1
|
Nozaki H, Matsuzaki R, Shimotori K, Ueki N, Heman W, Mahakham W, Yamaguchi H, Tanabe Y, Kawachi M. Two species of the green algae Volvox sect. Volvox from the Japanese ancient lake, Lake Biwa. PLoS One 2024; 19:e0310549. [PMID: 39312548 PMCID: PMC11419359 DOI: 10.1371/journal.pone.0310549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Volvox sect. Volvox is a group of green algae with unique morphological features (thick cytoplasmic bridges between somatic cells and spiny zygote walls) and a worldwide distribution. Despite research interest in the diversity of organisms in ancient lakes, Volvox sect. Volvox from ancient lakes worldwide has not been identified to the species level. Here, we established clonal cultures of two species of this group originating from Lake Biwa, an ancient lake in Japan, and performed identification based on morphological and molecular data. One was identified as Volvox kirkiorum based on the nuclear ribosomal DNA internal spacer region (ITS) sequence, bisexual (monoicous or monoecious) spheroids, and zygote morphology. The other showed genetic separation from related species based on the secondary structure of the ITS and results of phylogenetic analysis of a combined data set from the nuclear actin gene, ITS, and two plastid genes (large subunit of RuBisCO and photosystem II CP43 apoprotein gene); it represented a new phylogenetic lineage within Volvox sect. Volvox, suggesting possible endemism in Lake Biwa. This species produced bisexual spheroids with different zygote morphology and zygote number from other species with bisexual spheroids in Volvox sect. Volvox. Therefore, Volvox biwakoensis Nozaki et H. Yamaguchi sp. nov. is described herein. This is the first endemic species of the genus Volvox described from an ancient lake.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo, Japan
| | - Ryo Matsuzaki
- Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Koichi Shimotori
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan
| | - Noriko Ueki
- Science Research Center, Hosei University, Tokyo, Japan
| | - Wirawan Heman
- Department of Science and Mathematics, Faculty of Science and Health Technology, Kalasin University, Kalasin, Thailand
| | - Wuttipong Mahakham
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan
| | - Yuuhiko Tanabe
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Kochanova E, Mayor T, Väinölä R. Cryptic diversity and speciation in an endemic copepod crustacean Harpacticella inopinata within Lake Baikal. Ecol Evol 2024; 14:e11471. [PMID: 38826165 PMCID: PMC11140236 DOI: 10.1002/ece3.11471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Ancient lakes are hotspots of species diversity, posing challenges and opportunities for exploration of the dynamics of endemic diversification. Lake Baikal in Siberia, the oldest lake in the world, hosts a particularly rich crustacean fauna, including the largest known species flock of harpacticoid copepods with some 70 species. Here, we focused on exploring the diversity and evolution within a single nominal species, Harpacticella inopinata Sars, 1908, using molecular markers (mitochondrial COI, nuclear ITS1 and 28S rRNA) and a set of qualitative and quantitative morphological traits. Five major mitochondrial lineages were recognized, with model-corrected COI distances of 0.20-0.37. A concordant pattern was seen in the nuclear data set, and qualitative morphological traits also distinguish a part of the lineages. All this suggests the presence of several hitherto unrecognized cryptic taxa within the baikalian H. inopinata, with long independent histories. The abundances, distributions and inferred demographic histories were different among taxa. Two taxa, H. inopinata CE and H. inopinata CW, were widespread on the eastern and western coasts, respectively, and were largely allopatric. Patterns in mitochondrial variation, that is, shallow star-like haplotype networks, suggest these taxa have spread through the lake relatively recently. Three other taxa, H. inopinata RE, RW and RW2, instead were rare and had more localized distributions on either coast, but showed deeper intraspecies genealogies, suggesting older regional presence. The rare taxa were often found in sympatry with the others and occasionally introgressed by mtDNA from the common ones. The mitochondrial divergence between and within the H. inopinata lineages is still unexpectedly deep, suggesting an unusually high molecular rate. The recognition of true systematic diversity in the evaluation and management of ecosystems is important in hotspots, as it is everywhere else, while the translation of the diversity into a formal taxonomy remains a challenge.
Collapse
Affiliation(s)
- Elena Kochanova
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Tatyana Mayor
- Laboratory of IchthyologyLimnological Institute SB RASIrkutskRussia
| | - Risto Väinölä
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Stelbrink B, von Rintelen T, Marwoto RM, Salzburger W. Mitogenomes do not substantially improve phylogenetic resolution in a young non-model adaptive radiation of freshwater gastropods. BMC Ecol Evol 2024; 24:42. [PMID: 38589809 PMCID: PMC11000327 DOI: 10.1186/s12862-024-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Species flocks in ancient lakes, and particularly those arising from adaptive radiation, make up the bulk of overall taxonomic and morphological diversity in these insular ecosystems. For these mostly young species assemblages, classical mitochondrial barcoding markers have so far been key to disentangle interspecific relationships. However, with the rise and further development of next-generation sequencing (NGS) methods and mapping tools, genome-wide data have become an increasingly important source of information even for non-model groups. RESULTS Here, we provide, for the first time, a comprehensive mitogenome dataset of freshwater gastropods endemic to Sulawesi and thus of an ancient lake invertebrate species flock in general. We applied low-coverage whole-genome sequencing for a total of 78 individuals including 27 out of the 28 Tylomelania morphospecies from the Malili lake system as well as selected representatives from Lake Poso and adjacent catchments. Our aim was to assess whether mitogenomes considerably contribute to the phylogenetic resolution within this young species flock. Interestingly, we identified a high number of variable and parsimony-informative sites across the other 'non-traditional' mitochondrial loci. However, although the overall support was very high, the topology obtained was largely congruent with previously published single-locus phylogenies. Several clades remained unresolved and a large number of species was recovered polyphyletic, indicative of both rapid diversification and mitochondrial introgression. CONCLUSIONS This once again illustrates that, despite the higher number of characters available, mitogenomes behave like a single locus and thus can only make a limited contribution to resolving species boundaries, particularly when introgression events are involved.
Collapse
Affiliation(s)
- Björn Stelbrink
- Justus Liebig University Giessen, Giessen, Germany.
- University of Basel, Basel, Switzerland.
| | - Thomas von Rintelen
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ristiyanti M Marwoto
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, BRIN Gedung Widyasatwaloka, Cibinong, Indonesia
| | | |
Collapse
|
4
|
Morita K, Saito T, Uechi T, Sawada N, Miura O. Out of the ancient lake: Multiple riverine colonizations and diversification of the freshwater snails in the genus Semisulcospira around Lake Biwa. Mol Phylogenet Evol 2024; 191:107987. [PMID: 38081401 DOI: 10.1016/j.ympev.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Ancient lakes are a hotspot of biodiversity. Freshwater species often experience spectacular species radiation after colonizing lakes from riverine habitats. Therefore, the relationship between the fauna of the ancient lakes and the surrounding riverine system has a special significance in understanding their origin and evolutionary history. The study of ancient lake species often focused on the lake colonization of riverine species. In contrast, far less attention has been placed on the reverse direction: the riverine colonization of the lake species, despite its importance in disentangling their complex evolutionary history. The freshwater snails in the genus Semisulcospira involve endemic groups that radiated in the ancient Lake Biwa. Using genetics and fossil records, we inferred that the ancestors of these lake-endemic Semisulcospira snails historically colonized the riverine habitats at least three times during the Middle Pleistocene. Each colonization resulted in the formation of a new lineage that was genetically and morphologically distinct from other lineages. Further, one of these colonizations was followed by hybridization with a cosmopolitan riverine species, which potentially facilitated the population persistence of the colonizers in the new environment. Despite their complex histories, all these colonizers were currently grouped within a single species, Semisulcospira kurodai, suggesting cryptic diversity in this species. This study highlights the significance of the riverine colonizations of the lake species to fully understand the diversification history of freshwater fauna in and around the ancient lakes.
Collapse
Affiliation(s)
- Kohei Morita
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502 Japan
| | - Takumi Saito
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Takeru Uechi
- Major in Environmental Management, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Naoto Sawada
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo, Kyoto, Kyoto 606-8502 Japan
| | - Osamu Miura
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502 Japan.
| |
Collapse
|
5
|
Neubauer TA. The fossil record of freshwater Gastropoda - a global review. Biol Rev Camb Philos Soc 2024; 99:177-199. [PMID: 37698140 DOI: 10.1111/brv.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Gastropoda are an exceptionally successful group with a rich and diverse fossil record. They have conquered land and freshwater habitats multiple times independently and have dispersed across the entire globe. Since they are important constituents of fossil assemblages, they are often used for palaeoecological reconstruction, biostratigraphic correlations, and as model groups to study morphological and taxonomic evolution. While marine faunas and their evolution have been a common subject of study, the freshwater component of the fossil record has attracted much less attention, and a global overview is lacking. Here, I review the fossil record of freshwater gastropods on a global scale, ranging from their origins in the late Palaeozoic to the Pleistocene. As compiled here, the global fossil record of freshwater Gastropoda includes 5182 species in 490 genera, 44 families, and 12 superfamilies over a total of ~340 million years. Following a slow and poorly known start in the late Palaeozoic, diversity slowly increased during the Mesozoic. Diversity culminated in an all-time high in the Neogene, relating to diversification in numerous long-lived (ancient) lakes in Europe. I summarise well-documented and hypothesised freshwater colonisation events and compare the patterns found in freshwater gastropods to those in land snails. Furthermore, I discuss potential preservation and sampling biases, as well as the main drivers underlying species diversification in fresh water on a larger scale. In that context, I particularly highlight the importance of long-lived lakes as islands and archives of evolution and expand a well-known concept in ecology and evolution to a broader spectrum: scale-independent ecological opportunity.
Collapse
Affiliation(s)
- Thomas A Neubauer
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26 (iFZ), Giessen, 35392, Germany
- SNSB - Bavarian State Collection for Palaeontology and Geology, Richard-Wagner-Straße 10, Munich, 80333, Germany
- Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands
| |
Collapse
|
6
|
Marin I, Palatov D, Copilaș-Ciocianu D. The remarkable Ponto-Caspian amphipod diversity of the lower Durso River (SW Caucasus) with the description of Litorogammarus dursi gen. et sp. nov. Zootaxa 2023; 5297:483-517. [PMID: 37518782 DOI: 10.11646/zootaxa.5297.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 08/01/2023]
Abstract
The first insight into the unexpectedly diverse amphipod assemblage of the Durso River (Novorossiysk area) in the SW mountainous pre-Caucasian area is presented. The presence of six species is revealed, including three new records for the area and one species new to science. The phylogenetic relationships of all studied species and their relatives were examined based on the divergence of the COI mtDNA gene marker (barcoding). The conducted research clearly showed that the coastal part of the Black Sea and the adjacent pre-Caucasian river/land areas harbors a significant undescribed diversity, and that the transitional sea/river brackish biotopes are important reservoirs of the endemicity. A new genus, Litorogammarus gen. nov. is proposed for native pebble-dwelling species, namely Echinogammarus karadagiensis Grintsov, 2009, Echinogammarus mazestiensis Marin & Palatov, 2021 and the newly discovered Litorogammarus dursi sp. nov., from the lower (estuarine) part of the Durso River and adjacent coastal areas. These three species form a strongly supported molecular clade and share a number of characters such as smooth body without carinae and setae, antenna II armed with dense curled setae, lacking calceoli, pereopods III-VII with sparse, short setation, epimeral plates armed with spines only, telson lobes longer than broad, gradually tapering, bearing only spines. Pectenogammarus oliviiformis (Greze, 1985) comb. nov. is also discovered in the area and is re-described herein. Although this is probably one of the most abundant and common coastal pebble-dwelling species along the northeastern coasts of the Black Sea, it was previously poorly described and thus overlooked by researchers.
Collapse
Affiliation(s)
- Ivan Marin
- A. N. Severtsov Institute of Ecology and Evolution of RAS; 119071; Moscow; Russia.
| | - Dmitry Palatov
- A. N. Severtsov Institute of Ecology and Evolution of RAS; 119071; Moscow; Russia.
| | - Denis Copilaș-Ciocianu
- Laboratory of Evolutionary Ecology of Hydrobionts; Nature Research Centre; Vilnius; Lithuania.
| |
Collapse
|
7
|
Madyarova E, Shirokova Y, Gurkov A, Drozdova P, Baduev B, Lubyaga Y, Shatilina Z, Vishnevskaya M, Timofeyev M. Metabolic Tolerance to Atmospheric Pressure of Two Freshwater Endemic Amphipods Mostly Inhabiting the Deep-Water Zone of the Ancient Lake Baikal. INSECTS 2022; 13:insects13070578. [PMID: 35886754 PMCID: PMC9325015 DOI: 10.3390/insects13070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Deep-water habitats are the largest ecosystem on the planet: over half of the Earth’s surface is covered with a water layer deeper than 200 m and remains poorly explored. Lake Baikal is the only freshwater body inhabited by animals adapted to the deep-water zone independently from their marine counterparts. Comparing these convergently evolved freshwater and marine animals is invaluable for revealing the basic mechanisms of adaptation to high hydrostatic pressure. However, laboratory experiments on deep-water organisms still usually require lifting them to the water’s surface and exposing them to potentially hazardous decompression, while endemics from Lake Baikal are poorly studied in this regard. Here, we compared metabolic reactions to such pressure decreases in two Baikal deep-water amphipods (shrimp-like crustaceans) from the genus Ommatogammarus: one species is known to tolerate pressures close to atmospheric levels, while the second was only observed at the pressures from 5 atm and above. We expected that the energy metabolism of the shallower-dwelling species would function better under the atmospheric pressure but found no substantial differences. Thus, despite some difference in long-term survival at atmospheric pressure, both species are suitable for laboratory studies as freshwater model objects adapted to large pressure variations. Abstract Lake Baikal is the only freshwater reservoir inhabited by deep-water fauna, which originated mostly from shallow-water ancestors. Ommatogammarus flavus and O. albinus are endemic scavenger amphipods (Amphipoda, Crustacea) dwelling in wide depth ranges of the lake covering over 1300 m. O. flavus had been previously collected close to the surface, while O. albinus has never been found above the depth of 47 m. Since O. albinus is a promising model species for various research, here we tested whether O. albinus is less metabolically adapted to atmospheric pressure than O. flavus. We analyzed a number of energy-related traits (contents of glucose, glycogen and adenylates, as well as lactate dehydrogenase activity) and oxidative stress markers (activities of antioxidant enzymes and levels of lipid peroxidation products) after sampling from different depths and after both species’ acclimation to atmospheric pressure. The analyses were repeated in two independent sampling campaigns. We found no consistent signs of metabolic disturbances or oxidative stress in both species right after lifting. Despite O. flavus surviving slightly better in laboratory conditions, during long-term acclimation, both species showed comparable reactions without critical changes. Thus, the obtained data favor using O. albinus along with O. flavus for physiological research under laboratory conditions.
Collapse
Affiliation(s)
- Ekaterina Madyarova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
| | - Yulia Shirokova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
- Baikal Research Centre, 664011 Irkutsk, Russia
| | - Polina Drozdova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
- Baikal Research Centre, 664011 Irkutsk, Russia
| | - Boris Baduev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
| | - Yulia Lubyaga
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
| | - Zhanna Shatilina
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
- Baikal Research Centre, 664011 Irkutsk, Russia
| | - Maria Vishnevskaya
- Research Resource Center “Chromas”, Saint-Petersburg State University, 198504 Saint Petersburg, Russia;
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
- Correspondence:
| |
Collapse
|
8
|
Taxonomic, ecological and morphological diversity of Ponto-Caspian gammaroidean amphipods: a review. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-021-00536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Mushagalusa Mulega A, Muterezi Bukinga F, Akoumba JF, Mulungula PM, Pariselle A. Monogeneans from Catfishes in Lake Tanganyika. I: Two new species of Bagrobdella (Dactylogyridae) from Auchenoglanis occidentalis (Siluriformes: Claroteidae). ZOOLOGIA 2022. [DOI: 10.1590/s1984-4689.v39.e22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Archimède Mushagalusa Mulega
- Mohammed V University, Morocco; Centre de Recherche en Hydrobiologie, Democratic Republic of the Congo; Hasselt University, Belgium
| | | | | | - Pascal Masilya Mulungula
- Centre de Recherche en Hydrobiologie, Democratic Republic of the Congo; Institut Supérieur Pédagogique de Bukavu, Democratic Republic of the Congo
| | | |
Collapse
|
10
|
Neubauer TA, Georgopoulou E. Extinction risk is linked to lifestyle in freshwater gastropods. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Thomas A. Neubauer
- Department of Animal Ecology and Systematics Justus Liebig University Giessen Germany
- Naturalis Biodiversity Center Leiden The Netherlands
| | - Elisavet Georgopoulou
- Natural History Museum of Crete University of Crete Heraklion Greece
- Olive and Agroecological Production Systems Lab (EOPS) Department of Agriculture Hellenic Mediterranean University Heraklion Greece
| |
Collapse
|
11
|
Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci Rep 2021; 11:22775. [PMID: 34815469 PMCID: PMC8611077 DOI: 10.1038/s41598-021-02102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
The radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle. The latter was previously simulated for one species (Spekia zonata) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria grandis), covering sand (Cleopatra johnstoni), or attached to plant surface and covering sand (Bridouxia grandidieriana). Since the analysed radulae vary greatly in their general size (e.g. width) and size of teeth between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included S. zonata again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.
Collapse
|
12
|
Krings W, Kovalev A, Gorb SN. Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomater 2021; 135:458-472. [PMID: 34358696 DOI: 10.1016/j.actbio.2021.07.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
The molluscan radula, a thin membrane with embedded rows of teeth, is the structure for food processing and gathering. For proper functioning, radular failures must be either avoided or reduced when interacting with the preferred food, as this might be of high significance for the individual fitness. Thus, the analysis of structural failure in radular teeth could be included in studies on trophic specializations. Here, we tested the failure of non-mineralized, chitinous radular teeth from taxa, belonging to an African paludomid species flock from Lake Tanganyika and surrounding river systems. These species are of high interest for evolutionary biologists since they represent a potential result of an adaptive radiation including trophic specialisations to distinct substrates, the food is attached to. In a biomechanical experiment a shear load was applied to tooth cusps with a force transducer connected to a motorized stage until structural failure occurred. Subsequently broken areas were measured and breaking stress was calculated. As the experiments were carried out under dry and wet conditions, the high influence of the water content on the forces, teeth were capable to resist, could be documented. Wet teeth were able to resist higher forces, because of their increased flexibility and the flexibility of the embedding membrane, which enabled them either to slip away or to gain support from adjacent teeth. This mechanism can be understood as collective effect reducing structural failure without the mineralisation with wear-minimizing elements, as described for Polyplacophora and Patellogastropoda. Since the documented mechanical behaviour of radular teeth and the maximal forces, teeth resist, can directly be related to the gastropod ecological niche, both are here identified as an adaptation to preferred feeding substrates. STATEMENT OF SIGNIFICANCE: The radula, a chitinous membrane with teeth, is the molluscan feeding structure. Here we add onto existing knowledge about the relationship between tooth's mechanical properties and species' ecology by determining the tooth failure resistance. Six paludomid species (Gastropoda) of a prominent species flock from Lake Tanganyika, foraging on distinct feeding substrates, were tested. With a force transducer wet and dry teeth were broken, revealing the high influence of water content on mechanical behaviour and force resistance of teeth. Higher forces were needed to break wet radulae due to an increased flexibility of teeth and membrane, which resulted in an interlocking or twisting of teeth. Mechanical behaviour and force resistance were both identified as trophic adaptations to feeding substrate.
Collapse
|
13
|
Wilden B, Traunspurger W, Geisen S. Inventory of the benthic eukaryotic diversity in the oldest European lake. Ecol Evol 2021; 11:11207-11215. [PMID: 34429912 PMCID: PMC8366835 DOI: 10.1002/ece3.7907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
We have profound knowledge on biodiversity on Earth including plants and animals. In the recent decade, we have also increased our understanding on microorganisms in different hosts and the environment. However, biodiversity is not equally well studied among different biodiversity groups and Earth's systems with eukaryotes in freshwater sediments being among the least known. In this study, we used high-throughput sequencing of the 18S rRNA gene to investigate the entire diversity of benthic eukaryotes in three distinct habitats (littoral sediment and hard substrate, profundal sediment) of Lake Ohrid, the oldest European lake. Eukaryotic sequences were dominated by annelid and arthropod animals (54% of all eukaryotic reads) and protists (Ochrophyta and Ciliophora; together 40% of all reads). Eukaryotic diversity was 15% higher in the deep profundal than on either near-surface hard substrates or littoral sediments. The three habitats differed in their taxonomic and functional community composition. Specifically, heterotrophic organisms accounted for 92% of the reads in the profundal, whereas phototrophs accounted for 43% on the littoral hard substrate. The profundal community was the most homogeneous, and its network was the most complex, suggesting its highest stability among the sampled habitats.
Collapse
Affiliation(s)
- Benjamin Wilden
- Department of Animal EcologyBielefeld UniversityBielefeldGermany
| | | | - Stefan Geisen
- Laboratory of NematologyWageningen UniversityWageningenThe Netherlands
- Netherlands Department of Terrestrial EcologyNetherlands Institute for Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
14
|
Bowen BW, Forsman ZH, Whitney JL, Faucci A, Hoban M, Canfield SJ, Johnston EC, Coleman RR, Copus JM, Vicente J, Toonen RJ. Species Radiations in the Sea: What the Flock? J Hered 2021; 111:70-83. [PMID: 31943081 DOI: 10.1093/jhered/esz075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.
Collapse
Affiliation(s)
- Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jonathan L Whitney
- Joint Institute for Marine and Atmospheric Research, University of Hawai'i, Honolulu, HI
| | - Anuschka Faucci
- Math & Sciences Division, Leeward Community College, University of Hawai'i, Pearl City, HI
| | - Mykle Hoban
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | | | - Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Richard R Coleman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Joshua M Copus
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jan Vicente
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| |
Collapse
|
15
|
Krings W, Neiber MT, Kovalev A, Gorb SN, Glaubrecht M. Trophic specialisation reflected by radular tooth material properties in an "ancient" Lake Tanganyikan gastropod species flock. BMC Ecol Evol 2021; 21:35. [PMID: 33658005 PMCID: PMC7931582 DOI: 10.1186/s12862-021-01754-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Background Lake Tanganyika belongs to the East African Great Lakes and is well known for harbouring a high proportion of endemic and morphologically distinct genera, in cichlids but also in paludomid gastropods. With about 50 species these snails form a flock of high interest because of its diversity, the question of its origin and the evolutionary processes that might have resulted in its elevated amount of taxa. While earlier debates centred on these paludomids to be a result of an intralacustrine adaptive radiation, there are strong indications for the existence of several lineages before the lake formation. To evaluate hypotheses on the evolution and radiation the detection of actual adaptations is however crucial. Since the Tanganyikan gastropods show distinct radular tooth morphologies hypotheses about potential trophic specializations are at hand. Results Here, based on a phylogenetic tree of the paludomid species from Lake Tanganyika and adjacent river systems, the mechanical properties of their teeth were evaluated by nanoindentation, a method measuring the hardness and elasticity of a structure, and related with the gastropods’ specific feeding substrate (soft, solid, mixed). Results identify mechanical adaptations in the tooth cusps to the substrate and, with reference to the tooth morphology, assign distinct functions (scratching or gathering) to tooth types. Analysing pure tooth morphology does not consistently reflect ecological specializations, but the mechanical properties allow the determination of eco-morphotypes. Conclusion In almost every lineage we discovered adaptations to different substrates, leading to the hypothesis that one main engine of the flock’s evolution is trophic specialization, establishing distinct ecological niches and allowing the coexistence of taxa.
Collapse
Affiliation(s)
- Wencke Krings
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Marco T Neiber
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Alexander Kovalev
- Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Matthias Glaubrecht
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
16
|
Heino J, Alahuhta J, Bini LM, Cai Y, Heiskanen AS, Hellsten S, Kortelainen P, Kotamäki N, Tolonen KT, Vihervaara P, Vilmi A, Angeler DG. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol Rev Camb Philos Soc 2021; 96:89-106. [PMID: 32869448 DOI: 10.1111/brv.12647] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
Abstract
The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as 'meta-systems', whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.
Collapse
Affiliation(s)
- Jani Heino
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Janne Alahuhta
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Luis Mauricio Bini
- Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Yongjiu Cai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008, Nanjing, China
| | - Anna-Stiina Heiskanen
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Seppo Hellsten
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Pirkko Kortelainen
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
- Biodiversity Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Niina Kotamäki
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Kimmo T Tolonen
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
- Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Petteri Vihervaara
- Biodiversity Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Annika Vilmi
- Freshwater Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - David G Angeler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07, Uppsala, Sweden
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583-0984, U.S.A
| |
Collapse
|
17
|
Krings W, Marcé-Nogué J, Karabacak H, Glaubrecht M, Gorb SN. Finite element analysis of individual taenioglossan radular teeth (Mollusca). Acta Biomater 2020; 115:317-332. [PMID: 32853812 DOI: 10.1016/j.actbio.2020.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Molluscs are a highly successful group of invertebrates characterised by a specialised feeding organ called the radula. The diversity of this structure is associated with distinct feeding strategies and ecological niches. However, the precise function of the radula (each tooth type and their arrangement) remains poorly understood. Here for the first time, we use a quantitative approach, Finite-Element-Analysis (FEA), to test hypotheses regarding the function of particular taenioglossan tooth types. Taenioglossan radulae are of special interest, because they are comprised of multiple teeth that are regionally distinct in their morphology. For this study we choose the freshwater gastropod species Spekia zonata, endemic to Lake Tanganyika, inhabiting and feeding on algae attached to rocks. As a member of the African paludomid species flock, the enigmatic origin and evolutionary relationships of this species has received much attention. Its chitinous radula comprises several tooth types with distinctly different shapes. We characterise the tooth's position, material properties and attachment to the radular membrane and use this data to evaluate 18 possible FEA scenarios differing in the above parameters. Our estimations of stress and strain indicate different functional loads for different teeth. We posit that the central and lateral teeth are best suitable for scratching substrate loosening ingesta, whereas the marginals are best suited for gathering food particles. Our successful approach and workflow are readily applicable to other mollusc species.
Collapse
|
18
|
Ronco F, Büscher HH, Indermaur A, Salzburger W. The taxonomic diversity of the cichlid fish fauna of ancient Lake Tanganyika, East Africa. JOURNAL OF GREAT LAKES RESEARCH 2020; 46:1067-1078. [PMID: 33100489 PMCID: PMC7574848 DOI: 10.1016/j.jglr.2019.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ancient Lake Tanganyika in East Africa houses the world's ecologically and morphologically most diverse assemblage of cichlid fishes, and the third most species-rich after lakes Malawi and Victoria. Despite long-lasting scientific interest in the cichlid species flocks of the East African Great Lakes, for example in the context of adaptive radiation and explosive diversification, their taxonomy and systematics are only partially explored; and many cichlid species still await their formal description. Here, we provide a current inventory of the cichlid fish fauna of Lake Tanganyika, providing a complete list of all valid 208 Tanganyikan cichlid species, and discuss the taxonomic status of more than 50 undescribed taxa on the basis of the available literature as well as our own observations and collections around the lake. This leads us to conclude that there are at least 241 cichlid species present in Lake Tanganyika, all but two are endemic to the basin. We finally summarize some of the major taxonomic challenges regarding Lake Tanganyika's cichlid fauna. The taxonomic inventory of the cichlid fauna of Lake Tanganyika presented here will facilitate future research on the taxonomy and systematics and the ecology and evolution of the species flock, as well as its conservation.
Collapse
|
19
|
Acquah‐Lamptey D, Brändle M, Brandl R, Pinkert S. Temperature-driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol Evol 2020; 10:8936-8948. [PMID: 32884669 PMCID: PMC7452777 DOI: 10.1002/ece3.6596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/14/2023] Open
Abstract
Previous macrophysiological studies suggested that temperature-driven color lightness and body size variations strongly influence biogeographical patterns in ectotherms. However, these trait-environment relationships scale to local assemblages and the extent to which they can be modified by dispersal remains largely unexplored. We test whether the predictions of the thermal melanism hypothesis and the Bergmann's rule hold for local assemblages. We also assess whether these trait-environment relationships are more important for species adapted to less stable (lentic) habitats, due to their greater dispersal propensity compared to those adapted to stable (lotic) habitats.We quantified the color lightness and body volume of 99 European dragon- and damselflies (Odonata) and combined these trait information with survey data for 518 local assemblages across Europe. Based on this continent-wide yet spatially explicit dataset, we tested for effects temperature and precipitation on the color lightness and body volume of local assemblages and assessed differences in their relative importance and strength between lentic and lotic assemblages, while accounting for spatial and phylogenetic autocorrelation.The color lightness of assemblages of odonates increased, and body size decreased with increasing temperature. Trait-environment relationships in the average and phylogenetic predicted component were equally important for assemblages of both habitat types but were stronger in lentic assemblages when accounting for phylogenetic autocorrelation.Our results show that the mechanism underlying color lightness and body size variations scale to local assemblages, indicating their general importance. These mechanisms were of equal evolutionary significance for lentic and lotic species, but higher dispersal ability seems to enable lentic species to cope better with historical climatic changes. The documented differences between lentic and lotic assemblages also highlight the importance of integrating interactions of thermal adaptations with proxies of the dispersal ability of species into trait-based models, for improving our understanding of climate-driven biological responses.
Collapse
Affiliation(s)
- Daniel Acquah‐Lamptey
- Faculty of BiologyDepartment of Ecology – Animal EcologyPhilipps‐Universität MarburgMarburgGermany
| | - Martin Brändle
- Faculty of BiologyDepartment of Ecology – Animal EcologyPhilipps‐Universität MarburgMarburgGermany
| | - Roland Brandl
- Faculty of BiologyDepartment of Ecology – Animal EcologyPhilipps‐Universität MarburgMarburgGermany
| | - Stefan Pinkert
- Faculty of BiologyDepartment of Ecology – Animal EcologyPhilipps‐Universität MarburgMarburgGermany
- Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
20
|
Potapov M, Huang CW, Gulgenova A, Luan YX. New and little known Isotomidae (Collembola) from the shore of Lake Baikal and saline lakes of continental Asia. Zookeys 2020; 935:1-24. [PMID: 32508499 PMCID: PMC7256071 DOI: 10.3897/zookeys.935.49363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/13/2020] [Indexed: 11/12/2022] Open
Abstract
Collembola of the family Isotomidae from the shores of Lake Baikal and from six saline lake catenas of the Buryat Republic (Russia) and Inner Mongolia Province (China) were studied. Pseudanurophorusbarathrum Potapov & Gulgenova, sp. nov. and Parisotomabaicalica Potapov & Gulgenova, sp. nov. from Baikal and Ephemerotomaburyatica Potapov, Huang & Gulgenova, sp. nov. and Folsomiamongolica Huang & Potapov, sp. nov. from saline lakes are described here. A morphological description of epitokous males of Scutisotomaacorrelata Potapov, Babenko & Fjellberg, 2006 is given. A list of 23 species of the family Isotomidae found in the shores of studied lakes is provided based on literature sources and newly collected material.
Collapse
Affiliation(s)
- Mikhail Potapov
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany Senckenberg Museum of Natural History Görlitz Görlitz Germany.,Moscow Pedagogical State University, Moscow, 129164, Kibalchicha St. 6 b. 5, Russia Moscow Pedagogical State University Moscow Russia
| | - Cheng-Wang Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences Shanghai China
| | - Ayuna Gulgenova
- Banzarov Buryat State University, Ulan-Ude, 670000, Smolina St. 24a, Russia Banzarov Buryat State University Ulan-Ude Russia
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China South China Normal University Guangzhou China
| |
Collapse
|
21
|
Annenkova NV, Giner CR, Logares R. Tracing the Origin of Planktonic Protists in an Ancient Lake. Microorganisms 2020; 8:microorganisms8040543. [PMID: 32283732 PMCID: PMC7232311 DOI: 10.3390/microorganisms8040543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/28/2022] Open
Abstract
Ancient lakes are among the most interesting models for evolution studies because their biodiversity is the result of a complex combination of migration and speciation. Here, we investigate the origin of single celled planktonic eukaryotes from the oldest lake in the world—Lake Baikal (Russia). By using 18S rDNA metabarcoding, we recovered 1414 Operational Taxonomic Units (OTUs) belonging to protists populating surface waters (1–50 m) and representing pico/nano-sized cells. The recovered communities resembled other lacustrine freshwater assemblages found elsewhere, especially the taxonomically unclassified protists. However, our results suggest that a fraction of Baikal protists could belong to glacial relicts and have close relationships with marine/brackish species. Moreover, our results suggest that rapid radiation may have occurred among some protist taxa, partially mirroring what was already shown for multicellular organisms in Lake Baikal. We found 16% of the OTUs belonging to potential species flocks in Stramenopiles, Alveolata, Opisthokonta, Archaeplastida, Rhizaria, and Hacrobia. Putative flocks predominated in Chrysophytes, which are highly diverse in Lake Baikal. Also, the 18S rDNA of a number of species (7% of the total) differed >10% from other known sequences. These taxa as well as those belonging to the flocks may be endemic to Lake Baikal. Overall, our study points to novel diversity of planktonic protists in Lake Baikal, some of which may have emerged in situ after evolutionary diversification.
Collapse
Affiliation(s)
- Nataliia V. Annenkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences 3, Ulan-Batorskaya St., 664033 Irkutsk, Russia
- Correspondence: (N.V.A.); (R.L.)
| | - Caterina R. Giner
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, ES08003 Barcelona, Spain;
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, ES08003 Barcelona, Spain;
- Correspondence: (N.V.A.); (R.L.)
| |
Collapse
|
22
|
Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. WATER 2020. [DOI: 10.3390/w12010260] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this overview (introductory article to a special issue including 14 papers), we consider all main types of natural and artificial inland freshwater habitas (fwh). For each type, we identify the main biodiversity patterns and ecological features, human impacts on the system and environmental issues, and discuss ways to use this information to improve stewardship. Examples of selected key biodiversity/ecological features (habitat type): narrow endemics, sensitive (groundwater and GDEs); crenobionts, LIHRes (springs); unidirectional flow, nutrient spiraling (streams); naturally turbid, floodplains, large-bodied species (large rivers); depth-variation in benthic communities (lakes); endemism and diversity (ancient lakes); threatened, sensitive species (oxbow lakes, SWE); diverse, reduced littoral (reservoirs); cold-adapted species (Boreal and Arctic fwh); endemism, depauperate (Antarctic fwh); flood pulse, intermittent wetlands, biggest river basins (tropical fwh); variable hydrologic regime—periods of drying, flash floods (arid-climate fwh). Selected impacts: eutrophication and other pollution, hydrologic modifications, overexploitation, habitat destruction, invasive species, salinization. Climate change is a threat multiplier, and it is important to quantify resistance, resilience, and recovery to assess the strategic role of the different types of freshwater ecosystems and their value for biodiversity conservation. Effective conservation solutions are dependent on an understanding of connectivity between different freshwater ecosystems (including related terrestrial, coastal and marine systems).
Collapse
|
23
|
Morphology, phylogeny, and taxonomy of two species of colonial volvocine green algae from Lake Victoria, Tanzania. PLoS One 2019; 14:e0224269. [PMID: 31710621 PMCID: PMC6844456 DOI: 10.1371/journal.pone.0224269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022] Open
Abstract
The biodiversity and taxonomy of colonial volvocine green algae are important in ancient lakes in tropical regions. However, few taxonomic studies of these algae have been conducted in African ancient lakes. Here, we describe two species of colonial volvocine green algae in cultures originating from water samples from Lake Victoria, an ancient lake in Africa. One was identified as an undescribed morphological species of Eudorina; E. compacta sp. nov. This new species can be distinguished from other Eudorina species by its compactly arranged vegetative cells that form a hollow ellipsoidal colony. The other was identified as Colemanosphaera charkowiensis. The genus Colemanosphaera is new to Africa.
Collapse
|
24
|
Majtánová Z, Indermaur A, Nyom ARB, Ráb P, Musilova Z. Adaptive Radiation from a Chromosomal Perspective: Evidence of Chromosome Set Stability in Cichlid Fishes (Cichlidae: Teleostei) from the Barombi Mbo Lake, Cameroon. Int J Mol Sci 2019; 20:ijms20204994. [PMID: 31601021 PMCID: PMC6834198 DOI: 10.3390/ijms20204994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Cichlid fishes are the subject of scientific interest because of their rapid adaptive radiation, resulting in extensive ecological and taxonomic diversity. In this study, we examined 11 morphologically distinct cichlid species endemic to Barombi Mbo, the largest crater lake in western Cameroon, namely Konia eisentrauti, Konia dikume, Myaka myaka, Pungu maclareni, Sarotherodon steinbachi, Sarotherodon lohbergeri, Sarotherodon linnellii, Sarotherodon caroli, Stomatepia mariae, Stomatepia pindu, and Stomatepia mongo. These species supposedly evolved via sympatric ecological speciation from a common ancestor, which colonized the lake no earlier than one million years ago. Here we present the first comparative cytogenetic analysis of cichlid species from Barombi Mbo Lake using both conventional (Giemsa staining, C-banding, and CMA3/DAPI staining) and molecular (fluorescence in situ hybridization with telomeric, 5S, and 28S rDNA probes) methods. We observed stability on both macro and micro-chromosomal levels. The diploid chromosome number was 2n = 44, and the karyotype was invariably composed of three pairs of meta/submetacentric and 19 pairs of subtelo/acrocentric chromosomes in all analysed species, with the same numbers of rDNA clusters and distribution of heterochromatin. The results suggest the evolutionary stability of chromosomal set; therefore, the large-scale chromosomal rearrangements seem to be unlikely associated with the sympatric speciation in Barombi Mbo.
Collapse
Affiliation(s)
- Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic.
| | - Adrian Indermaur
- Zoological Institute, University of Basel, 4051 Basel, Switzerland.
| | - Arnold Roger Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré P.O Box 454, Cameroon.
- Department of Management of Fisheries and Aquatic Ecosystems, University of Douala, Douala P.O Box 2701, Cameroon.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic.
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic.
| |
Collapse
|
25
|
Gurkov A, Rivarola-Duarte L, Bedulina D, Fernández Casas I, Michael H, Drozdova P, Nazarova A, Govorukhina E, Timofeyev M, Stadler PF, Luckenbach T. Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species. BMC Evol Biol 2019; 19:138. [PMID: 31286865 PMCID: PMC6613252 DOI: 10.1186/s12862-019-1470-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/27/2019] [Indexed: 08/30/2023] Open
Abstract
Background The ancient Lake Baikal is characterized by an outstanding diversity of endemic faunas with more than 350 amphipod species and subspecies. We determined the genetic diversity within the endemic littoral amphipod species Eulimnogammarus verrucosus, E. cyaneus and E. vittatus and investigated whether within those species genetically separate populations occur across Lake Baikal. Gammarus lacustris from water bodies in the Baikal area was examined for comparison. Results Genetic diversities within a species were determined based on fragments of cytochrome c oxidase I (COI) and for E. verrucosus additionally of 18S rDNA. Highly location-specific haplogroups of E. verrucosus and E. vittatus were found at the southern and western shores of Baikal that are separated by the Angara River outflow; E. verrucosus from the eastern shore formed a further, clearly distinct haplotype cluster possibly confined by the Selenga River and Angarskiy Sor deltas. The genetic diversities within these haplogroups were lower than between the different haplogroups. Intraspecific genetic diversities within E. verrucosus and E. vittatus with 13 and 10%, respectively, were similar to interspecies differences indicating the occurrence of cryptic, morphologically highly similar species; for E. verrucosus this was confirmed with 18S rDNA. The haplotypes of E. cyaneus and G. lacustris specimens were with intraspecific genetic distances of 3 and 2%, respectively, more homogeneous indicating no or only recent disruption of gene flow of E. cyaneus across Baikal and recent colonization of water bodies around Baikal by G. lacustris. Conclusions Our finding of separation of subgroups of Baikal endemic amphipods to different degrees points to a species-specific ability of dispersal across areas with adverse conditions and to potential geographical dispersal barriers in Lake Baikal. Electronic supplementary material The online version of this article (10.1186/s12862-019-1470-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anton Gurkov
- Irkutsk State University, Karl Marx st. 1, 664003, Irkutsk, Russia.,Baikal Research Centre, Lenin st. 21, Irkutsk, 664003, Russia
| | - Lorena Rivarola-Duarte
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Daria Bedulina
- Irkutsk State University, Karl Marx st. 1, 664003, Irkutsk, Russia.,Baikal Research Centre, Lenin st. 21, Irkutsk, 664003, Russia
| | - Irene Fernández Casas
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Hendrik Michael
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Polina Drozdova
- Irkutsk State University, Karl Marx st. 1, 664003, Irkutsk, Russia
| | - Anna Nazarova
- Irkutsk State University, Karl Marx st. 1, 664003, Irkutsk, Russia
| | | | - Maxim Timofeyev
- Irkutsk State University, Karl Marx st. 1, 664003, Irkutsk, Russia.,Baikal Research Centre, Lenin st. 21, Irkutsk, 664003, Russia
| | - Peter F Stadler
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318, Leipzig, Germany.
| |
Collapse
|
26
|
Auvinet J, Graça P, Ghigliotti L, Pisano E, Dettaï A, Ozouf-Costaz C, Higuet D. Insertion Hot Spots of DIRS1 Retrotransposon and Chromosomal Diversifications among the Antarctic Teleosts Nototheniidae. Int J Mol Sci 2019; 20:ijms20030701. [PMID: 30736325 PMCID: PMC6387122 DOI: 10.3390/ijms20030701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/17/2022] Open
Abstract
By their faculty to transpose, transposable elements are known to play a key role in eukaryote genomes, impacting both their structuration and remodeling. Their integration in targeted sites may lead to recombination mechanisms involved in chromosomal rearrangements. The Antarctic fish family Nototheniidae went through several waves of species radiations. It is a suitable model to study transposable element (TE)-mediated mechanisms associated to genome and chromosomal diversifications. After the characterization of Gypsy (GyNoto), Copia (CoNoto), and DIRS1 (YNoto) retrotransposons in the genomes of Nototheniidae (diversity, distribution, conservation), we focused on their chromosome location with an emphasis on the three identified nototheniid radiations (the Trematomus, the plunderfishes, and the icefishes). The strong intrafamily TE conservation and wide distribution across species of the whole family suggest an ancestral acquisition with potential secondary losses in some lineages. GyNoto and CoNoto (including Hydra and GalEa clades) mostly produced interspersed signals along chromosomal arms. On the contrary, insertion hot spots accumulating in localized regions (mainly next to centromeric and pericentromeric regions) highlighted the potential role of YNoto in chromosomal diversifications as facilitator of the fusions which occurred in many nototheniid lineages, but not of the fissions.
Collapse
Affiliation(s)
- Juliette Auvinet
- Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France.
| | - Paula Graça
- Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France.
| | - Laura Ghigliotti
- Istituto per lo Studio degli Impatti Antropici e la Sostenibilità in Ambiente Marino (IAS), National Research Council (CNR), 16149 Genoa, Italy.
| | - Eva Pisano
- Istituto per lo Studio degli Impatti Antropici e la Sostenibilità in Ambiente Marino (IAS), National Research Council (CNR), 16149 Genoa, Italy.
| | - Agnès Dettaï
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005 Paris, France.
| | - Catherine Ozouf-Costaz
- Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France.
| | - Dominique Higuet
- Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005 Paris, France.
| |
Collapse
|
27
|
Boedeker C, Leliaert F, Timoshkin OA, Vishnyakov VS, Díaz-Martínez S, Zuccarello GC. The endemic Cladophorales (Ulvophyceae) of ancient Lake Baikal represent a monophyletic group of very closely related but morphologically diverse species. JOURNAL OF PHYCOLOGY 2018; 54:616-629. [PMID: 30076711 DOI: 10.1111/jpy.12773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Lake Baikal, the oldest lake in the world, is home to spectacular biodiversity and extraordinary levels of endemism. While many of the animal species flocks from Lake Baikal are famous examples of evolutionary radiations, the lake also includes a wide diversity of endemic algae that are not well investigated with regards to molecular-biological taxonomy and phylogeny. The endemic taxa of the green algal order Cladophorales show a range of divergent morphologies that led to their classification in four genera in two families. We sequenced partial large- and small-subunit rDNA as well as the internal transcribed spacer region of 14 of the 16 described endemic taxa to clarify their phylogenetic relationships. One endemic morphospecies, Cladophora kusnetzowii, was shown to be conspecific with the widespread Aegagropila linnaei. All other endemic morphospecies formed a monophyletic group nested within the genus Rhizoclonium (Cladophoraceae), a very surprising result, in stark contrast to their morphological affinities. The Baikal clade represents a species flock of closely related taxa with very low genetic differentiation. Some of the morphospecies were congruent with lineages recovered in the phylogenies, but due to the low phylogenetic signal in the rDNA sequences the relationships within the Baikal clade were not all well resolved. The Baikal clade appears to represent a recent radiation, based on the low molecular divergence within the group, and it is hypothesized that the large morphological variation results from diversification in sympatry from a common ancestor in Lake Baikal.
Collapse
Affiliation(s)
- Christian Boedeker
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Frederik Leliaert
- Botanic Garden Meise, Nieuwelaan 38, 1860, Meise, Belgium
- Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| | - Oleg A Timoshkin
- Limnological Institute of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033, Irkutsk, Russia
| | - Vasily S Vishnyakov
- Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences, 152742 Borok, Yaroslavl, Russia
| | - Sergio Díaz-Martínez
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
28
|
Dimova M, Madyarova E, Gurkov A, Drozdova P, Lubyaga Y, Kondrateva E, Adelshin R, Timofeyev M. Genetic diversity of Microsporidia in the circulatory system of endemic amphipods from different locations and depths of ancient Lake Baikal. PeerJ 2018; 6:e5329. [PMID: 30083461 PMCID: PMC6076988 DOI: 10.7717/peerj.5329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/06/2018] [Indexed: 01/03/2023] Open
Abstract
Endemic amphipods (Amphipoda, Crustacea) of the most ancient and large freshwater Lake Baikal (Siberia, Russia) are a highly diverse group comprising >15% of all known species of continental amphipods. The extensive endemic biodiversity of Baikal amphipods provides the unique opportunity to study interactions and possible coevolution of this group and their parasites, such as Microsporidia. In this study, we investigated microsporidian diversity in the circulatory system of 22 endemic species of amphipods inhabiting littoral, sublittoral and deep-water zones in all three basins of Lake Baikal. Using molecular genetic techniques, we found microsporidian DNA in two littoral (Eulimnogammarus verrucosus, Eulimnogammarus cyaneus), two littoral/sublittoral (Pallasea cancellus, Eulimnogammarus marituji) and two sublittoral/deep-water (Acanthogammarus lappaceus longispinus, Acanthogammarus victorii maculosus) endemic species. Twenty sequences of the small subunit ribosomal (SSU) rDNA were obtained from the haemolymph of the six endemic amphipod species sampled from 0–60 m depths at the Southern Lake Baikal’s basin (only the Western shore) and at the Central Baikal. They form clusters with similarity to Enterocytospora, Cucumispora, Dictyocoela, and several unassigned Microsporidia sequences, respectively. Our sequence data show similarity to previously identified microsporidian DNA from inhabitants of both Lake Baikal and other water reservoirs. The results of our study suggest that the genetic diversity of Microsporidia in haemolymph of endemic amphipods from Lake Baikal does not correlate with host species, geographic location or depth factors but is homogeneously diverse.
Collapse
Affiliation(s)
| | - Ekaterina Madyarova
- Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Anton Gurkov
- Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | | | - Yulia Lubyaga
- Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | | | - Renat Adelshin
- Irkutsk State University, Irkutsk, Russia.,Irkutsk Anti-Plague Research Institute of Siberia and Far East, Irkutsk, Russia
| | | |
Collapse
|
29
|
Accumulation and exchange of parasites during adaptive radiation in an ancient lake. Int J Parasitol 2018; 48:297-307. [DOI: 10.1016/j.ijpara.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 11/18/2022]
|
30
|
Hultgren KM, Jeffery NW, Moran A, Gregory TR. Latitudinal variation in genome size in crustaceans. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/blx153] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Yi Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, Cavalier-Smith T, Bass D. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol Ecol 2017; 93:3857737. [PMID: 28575320 DOI: 10.1093/femsec/fix073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
We performed high-throughput 18S rDNA V9 region sequencing analyses of microeukaryote (protist) communities at seven sites with depths ranging from 0 to 1450 m in the southern part of Lake Baikal. We show that microeukaryotic diversity differed according to water column depth and sediment depth. Chrysophytes and perkinsids were diverse in subsurface samples, novel radiations of petalomonads and Ichthyobodo relatives were found in benthic samples, and a broad range of divergent OTUs were detected in deep subbenthic samples. Members of clades usually associated with marine habitats were also detected, including syndineans for the first time in freshwater systems. Fungal- and cercozoan-specific c. 1200 bp amplicon clone libraries also revealed many novel lineages in both planktonic and sediment samples at all depths, a novel radiation of aphelids in shallower benthic samples, and partitioning of sarcomonad lineages in shallow vs deep benthic samples. Putative parasitic lineages accounted for 12.4% of overall reads, including a novel radiation of Ichthyobodo (fish parasite) relatives. Micrometazoans were also analysed, including crustaceans, rotifers and nematodes. The deepest (>1000 m) subsurface sediment samples harboured some highly divergent sequence types, including heterotrophic flagellates, parasites, putative metazoans and sequences likely representing organisms originating from higher up in the water column.
Collapse
Affiliation(s)
- Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Cedric Berney
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Hanna Hartikainen
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Shazia Mahamdallie
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Michelle Gardner
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jens Boenigk
- Biodiversity department and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | | | - David Bass
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.,Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, the Nothe, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
32
|
Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Sci Rep 2017; 7:10762. [PMID: 28883487 PMCID: PMC5589843 DOI: 10.1038/s41598-017-11167-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
Lake ecosystems are deeply integrated into local and regional economies through recreation, tourism, and as sources of food and drinking water. Shifts in lake phytoplankton biomass, which are mediated by climate warming will alter these benefits with potential cascading effects on human well-being. The metabolic theory of ecology suggests that warming reduces lake phytoplankton biomass as basal metabolic costs increase, but this hypothesis has not been tested at the global scale. We use satellite-based estimates of lake surface temperature (LST) and lake surface chlorophyll-a concentration (chl-a; as a proxy for phytoplankton biomass) in 188 of the world’s largest lakes from 2002-2016 to test for interannual associations between chl-a and LST. In contrast to predictions from metabolic ecology, we found that LST and chl-a were positively correlated in 46% of lakes (p < 0.05). The associations between LST and chl-a depended on lake trophic state; warming tended to increase chl-a in phytoplankton-rich lakes and decrease chl-a in phytoplankton-poor lakes. We attribute the opposing responses of chl-a to LST to the effects of temperature on trophic interactions, and the availability of resources to phytoplankton. These patterns provide insights into how climate warming alters lake ecosystems on which millions of people depend for their livelihoods.
Collapse
|
33
|
Nakazawa T, Liu SYV, Sakai Y, Araki KS, Tsai CH, Okuda N. Spatial genetic structure and body size divergence in endangered Gymnogobius isaza in ancient Lake Biwa. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:756-764. [PMID: 28745537 DOI: 10.1080/24701394.2017.1357708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Gymnogobius isaza is a freshwater goby endemic to ancient Lake Biwa, the largest lake in Japan. The species is now listed as 'Critically Endangered' in the Red Data Book of Japan. Nevertheless, it remains subject to fishing without any specific management strategies. Previous studies using mitochondrial DNA markers showed that this fish species has two cryptic lineages. However, little is known about spatial genetic structure and ecological differences across the broad lakescape. In this study, we collected fish samples at nine locations along the lakeshore during the breeding season and tested for the presence of spatial heterogeneity in the lineage's composition while measuring body size as the most fundamental biological trait. The results showed that the major lineage dominated all the sampling locations whereas the minor lineage consisted of only 11% (16/143) of samples. Furthermore, although their spatial distributions overlapped (i.e. the two lineages may be well mixed), we found it possible that the minor lineage may have a potentially narrower distribution than the major lineage. In addition, we found that the two lineages differ in body size; specifically, the minor lineage is smaller in size. From the viewpoint of genetic diversity conservation and sustainable resource use, this fish should be managed as two genetic stocks and spatial and/or body size-based fishery management is desirable, with particular attention to the minor (smaller sized) lineage.
Collapse
Affiliation(s)
- Takefumi Nakazawa
- a Department of Life Sciences , National Cheng Kung University , Tainan , Taiwan
| | - Shang-Yin Vanson Liu
- b Department of Marine Biotechnology and Resources , National Sun Yat-Sen University , Kaohsiung , Taiwan
| | - Yoichiro Sakai
- c Lake Biwa Environmental Research Institute , Shiga , Japan
| | - Kiwako S Araki
- d Faculty of Life Sciences , Ristumeikan University , Shiga , Japan
| | - Cheng-Han Tsai
- e Australian Institute of Marine Science, School of Marine and Tropical Biology , James Cook University , Australia
| | - Noboru Okuda
- f Research Institute for Humanity and Nature , Kyoto , Japan
| |
Collapse
|
34
|
Johns GC, Avise JC. TESTS FOR ANCIENT SPECIES FLOCKS BASED ON MOLECULAR PHYLOGENETIC APPRAISALS OFSEBASTESROCKFISHES AND OTHER MARINE FISHES. Evolution 2017; 52:1135-1146. [DOI: 10.1111/j.1558-5646.1998.tb01840.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/1997] [Accepted: 03/06/1998] [Indexed: 11/26/2022]
Affiliation(s)
- Glenn C. Johns
- Department of Genetics; University of Georgia; Athens Georgia 30602
| | - John C. Avise
- Department of Genetics; University of Georgia; Athens Georgia 30602
| |
Collapse
|
35
|
Turgeon J, Estoup A, Bernatchez L. SPECIES FLOCK IN THE NORTH AMERICAN GREAT LAKES: MOLECULAR ECOLOGY OF LAKE NIPIGON CISCOES (TELEOSTEI: COREGONIDAE: COREGONUS). Evolution 2017; 53:1857-1871. [PMID: 28565465 DOI: 10.1111/j.1558-5646.1999.tb04568.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1998] [Accepted: 05/12/1999] [Indexed: 11/29/2022]
Abstract
Studies on north temperate fish species indicate that new habitat availability following the last ice sheet retreat has promoted ecological speciation in postglacial lakes. Extensive ecophenotypic polymorphisms observed among the North American Great Lakes ciscoes suggest that this fish group has radiated through trophic adaptation and reproductive isolation. This study aims at relating the ecomorphological and genetic polymorphisms expressed by the Lake Nipigon ciscoes to evaluate the likelihood of an intralacustrine divergence driven by the exploitation of alternative resources. Morphological variation and trophic and spatial niches are characterized and contrasted among 203 individuals. Genetic variation at six microsatellite loci is also analyzed to appraise the extent of genetic differentiation among these morphotypes. Ecomorphological data confirm the existence of four distinct morphotypes displaying various levels of trophic and depth niche overlap and specialization. However, ecological and morphological variations were not coupled as expected, suggesting that trophic morphology is not always predictive of ecology. Although extensive genetic variability was observed, little genetic differentiation was found among morphotypes, with only one morph being slightly but significantly differentiated. Contrasting patterns of morphological, ecological, and genetic polymorphisms did not support the hypothesis of ecological speciation: the most ecologically different forms were morphologically most similar, while the only genetically differentiated morph was the least ecologically specialized. The low levels of genetic differentiation and the congruence between θ and φ estimates altogether suggest a recent (most likely postglacial) process of divergence and/or high gene flow among morphs A, C, and D, whereas higher φ estimates for comparison involving morph B suggest that this morph may be derived from another colonizing lineage exchanging little genes with the other morphs. Patterns of ecophenotypic and genetic diversity are also compatible with a more complex evolutionary history involving hybridization and introgression.
Collapse
Affiliation(s)
- Julie Turgeon
- GIROQ, Département de biologie, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| | - Arnaud Estoup
- Laboratoire de Génétique des Poissons, INRA, 78352, Jouy-en-Josas, France
| | - Louis Bernatchez
- GIROQ, Département de biologie, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| |
Collapse
|
36
|
Bolotov IN, Kondakov AV, Vikhrev IV, Aksenova OV, Bespalaya YV, Gofarov MY, Kolosova YS, Konopleva ES, Spitsyn VM, Tanmuangpak K, Tumpeesuwan S. Ancient River Inference Explains Exceptional Oriental Freshwater Mussel Radiations. Sci Rep 2017; 7:2135. [PMID: 28522869 PMCID: PMC5437074 DOI: 10.1038/s41598-017-02312-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 11/18/2022] Open
Abstract
The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51–55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
Collapse
Affiliation(s)
- Ivan N Bolotov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation.
| | - Alexander V Kondakov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Ilya V Vikhrev
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Olga V Aksenova
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Yulia V Bespalaya
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Mikhail Yu Gofarov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Yulia S Kolosova
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Ekaterina S Konopleva
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Vitaly M Spitsyn
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Kitti Tanmuangpak
- Department of Science, Faculty of Science and Technology, Loei Rajabhat University, Loei, Thailand
| | - Sakboworn Tumpeesuwan
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
37
|
Kraemer BM, Chandra S, Dell AI, Dix M, Kuusisto E, Livingstone DM, Schladow SG, Silow E, Sitoki LM, Tamatamah R, McIntyre PB. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism. GLOBAL CHANGE BIOLOGY 2017; 23:1881-1890. [PMID: 27591144 DOI: 10.1111/gcb.13459] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected.
Collapse
Affiliation(s)
| | - Sudeep Chandra
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA
| | - Anthony I Dell
- National Great Rivers Research and Education Center, Alton, IL, USA
- Department of Biology, Washington University, St Louis, MO, USA
| | - Margaret Dix
- Centro de Estudios Atitlán, Universidad del Valle de Guatemala, Altiplano Campus, Sololá, Guatemala
| | - Esko Kuusisto
- Freshwater Centre, Finnish Environment Institute, Mechelininkatu, Helsinki, Finland
| | - David M Livingstone
- Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - S Geoffrey Schladow
- Tahoe Environmental Research Center, University of California-Davis, Davis, CA, USA
| | - Eugene Silow
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | | | - Rashid Tamatamah
- Department of Fisheries and Aquatic Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Peter B McIntyre
- Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
38
|
Grabowski M, Wysocka A, Mamos T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlw025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Naumenko SA, Logacheva MD, Popova NV, Klepikova AV, Penin AA, Bazykin GA, Etingova AE, Mugue NS, Kondrashov AS, Yampolsky LY. Transcriptome‐based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Mol Ecol 2017; 26:536-553. [DOI: 10.1111/mec.13927] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Sergey A. Naumenko
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
- Genetics and Genome Biology Program The Hospital For Sick Children Toronto ON Canada
| | - Maria D. Logacheva
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
- Pirogov Russian National Research Medical University Moscow Russia
| | - Nina V. Popova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Anna V. Klepikova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
| | - Aleksey A. Penin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
| | - Georgii A. Bazykin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
- Pirogov Russian National Research Medical University Moscow Russia
- Skolkovo Institute of Science and Technology Skolkovo Russia
| | - Anna E. Etingova
- Baikal Museum Irkutsk Research Center Russian Academy of Sciences Listvyanka, Irkutsk region Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics Russian Institute for Fisheries and Oceanography (VNIRO) Moscow Russia
- Laboratory of Experimental Embryology Koltsov Institute of Developmental Biology Moscow Russia
| | - Alexey S. Kondrashov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Department of Ecology and Evolution University of Michigan Ann Arbor MI USA
| | - Lev Y. Yampolsky
- Department of Biological Sciences East Tennessee State University Johnson City TN USA
| |
Collapse
|
40
|
Romanova EV, Aleoshin VV, Kamaltynov RM, Mikhailov KV, Logacheva MD, Sirotinina EA, Gornov AY, Anikin AS, Sherbakov DY. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics 2016; 17:1016. [PMID: 28105939 PMCID: PMC5249044 DOI: 10.1186/s12864-016-3357-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Amphipods (Crustacea) of Lake Baikal are a very numerous and diverse group of invertebrates generally believed to have originated by adaptive radiation. The evolutionary history and phylogenetic relationships in Baikalian amphipods still remain poorly understood. Sequencing of mitochondrial genomes is a relatively feasible way for obtaining a set of gene sequences suitable for robust phylogenetic inferences. The architecture of mitochondrial genomes also may provide additional information on the mechanisms of evolution of amphipods in Lake Baikal. RESULTS Three complete and four nearly complete mitochondrial genomes of Baikalian amphipods were obtained by high-throughput sequencing using the Illumina platform. A phylogenetic inference based on the nucleotide sequences of all mitochondrial protein coding genes revealed the Baikalian species to be a monophyletic group relative to the nearest non-Baikalian species with a completely sequenced mitochondrial genome - Gammarus duebeni. The phylogeny of Baikalian amphipods also suggests that the shallow-water species Eulimnogammarus has likely evolved from a deep-water ancestor, however many other species have to be added to the analysis to test this hypothesis. The gene order in all mitochondrial genomes of studied Baikalian amphipods differs from the pancrustacean ground pattern. Mitochondrial genomes of four species possess 23 tRNA genes, and in three genomes the extra tRNA gene copies have likely undergone remolding. Widely varying lengths of putative control regions and other intergenic spacers are typical for the mitochondrial genomes of Baikalian amphipods. CONCLUSIONS The mitochondrial genomes of Baikalian amphipods display varying organization suggesting an intense rearrangement process during their evolution. Comparison of complete mitochondrial genomes is a potent approach for studying the amphipod evolution in Lake Baikal.
Collapse
Affiliation(s)
- Elena V. Romanova
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Vladimir V. Aleoshin
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Ravil M. Kamaltynov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Kirill V. Mikhailov
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Maria D. Logacheva
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420012 Russian Federation
| | - Elena A. Sirotinina
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Alexander Yu. Gornov
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Anton S. Anikin
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Dmitry Yu. Sherbakov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
- Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, 664003 Russian Federation
| |
Collapse
|
41
|
Stelbrink B, Shirokaya AA, Föller K, Wilke T, Albrecht C. Origin and diversification of Lake Ohrid's endemic acroloxid limpets: the role of geography and ecology. BMC Evol Biol 2016; 16:273. [PMID: 27978815 PMCID: PMC5159953 DOI: 10.1186/s12862-016-0826-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/09/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ancient Lake Ohrid, located on the Albania-Macedonia border, is the most biodiverse freshwater lake in Europe. However, the processes that gave rise to its extraordinary endemic biodiversity, particularly in the species-rich gastropods, are still poorly understood. A suitable model taxon to study speciation processes in Lake Ohrid is the pulmonate snail genus Acroloxus, which comprises two morphologically distinct and ecologically (vertically) separated endemic species. Using a multilocus phylogenetic framework of Acroloxus limpets from the Euro-Mediterranean subregion, together with molecular-clock and phylogeographic analyses of Ohrid taxa, we aimed to infer their geographic origin and the timing of colonization as well as the role of geography and ecology in intra-lacustrine diversification. RESULTS In contrast to most other endemic invertebrate groups in Lake Ohrid, the phylogenetic relationships of the endemic Ohrid Acroloxus species indicate that the Balkan region probably did not serve as their ancestral area. The inferred monophyly and estimated divergence times further suggest that these freshwater limpets colonized the lake only once and that the onset of intra-lacustrine diversification coincides with the time when the lake reached deep-water conditions ca 1.3 Mya. However, the difference in vertical distribution of these two ecologically distinct species is not reflected in the phylogeographic pattern observed. Instead, western and eastern populations are genetically more distinct, suggesting a horizontal structure. CONCLUSIONS We conclude that both geography and ecology have played a role in the intra-lacustrine speciation process. Given the distinct morphology (sculptured vs. smooth shell) and ecology (littoral vs. sublittoral), and the timing of intra-lacustrine diversification inferred, we propose that the onset of deep-water conditions initially triggered ecological speciation. Subsequent geographic processes then gave rise to the phylogeographic patterns observed today. However, the generally weak genetic differentiation observed suggests incipient speciation, which might be explained by the comparatively young age of the lake system and thus the relatively recent onset of intra-lacustrine diversification.
Collapse
Affiliation(s)
- Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Alena A Shirokaya
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, Ulan-Batorskaya Str., 3, P.O. Box 4199, 664033, Irkutsk, Russia
| | - Kirstin Föller
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
42
|
Jeffery NW, Yampolsky L, Gregory TR. Nuclear DNA content correlates with depth, body size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia. Genome 2016; 60:303-309. [PMID: 28177846 DOI: 10.1139/gen-2016-0128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lake Baikal in Russia is a large, ancient lake that has been the site of a major radiation of amphipod crustaceans. Nearly 400 named species are known in this single lake, and it is thought that many more await description. The size and depth of Lake Baikal, in particular, may have contributed to the radiation of endemic amphipods by providing a large number of microhabitats for species to invade and subsequently experience reproductive isolation. Here we investigate the possibility that large-scale genomic changes have also accompanied diversification in these crustaceans. Specifically, we report genome size estimates for 36 species of Baikal amphipods, and examine the relationship between genome size, body size, and the maximum depths at which the amphipods are found in the lake. Genome sizes ranged nearly 8-fold in this sample of amphipod species, from 2.15 to 16.63 pg, and there were significant, positive, phylogenetically corrected relationships between genome size, body size, maximum depth, and diversification rate among these species. Our results suggest that major genomic changes, including transposable element proliferation, have accompanied speciation that was driven by selection for differences in body size and habitat preference in Lake Baikal amphipods.
Collapse
Affiliation(s)
- Nicholas W Jeffery
- a Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lev Yampolsky
- b Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - T Ryan Gregory
- a Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
43
|
Gurkov A, Shchapova E, Bedulina D, Baduev B, Borvinskaya E, Meglinski I, Timofeyev M. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring. Sci Rep 2016; 6:36427. [PMID: 27808253 PMCID: PMC5093551 DOI: 10.1038/srep36427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/14/2016] [Indexed: 01/21/2023] Open
Abstract
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.
Collapse
Affiliation(s)
- Anton Gurkov
- Irkutsk State University, Institute of Biology, Irkutsk, 664003, Russia
| | | | - Daria Bedulina
- Irkutsk State University, Institute of Biology, Irkutsk, 664003, Russia
| | - Boris Baduev
- Irkutsk State University, Institute of Biology, Irkutsk, 664003, Russia
| | - Ekaterina Borvinskaya
- Irkutsk State University, Institute of Biology, Irkutsk, 664003, Russia.,Karelian Research Centre of Russian Academy of Sciences, Institute of Biology, Petrozavodsk, 185035, Russia
| | - Igor Meglinski
- Irkutsk State University, Institute of Biology, Irkutsk, 664003, Russia.,University of Oulu, Optoelectronics and Measurement Techniques Laboratory, Oulu, 90570, Finland
| | - Maxim Timofeyev
- Irkutsk State University, Institute of Biology, Irkutsk, 664003, Russia
| |
Collapse
|
44
|
Neubauer TA, Georgopoulou E, Harzhauser M, Mandic O, Kroh A. Predictors of shell size in long-lived lake gastropods. JOURNAL OF BIOGEOGRAPHY 2016; 43:2062-2074. [PMID: 27708479 PMCID: PMC5042061 DOI: 10.1111/jbi.12777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
AIM To investigate shell size variation among gastropod faunas of fossil and recent long-lived European lakes and discuss potential underlying processes. LOCATION Twenty-three long-lived lakes of the Miocene to Recent of Europe. METHODS Based on a dataset of 1412 species of both fossil and extant lacustrine gastropods, we assessed differences in shell size in terms of characteristics of the faunas (species richness, degree of endemism, differences in family composition) and the lakes (surface area, latitude and longitude of lake centroid, distance to closest neighbouring lake) using multiple and linear regression models. Because of a strong species-area relationship, we used resampling to determine whether any observed correlation is driven by that relationship. RESULTS The regression models indicated size range expansion rather than unidirectional increase or decrease as the dominant pattern of size evolution. The multiple regression models for size range and maximum and minimum size were statistically significant, while the model with mean size was not. Individual contributions and linear regressions indicated species richness and lake surface area as best predictors for size changes. Resampling analysis revealed no significant effects of species richness on the observed patterns. The correlations are comparable across families of different size classes, suggesting a general pattern. MAIN CONCLUSIONS Among the chosen variables, species richness and lake surface area are the most robust predictors of shell size in long-lived lake gastropods. Although the most outstanding and attractive examples for size evolution in lacustrine gastropods come from lakes with extensive durations, shell size appears to be independent of the duration of the lake as well as longevity of a species. The analogue of long-lived lakes as 'evolutionary islands' does not hold for developments of shell size because different sets of parameters predict size changes.
Collapse
Affiliation(s)
- Thomas A. Neubauer
- Geological‐Palaeontological DepartmentNatural History Museum Vienna1010ViennaAustria
| | - Elisavet Georgopoulou
- Geological‐Palaeontological DepartmentNatural History Museum Vienna1010ViennaAustria
| | - Mathias Harzhauser
- Geological‐Palaeontological DepartmentNatural History Museum Vienna1010ViennaAustria
| | - Oleg Mandic
- Geological‐Palaeontological DepartmentNatural History Museum Vienna1010ViennaAustria
| | - Andreas Kroh
- Geological‐Palaeontological DepartmentNatural History Museum Vienna1010ViennaAustria
| |
Collapse
|
45
|
Ji Y, Sun Y, Gao W, Chu K, Wang R, Zhao Q, Sun H. Out of the Sichuan Basin: Rapid species diversification of the freshwater crabs in Sinopotamon (Decapoda: Brachyura: Potamidae) endemic to China. Mol Phylogenet Evol 2016; 100:80-94. [DOI: 10.1016/j.ympev.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 03/16/2016] [Accepted: 04/03/2016] [Indexed: 10/22/2022]
|
46
|
Tabata R, Kakioka R, Tominaga K, Komiya T, Watanabe K. Phylogeny and historical demography of endemic fishes in Lake Biwa: the ancient lake as a promoter of evolution and diversification of freshwater fishes in western Japan. Ecol Evol 2016; 6:2601-23. [PMID: 27066244 PMCID: PMC4798153 DOI: 10.1002/ece3.2070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023] Open
Abstract
To elucidate the origins of the endemic fish of Lake Biwa, an ancient lake in Japan, and the role of the lake in the diversification of freshwater fish in western Japan, we established a molecular phylogenetic framework with an absolute time scale and inferred the historical demography of a large set of fish species in and around the lake. We used mtDNA sequences obtained from a total of 190 specimens, including 11 endemic species of Lake Biwa and their related species, for phylogenetic analyses with divergence time estimations and from a total of 2319 specimens of 42 species (including 14 endemics) occurring in the lake for population genetic analyses. Phylogenetic analysis suggested that some of the endemic species diverged from their closest relatives earlier (1.3–13.0 Ma) than the period in which the present environmental characteristics of the lake started to develop (ca. 0.4 Ma), whereas others diverged more recently (after 0.4 Ma). In contrast, historical demographic parameters suggested that almost all species, including endemic and nonendemic ones, expanded their populations after the development of the present lake environment. In phylogeographic analyses, common or very close haplotypes of some species were obtained from Lake Biwa and other regions of western Japan. The phylogenetic and historical demographic evidence suggests that there was a time lag between phylogenetic divergence and population establishment and that phenotypic adaptation of some endemic species to the limnetic environment occurred much later than the divergences of those endemic lineages. Population structure and phylogeographic patterns suggest that Lake Biwa has functioned not only as the center of adaptive evolution but also as a reservoir for fish diversity in western Japan.
Collapse
Affiliation(s)
- Ryoichi Tabata
- Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo Kyoto 606-8502 Japan
| | - Ryo Kakioka
- Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo Kyoto 606-8502 Japan; Research Institute for Humanity and Nature 457-4 Kamigamo-Motoyama Kita-ku Kyoto 603-8047 Japan
| | - Koji Tominaga
- Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo Kyoto606-8502 Japan; Kwansei Gakuin Senior High School 1-155 Uegahara-ichibancho Nishinomiya Hyogo 662-8501 Japan
| | - Takefumi Komiya
- Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo Kyoto 606-8502 Japan
| | - Katsutoshi Watanabe
- Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo Kyoto 606-8502 Japan
| |
Collapse
|
47
|
Gitter F, Gross M, Piller WE. Sub-decadal resolution in sediments of Late Miocene Lake Pannon reveals speciation of Cyprideis (Crustacea, Ostracoda). PLoS One 2015; 10:e0109360. [PMID: 25902063 PMCID: PMC4406499 DOI: 10.1371/journal.pone.0109360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/01/2014] [Indexed: 11/22/2022] Open
Abstract
Late Miocene "Lake Pannon" (~11.3 Ma) was a remnant of the Central Paratethyan Sea. Successive freshening and constantly changing environmental conditions, like oxygenation, nutrition and substrate led to a well-documented radiation in molluscs and ostracods. Among ostracods (small crustaceans), Cyprideis is one of the most common genera in "Lake Pannon", as well as in several other ancient lakes, showing numerous adaptations and speciations. Here, we present high-resolution data from an early transgression of "Lake Pannon" in the Eastern Styrian Basin (SE Austria). Mataschen clay pit is in the focus of geologic and paleontologic research since 20 years and its geologic and paleoecologic evolution is well-documented. We drilled five cores covering a ~2.3 m long section and completely sampled it in 5-mm thick intervals to reconstruct minute changes in the ostracod fauna over a transgression of a brackish water body. The dominant genus, Cyprideis, is represented by three species C. mataschensis, C. kapfensteinensis and C. ex gr. pannonica. Through morphometric analyses we highlight the variance of each taxon and suggest that there is no direct ecologic control on size or shape. Furthermore, we found a second, co-occurring morphotype of C. kapfensteinensis which is directly related to an elevation of salinities above 13 psu. The presence of two intermediate specimens between the two morphotypes in the sample directly below the first appearance of C. kapfensteinensis B leads us to the conclusion that we are facing a speciation event leading to four sympatric species of Cyprideis.
Collapse
Affiliation(s)
- Frank Gitter
- Department for Geology & Palaeontology, Universalmuseum Joanneum, Weinzöttlstrasse 16, 8045, Graz, Austria
- Institute of Earth Sciences, University of Graz, NAWI Graz, Heinrichstrasse 26, 8010, Graz, Austria
| | - Martin Gross
- Department for Geology & Palaeontology, Universalmuseum Joanneum, Weinzöttlstrasse 16, 8045, Graz, Austria
| | - Werner E. Piller
- Institute of Earth Sciences, University of Graz, NAWI Graz, Heinrichstrasse 26, 8010, Graz, Austria
| |
Collapse
|
48
|
Salzburger W, Van Bocxlaer B, Cohen AS. Ecology and Evolution of the African Great Lakes and Their Faunas. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091804] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Bert Van Bocxlaer
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20013;
- Department of Geology and Soil Science, Ghent University, 9000 Ghent, Belgium
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Andrew S. Cohen
- Department of Geosciences, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
49
|
Maikova O, Khanaev I, Belikov S, Sherbakov D. Two hypotheses of the evolution of endemic sponges in Lake Baikal (Lubomirskiidae). J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga Maikova
- Limnological Institute; Siberian Branch; Russian Academy of Sciences; Irkutsk Russia
| | - Igor Khanaev
- Limnological Institute; Siberian Branch; Russian Academy of Sciences; Irkutsk Russia
| | - Sergei Belikov
- Limnological Institute; Siberian Branch; Russian Academy of Sciences; Irkutsk Russia
| | - Dmitry Sherbakov
- Limnological Institute; Siberian Branch; Russian Academy of Sciences; Irkutsk Russia
- Biological Faculty of Irkutsk State University; Irkutsk Russia
| |
Collapse
|
50
|
Diversity and Spatial Distribution of Extant Freshwater Ostracodes (Crustacea) in Ancient Lake Ohrid (Macedonia/Albania). DIVERSITY-BASEL 2014. [DOI: 10.3390/d6030524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|