natural SciencesRaleighNorth CarolinaUSA
| | - Michael Muthersbaugh
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSouth CarolinaUSA
| | - Charles R. Ruth
- South Carolina Department of Natural ResourcesColumbiaSouth CarolinaUSA
| | | | - Jay Cantrell
- South Carolina Department of Natural ResourcesColumbiaSouth CarolinaUSA
| | - Jennifer Adams
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | - Lisette Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | - John C. Kilgo
- United States Forest Service Southern Research StationNew EllentonSouth CarolinaUSA
| | - David S. Jachowski
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
6
|
Zhang H, Niu H, Steele MA, Peng L, He H, Li A, Yi X, Li H, Zhang Z. Masting promotes transformation from predation to mutualism in an oak-weevil-rodent system. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1514-1524. [PMID: 38558376 DOI: 10.1007/s11427-023-2517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
The significance of ecological non-monotonicity (a function whose first derivative changes signs) in shaping the structure and functions of the ecosystem has recently been recognized, but such studies involving high-order interactions are rare. Here, we have proposed a three-trophic conceptual diagram on interactions among trees, rodents, and insects in mast and non-mast years and tested the hypothesis that oak (Quercus wutaishanica) masting could result in increased mutualism and less predation in an oak-weevil-rodent system in a warm temperate forest of China. Our 14-year dataset revealed that mast years coincided with a relatively low rodent abundance but a high weevil abundance. Masting not only benefited seedling recruitment of oaks through increased dispersal by rodents but also a decrease in predation by rodents and weevils, as well as an increase in the overwintering survival of rodents. Masting appeared to have increased weevil survival by reducing predation of infested acorns by rodents. These results suggest that masting benefits all participants in the plant-insect-rodent system by increasing mutualism and reducing predation behavior (i.e., a non-monotonic function). Our study highlights the significance of masting in maintaining the diversity and function of the forest ecosystem by facilitating the transformation from predation to mutualism among trophic species.
Collapse
Affiliation(s)
- Hongmao Zhang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Hongyu Niu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Michael A Steele
- Department of Biology, Wilkes University, Wilkes-Barre, 18766, USA
| | - Liqing Peng
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Huimin He
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Aoqiang Li
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Szymkowiak J, Foest J, Hacket-Pain A, Journé V, Ascoli D, Bogdziewicz M. Tail-dependence of masting synchrony results in continent-wide seed scarcity. Ecol Lett 2024; 27:e14474. [PMID: 38994849 DOI: 10.1111/ele.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Spatial synchrony may be tail-dependent, meaning it is stronger for peaks rather than troughs, or vice versa. High interannual variation in seed production in perennial plants, called masting, can be synchronized at subcontinental scales, triggering extensive resource pulses or famines. We used data from 99 populations of European beech (Fagus sylvatica) to examine whether masting synchrony differs between mast peaks and years of seed scarcity. Our results revealed that seed scarcity occurs simultaneously across the majority of the species range, extending to populations separated by distances up to 1800 km. Mast peaks were spatially synchronized at distances up to 1000 km and synchrony was geographically concentrated in northeastern Europe. Extensive synchrony in the masting lower tail means that famines caused by beech seed scarcity are amplified by their extensive spatial synchrony, with diverse consequences for food web functioning and climate change biology.
Collapse
Affiliation(s)
- Jakub Szymkowiak
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Valentin Journé
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
8
|
Chen Z, Cameron TC, Couce E, Garcia C, Hicks N, Thomas GE, Thompson MSA, Whitby C, O'Gorman EJ. Oil and gas platforms degrade benthic invertebrate diversity and food web structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172536. [PMID: 38643886 DOI: 10.1016/j.scitotenv.2024.172536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Oil and gas exploitation introduces toxic contaminants such as hydrocarbons and heavy metals to the surrounding sediment, resulting in deleterious impacts on marine benthic communities. This study combines benthic monitoring data over a 30-year period in the North Sea with dietary information on >1400 taxa to quantify the effects of active oil and gas platforms on benthic food webs using a multiple before-after control-impact experiment. Contamination from oil and gas platforms caused declines in benthic food web complexity, community abundance, and biodiversity. Fewer trophic interactions and increased connectance indicated that the community became dominated by generalists adapting to alternative resources, leading to simpler but more connected food webs in contaminated environments. Decreased mean body mass, shorter food chains, and the dominance of small detritivores such as Capitella capitata near to structures suggested a disproportionate loss of larger organisms from higher trophic levels. These patterns were associated with concentrations of hydrocarbons and heavy metals that exceed OSPAR's guideline thresholds of sediment toxicity. This study provides new evidence to better quantify and manage the environmental consequences of oil and gas exploitation at sea.
Collapse
Affiliation(s)
- Zelin Chen
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.
| | - Tom C Cameron
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Elena Couce
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Clement Garcia
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Natalie Hicks
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Gareth E Thomas
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom; Life Sciences, Natural History Museum, Cromwell Road, London SW7 5HD, United Kingdom
| | - Murray S A Thompson
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
9
|
Michaud TJ, Pearse IS, Kauserud H, Andrew CJ, Kennedy PG. Mast seeding in European beech (Fagus sylvatica L.) is associated with reduced fungal sporocarp production and community diversity. Ecol Lett 2024; 27:e14460. [PMID: 38877759 DOI: 10.1111/ele.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Mast seeding is a well-documented phenomenon across diverse forest ecosystems. While its effect on aboveground food webs has been thoroughly studied, how it impacts the soil fungi that drive soil carbon and nutrient cycling has not yet been explored. To evaluate the relationship between mast seeding and fungal resource availability, we paired a Swiss 29-year fungal sporocarp census with contemporaneous seed production for European beech (Fagus sylvatica L.). On average, mast seeding was associated with a 55% reduction in sporocarp production and a compositional community shift towards drought-tolerant taxa across both ectomycorrhizal and saprotrophic guilds. Among ectomycorrhizal fungi, traits associated with carbon cost did not explain species' sensitivity to seed production. Together, our results support a novel hypothesis that mast seeding limits annual resource availability and reproductive investment in soil fungi, creating an ecosystem 'rhythm' to forest processes that is synchronized above- and belowground.
Collapse
Affiliation(s)
- Talia J Michaud
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | | | | | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
10
|
Journé V, Szymkowiak J, Foest J, Hacket-Pain A, Kelly D, Bogdziewicz M. Summer solstice orchestrates the subcontinental-scale synchrony of mast seeding. NATURE PLANTS 2024; 10:367-373. [PMID: 38459130 DOI: 10.1038/s41477-024-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
High interannual variation in seed production in perennial plants can be synchronized at subcontinental scales with wide consequences for ecosystem functioning, but how such synchrony is generated is unclear1-3. We investigated the factors contributing to masting synchrony in European beech (Fagus sylvatica), which extends to a geographic range of 2,000 km. Maximizing masting synchrony via spatial weather coordination, known as the Moran effect, requires a simultaneous response to weather conditions across distant populations. A celestial cue that occurs simultaneously across the entire hemisphere is the longest day (the summer solstice). We show that European beech abruptly opens its temperature-sensing window on the solstice, and hence widely separated populations all start responding to weather signals in the same week. This celestial 'starting gun' generates ecological events with high spatial synchrony across the continent.
Collapse
Affiliation(s)
- Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
11
|
Maag N, Korner-Nievergelt F, Szymkowiak J, Hałas N, Maziarz M, Neubauer G, Luepold SB, Carlotti S, Schaub M, Flade M, Scherrer D, Grendelmeier A, Riess M, Stelbrink P, Pasinelli G. Wood warbler population dynamics in response to mast seeding regimes in Europe. Ecology 2024; 105:e4227. [PMID: 38038276 DOI: 10.1002/ecy.4227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Mast seeding is the episodic, massive production of plant seeds synchronized over large areas. The resulting superabundance of seeds represents a resource pulse that can profoundly affect animal populations across trophic levels. Following years of high seed production, the abundance of both seed consumers and their predators increase. Higher predator abundance leads to increased predation pressure across the trophic web, impacting nonseed consumers such as the wood warbler Phylloscopus sibilatrix through increased nest predation after tree mast years. Over the past 30 years, the frequency of tree seed masts has increased, while wood warbler populations have declined in several regions of Europe. We hypothesized that increasing mast frequencies may have contributed to the observed population declines by creating suboptimal breeding conditions in years after masting. We measured reproductive output in four study areas in central Europe, which was between 0.61 and 1.24 fledglings lower in the years following masting than nonmasting. For each study area, we used matrix population models to predict population trends based on the estimated reproductive output and the local mast frequencies. We then compared the predicted with the observed population trends to assess if the frequency of mast years had contributed to the population dynamics. In Wielkopolska National Park (PL) and Hessen (DE), masting occurred on average only every 4 years and populations were stable or nearly so, whereas in Jura (CH) and Białowieża National Park (PL), masting occurred every 2 and 2.5 years, respectively, and populations were declining. The simple matrix population models predicted the relative difference among local population trends over the past 10-20 years well, suggesting that the masting frequency may partly explain regional variation in population trends. Simulations suggest that further increases in mast frequency will lead to further declines in wood warbler populations. We show that changes in a natural process, such as mast seeding, may contribute to the decline in animal populations through cascading effects.
Collapse
Affiliation(s)
- Nino Maag
- Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Forest Biology Center, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Hałas
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marta Maziarz
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | - Martin Flade
- Schorfheide-Chorin Biosphere Reserve, Angermünde, Germany
| | - Daniel Scherrer
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Michael Riess
- Department of Biology, University of Marburg, Marburg, Germany
| | - Pablo Stelbrink
- Department of Biology, University of Marburg, Marburg, Germany
| | - Gilberto Pasinelli
- Swiss Ornithological Institute, Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Walter JA, Emery KA, Dugan JE, Hubbard DM, Bell TW, Sheppard LW, Karatayev VA, Cavanaugh KC, Reuman DC, Castorani MCN. Spatial synchrony cascades across ecosystem boundaries and up food webs via resource subsidies. Proc Natl Acad Sci U S A 2024; 121:e2310052120. [PMID: 38165932 PMCID: PMC10786303 DOI: 10.1073/pnas.2310052120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 01/04/2024] Open
Abstract
Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems.
Collapse
Affiliation(s)
- Jonathan A. Walter
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA22904
- Center for Watershed Sciences, University of California, Davis, CA95616
| | - Kyle A. Emery
- Department of Geography, University of California, Los Angeles, CA90095
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - Jenifer E. Dugan
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - David M. Hubbard
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - Tom W. Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Lawrence W. Sheppard
- Marine Biological Association of the United Kingdom, PlymouthPL1 2PB, United Kingdom
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Vadim A. Karatayev
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Kyle C. Cavanaugh
- Department of Geography, University of California, Los Angeles, CA90095
| | - Daniel C. Reuman
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Max C. N. Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
13
|
Liu R, Zhang Y, Zhang H, Cao L, Yan C. A global evaluation of the associations between long-term dynamics of seed falls and rodents. Integr Zool 2023; 18:831-842. [PMID: 35636774 DOI: 10.1111/1749-4877.12665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One classic system of pulsed resource and animal population is mast seeding and population dynamics of seed-eating rodents in forests. However, we still lack an understanding of the global patterns regarding the contributions of seed falls to rodent outbreaks or population dynamics. We analyzed a global dataset of coupled long-term time series of seed abundances and rodent populations from published literature, including 66 and 89 time series (156 rodent-seed pairs from 37 studies) for rodent and seed abundances, respectively. We found only half of the examined rodent populations showed statistically significant coincidence between rodent outbreak and mast-seeding years. Over all the coupled time series, seed abundance was found to positively correlate with rodent abundance with a one-year lag, and the relative importance of seed abundance was much lower than that of density dependence in affecting rodent population growth rates. We also found the relative importance of seed abundance decreased, but that of rodent density dependence increased with the latitude of study. For the first time, our work provides a global pattern on the associations between seed falls and rodent population dynamics mostly in mid- and high-latitude forests, and highlights the necessity of more long-term studies on this subject in more forest ecosystems.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongjun Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hongmao Zhang
- Institute of Evolution and Ecology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lin Cao
- College of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, China
| | - Chuan Yan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Freund DR, Gable TD, Johnson-Bice SM, Homkes AT, Windels SK, Bump JK. The ethology of wolves foraging on freshwater fish in a boreal ecosystem. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230210. [PMID: 37234502 PMCID: PMC10206451 DOI: 10.1098/rsos.230210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Through global positioning system (GPS) collar locations, remote cameras, field observations and the first wild wolf to be GPS-collared with a camera collar, we describe when, where and how wolves fish in a freshwater ecosystem. From 2017 to 2021, we recorded more than 10 wolves (Canis lupus) hunting fish during the spring spawning season in northern Minnesota, USA. Wolves ambushed fish in creeks at night when spawning fish were abundant, available and vulnerable in shallow waters. We observed wolves specifically targeting sections of rivers below beaver (Castor canadensis) dams, suggesting that beavers may indirectly facilitate wolf fishing behaviour. Wolves also cached fish on shorelines. We documented these findings across five different social groups at four distinct waterways, suggesting that wolf fishing behaviour may be widespread in similar ecosystems but has probably remained difficult to study given its annual brevity. Spawning fish may serve as a valuable pulsed resource for packs because the spring spawning season coincides with low primary prey (deer Odocoileus virginianus) availability and abundance, and when packs have higher energetic demands owing to newly born pups. We demonstrate the flexibility and adaptability of wolf hunting and foraging behaviour, and provide insight into how wolves can survive in a myriad of ecosystems.
Collapse
Affiliation(s)
- Danielle R. Freund
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| | - Thomas D. Gable
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| | - Sean M. Johnson-Bice
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Austin T. Homkes
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| | - Steve K. Windels
- Voyageurs National Park, National Park Service, 360 Highway 11 East, International Falls, 56649 MN, USA
| | - Joseph K. Bump
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| |
Collapse
|
15
|
High Frequency of Apodemus Mice Boosts Inverse Activity Pattern of Bank Voles, Clethrionomys glareolus, through Non-Aggressive Intraguild Competition. Animals (Basel) 2023; 13:ani13060981. [PMID: 36978522 PMCID: PMC10044290 DOI: 10.3390/ani13060981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Sympatric animals with similar requirements can separate their ecological niches along the microhabitat, food and time axes. There may be alternative reasons for an interspecific different activity pattern, such as intraspecific social constraints, predator avoidance or physical conditions such as temperature, precipitation and illumination. We investigated the importance of intraguild competition in a 2-year study in an inner-alpine mixed forest, using small forest rodents as our model species. Apodemus mice were the physically superior, and bank voles, Clethrionomys glareolus, the inferior competitor. We predicted that bank voles would exhibit increased diurnal activity when frequencies of the almost exclusively nocturnal Apodemus mice were high during a seed mast year. To investigate this, we recorded 19,138 1 min videos. Controlling for confounding variables, bank vole diurnal activity was significantly related to the frequency of Apodemus mice. We assume that at high densities of Apodemus mice, a purely nocturnal separation in the niche dimensions of time, habitat and microhabitat is no longer sufficient, and therefore an inverse activity pattern by the bank voles is reinforced. Our videos showed, however, that this does not require persistent aggressive meetings and we explain this by the long co-evolution of the taxa under study.
Collapse
|
16
|
Bogdziewicz M, Journé V, Hacket-Pain A, Szymkowiak J. Mechanisms driving interspecific variation in regional synchrony of trees reproduction. Ecol Lett 2023; 26:754-764. [PMID: 36888560 DOI: 10.1111/ele.14187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Seed production in many plants is characterized by large interannual variation, which is synchronized at subcontinental scales in some species but local in others. The reproductive synchrony affects animal migrations, trophic responses to resource pulses and the planning of management and conservation. Spatial synchrony of reproduction is typically attributed to the Moran effect, but this alone is unable to explain interspecific differences in synchrony. We show that interspecific differences in the conservation of seed production-weather relationships combine with the Moran effect to explain variation in reproductive synchrony. Conservative timing of weather cues that trigger masting allows populations to be synchronized at distances >1000 km. Conversely, if populations respond to variable weather signals, synchrony cannot be achieved. Our study shows that species vary in the extent to which their weather cueing is spatiotemporally conserved, with important consequences, including an interspecific variation of masting vulnerability to climate change.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland.,Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Institut National de Recherche pour Agriculture, Alimentation et Environnement (IN-RAE), Université Grenoble Alpes, St. Martin-d'Hères, France
| | - Valentin Journé
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Jakub Szymkowiak
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland.,Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
17
|
Fernández-Martínez M, Peñuelas J, Chevallier F, Ciais P, Obersteiner M, Rödenbeck C, Sardans J, Vicca S, Yang H, Sitch S, Friedlingstein P, Arora VK, Goll DS, Jain AK, Lombardozzi DL, McGuire PC, Janssens IA. Diagnosing destabilization risk in global land carbon sinks. Nature 2023; 615:848-853. [PMID: 36813960 DOI: 10.1038/s41586-023-05725-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
Global net land carbon uptake or net biome production (NBP) has increased during recent decades1. Whether its temporal variability and autocorrelation have changed during this period, however, remains elusive, even though an increase in both could indicate an increased potential for a destabilized carbon sink2,3. Here, we investigate the trends and controls of net terrestrial carbon uptake and its temporal variability and autocorrelation from 1981 to 2018 using two atmospheric-inversion models, the amplitude of the seasonal cycle of atmospheric CO2 concentration derived from nine monitoring stations distributed across the Pacific Ocean and dynamic global vegetation models. We find that annual NBP and its interdecadal variability increased globally whereas temporal autocorrelation decreased. We observe a separation of regions characterized by increasingly variable NBP, associated with warm regions and increasingly variable temperatures, lower and weaker positive trends in NBP and regions where NBP became stronger and less variable. Plant species richness presented a concave-down parabolic spatial relationship with NBP and its variability at the global scale whereas nitrogen deposition generally increased NBP. Increasing temperature and its increasing variability appear as the most important drivers of declining and increasingly variable NBP. Our results show increasing variability of NBP regionally that can be mostly attributed to climate change and that may point to destabilization of the coupled carbon-climate system.
Collapse
Affiliation(s)
- Marcos Fernández-Martínez
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium.
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain.
- BEECA-UB, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.
| | - Josep Peñuelas
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Spain
| | - Frederic Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Christian Rödenbeck
- Department of Biogeochmical Systems, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jordi Sardans
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Spain
| | - Sara Vicca
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Hui Yang
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Pierre Friedlingstein
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK
| | - Vivek K Arora
- Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
| | - Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Atul K Jain
- Department of Atmospheric Sciences, University of Illinois, Urbana, IL, USA
| | - Danica L Lombardozzi
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Patrick C McGuire
- Department of Meteorology, Department of Geography & Environmental Science, National Centre for Atmospheric Science, University of Reading, Reading, UK
| | - Ivan A Janssens
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
18
|
Kelly D. Mast seeding: Study of oak mechanisms carries wider lessons. Curr Biol 2023; 33:R231-R233. [PMID: 36977386 DOI: 10.1016/j.cub.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Variable acorn crops in oaks were thought to reflect variable pollination success, but a new study shows local climates determine whether pollination or flower production drives acorn crops. This affects forest regeneration under climate change, and cautions against dichotomous summaries of biological phenomena.
Collapse
|
19
|
Fleurot E, Lobry JR, Boulanger V, Debias F, Mermet-Bouvier C, Caignard T, Delzon S, Bel-Venner MC, Venner S. Oak masting drivers vary between populations depending on their climatic environments. Curr Biol 2023; 33:1117-1124.e4. [PMID: 36764300 DOI: 10.1016/j.cub.2023.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Large interannual variation in seed production, called masting, is very common in wind-pollinated tree populations and has profound implications for the dynamics of forest ecosystems and the epidemiology of certain human diseases.1,2,3,4,5 Comparing the reproductive characteristics of populations established in climatically contrasting environments would provide powerful insight into masting mechanisms, but the required data are extremely scarce. We built a database from an unprecedented fine-scale 8-year survey of 150 sessile oak trees (Quercus petraea) from 15 populations distributed over a broad climatic gradient, including individual recordings of annual flowering effort, fruiting rate, and fruit production. Although oak masting was previously considered to depend mainly on fruiting rate variations,6,7 we show that the female flowering effort is highly variable from year to year and explains most of the fruiting dynamics in two-thirds of the populations. What drives masting was found to differ among populations living under various climates. In soft-climate populations, the fruiting rate increases initially strongly with the flowering effort, and the intensity of masting results mainly from the flowering synchrony level between individuals. By contrast, the fruiting rate of harsh-climate populations depends mainly on spring weather, which ensures intense masting regardless of the flowering synchronization level. Our work highlights the need for jointly measuring flowering effort and fruit production to decipher the diversity of masting mechanisms among populations. Accounting for such diversity will be decisive in proposing accurate, and possibly contrasted, scenarios about future reproductive patterns of perennial plants with ongoing climate change and their numerous cascading effects.
Collapse
Affiliation(s)
- Emilie Fleurot
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Jean R Lobry
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Vincent Boulanger
- Département Recherche, Développement et Innovation, Office National des Forêts, 77300 Fontainebleau, France
| | - François Debias
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Camille Mermet-Bouvier
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Thomas Caignard
- UMR 1202, BIOGECO, Université de Bordeaux, 33615 Pessac, France
| | - Sylvain Delzon
- UMR 1202, BIOGECO, Université de Bordeaux, 33615 Pessac, France
| | - Marie-Claude Bel-Venner
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France.
| |
Collapse
|
20
|
Zabala J, Trexler JC, Jayasena N, Frederick P. Timing and magnitude of net methylmercury effects on waterbird reproductive output are dependent on food availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159706. [PMID: 36309287 DOI: 10.1016/j.scitotenv.2022.159706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Mercury (Hg) is a globally distributed pollutant. Its sub-lethal effects on reproduction of birds have been used as indicators of contamination and of potential demographic effects. However, studies typically used single endpoints that might not be representative of entire reproductive cycle. To estimate timing and net cumulative effects of Hg exposure under field conditions, we used observational data over 11 years from >1200 nests of great egrets breeding under temporally and spatially varying food availability and Hg exposures in the Florida Everglades. We collected measures of fish biomass and availability (>100 locations annually) and used four avian reproductive endpoints that represented the entire breeding cycle. We calculated net reproductive loss by adding estimated Hg effects on failures prior to egg laying, clutch size, hatching success and nestling survival in response to food availability and Hg exposure. To validate and assess results of the observational egret study, we ran the same analyses with data of captive breeding white ibises experimentally exposed to Hg with ad libitum food over 3 years. We found large (>50 %) reductions in great egret offspring with high Hg exposure (18 μg/g dw THg nestling feather, ~0.7 μg/g ww whole egg THg) and high food availability, and even larger reductions (up to 100 %) with high Hg exposure and low food. Timing and the relative contribution of different endpoints to overall reproductive failure varied with food availability. Failures prior to egg laying were relevant at all food availabilities and proportionally most important during high food availability (~70 % of total losses). Under high food, post-hatching failures increased moderately with increasing exposure (~10 % of total losses), and under low food, hatching failures became dominant (~50 % of total losses). Patterns of failure of captive white ibis fed ad libitum resembled those of great egrets under high food availability but differed in total magnitude. We suggest that, a) net reproductive effects of Hg in free-ranging animals are probably much higher than generally reported in studies using single endpoints, b) Hg effect sizes vary considerably among different endpoints and c) food availability is a strong driver of timing and net effects of Hg exposure.
Collapse
Affiliation(s)
- Jabi Zabala
- Department of Zoology and Animal Cell Biology, University of the Basque Country, UPV/EHU, C/Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Araba, Basque Country, Spain; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA.
| | - Joel C Trexler
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Coastal & Marine laboratory, Florida State University, St. Teresa, FL, USA
| | - Nilmini Jayasena
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Peter Frederick
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Carpenter JK, Monks A, Innes J, Griffiths J, Anderson D. Immigration drives ship rat population irruptions in marginal high‐elevation habitat in response to pulsed resources. Ecosphere 2023. [DOI: 10.1002/ecs2.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
| | - Adrian Monks
- Manaaki Whenua – Landcare Research Dunedin New Zealand
| | - John Innes
- Manaaki Whenua – Landcare Research Hamilton New Zealand
| | | | - Dean Anderson
- Manaaki Whenua – Landcare Research Lincoln New Zealand
| |
Collapse
|
22
|
Ruprecht J, Forrester TD, Jackson NJ, Clark DA, Wisdom MJ, Rowland MM, Smith JB, Stewart KM, Levi T. A seasonal pulse of ungulate neonates influences space use by carnivores in a multi-predator, multi-prey system. Ecol Evol 2022; 12:e9389. [PMID: 36254298 PMCID: PMC9558345 DOI: 10.1002/ece3.9389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022] Open
Abstract
The behavioral mechanisms by which predators encounter prey are poorly resolved. In particular, the extent to which predators engage in active search for prey versus incidentally encountering them has not been well studied in many systems and particularly not for neonate prey during the birth pulse. Parturition of many large herbivores occurs during a short and predictable temporal window in which young are highly vulnerable to predation. Our study aims to determine how a suite of carnivores responds to the seasonal pulse of newborn ungulates using contemporaneous global positioning system (GPS) locations of four species of predators and two species of prey. We used step-selection functions to assess whether coyotes, cougars, black bears, and bobcats encountered parturient adult female ungulates more often than expected by chance in a low-density population of mule deer and a high-density population of elk. We then assessed whether the carnivore species that encountered parturient prey more often than expected by chance did so by shifting their habitat use toward areas with a high probability of encountering neonates. None of the four carnivore species encountered GPS-collared parturient mule deer more often than expected by chance. By contrast, we determined that cougar and male bear movements positioned them in the proximity of GPS-collared parturient elk more often than expected by chance which may provide evidence of searching behavior. Although both male bears and cougars exhibited behavior consistent with active search for neonates, only male bears used elk parturition habitat in a way that dynamically tracked the phenology of the elk birth pulse suggesting that maximizing encounters with juvenile elk was a motivation when selecting resources. Our results suggest that there is high interspecific and intersexual variability in foraging strategies among large mammalian predators and their prey.
Collapse
Affiliation(s)
- Joel Ruprecht
- Department of Fisheries, Wildlife, and Conservation SciencesOregon State UniversityCorvallisOregonUSA
| | | | - Nathan J. Jackson
- Department of Natural Resources and Environmental ScienceUniversity of Nevada, RenoRenoNevadaUSA
| | | | - Michael J. Wisdom
- US Department of Agriculture Forest Service Pacific Northwest Research StationLa GrandeOregonUSA
| | - Mary M. Rowland
- US Department of Agriculture Forest Service Pacific Northwest Research StationLa GrandeOregonUSA
| | | | - Kelley M. Stewart
- Department of Natural Resources and Environmental ScienceUniversity of Nevada, RenoRenoNevadaUSA
| | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
23
|
Food availability alters community co-occurrence patterns at fine spatiotemporal scales in a tropical masting system. Oecologia 2022; 200:169-181. [DOI: 10.1007/s00442-022-05252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
24
|
Almaraz P, Martínez F, Morales-Reyes Z, Sánchez-Zapata JA, Blanco G. Long-term demographic dynamics of a keystone scavenger disrupted by human-induced shifts in food availability. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2579. [PMID: 35279905 DOI: 10.1002/eap.2579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/26/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Scavenging is a key ecological process controlling energy flow in ecosystems and providing valuable ecosystem services worldwide. As long-lived species, the demographic dynamics of vultures can be disrupted by spatiotemporal fluctuations in food availability, with dramatic impacts on their population viability and the ecosystem services provided. In Europe, the outbreak of bovine spongiform encephalopathy (BSE) in 2001 prompted a restrictive sanitary regulation banning the presence of livestock carcasses in the wild on a continental scale. In long-lived vertebrate species, the buffering hypothesis predicts that the demographic traits with the largest contribution to population growth rate should be less temporally variable. The BSE outbreak provides a unique opportunity to test for the impact of demographic buffering in a keystone scavenger suffering abrupt but transient food shortages. We studied the 42-year dynamics (1979-2020) of one of the world's largest breeding colonies of Eurasian griffon vultures (Gyps fulvus). We fitted an inverse Bayesian state-space model with density-dependent demographic rates to the time series of stage-structured abundances to investigate shifts in vital rates and population dynamics before, during, and after the implementation of a restrictive sanitary regulation. Prior to the BSE outbreak the dynamics was mainly driven by adult survival: 83% of temporal variance in abundance was explained by variability in this rate. Moreover, during this period the regulation of population size operated through density-dependent fecundity and subadult survival. However, after the onset of the European ban, a 1-month delay in average laying date, a drop in fecundity, and a reduction in the number of fledglings induced a transient increase in the impact of fledgling and subadult recruitment on dynamics. Although adult survival rate remained constantly high, as predicted by the buffering hypothesis, its relative impact on the temporal variance in abundance dropped to 71% during the sanitary regulation and to 54% after the ban was lifted. A significant increase in the relative impact of environmental stochasticity on dynamics was modeled after the BSE outbreak. These results provide empirical evidence on how abrupt environmental deterioration may induce dramatic demographic and dynamic changes in the populations of keystone scavengers, with far-reaching impacts on ecosystem functioning worldwide.
Collapse
Affiliation(s)
- Pablo Almaraz
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Río San Pedro, Puerto Real, Spain
| | - Félix Martínez
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos (URJC), Móstoles, Spain
| | - Zebensui Morales-Reyes
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain
| | - José A Sánchez-Zapata
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain
| | - Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
25
|
Dri GF, Hunter ML, Witham J, Mortelliti A. Pulsed resources and the resource‐prediction strategy: a field‐test using a 36‐year study of small mammals. OIKOS 2022. [DOI: 10.1111/oik.09551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Gabriela Franzoi Dri
- Dept of Wildlife, Fisheries, and Conservation Biology, Univ. of Maine Orono Maine USA
| | - Malcolm L. Hunter
- Dept of Wildlife, Fisheries, and Conservation Biology, Univ. of Maine Orono Maine USA
| | - Jack Witham
- Holt Research Forest – Center for Research on Sustainable Forests, Univ. of Maine Arrowsic Maine USA
| | - Alessio Mortelliti
- Dept of Wildlife, Fisheries, and Conservation Biology, Univ. of Maine Orono Maine USA
| |
Collapse
|
26
|
Baláž I, Bogdziewicz M, Dziemian-Zwolak S, Presti CL, Wróbel A, Zduniak M, Zwolak R. From trees to fleas: masting indirectly affects flea abundance on a rodent host. Integr Zool 2022; 18:440-452. [PMID: 35848894 DOI: 10.1111/1749-4877.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mast seeding causes strong fluctuations in populations of forest animals. Thus, this phenomenon can be used as a natural experiment to examine how variation in host abundance affects parasite loads. We investigated fleas infesting yellow-necked mice in beech forest after two mast and two non-mast years. We tested two mutually exclusive scenarios: (1) as predicted by classical models of density-dependent transmission, an increase in host density will cause an increase in ectoparasite abundance (defined as the number of parasites per host), vs. (2) an increase in host density will cause a decline in flea abundance ("dilution", which is thought to occur when parasite population growth is slower than that of the host). In addition, we assessed whether masting alters the relationship between host traits (sex and body mass) and flea abundance. We found a hump-shaped relationship between host and flea abundance. Thus, the most basic predictions are too simple to describe ectoparasite dynamics in this system. In addition, masting modified seasonal dynamics of flea abundance, but did not affect the relationship between host traits and flea abundance (individuals with the highest body mass hosted the most fleas; after controlling for body mass, parasite abundance did not vary between sexes). Our results demonstrate that pulses of tree reproduction can indirectly, through changes in host densities, drive patterns of ectoparasite infestation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ivan Baláž
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovenia
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Adam Mickiewicz University in Poznań, Poland.,French National Institute for Agriculture, Food, and Environment, Laboratory of EcoSystems and Societes in Mountain Environments
| | | | | | - Aleksandra Wróbel
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Milena Zduniak
- Department of Systematic Zoology, Adam Mickiewicz University in Poznań, Poland
| | - Rafał Zwolak
- Department of Systematic Zoology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
27
|
Naganuma T, Nakashita R, Tochigi K, Zedrosser A, Kozakai C, Yamazaki K, Koike S. Functional dietary response of Asian black bears to changes in sika deer density. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tomoko Naganuma
- Institute of Global Innovation Research Tokyo University of Agriculture and Technology 3‐5‐8 Saiwai‐cho Fuchu Tokyo 183‐8509 Japan
| | - Rumiko Nakashita
- Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 305‐8687 Japan
| | - Kahoko Tochigi
- United Graduate School of Agricultural Science Tokyo University of Agriculture and Technology 3‐5‐8 Saiwai‐cho Fuchu Tokyo 183‐8509 Japan
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health University of South‐Eastern Norway Gullbringvegen 36 3800 Bø Telemark Norway
| | - Chinatsu Kozakai
- National Agriculture and Food Research Organization 2‐1‐18 Kannondai Tsukuba Ibaraki 305‐8666 Japan
| | - Koji Yamazaki
- Department of Forest Science Faculty of Regional Environmental Science Tokyo University of Agriculture 1‐1‐1 Sakuragaoka Setagaya Tokyo 156‐8502 Japan
| | - Shinsuke Koike
- Institute of Global Innovation Research Tokyo University of Agriculture and Technology 3‐5‐8 Saiwai‐cho Fuchu Tokyo 183‐8509 Japan
| |
Collapse
|
28
|
Lingle S, Breiter C, Schowalter DB, Wilmshurst JF. Prairie dogs, cattle subsidies and alternative prey: seasonal and spatial variation in coyote diet in a temperate grassland. WILDLIFE BIOLOGY 2022. [DOI: 10.1002/wlb3.01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Susan Lingle
- Dept of Biology, Univ. of Winnipeg Winnipeg MB Canada
| | - C‐Jae Breiter
- Research and Conservation Dept, Assiniboine Park Zoo Winnipeg MB Canada
| | | | - John F. Wilmshurst
- Dept of Geography and Planning, Univ. of Saskatchewan Saskatoon SK Canada
| |
Collapse
|
29
|
Journé V, Andrus R, Aravena MC, Ascoli D, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Donoso Calderon S, Dormont L, Maria Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Lambers JHR, Hoshizaki K, Ibanez I, Johnstone JF, Kabeya D, Kays R, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Qiu T, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Marle HSV, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wright B, Wright SJ, Zhu K, Zimmerman JK, Zlotin R, Zywiec M, Clark JS. Globally, tree fecundity exceeds productivity gradients. Ecol Lett 2022; 25:1471-1482. [PMID: 35460530 DOI: 10.1111/ele.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.
Collapse
Affiliation(s)
- Valentin Journé
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Robert Andrus
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA
| | - Marie-Claire Aravena
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Santiago, Chile
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Roberta Berretti
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Daniel Berveiller
- Universite Paris-Saclay, Centre national de la recherche scientifique, AgroParisTech, Ecologie Systematique et Evolution, Orsay, France
| | - Michal Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Thomas Boivin
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Raul Bonal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Thomas Caignard
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Rafael Calama
- Centro de Investigacion Forestal (INIA-CSIC), Madrid, Spain
| | - Jesús Julio Camarero
- Instituto Pirenaico de Ecologla, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza, Spain
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Benoit Courbaud
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Francois Courbet
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Thomas Curt
- Aix Marseille universite, Institut National de Recherche pour Agriculture, Alimentation et Environnement (IN-RAE), Aix-en-Provence, France
| | - Adrian J Das
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | - Evangelia Daskalakou
- Institute of Mediterranean and Forest Ecosystems, HellenicAgricultural Organization ¨ DEMETER¨, Athens, Greece
| | - Hendrik Davi
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Nicolas Delpierre
- Universite Paris-Saclay, Centre national de la recherche scientifique, AgroParisTech, Ecologie Systematique et Evolution, Orsay, France
| | - Sylvain Delzon
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Michael Dietze
- Earth and Environment, Boston University, Boston, Massachusetts, USA
| | - Sergio Donoso Calderon
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Santiago, Chile
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Josep Maria Espelta
- Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Bellaterra, Catalunya, Spain
| | - Timothy J Fahey
- Natural Resources, Cornell University, Ithaca, New York, USA
| | - William Farfan-Rios
- Center for Conservation and Sustainable Development, Washington University in Saint Louis, Missouri Botanical Garden, St. Louis, Missouri, USA
| | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptive Western Landscapes, University of Northern Arizona, Flagstaff, Arizona, USA
| | - Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Georg Gratzer
- University of Natural Resources and Life Sciences and Institute of Forest Ecology, Wien, Austria
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, USDA Forest Service, Asheville, North Carolina, USA
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Southern Research Station, Asheville, North Carolina, USA
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Arndt Hampe
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Qingmin Han
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | | | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA
| | - Daisuke Kabeya
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | - Roland Kays
- Department of Forestry and Environmental Resources, NC State University, Raleigh, North Carolina, USA
| | - Thomas Kitzberger
- Department of Ecology, Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Cientificas y Tecnicas - Universidad Nacional del Comahue), Bariloche, Argentina
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Georges Kunstler
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Theodor Leininger
- USDA, Forest Service, Southern Research Station, Stoneville, Mississippi, USA
| | | | - James A Lutz
- Department of Wildland Resources, and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Diana Macias
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | | - Emily Moran
- School of Natural Sciences, UC Merced, Merced, California, USA
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas A Nagel
- Department of forestry and renewable forest resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kyotaro Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | | | - Robert Parmenter
- Valles Caldera National Preserve, National Park Service, Jemez Springs, New Mexico, USA
| | - Ian S Pearse
- Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Ignacio M Perez-Ramos
- Inst. de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Seville, Andalucia, Spain
| | - Lukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Tong Qiu
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Kyle C Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Javier D Sanguinetti
- Bilogo Dpto. Conservacin y Manejo Parque Nacional Lanin Elordi y Perito Moreno 8370, San Marten de los Andes, Argentina
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Harald Schmidt Van Marle
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Santiago, Chile
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Shubhi Sharma
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Michael A Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | | | - Jacob N Straub
- Department of Environmental Science and Ecology, State University of New York-Brockport, Brockport, New York, USA
| | - Jennifer J Swenson
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DISAA), University of Milan, Milano, Italy
| | - Thomas T Veblen
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Boyd Wright
- Botany, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico, USA
| | - Roman Zlotin
- Geography Department and Russian and East European Institute, Bloomington, Indiana, USA
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - James S Clark
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France.,Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
30
|
Kramer C, Boudreau MR, Miller RS, Powers R, VerCauteren K, Brook RK. Summer habitat use and movements of invasive wild pigs (Sus scrofa) in Canadian agro-ecosystems. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resource selection informs understanding of a species’ ecology and is especially pertinent for invasive species. Since introduced to Canada, wild pigs (Sus scrofa Linnaeus, 1978) remain understudied despite recognized negative impacts to native and agricultural systems globally. Elsewhere in North America, pigs typically use forests and forage in agricultural crops. We hypothesized Canadian wild pigs would behave similarly and using GPS locations from 15 individuals we examined diel and seasonal resource selection and movement in the Canadian prairie region. Forests were predominately selected during the day, while corn (Zea mays L.), oilseeds, and wheat (Triticum aestivum L.) were predominately selected at night. Forests and corn were consistently selected throughout the growing season. Wetlands and forests showed greater use rates than other habitats, with evident trade-offs as crop use increased with the timing of maturation. Activity was consistent with foraging in growing crops. Results indicate diel patterns were likely a function of short-term needs to avoid daytime anthropogenic risk, while seasonal patterns demonstrate how habitats that fill multiple functional roles – food, cover, and thermoregulation – can be optimized. Understanding selection by invasive species is an important step in understanding their potential environmental impacts in novel environments and informs their management.
Collapse
Affiliation(s)
- Corey Kramer
- University of Saskatchewan College of Agriculture and Bioresources, 98627, Animal and Poultry Science, Saskatoon, Saskatchewan, Canada
| | - Melanie R. Boudreau
- Mississippi State University College of Forest Resources, 237137, Wildlife, Fisheries, and Aquaculture, Mississippi State, Mississippi, United States
| | | | - Ryan Powers
- USDA, 1097, Bismarck, North Dakota, United States
| | - Kurt VerCauteren
- USDA-APHIS National Wildlife Research Center, 93514, Fort Collins, Colorado, United States
| | - Ryan K. Brook
- University of Saskatchewan College of Agriculture and Bioresources, 98627, Department of Animal and Poultry Science & Indigenous Land Management Institute, Saskatoon, Saskatchewan, Canada,
| |
Collapse
|
31
|
Abstract
Masting, or synchronous production of large seed crops, is widespread among plants. The predator satiation hypothesis states that masting evolved to overwhelm seed predators with an excess of food. Yet, this popular explanation faced few rigorous tests. We conducted a meta-analysis of studies that related the magnitude of seed production to the intensity of seed predation. Our results validate certain theoretical notions (e.g., that predator satiation is more effective at higher latitudes) but challenge others (e.g., that specialist and generalist consumers differ in the type of functional response to masting). We also found that masting is losing its ability to satiate consumers, probably because global warming affected masting patterns. This shift might considerably impair the reproduction of masting plants. Predator satiation is the most commonly tested hypothesis that explains the evolutionary advantages of masting. It proposes that masting benefits plant reproduction by reducing the proportion of seed crop that is consumed by predators. This hypothesis is widely accepted, but many theoretical notions about predator satiation have not been subjected to a robust evaluation. To address this issue, we conducted a meta-analysis of studies that quantified seed predation in relation to mast seeding. We found evidence of both numerical (starvation between mast years) and functional (satiation during mast years) response of consumers to masting. These two effects reinforced each other. Masting satiated invertebrate but not vertebrate seed predators. Satiation was more pronounced at higher, temperate, and boreal latitudes, perhaps because masting is more effective in reducing seed losses when plant communities are less diverse. The effectiveness of masting in satiating invertebrate consumers declined over time (1972 to 2018), probably reflecting the impact of climate change on the frequency and intensity of masting. If masting ceases to reduce seed losses, a crucial advantage of this reproductive strategy will be lost, and sustainability of many tree populations will decline.
Collapse
|
32
|
Banko PC, Peck RW, Yelenik SG, Paxton EH, Bonaccorso F, Montoya‐Aiona K, Hughes RF, Perakis S. Hypotheses and lessons from a native moth outbreak in a low‐diversity, tropical rainforest. Ecosphere 2022. [DOI: 10.1002/ecs2.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Paul C. Banko
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Robert W. Peck
- Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo Hawai‘i National Park Hawai'i USA
| | - Stephanie G. Yelenik
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
- Rocky Mountain Research Center U.S. Forest Service Reno Nevada USA
| | - Eben H. Paxton
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Frank Bonaccorso
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Kristina Montoya‐Aiona
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - R. Flint Hughes
- Institute for Pacific Island Forestry U.S. Forest Service Hilo Hawai'i USA
| | - Steven Perakis
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis Oregon USA
| |
Collapse
|
33
|
Mishra A, Kumar B, Rastogi N. Do the food availability conditions influence the stage-specific prey choice and predation attributes of agroecosystem-inhabiting spiders? Trop Ecol 2022. [DOI: 10.1007/s42965-022-00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Seget B, Bogdziewicz M, Holeksa J, Ledwoń M, Milne-Rostkowska F, Piechnik Ł, Rzepczak A, Żywiec M. Costs and benefits of masting: economies of scale are not reduced by negative density-dependence in seedling survival in Sorbus aucuparia. THE NEW PHYTOLOGIST 2022; 233:1931-1938. [PMID: 34845725 DOI: 10.1111/nph.17887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Masting is a widespread reproductive strategy in plants that helps to reduce seed predation and increase pollination. However, masting can involve costs, notably negative density-dependent (NDD) seedling survival caused by concentrating reproduction in intermittent events. Masting benefits have received widespread attention, but the costs are understudied, which precludes understanding why some plant species have evolved intense masting, while others reproduce regularly. We followed seed production, seed predation (both 13 yr), and seedling recruitment and survival (11 yr) in Sorbus aucuparia. We tested whether NDD in seedling survival after mast years can reduce the benefits of pulsed reproduction that come through predator satiation. Seed predation rates were extreme in our population (mean = 75%), but were reduced by masting. The commonly accepted, but untested, assertion that pulsed recruitment is associated with strong NDD was unsupported. Consequently, the proportion of seedlings that survived their first year increased with fruit production. This provides a rare test of economies of scale beyond the seed stage. Our results provide estimation of the costs of mast seeding, and indicate that these may be lower than expected. Low masting costs, if common, may help explain why masting is such a widespread reproductive strategy throughout the plant kingdom.
Collapse
Affiliation(s)
- Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Kraków, 31-512, Poland
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint-Martin-d'Hères, 38400, France
| | - Jan Holeksa
- Department of Plant Ecology and Environmental Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, Kraków, 31-016, Poland
| | - Fiona Milne-Rostkowska
- Department of Plant Ecology and Environmental Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Kraków, 31-512, Poland
| | - Alicja Rzepczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań, 61-704, Poland
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Kraków, 31-512, Poland
| |
Collapse
|
35
|
Suzuki Y, Mukaimine W. Prey–predator interactions and body size relationships between annual cicadas and spiders in Japan. J NAT HIST 2022. [DOI: 10.1080/00222933.2021.2019340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuya Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima-shi, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Wataru Mukaimine
- Doctoral Program in Biology, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
36
|
Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. Commun Biol 2022; 5:66. [PMID: 35046515 PMCID: PMC8770499 DOI: 10.1038/s42003-022-03030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023] Open
Abstract
Mathematical models that incorporate the temperature dependence of lab-measured life history traits are increasingly being used to predict how climatic warming will affect ectotherms, including disease vectors and other arthropods. These temperature-trait relationships are typically measured under laboratory conditions that ignore how conspecific competition in depleting resource environments—a commonly occurring scenario in nature—regulates natural populations. Here, we used laboratory experiments on the mosquito Aedes aegypti, combined with a stage-structured population model, to investigate this issue. We find that intensified larval competition in ecologically-realistic depleting resource environments can significantly diminish the vector’s maximal population-level fitness across the entire temperature range, cause a ~6 °C decrease in the optimal temperature for fitness, and contract its thermal niche width by ~10 °C. Our results provide evidence for the importance of considering intra-specific competition under depleting resources when predicting how arthropod populations will respond to climatic warming. Huxley et al. use laboratory experiments to examine how environmental resource depletion impacts temperature-dependent traits observed in Aedes aegypti mosquitoes. The authors find that the conspecific competition dynamics of larvae significantly alter how the mosquito’s population-level fitness responds to temperature, shedding light on how arthropods and other disease vectors may respond to environmental change.
Collapse
|
37
|
Wion AP, Pearse IS, Rodman KC, Veblen TT, Redmond MD. The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200378. [PMID: 34657459 PMCID: PMC8520773 DOI: 10.1098/rstb.2020.0378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
We aimed to disentangle the patterns of synchronous and variable cone production (i.e. masting) and its relationship to climate in two conifer species native to dry forests of western North America. We used cone abscission scars to reconstruct ca 15 years of recent cone production in Pinus edulis and Pinus ponderosa, and used redundancy analysis to relate time series of annual cone production to climate indices describing the North American monsoon and the El Niño Southern Oscillation (ENSO). We show that the sensitivity to climate and resulting synchrony in cone production varies substantially between species. Cone production among populations of P. edulis was much more spatially synchronous and more closely related to large-scale modes of climate variability than among populations of P. ponderosa. Large-scale synchrony in P. edulis cone production was associated with the North American monsoon and we identified a dipole pattern of regional cone production associated with ENSO phase. In P. ponderosa, these climate indices were not strongly associated with cone production, resulting in asynchronous masting patterns among populations. This study helps frame our understanding of mast seeding as a life-history strategy and has implications for our ability to forecast mast years in these species. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andreas P. Wion
- Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA
| | - Ian S. Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Kyle C. Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA
| | - Thomas T. Veblen
- Department of Geography, University of Colorado, Boulder, CO 80302, USA
| | - Miranda D. Redmond
- Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA
| |
Collapse
|
38
|
Abstract
Although it has long been recognized that seed production by many forest trees varies greatly from year to year, masting (along with 'mast fruiting', 'mast seeding' and 'masting behaviour') as a concept referring to such variability is a relatively recent development. Here, I provide a brief history of masting research, highlighting some of the early contributions by foresters, zoologists and others that paved the way for the burgeoning number of studies currently being conducted by researchers around the world. Of particular current interest is work attempting to understand the proximate mechanisms, evolutionary drivers and community effects of this important ecological phenomenon as well as the ways that climate change may influence masting behaviour in the future. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Walter D Koenig
- Hastings Natural History Reservation, University of California Berkeley, Carmel Valley, CA 93924, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
39
|
Pesendorfer MB, Ascoli D, Bogdziewicz M, Hacket-Pain A, Pearse IS, Vacchiano G. The ecology and evolution of synchronized reproduction in long-lived plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200369. [PMID: 34657462 PMCID: PMC8520778 DOI: 10.1098/rstb.2020.0369] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Populations of many long-lived plants exhibit spatially synchronized seed production that varies extensively over time, so that seed production in some years is much higher than on average, while in others, it is much lower or absent. This phenomenon termed masting or mast seeding has important consequences for plant reproductive success, ecosystem dynamics and plant-human interactions. Inspired by recent advances in the field, this special issue presents a series of articles that advance the current understanding of the ecology and evolution of masting. To provide a broad overview, we reflect on the state-of-the-art of masting research in terms of underlying proximate mechanisms, ontogeny, adaptations, phylogeny and applications to conservation. While the mechanistic drivers and fitness consequences of masting have received most attention, the evolutionary history, ontogenetic trajectory and applications to plant-human interactions are poorly understood. With increased availability of long-term datasets across broader geographical and taxonomic scales, as well as advances in molecular approaches, we expect that many mysteries of masting will be solved soon. The increased understanding of this global phenomenon will provide the foundation for predictive modelling of seed crops, which will improve our ability to manage forests and agricultural fruit and nut crops in the Anthropocene. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Mario B. Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, A-1180 Vienna, Austria
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
| | - Davide Ascoli
- Department of Agricultural, Forestry and Food Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland
- INRAE, LESSEM, University Grenoble Alpes, 38400 Saint-Martin-d'Hères, France
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Ian S. Pearse
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO 80526, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
40
|
LaMontagne JM, Redmond MD, Wion AP, Greene DF. An assessment of temporal variability in mast seeding of North American Pinaceae. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200373. [PMID: 34657469 PMCID: PMC8520784 DOI: 10.1098/rstb.2020.0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Our overall objective is to synthesize mast-seeding data on North American Pinaceae to detect characteristic features of reproduction (i.e. development cycle length, serotiny, dispersal agents), and test for patterns in temporal variation based on weather variables. We use a large dataset (n = 286 time series; mean length = 18.9 years) on crop sizes in four conifer genera (Abies, Picea, Pinus, Tsuga) collected between 1960 and 2014. Temporal variability in mast seeding (CVp) for 2 year genera (Abies, Picea, Tsuga) was higher than for Pinus (3 year), and serotinous species had lower CVp than non-serotinous species; there were no relationships of CVp with elevation or latitude. There was no difference in family-wide CVp across four tree regions of North America. Across all genera, July temperature differences between bud initiation and the prior year (ΔT) was more strongly associated with reproduction than absolute temperature. Both CVp and ΔT remained steady over time, while absolute temperature increased by 0.09°C per decade. Our use of the ΔT model included a modification for Pinus, which initiates cone primordia 2 years before seedfall, as opposed to 1 year. These findings have implications for how mast-seeding patterns may change with future increases in temperature, and the adaptive benefits of mast seeding. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Jalene M. LaMontagne
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Avenue, Chicago, IL 60614, USA
| | - Miranda D. Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Andreas P. Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - David F. Greene
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, USA
| |
Collapse
|
41
|
Zwolak R, Clement D, Sih A, Schreiber SJ. Mast seeding promotes evolution of scatter-hoarding. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200375. [PMID: 34657470 PMCID: PMC8520775 DOI: 10.1098/rstb.2020.0375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
Many plant species worldwide are dispersed by scatter-hoarding granivores: animals that hide seeds in numerous, small caches for future consumption. Yet, the evolution of scatter-hoarding is difficult to explain because undefended caches are at high risk of pilferage. Previous models have attempted to solve this problem by giving cache owners large advantages in cache recovery, by kin selection, or by introducing reciprocal pilferage of 'shared' seed resources. However, the role of environmental variability has been so far overlooked in this context. One important form of such variability is masting, which is displayed by many plant species dispersed by scatterhoarders. We use a mathematical model to investigate the influence of masting on the evolution of scatter-hoarding. The model accounts for periodically varying annual seed fall, caching and pilfering behaviour, and the demography of scatterhoarders. The parameter values are based mostly on research on European beech (Fagus sylvatica) and yellow-necked mice (Apodemus flavicollis). Starvation of scatterhoarders between mast years decreases the population density that enters masting events, which leads to reduced seed pilferage. Satiation of scatterhoarders during mast events lowers the reproductive cost of caching (i.e. the cost of caching for the future rather than using seeds for current reproduction). These reductions promote the evolution of scatter-hoarding behaviour especially when interannual variation in seed fall and the period between masting events are large. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Dale Clement
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Andrew Sih
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Sebastian J. Schreiber
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
42
|
Hacket-Pain A, Bogdziewicz M. Climate change and plant reproduction: trends and drivers of mast seeding change. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200379. [PMID: 34657461 PMCID: PMC8520772 DOI: 10.1098/rstb.2020.0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation and mast frequency. Data indicate that masting patterns are changing but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań, 61‐614 Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint‐Martin‐d'Hères, 38400 France
| |
Collapse
|
43
|
Mundo IA, Sanguinetti J, Kitzberger T. Multi-centennial phase-locking between reproduction of a South American conifer and large-scale drivers of climate. NATURE PLANTS 2021; 7:1560-1570. [PMID: 34907311 DOI: 10.1038/s41477-021-01038-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Climate forcings determine the episodic occurrence of local climate anomalies that trigger the occurrence of masting events (massive, synchronized and intermittent seed production by perennial plants). This suggests some kind of phase-locking of the reproductive cycles of individual plants to the climatological cycle, thus further reinforcing reproductive synchrony and the Moran effect. We propose a dendrochronological approach to filter out the long-term direct effects of climate on tree radial growth and temporal reproductive effort by sex by using actual trees as climatic controls to reconstruct masting events in Araucaria araucana, a long-lived dioecious masting conifer. In this way, we developed a multi-century-long tree masting reconstruction for South America using female-male radial growth determined by differences in timing and magnitude of the reproductive effort between sexes. We provide evidence for a regional synchronizing mechanism of masting which is drought induced by strong cold La Niña phases of El Niño/Southern Oscillation (ENSO) amplified by the positive phases of the Southern Annular Mode (SAM) that activate both female and male cone bud formation during year -2 before seed fall; that is, a long-term phase-locking between the ENSO cycle and the reproductive cycle modulated by the strength of SAM. In addition, our regional index of masting frequency showed its maximum during the late twentieth century relative to the previous centuries, suggesting that the species is currently at its maximum masting frequency concurrent with a period of enhanced temperature and drought conditions in Patagonia, probably driven by the positive phase of the SAM.
Collapse
Affiliation(s)
- Ignacio A Mundo
- Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA-CONICET, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italia.
| | - Javier Sanguinetti
- Parque Nacional Lanín, Administración de Parques Nacionales (APN), San Martín de los Andes, Argentina
| | - Thomas Kitzberger
- Laboratorio Ecotono, INIBIOMA-CONICET and CRUB, Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
44
|
Zabala J, Rodríguez-Jorquera I, Trexler JC, Orzechowski S, Garner L, Frederick P. Accounting for food availability reveals contaminant-induced breeding impairment, food-modulated contaminant effects, and endpoint-specificity of exposure indicators in free ranging avian populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148322. [PMID: 34412380 DOI: 10.1016/j.scitotenv.2021.148322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
It remains unclear how sub-lethal effects of contaminants play out in relation to other stressors encountered by free-ranging populations. Effects may be masked or influenced by interactions with field stressors such as food availability. We predicted that (1) including food availability, and particularly its interaction with Hg, would reveal or enhance associations between Hg and breeding endpoints. We further predicted that (2) breeding impairment associated with Hg would be higher under food stress conditions. We monitored Hg and nest success of great egrets (Ardea alba) in eight breeding colonies in the Florida Everglades over 11 years. We characterized variation in local food availability among colonies and years using fish biomass and recession range -a proxy to fish vulnerability. We used two Hg exposure indicators (egg albumen Hg and nestling feather Hg) and six breeding endpoints (clutch-size, brood-size, fledged-size, hatching success, post-hatching success and fledglings per egg) to assess whether variation in food availability influenced associations between Hg and these endpoints. Accounting for interactions between Hg and food availability, we identified statistically significant associations in all 12 indicator-endpoint combinations, while only three were detectable without food. Further, 10 combinations showed interactions between Hg and components of food availability. Our results also indicated an endpoint-specific affinity, with albumen [Hg] explaining more variation in hatching success while nestling feather [Hg] explained more variation in post-hatching survival. Both Hg indicators accounted for relevant (6-10%) amounts of variation in fledglings produced per egg laid, an integrative endpoint. Increased Hg exposure resulted in overall reduced reproductive success when food availability was low, but our models predicted low or no effects of increasing Hg exposure when food availability was high. Our results indicate that Hg induced impairment is strongly driven by food availability, providing a framework that accommodates previously contradictory results in the literature.
Collapse
Affiliation(s)
- Jabi Zabala
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA; Department of Zoology and Animal Cell Biology, University of the Basque Country, UPV/EHU, C/Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Araba, Basque Country, Spain.
| | - Ignacio Rodríguez-Jorquera
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA; Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Valdivia, Chile
| | - Joel C Trexler
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Coastal & Marine laboratory, Florida State University, St. Teresa, FL, USA
| | - Sophie Orzechowski
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Lindsey Garner
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Peter Frederick
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Insect-mediated apparent competition between mammals in a boreal food web. Proc Natl Acad Sci U S A 2021; 118:2022892118. [PMID: 34282006 DOI: 10.1073/pnas.2022892118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the important role of animal-mediated interactions in the top-down restructuring of plant communities is well documented, less is known of their ensuing repercussions at higher trophic levels. We demonstrate how typically decoupled ecological interactions may become intertwined such that the impact of an insect pest on forest structure and composition alters predator-prey interactions among large mammals. Specifically, we show how irruptions in a common, cyclic insect pest of the boreal forest, the spruce budworm (Choristoneura fumiferana), modulated an indirect trophic interaction by initiating a flush in deciduous vegetation that benefited moose (Alces alces), in turn strengthening apparent competition between moose and threatened boreal caribou (Rangifer tarandus caribou) via wolf (Canis lupus) predation. Critically, predation on caribou postoutbreak was exacerbated by human activity (salvage logging). We believe our observations of significant, large-scale reverberating consumer-producer-consumer interactions are likely to be common in nature.
Collapse
|
47
|
Wilcox KA, Wagner MA, Reynolds JD. Salmon subsidies predict territory size and habitat selection of an avian insectivore. PLoS One 2021; 16:e0254314. [PMID: 34237085 PMCID: PMC8266124 DOI: 10.1371/journal.pone.0254314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
The annual migration and spawning event of Pacific salmon (Oncorhynchus spp.) can lead to cross-boundary delivery of marine-derived nutrients from their carcasses into adjacent terrestrial ecosystems. The densities of some passerine species, including Pacific wrens (Troglodytes pacificus), have been shown to be positively correlated with salmon abundance along streams in Alaska and British Columbia, but mechanisms maintaining these densities remain poorly understood. Riparian areas near salmon streams could provide higher quality habitat for birds through greater food availability and more suitable vegetation structure for foraging and breeding, resulting in wrens maintaining smaller territories. We examined relationships between salmon biomass and Pacific wren territory size, competition, and habitat selection along 11 streams on the coast of British Columbia, Canada. We show that male wren densities increase and territory sizes decrease as salmon-spawning biomass increases. Higher densities result in higher rates of competition as male wrens countersing more frequently to defend their territories along streams with more salmon. Wrens were also more selective of the habitats they defended along streams with higher salmon biomass; they were 68% less likely to select low-quality habitat on streams with salmon compared with 46% less likely at streams without salmon. This suggests a potential trade-off between available high-quality habitat and the cost of competition that structures habitat selection. Thus, the marine-nutrient subsidies provided by salmon carcasses to forests lead to higher densities of wrens while shifting the economics of territorial defence toward smaller territories being defended more vigorously in higher quality habitats.
Collapse
Affiliation(s)
- Kirsten A. Wilcox
- Department of Biological Sciences, Earth to Ocean Research Group, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| | - Marlene A. Wagner
- Department of Biological Sciences, Earth to Ocean Research Group, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John D. Reynolds
- Department of Biological Sciences, Earth to Ocean Research Group, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
48
|
Bogdziewicz M, Hacket-Pain A, Ascoli D, Szymkowiak J. Environmental variation drives continental-scale synchrony of European beech reproduction. Ecology 2021; 102:e03384. [PMID: 33950521 DOI: 10.1002/ecy.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Davide Ascoli
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Grugliasco, Italy
| | - Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
49
|
Abstract
Mast seeding is a widespread reproductive phenomenon in plants, and testing evolutionary drivers is challenging. New research uses four decades of individual-tree reproduction data and demonstrates selection for hypersensitivity to a weather cue, high temporal variability, and high synchrony with neighbours.
Collapse
Affiliation(s)
- Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Avenue, Chicago, IL 60660, USA.
| |
Collapse
|
50
|
Gamelon M, Touzot L, Baubet É, Cachelou J, Focardi S, Franzetti B, Nivois É, Veylit L, Sæther B. Effects of pulsed resources on the dynamics of seed consumer populations: a comparative demographic study in wild boar. Ecosphere 2021. [DOI: 10.1002/ecs2.3395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Marlène Gamelon
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1 VilleurbanneF‐69622France
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim7491Norway
| | - Laura Touzot
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1 VilleurbanneF‐69622France
| | - Éric Baubet
- DRAS‐Unité Ongulés Sauvages Office Français de la Biodiversité Monfort Birieux01330France
| | - Jessica Cachelou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1 VilleurbanneF‐69622France
- DRAS‐Unité Ongulés Sauvages Office Français de la Biodiversité Monfort Birieux01330France
| | - Stefano Focardi
- Istituto dei Sistemi Complessi del CNR via Madonna del Piano 10 Sesto Fiorentino50019Italy
| | - Barbara Franzetti
- Istituto Superiore per la Protezione e la Ricerca Ambientale via Brancati 60 Roma00148Italy
| | - Éveline Nivois
- DRAS‐Unité Ongulés Sauvages Office Français de la Biodiversité Chemin du Longeau Rozérieulles57160France
| | - Lara Veylit
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim7491Norway
| | - Bernt‐Erik Sæther
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim7491Norway
| |
Collapse
|