1
|
TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice. Int J Mol Sci 2022; 23:ijms23010559. [PMID: 35008985 PMCID: PMC8745172 DOI: 10.3390/ijms23010559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.
Collapse
|
2
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Bake T, Le May MV, Edvardsson CE, Vogel H, Bergström U, Albers MN, Skibicka KP, Farkas I, Liposits Z, Dickson SL. Ghrelin Receptor Stimulation of the Lateral Parabrachial Nucleus in Rats Increases Food Intake but not Food Motivation. Obesity (Silver Spring) 2020; 28:1503-1511. [PMID: 32627950 DOI: 10.1002/oby.22875] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The lateral parabrachial nucleus (lPBN) in the brainstem has emerged as a key area involved in feeding control that is targeted by several circulating anorexigenic hormones. Here, the objective was to determine whether the lPBN is also a relevant site for the orexigenic hormone ghrelin, inspired by studies in mice and rats showing that there is an abundance of ghrelin receptors in this area. METHODS This study first explored whether iPBN cells respond to ghrelin involving Fos mapping and electrophysiological studies in rats. Next, rats were injected acutely with ghrelin, a ghrelin receptor antagonist, or vehicle into the lPBN to investigate feeding-linked behaviors. RESULTS Curiously, ghrelin injection (intracerebroventricular or intravenous) increased Fos protein expression in the lPBN yet the predominant electrophysiological response was inhibitory. Intra-lPBN ghrelin injection increased chow or high-fat diet intake, whereas the antagonist decreased chow intake only. In a choice paradigm, intra-lPBN ghrelin increased intake of chow but not lard or sucrose. Intra-lPBN ghrelin did not alter progressive ratio lever pressing for sucrose or conditioned place preference for chocolate. CONCLUSIONS The lPBN is a novel locus from which ghrelin can alter consummatory behaviors (food intake and choice) but not appetitive behaviors (food reward and motivation).
Collapse
Affiliation(s)
- Tina Bake
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Heike Vogel
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Bergström
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marjorie Nicholson Albers
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Imre Farkas
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Liposits
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Jewett DC, Klockars A, Smith TR, Brunton C, Head MA, Tham RL, Kwilasz AJ, Hahn TW, Wiebelhaus JM, Ewan EE, Carroll RM, Grace MK, Levine AS, Olszewski PK. Effects of opioid receptor ligands in rats trained to discriminate 22 from 2 hours of food deprivation suggest a lack of opioid involvement in eating for hunger. Behav Brain Res 2020; 380:112369. [DOI: 10.1016/j.bbr.2019.112369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
|
6
|
Mani BK, Castorena CM, Vianna CR, Lee CE, Metzger NP, Vijayaraghavan P, Osborne-Lawrence S, Elmquist JK, Zigman JM. Combined Loss of Ghrelin Receptor and Cannabinoid CB1 Receptor in Mice Decreases Survival but does not Additively Reduce Body Weight or Eating. Neuroscience 2019; 447:53-62. [PMID: 31520709 DOI: 10.1016/j.neuroscience.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023]
Abstract
Ghrelin administration increases food intake, body weight (BW), adiposity, and blood glucose. In contrast, although mouse models lacking ghrelin or its receptor (Growth Hormone Secretagogue Receptor (GHSR)) exhibit life-threatening hypoglycemia in starvation-like states, they do not exhibit appreciable reductions in food intake, BW, adiposity, blood glucose, or survival when food availability is unrestricted. This suggests the existence of a parallel neuromodulatory system that can compensate for disruptions in the ghrelin system in certain settings. Here, we hypothesized that the cannabinoid CB1 receptor (CB1R) may encode this putative redundancy, and as such, that genetic deletion of both GHSR and CB1R would exaggerate the metabolic deficits associated with deletion of GHSR alone. To test this hypothesis, we assessed food intake, BW, blood glucose, survival, and plasma acyl-ghrelin in ad libitum-fed male wild-type mice and those that genetically lack GHSR (GHSR-nulls), CB1R (CB1R-nulls), or both GHSR and CB1R (double-nulls). BW, fat mass, and lean mass were similar in GHSR-nulls and wild-types, lower in CB1R-nulls, but not further reduced in double-nulls. Food intake, plasma acyl-ghrelin, and blood glucose were similar among genotypes. Deletion of either GHSR or CB1R alone did not have a statistically-significant effect on survival, but double-nulls demonstrated a statistical trend towards decreased survival (p = 0.07). We conclude that CB1R is not responsible for the normal BW, adiposity, food intake, and blood glucose observed in GHSR-null mice in the setting of unrestricted food availability. Nor is CB1R required for plasma acyl-ghrelin secretion in that setting. However, GHSR may be protective against exaggerated mortality associated with CB1R deletion.
Collapse
Affiliation(s)
- Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos M Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claudia R Vianna
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte E Lee
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prasanna Vijayaraghavan
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Mashaqi S, Badr MS. The Impact of Obstructive Sleep Apnea and Positive Airway Pressure Therapy on Metabolic Peptides Regulating Appetite, Food Intake, Energy Homeostasis, and Systemic Inflammation: A Literature Review. J Clin Sleep Med 2019; 15:1037-1050. [PMID: 31383242 DOI: 10.5664/jcsm.7890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sleep-related breathing disorders are very common and highly associated with many comorbid diseases. They have many metabolic consequences that impact appetite, energy expenditure, and systemic inflammation. These consequences are mediated through peptides (eg, ghrelin, leptin, adiponectin, resistin, apelin, obestatin, and neuropeptide Y). METHODS We searched the literature (PubMed) for sleep-disordered breathing (SDB) and metabolic peptides and included 15, 22, 14, 4 and 2 articles for ghrelin, leptin, adiponectin, resistin, and apelin respectively. RESULTS Our review of the published literature suggests that leptin levels seem to correlate with body mass index and adiposity rather than obstructive sleep apnea. Conversely, levels of adiponectin and ghrelin are influenced by obstructive sleep apnea alone. Finally, resistin and apelin seem to be not correlated with obstructive sleep apnea. Regarding positive airway pressure (PAP) impact, it seems that PAP therapy affected the levels of these peptides (mainly ghrelin). CONCLUSIONS There is significant controversy in the literature regarding the impact of SDB and PAP therapy on these metabolic peptides. This could be due to the lack of randomized clinical trials and the variability of the methodology used in these studies. Further research is needed to assess the impact of SDB and PAP therapy on the levels of these peptides and whether this impact is also related to body mass index and body fat composition.
Collapse
Affiliation(s)
- Saif Mashaqi
- Division of Sleep Medicine, University of North Dakota School of Medicine - Sanford Health, Fargo, North Dakota
| | - M Safwan Badr
- Department of Internal Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
8
|
Serrenho D, Santos SD, Carvalho AL. The Role of Ghrelin in Regulating Synaptic Function and Plasticity of Feeding-Associated Circuits. Front Cell Neurosci 2019; 13:205. [PMID: 31191250 PMCID: PMC6546032 DOI: 10.3389/fncel.2019.00205] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity of the neuronal circuits associated with feeding behavior is regulated by peripheral signals as a response to changes in the energy status of the body. These signals include glucose, free fatty acids, leptin and ghrelin and are released into circulation, being able to reach the brain. Ghrelin, a small peptide released from the stomach, is an orexigenic hormone produced in peripheral organs, and its action regulates food intake, body weight and glucose homeostasis. Behavioral studies show that ghrelin is implicated in the regulation of both hedonic and homeostatic feeding and of cognition. Ghrelin-induced synaptic plasticity has been described in neuronal circuits associated with these behaviors. In this review, we discuss the neuromodulatory mechanisms induced by ghrelin in regulating synaptic plasticity in three main neuronal circuits previously associated with feeding behaviors, namely hypothalamic (homeostatic feeding), ventral tegmental (hedonic and motivational feeding) and hippocampal (cognitive) circuits. Given the central role of ghrelin in regulating feeding behaviors, and the altered ghrelin levels associated with metabolic disorders such as obesity and anorexia, it is of paramount relevance to understand the effects of ghrelin on synaptic plasticity of neuronal circuits associated with feeding behaviors.
Collapse
Affiliation(s)
- Débora Serrenho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Sandra D Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Dos-Santos RC, Reis LC, Perello M, Ferguson AV, Mecawi AS. The actions of ghrelin in the paraventricular nucleus: energy balance and neuroendocrine implications. Ann N Y Acad Sci 2019; 1455:81-97. [PMID: 31008525 DOI: 10.1111/nyas.14087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Ghrelin is a peptide mainly produced and secreted by the stomach. Since its discovery, the impact of ghrelin on the regulation of food intake has been the most studied function of this hormone; however, ghrelin affects a wide range of physiological systems, many of which are controlled by the hypothalamic paraventricular nucleus (PVN). Several pathways may mediate the effects of ghrelin on PVN neurons, such as direct or indirect effects mediated by circumventricular organs and/or the arcuate nucleus. The ghrelin receptor is expressed in PVN neurons, and the peripheral or intracerebroventricular administration of ghrelin affects PVN neuronal activity. Intra-PVN application of ghrelin increases food intake and decreases fat oxidation, which chronically contribute to the increased adiposity. Additionally, ghrelin modulates the neuroendocrine axes controlled by the PVN, increasing the release of vasopressin and oxytocin by magnocellular neurons and corticotropin-releasing hormone by neuroendocrine parvocellular neurons, while possibly inhibiting the release of thyrotropin-releasing hormone. Thus, the PVN is an important target for the actions of ghrelin. Our review discusses the mechanisms of ghrelin actions in the PVN, and its potential implications for energy balance, neuroendocrine, and integrative physiological control.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, Argentina
| | - Alastair V Ferguson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
New Metabolic Influencer on Oxytocin Release: The Ghrelin. Molecules 2019; 24:molecules24040735. [PMID: 30781678 PMCID: PMC6413225 DOI: 10.3390/molecules24040735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
Background: The hypothalamic–pituitary axis by secreting neuropeptides plays a key role in metabolic homeostasis. In light of the metabolic regulation, oxytocin is a potential neuropeptide for therapies against obesity and related disorders. The aim of our study is to measure ghrelin-induced oxytocin secretion in rats and to detect the changes after administration of ghrelin antagonist. Methods: Ghrelin was administrated centrally (intracerebroventricular, i.c.v., 1.0, 10.0, and 100.0 pmol) or systemically (intravenous, i.v., 1.0, and 10.0 nmol). [d-Lys3]-GHRP-6 ghrelin antagonist was injected 15 min before ghrelin injection in a dose of 10.0 pmol i.c.v. and 10.0 nmol i.v. Results: Either i.c.v. or i.v. administration of ghrelin dose-dependently increased the plasma oxytocin concentration. Following pretreatment with the ghrelin antagonist [d-Lys3]-GHRP-6, the high plasma oxytocin level induced by ghrelin was significantly reduced. Conclusion: The results indicate that the release of oxytocin is influenced directly by the ghrelin system. Examination of the mechanism of ghrelin-induced oxytocin secretion is a new horizon for potential therapeutic options.
Collapse
|
11
|
Wiss DA, Avena N, Rada P. Sugar Addiction: From Evolution to Revolution. Front Psychiatry 2018; 9:545. [PMID: 30464748 PMCID: PMC6234835 DOI: 10.3389/fpsyt.2018.00545] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
The obesity epidemic has been widely publicized in the media worldwide. Investigators at all levels have been looking for factors that have contributed to the development of this epidemic. Two major theories have been proposed: (1) sedentary lifestyle and (2) variety and ease of inexpensive palatable foods. In the present review, we analyze how nutrients like sugar that are often used to make foods more appealing could also lead to habituation and even in some cases addiction thereby uniquely contributing to the obesity epidemic. We review the evolutionary aspects of feeding and how they have shaped the human brain to function in "survival mode" signaling to "eat as much as you can while you can." This leads to our present understanding of how the dopaminergic system is involved in reward and its functions in hedonistic rewards, like eating of highly palatable foods, and drug addiction. We also review how other neurotransmitters, like acetylcholine, interact in the satiation processes to counteract the dopamine system. Lastly, we analyze the important question of whether there is sufficient empirical evidence of sugar addiction, discussed within the broader context of food addiction.
Collapse
Affiliation(s)
- David A. Wiss
- Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicole Avena
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pedro Rada
- School of Medicine, University of Los Andes, Mérida, Venezuela
| |
Collapse
|
12
|
Dos-Santos RC, Grover HM, Reis LC, Ferguson AV, Mecawi AS. Electrophysiological Effects of Ghrelin in the Hypothalamic Paraventricular Nucleus Neurons. Front Cell Neurosci 2018; 12:275. [PMID: 30210300 PMCID: PMC6121211 DOI: 10.3389/fncel.2018.00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/05/2022] Open
Abstract
The paraventricular nucleus (PVN) is involved in the control of sympathetic tone and the secretion of hormones, both functions known to be influenced by ghrelin, suggesting direct effect of ghrelin in this nucleus. However, the effects of ghrelin on the excitability of different PVN neuronal populations have not been demonstrated. This study assessed the effects of ghrelin on the activity of PVN neurons, correlating the responses to subpopulations of PVN neurons. We used a 64 multielectrode array to examine the effects of ghrelin administration on extracellular spike frequency in PVN neurons recorded in brain slices obtained from male Sprague-Dawley rats. Bath administration of 10 nM ghrelin increased (29/97, 30%) or decreased (37/97, 38%) spike frequency in PVN neurons. The GABAA and glutamate receptors antagonists abolish the decrease in spike frequency, without changes in the proportion of increases in spike frequency (23/53, 43%) induced by ghrelin. The results indicate a direct effect of ghrelin increasing PVN neurons activity and a synaptic dependent effect decreasing PVN neurons activity. The patch clamp recordings showed similar proportions of PVN neurons influenced by 10 nM ghrelin (33/95, 35% depolarized; 29/95, 30% hyperpolarized). Using electrophysiological fingerprints to identify specific subpopulations of PVN neurons we observed that the majority of pre-autonomic neurons (11/18 -61%) were depolarized by ghrelin, while both neuroendocrine (29% depolarizations, 40% hyperpolarizations), and magnocellular neurons (29% depolarizations, 21% hyperpolarizations) showed mixed responses. Finally, to correlate the electrophysiological response and the neurochemical phenotype of PVN neurons, cell cytoplasm was collected after recordings and RT-PCR performed to assess the presence of mRNA for vasopressin, oxytocin, thyrotropin (TRH) and corticotropin (CRH) releasing hormones. The single-cell RT-PCR showed that most TRH-expressing (4/5) and CRH-expressing (3/4) neurons are hyperpolarized in response to ghrelin. In conclusion, ghrelin either directly increases or indirectly decreases the activity of PVN neurons, this suggests that ghrelin acts on inhibitory PVN neurons that, in turn, decrease the activity of TRH-expressing and CRH-expressing neurons in the PVN.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Hanna M Grover
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Luís C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | | | - André S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil.,Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Rudd JA, Chan SW, Ngan MP, Tu L, Lu Z, Giuliano C, Lovati E, Pietra C. Anti-emetic Action of the Brain-Penetrating New Ghrelin Agonist, HM01, Alone and in Combination With the 5-HT 3 Antagonist, Palonosetron and With the NK 1 Antagonist, Netupitant, Against Cisplatin- and Motion-Induced Emesis in Suncus murinus (House Musk Shrew). Front Pharmacol 2018; 9:869. [PMID: 30127745 PMCID: PMC6087754 DOI: 10.3389/fphar.2018.00869] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/18/2018] [Indexed: 11/22/2022] Open
Abstract
Ghrelin has well-known activity to stimulate appetite and weight gain. Evidence suggests that ghrelin may also have effects in reducing chemotherapy-induced emesis via growth hormone secretagogue receptors (GHS-R1A) in the brain. However, it is not known whether the stimulation of GHS-R1A has broad inhibitory anti-emetic effects. In the present studies, we used Suncus murinus to investigate the potential of the new and novel orally bioavailable brain-penetrating GHS-R1A mimetic, HM01 (1-[(1S)-1-(2,3-dichloro-4-methoxyphenyl)ethyl]-3-methyl-3-[(4R)-1-Methyl-3,3-dimethyl-4-piperidyl]urea), to reduce emesis induced by a variety of emetic challenges. HM01 (1 to 30 mg/kg, p.o.) antagonized emesis induced by cisplatin (30 mg/kg, i.p.) and by motion (4 cm horizontal displacement, 1 Hz) but was ineffective against emesis induced by nicotine (5 mg/kg, s.c.) and copper sulfate (120 mg/kg by intragastric gavage). In other experiments, HM01 (3 mg/kg, p.o.) enhanced the anti-emetic control of a regimen of palonosetron (0.01 mg/kg, p.o.) alone and palonosetron (0.01 mg/kg p.o.) plus netupitant (1 mg/kg, p.o.). HM01 (10 mg/kg, p.o.) also had positive effects in increasing feeding and drinking in nicotine-treated animals, and it shortened the latency to drink in animals treated with cisplatin. These data indicate that brain-penetrating GHS-R1A agonists may have use alone and/or in combination with standard anti-emetic regimens for the treatment of chemotherapy-induced nausea and vomiting and motion sickness.
Collapse
Affiliation(s)
- John A Rudd
- Emesis Research Group, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sze W Chan
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O New Town, Hong Kong
| | - Man P Ngan
- Emesis Research Group, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Longlong Tu
- Emesis Research Group, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zengbing Lu
- Emesis Research Group, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Claudio Giuliano
- Helsinn Healthcare SA, Research and Development, Lugano, Switzerland
| | - Emanuela Lovati
- Helsinn Healthcare SA, Research and Development, Lugano, Switzerland
| | - Claudio Pietra
- Helsinn Healthcare SA, Research and Development, Lugano, Switzerland
| |
Collapse
|
14
|
Camargo-Silva G, Turones LC, da Cruz KR, Gomes KP, Mendonça MM, Nunes A, de Jesus IG, Colugnati DB, Pansani AP, Pobbe RLH, Santos R, Fontes MAP, Guatimosim S, de Castro CH, Ianzer D, Ferreira RN, Xavier CH. Ghrelin potentiates cardiac reactivity to stress by modulating sympathetic control and beta-adrenergic response. Life Sci 2018; 196:84-92. [PMID: 29366747 DOI: 10.1016/j.lfs.2018.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Prior evidence indicates that ghrelin is involved in the integration of cardiovascular functions and behavioral responses. Ghrelin actions are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), which is expressed in peripheral tissues and central areas involved in the control of cardiovascular responses to stress. AIMS In the present study, we assessed the role of ghrelin - GHS-R1a axis in the cardiovascular reactivity to acute emotional stress in rats. MAIN METHODS AND KEY FINDINGS Ghrelin potentiated the tachycardia evoked by restraint and air jet stresses, which was reverted by GHS-R1a blockade. Evaluation of the autonomic balance revealed that the sympathetic branch modulates the ghrelin-evoked positive chronotropy. In isolated hearts, the perfusion with ghrelin potentiated the contractile responses caused by stimulation of the beta-adrenergic receptor, without altering the amplitude of the responses evoked by acetylcholine. Experiments in isolated cardiomyocytes revealed that ghrelin amplified the increases in calcium transient changes evoked by isoproterenol. SIGNIFICANCE Taken together, our results indicate that the Ghrelin-GHS-R1a axis potentiates the magnitude of stress-evoked tachycardia by modulating the autonomic nervous system and peripheral mechanisms, strongly relying on the activation of cardiac calcium transient and beta-adrenergic receptors.
Collapse
Affiliation(s)
- Gabriel Camargo-Silva
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Larissa Córdova Turones
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Kellen Rosa da Cruz
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Karina Pereira Gomes
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Michelle Mendanha Mendonça
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Allancer Nunes
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Itamar Guedes de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Basile Colugnati
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Aline Priscila Pansani
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Roger Luis Henschel Pobbe
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Robson Santos
- National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil
| | | | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil
| | - Carlos Henrique de Castro
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil; National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil
| | - Danielle Ianzer
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil; National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil
| | - Reginaldo Nassar Ferreira
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Carlos Henrique Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil; National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil.
| |
Collapse
|
15
|
Kalafateli AL, Vallöf D, Jörnulf JW, Heilig M, Jerlhag E. A cannabinoid receptor antagonist attenuates ghrelin-induced activation of the mesolimbic dopamine system in mice. Physiol Behav 2017; 184:211-219. [PMID: 29221808 DOI: 10.1016/j.physbeh.2017.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/26/2023]
Abstract
Ghrelin has been attributed various physiological processes including food intake and reward regulation, through activation of the mesolimbic dopamine system. Reward modulation involves the mesolimbic dopamine system, consisting of the ventral tegmental area (VTA) dopamine neurons targeting nucleus accumbens (NAc), a system that ghrelin activates through VTA-dependent mechanisms. In the first study, we found that systemic intraperitoneal (ip) administration of rimonabant attenuated intracerebroventricular (icv) ghrelin's ability to cause locomotor stimulation and NAc dopamine release in mice. Ghrelin-induced (icv) chow intake was not altered by rimonabant administration (ip). Finally, we showed that bilateral VTA administration of rimonabant blocks the ability of intra-VTA administered ghrelin to increase locomotor activity, but does not affect food intake in mice. Collectively, these data indicate clear dissociation between regulation of food intake and activation of the mesolimbic dopamine system.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Julia Winsa Jörnulf
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Division of Neuro and Inflammation Sciences, Linköping University, Linköping, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
16
|
Thomas MA, Xue B. Mechanisms for AgRP neuron-mediated regulation of appetitive behaviors in rodents. Physiol Behav 2017; 190:34-42. [PMID: 29031550 DOI: 10.1016/j.physbeh.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/29/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
The obesity epidemic is a major health and economic burden facing both developed and developing countries worldwide. Interrogation of the central and peripheral mechanisms regulating ingestive behaviors have primarily focused on food intake, and in the process uncovered a detailed neuroanatomical framework controlling this behavior. However, these studies have largely ignored the behaviors that bring animals, including humans, in contact with food. It is therefore useful to dichotomize ingestive behaviors as appetitive (motivation to find and store food) and consummatory (consumption of food once found), and utilize an animal model that naturally displays these behaviors. Recent advances in genetics have facilitated the identification of several neuronal populations critical for regulating ingestive behaviors in mice, and novel functions of these neurons and neuropeptides in regulating appetitive behaviors in Siberian hamsters, a natural model of food foraging and food hoarding, have been identified. To this end, hypothalamic agouti-related protein/neuropeptide Y expressing neurons (AgRP neurons) have emerged as a critical regulator of ingestive behaviors. Recent studies by Dr. Timothy Bartness and others have identified several discrete mechanisms through which peripheral endocrine signals regulate AgRP neurons to control food foraging, food hoarding, and food intake. We review here recent advances in our understanding of the neuroendocrine control of ingestive behaviors in Siberian hamsters and other laboratory rodents, and identify novel mechanisms through which AgRP neurons mediate appetitive and consummatory behaviors.
Collapse
Affiliation(s)
- M Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
17
|
Abstract
Obesity, a major risk factor for the development of diabetes mellitus, cardiovascular diseases and certain types of cancer, arises from a chronic positive energy balance that is often due to unlimited access to food and an increasingly sedentary lifestyle on the background of a genetic and epigenetic vulnerability. Our understanding of the humoral and neuronal systems that mediate the control of energy homeostasis has improved dramatically in the past few decades. However, our ability to develop effective strategies to slow the current epidemic of obesity has been hampered, largely owing to the limited knowledge of the mechanisms underlying resistance to the action of metabolic hormones such as leptin and ghrelin. The development of resistance to leptin and ghrelin, hormones that are crucial for the neuroendocrine control of energy homeostasis, is a hallmark of obesity. Intensive research over the past several years has yielded tremendous progress in our understanding of the cellular pathways that disrupt the action of leptin and ghrelin. In this Review, we discuss the molecular mechanisms underpinning resistance to leptin and ghrelin and how they can be exploited as targets for pharmacological management of obesity.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
18
|
Ghrelin's control of food reward and body weight in the lateral hypothalamic area is sexually dimorphic. Physiol Behav 2017; 176:40-49. [PMID: 28213203 DOI: 10.1016/j.physbeh.2017.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 12/18/2022]
Abstract
Ghrelin is a stomach-produced hormone that stimulates ingestive behavior and increases motivated behavior to obtain palatable foods. Ghrelin receptors (growth hormone secretagogue receptors; Ghsr) are expressed in the lateral hypothalamic area (LHA), and LHA-targeted ghrelin application increases ingestive behavior in male rodents. However, the effects of LHA ghrelin signaling in females are unexplored. Here we investigated whether LHA ghrelin signaling is necessary and sufficient for control of ingestive and motivated behavior for food in male and female rats. Ghrelin delivered to the LHA increased food intake and motivated behavior for sucrose in both male and female rats, whereas increased food-seeking behavior and body weight were only observed in females. Females had slightly higher Ghsr levels in the LHA compared to males, and importantly, acute blockade of the Ghsr in the LHA significantly reduced food intake, body weight, and motivated behavior for sucrose in female but not male rats. Chronic LHA Ghsr reduction in female rats achieved by RNA inference-mediated Ghsr knockdown, resulting in a 25% reduction in LHA Ghsr mRNA, abolished the reward-driven behavioral effects of LHA-targeted ghrelin, but was not sufficient to affect baseline food intake or food reward responding. Collectively we show that ghrelin acts in the LHA to alter ingestive and motivated behaviors in a sex-specific manner.
Collapse
|
19
|
From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. Int J Mol Sci 2017; 18:ijms18020273. [PMID: 28134808 PMCID: PMC5343809 DOI: 10.3390/ijms18020273] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrally-mediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry.
Collapse
|
20
|
Murphy CF, le Roux CW. The Neurobiological Impact of Ghrelin Suppression after Oesophagectomy. Int J Mol Sci 2016; 18:ijms18010035. [PMID: 28035969 PMCID: PMC5297670 DOI: 10.3390/ijms18010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022] Open
Abstract
Ghrelin, discovered in 1999, is a 28-amino-acid hormone, best recognized as a stimulator of growth hormone secretion, but with pleiotropic functions in the area of energy homeostasis, such as appetite stimulation and energy expenditure regulation. As the intrinsic ligand of the growth hormone secretagogue receptor (GHS-R), ghrelin appears to have a broad array of effects, but its primary role is still an area of debate. Produced mainly from oxyntic glands in the stomach, but with a multitude of extra-metabolic roles, ghrelin is implicated in complex neurobiological processes. Comprehensive studies within the areas of obesity and metabolic surgery have clarified the mechanism of these operations. As a stimulator of growth hormone (GH), and an apparent inducer of positive energy balance, other areas of interest include its impact on carcinogenesis and tumour proliferation and its role in the cancer cachexia syndrome. This has led several authors to study the hormone in the cancer setting. Ghrelin levels are acutely reduced following an oesophagectomy, a primary treatment modality for oesophageal cancer. We sought to investigate the nature of this postoperative ghrelin suppression, and its neurobiological implications.
Collapse
Affiliation(s)
- Conor F Murphy
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin 4, Ireland.
- Gastrosurgical Laboratory, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
21
|
Brockway ET, Krater KR, Selva JA, Wauson SER, Currie PJ. Impact of [d-Lys(3)]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation. Peptides 2016; 79:95-102. [PMID: 27020248 DOI: 10.1016/j.peptides.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Ghrelin administration directly into hypothalamic nuclei, including the arcuate nucleus (ArcN) and the paraventricular nucleus (PVN), alters the expression of stress-related behaviors. In the present study we investigated the effect of feeding status on the ability of ghrelin to induce stress and anxiogenesis. Adult male Sprague Dawley rats were implanted with guide cannula targeting either the ArcN or PVN. In the first experiment we confirmed that ArcN and PVN ghrelin treatment produced anxiety-like behavior as measured using the elevated plus maze (EPM) paradigm. Ghrelin was administered during the early dark cycle. Immediately after microinjections rats were placed in the EPM for 5min. Both ArcN and PVN treatment reduced open arm exploration. The effect was attenuated by pretreatment with the ghrelin 1a receptor antagonist [d-Lys(3)]-GHRP-6. In a separate group of animals ghrelin was injected into either nucleus and rats were returned to their home cages for 60min with free access to food. An additional group of rats was returned to home cages with no food access. After 60min with or without food access all rats were tested in the EPM. Results indicated that food consumption just prior to EPM testing reversed the avoidance of the open arms of the EPM. In contrast, rats injected with ghrelin, placed in their home cage for 60min without food, and subsequently tested in the EPM, exhibited an increased avoidance of the open arms, consistent with stress activation. Overall, our findings demonstrate that ghrelin 1a receptor blockade and feeding status appear to impact the ability of ArcN and PVN ghrelin to elicit stress and anxiety-like behaviors.
Collapse
Affiliation(s)
- Emma T Brockway
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Katherine R Krater
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Joaquín A Selva
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Shelby E R Wauson
- Department of Psychology, Reed College, Portland, OR 97202, United States
| | - Paul J Currie
- Department of Psychology, Reed College, Portland, OR 97202, United States.
| |
Collapse
|
22
|
Wang Y, Chen F, Shi H, Jiang J, Li H, Qin B, Li Y. Extrinsic ghrelin in the paraventricular nucleus increases small intestinal motility in rats by activating central growth hormone secretagogue and enteric cholinergic receptors. Peptides 2015; 74:43-9. [PMID: 26431788 DOI: 10.1016/j.peptides.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES Ghrelin is a brain-gut peptide that regulates gastrointestinal (GI) motility. We hypothesized that the excitatory effect of ghrelin on the paraventricular nucleus (PVN) increases GI motility by activating the central growth hormone secretagogue receptor (GHSR) and central neuropeptide Y (NPY) signaling pathways, leading to increased enteric cholinergic activity. METHODS Thirty-six male Sprague Dawley rats were maintained on duodenal catheterization and PVN cannulation. Small intestinal transit (SIT) was observed and rats were divided as follows: experimental animals received ghrelin injections in the PVN (0.03, 0.08, or 0.24 nM); 1 nM GHSR antagonist D-Lys3-GHRP6 alone; 1nM D-Lys3-GHRP6 before ghrelin injection in the PVN, respectively. Electrophysiologic parameters of the interdigestive myoelectric complex (IMC) were examined by administration of 0.24 nM ghrelin in the PVN after small intestinal electrode implantation and PVN cannulation. GI cholinergic pathway activation was analyzed after intravenous atropine administration. The involvement of central NPY signaling was evaluated by injecting an anti-NPY immunoglobulin (IgG) in the PVN. Neuronal expression of c-Fos in the brain and GI tract was examined using immunohistochemistry. RESULTS Injection of ghrelin in the PVN dose-dependently accelerated SIT, and this excitatory effect was competitively inhibited by a GHSR antagonist. The excitatory effect of ghrelin on IMC activity was diminished by GHSR antagonism and NPY neutralization, as well as by blockade of peripheral muscarinic acetylcholine receptors. Extrinsic ghrelin significantly upregulated c-Fos expression in the PVN and other central nuclei, as well as in the enteric nervous plexuses of the stomach, duodenum, and proximal colon. The ghrelin-induced upregulation of central and enteric c-Fos expression was also dependent on central GHSR activation. CONCLUSIONS Ghrelin positively regulates GI motility by exciting both central and enteric neurons, including those of the PVN, by activating GHSR and NPY pathways, and peripheral muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China.
| | - Fenrong Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Haitao Shi
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Jiong Jiang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Hong Li
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Bin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Yong Li
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| |
Collapse
|
23
|
Intermittent Food Absence Motivates Reallocation of Locomotion and Feeding in Spotted Munia (Lonchura punctulata). J Circadian Rhythms 2015; 13:5. [PMID: 27103931 PMCID: PMC4831298 DOI: 10.5334/jcr.af] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Daily feeding and locomotion are interrelated behaviours. The time spent in feeding and rate of food intake depends on food availability. In low food condition, the birds would show intense movement (locomotion) for a longer time throughout the day however during abundant food supply they may chose higher activity and food intake in the morning and evening only. In the present study we hypothesized that in Spotted Munia (Lonchura punctulata), intermittent food availability during day would reallocate their interrelated behaviors, the feeding (food intake) and locomotor activity patterns. Methods: Two groups of birds (N = 6 each) were kept individually in activity cages under 12L:12D. Group 1 (Control; C) had ad libitum food but group 2 (Treatment; T) had food for 6 hours only (2 h presence followed by 2 h absence; 2P:2A) during 12 hour light period. In the first week, group 2 received food with ‘lights on’ (TI; ZT 0–2, 4–6 and 8–10; where ZT 0= zeitgeber time 0, time of lights ON). In the following week, the food was given 2 hours after ‘lights on’ (TII; ZT 2–4, 6–8, 10–12). The food intake and locomotor activity under each condition were observed. Results: The results showed that locomotor activity was induced during food deprivation and suppressed during food availability. Also the food deprivation led to increased food intake. Conclusion: Our results suggest that intermittent food availability/deprivation reallocates the locomotor activity and food intake in Spotted Munia.
Collapse
|
24
|
Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F, Casanueva FF, D'Alessio D, Depoortere I, Geliebter A, Ghigo E, Cole PA, Cowley M, Cummings DE, Dagher A, Diano S, Dickson SL, Diéguez C, Granata R, Grill HJ, Grove K, Habegger KM, Heppner K, Heiman ML, Holsen L, Holst B, Inui A, Jansson JO, Kirchner H, Korbonits M, Laferrère B, LeRoux CW, Lopez M, Morin S, Nakazato M, Nass R, Perez-Tilve D, Pfluger PT, Schwartz TW, Seeley RJ, Sleeman M, Sun Y, Sussel L, Tong J, Thorner MO, van der Lely AJ, van der Ploeg LHT, Zigman JM, Kojima M, Kangawa K, Smith RG, Horvath T, Tschöp MH. Ghrelin. Mol Metab 2015; 4:437-60. [PMID: 26042199 PMCID: PMC4443295 DOI: 10.1016/j.molmet.2015.03.005] [Citation(s) in RCA: 760] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - R Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - M L Andermann
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Z B Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - S D Anker
- Applied Cachexia Research, Department of Cardiology, Charité Universitätsmedizin Berlin, Germany
| | - J Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain ; Department of Pediatrics, Universidad Autónoma de Madrid and CIBER Fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - R L Batterham
- Centre for Obesity Research, University College London, London, United Kingdom
| | - S C Benoit
- Metabolic Disease Institute, Division of Endocrinology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - C Y Bowers
- Tulane University Health Sciences Center, Endocrinology and Metabolism Section, Peptide Research Section, New Orleans, LA, USA
| | - F Broglio
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - F F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (CHUS), CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - D D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - A Geliebter
- New York Obesity Nutrition Research Center, Department of Medicine, St Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Ghigo
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P A Cole
- Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - M Cowley
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia ; Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - D E Cummings
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - A Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S Diano
- Dept of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - S L Dickson
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - C Diéguez
- Department of Physiology, School of Medicine, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Spain
| | - R Granata
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - H J Grill
- Department of Psychology, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - K Grove
- Department of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K M Habegger
- Comprehensive Diabetes Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - K Heppner
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - M L Heiman
- NuMe Health, 1441 Canal Street, New Orleans, LA 70112, USA
| | - L Holsen
- Departments of Psychiatry and Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - B Holst
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - A Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J O Jansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - H Kirchner
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - B Laferrère
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - C W LeRoux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Ireland
| | - M Lopez
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - S Morin
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - M Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - R Nass
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - D Perez-Tilve
- Department of Internal Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - P T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - T W Schwartz
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - M Sleeman
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Y Sun
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - L Sussel
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - J Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - M O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - A J van der Lely
- Department of Medicine, Erasmus University MC, Rotterdam, The Netherlands
| | | | - J M Zigman
- Departments of Internal Medicine and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - K Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - R G Smith
- The Scripps Research Institute, Florida Department of Metabolism & Aging, Jupiter, FL, USA
| | - T Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany ; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
25
|
Cabral A, De Francesco PN, Perello M. Brain circuits mediating the orexigenic action of peripheral ghrelin: narrow gates for a vast kingdom. Front Endocrinol (Lausanne) 2015; 6:44. [PMID: 25870587 PMCID: PMC4378314 DOI: 10.3389/fendo.2015.00044] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/11/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
- Agustina Cabral
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Buenos Aires, Argentina
| | - Pablo N. De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Buenos Aires, Argentina
- *Correspondence: ;
| |
Collapse
|
26
|
Meyer RM, Burgos-Robles A, Liu E, Correia SS, Goosens KA. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear. Mol Psychiatry 2014; 19:1284-94. [PMID: 24126924 PMCID: PMC3988273 DOI: 10.1038/mp.2013.135] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 01/05/2023]
Abstract
Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is no clear relationship between the levels of these hormones and stress-associated mental illnesses such as posttraumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin-releasing factor (CRF) or corticosterone. Repeated intraamygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was enhanced by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear-enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin and growth hormone in maladaptive changes following prolonged stress.
Collapse
Affiliation(s)
- Retsina M. Meyer
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - Anthony Burgos-Robles
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - Elizabeth Liu
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - Susana S. Correia
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - Ki A. Goosens
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Abnormal relationships between the neural response to high- and low-calorie foods and endogenous acylated ghrelin in women with active and weight-recovered anorexia nervosa. Psychiatry Res 2014; 223:94-103. [PMID: 24862390 PMCID: PMC4090258 DOI: 10.1016/j.pscychresns.2014.04.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 03/03/2014] [Accepted: 04/29/2014] [Indexed: 11/20/2022]
Abstract
Evidence contributing to the understanding of neurobiological mechanisms underlying appetite dysregulation in anorexia nervosa draws heavily on separate lines of research into neuroendocrine and neural circuitry functioning. In particular, studies consistently cite elevated ghrelin and abnormal activation patterns in homeostatic (hypothalamus) and hedonic (striatum, amygdala, insula) regions governing appetite. The current preliminary study examined the interaction of these systems, based on research demonstrating associations between circulating ghrelin levels and activity in these regions in healthy individuals. In a cross-sectional design, we studied 13 women with active anorexia nervosa (AN), 9 women weight-recovered from AN (AN-WR), and 12 healthy-weight control women using a food cue functional magnetic resonance imaging paradigm, with assessment of fasting levels of acylated ghrelin. Healthy-weight control women exhibited significant positive associations between fasting acylated ghrelin and activity in the right amygdala, hippocampus, insula, and orbitofrontal cortex in response to high-calorie foods, associations which were absent in the AN and AN-WR groups. Women with AN-WR demonstrated a negative relationship between ghrelin and activity in the left hippocampus in response to high-calorie foods, while women with AN showed a positive association between ghrelin and activity in the right orbitofrontal cortex in response to low-calorie foods. Findings suggest a breakdown in the interaction between ghrelin signaling and neural activity in relation to reward responsivity in AN, a phenomenon that may be further characterized using pharmacogenetic studies.
Collapse
|
28
|
Cameron KO, Bhattacharya SK, Loomis AK. Small Molecule Ghrelin Receptor Inverse Agonists and Antagonists. J Med Chem 2014; 57:8671-91. [DOI: 10.1021/jm5003183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kimberly O. Cameron
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - Samit K. Bhattacharya
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - A. Katrina Loomis
- Pharmatherapeutics
Precision Medicine, Pfizer Worldwide Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
29
|
Butera PC, Clough SJ, Bungo A. Cyclic estradiol treatment modulates the orexigenic effects of ghrelin in ovariectomized rats. Pharmacol Biochem Behav 2014; 124:356-60. [PMID: 25025182 DOI: 10.1016/j.pbb.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/24/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
Abstract
Data from a wide variety of mammalian species indicate that feeding behavior can be influenced by changes in endogenous estrogens and exogenous estrogenic treatments. Ghrelin is an important physiological signal for the regulation of energy balance, and ghrelin treatment increases eating and body weight in male rodents. The following studies evaluated the hypothesis that the inhibitory effects of estradiol on feeding involve interactions with orexigenic peptides by examining the ability of estradiol to modulate the behavioral effects of ghrelin in female rats. In these experiments, adult rats were ovariectomized and assigned to an estradiol benzoate (EB) or an oil (control) group. Three weeks after ovariectomy, animals received two daily subcutaneous injections of EB or the oil vehicle. Animals then received intraperitoneal (ip) injections of ghrelin (6.0 or 12.0 nmol) or saline during the nocturnal and diurnal periods three days after the first injection of estradiol or oil. Food intake, meal size, and meal number were determined during the 2-hour period following ghrelin or saline treatments. Ghrelin significantly increased food intake during nocturnal tests in oil-treated but not estradiol-treated rats. The hyperphagic effects of ghrelin on nocturnal food intake were also accompanied by an increase in meal size, and this effect of ghrelin on meal size was attenuated in estradiol-treated females. These findings support the hypothesis that the effects of estradiol on feeding behavior involve an attenuation of orexigenic signals, possibly by modulating the effects of the peripheral ghrelin signal on hypothalamic neuropeptides involved in the control of food intake.
Collapse
|
30
|
Stevanovic D, Trajkovic V, Müller-Lühlhoff S, Brandt E, Abplanalp W, Bumke-Vogt C, Liehl B, Wiedmer P, Janjetovic K, Starcevic V, Pfeiffer AFH, Al-Hasani H, Tschöp MH, Castañeda TR. Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Mol Cell Endocrinol 2013; 381:280-90. [PMID: 23994018 DOI: 10.1016/j.mce.2013.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/25/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Signaling through the mammalian target of rapamycin complex 1 (mTORC1) and its effectors the S6-kinases (S6K) in the hypothalamus is thought to be involved in nutrient sensing and control of food intake. Given the anatomical proximity of this pathway to circuits for the hormone ghrelin, we investigated the potential role of the mTORC1/S6K pathway in mediating the metabolic effects of ghrelin. We found that ghrelin promoted phosphorylation of S6K1 in the mouse hypothalamic cell line N-41 and in the rat hypothalamus after intracerebroventricular administration. Rapamycin, an inhibitor of mTORC1, suppressed ghrelin-induced phosphorylation of hypothalamic S6K1 and increased food intake and insulin in rats. Chronic peripheral administration of ghrelin induced a significant increase in body weight, fat mass and food efficiency in wild-type and S6K2-knockout but not in S6K1-knockout mice. We therefore propose that ghrelin-induced hyperphagia, adiposity and insulin secretion are controlled by a central nervous system involving the mTORC1/S6K1 pathway.
Collapse
Affiliation(s)
- Darko Stevanovic
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam Rehbrücke, Germany; Institute of Physiology, School of Medicine, University of Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mason BL, Wang Q, Zigman JM. The central nervous system sites mediating the orexigenic actions of ghrelin. Annu Rev Physiol 2013; 76:519-33. [PMID: 24111557 DOI: 10.1146/annurev-physiol-021113-170310] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight.
Collapse
Affiliation(s)
- B L Mason
- Departments of Internal Medicine (Divisions of Hypothalamic Research and of Endocrinology & Metabolism) and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077; , ,
| | | | | |
Collapse
|
32
|
Lim CT, Kola B, Feltrin D, Perez-Tilve D, Tschöp MH, Grossman AB, Korbonits M. Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism. Mol Cell Endocrinol 2013; 365. [PMID: 23178796 PMCID: PMC3566541 DOI: 10.1016/j.mce.2012.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Ghrelin is a potent orexigenic brain-gut peptide with lipogenic and diabetogenic effects, possibly mediated by growth hormone secretagogue receptor (GHS-R1a). Cannabinoids also have orexigenic and lipogenic effects. AMPK is a regulator of energy homeostasis and we have previously shown that ghrelin and cannabinoids stimulate hypothalamic AMPK activity while inhibiting it in the liver and adipose tissue, suggesting that AMPK mediates both the central appetite-inducing and peripheral effects of ghrelin and cannabinoids. AIMS Using GHS-R KO mice, we investigated whether the known ghrelin receptor GHS-R1a is required for the tissue-specific effects of ghrelin on AMPK activity, and if an intact ghrelin signalling pathway is necessary for the effects of cannabinoids on AMPK activity. METHODS Wild-type and GHS-R KO mice were treated intraperitoneally with ghrelin 500 ng/g bodyweight or CB1 agonist HU210 20 ng/g and hypothalamic, hepatic and adipose AMPK activity was studied using a functional kinase assay. RESULTS Ghrelin and HU210 significantly stimulated hypothalamic AMPK activity in wild-type animals (mean±SEM, 122.5±5.2% and 128±11.6% of control, p<0.05) and inhibited it in liver (55.1±4.8% and 62.2±14.5%, p<0.01) and visceral fat (mesenteric fat (MF): 54.6±16% and 52.0±9.3%, p<0.05; epididymal fat (EF): 47.9±12.1% and 45.6±1.7%, p<0.05). The effects of ghrelin, and interestingly also HU210, on hypothalamic, visceral fat and liver AMPK activity were abolished in the GHS-R KO mice (hypothalamus: 107.9±7.7% and 87.4±13.3%, liver: 100.5±11.6% and 116.7±5.4%, MF: 132.1±29.9% and 107.1±32.7%, EF: 89.8±7.3% and 91.7±18.3%, p>0.05). CONCLUSIONS Ghrelin requires GHS-R1a for its effect on hypothalamic, liver and adipose tissue AMPK activity. An intact ghrelin signalling pathway is necessary for the effects of cannabinoids on AMPK activity.
Collapse
Affiliation(s)
- Chung Thong Lim
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
| | - Blerina Kola
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
| | - Daniel Feltrin
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
| | - Diego Perez-Tilve
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Matthias H. Tschöp
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
- Institute for Diabetes and Obesity, Helmholtz Centre Munich, Department of Medicine, Technische Universität München, Munich, Germany
| | - Ashley B. Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
- Corresponding author. Address: Endocrinology and Metabolism, Queen Mary University of London Barts and the London School of Medicine and Dentistry, Department of Endocrinology, Charterhouse Square, London EC1M 6BQ, UK. Tel.: +44 20 7882 6238; fax: +44 20 7882 6197.
| |
Collapse
|
33
|
Schaeffer M, Langlet F, Lafont C, Molino F, Hodson DJ, Roux T, Lamarque L, Verdié P, Bourrier E, Dehouck B, Banères JL, Martinez J, Méry PF, Marie J, Trinquet E, Fehrentz JA, Prévot V, Mollard P. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc Natl Acad Sci U S A 2013; 110:1512-7. [PMID: 23297228 PMCID: PMC3557016 DOI: 10.1073/pnas.1212137110] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To maintain homeostasis, hypothalamic neurons in the arcuate nucleus must dynamically sense and integrate a multitude of peripheral signals. Blood-borne molecules must therefore be able to circumvent the tightly sealed vasculature of the blood-brain barrier to rapidly access their target neurons. However, how information encoded by circulating appetite-modifying hormones is conveyed to central hypothalamic neurons remains largely unexplored. Using in vivo multiphoton microscopy together with fluorescently labeled ligands, we demonstrate that circulating ghrelin, a versatile regulator of energy expenditure and feeding behavior, rapidly binds neurons in the vicinity of fenestrated capillaries, and that the number of labeled cell bodies varies with feeding status. Thus, by virtue of its vascular connections, the hypothalamus is able to directly sense peripheral signals, modifying energy status accordingly.
Collapse
Affiliation(s)
- Marie Schaeffer
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| | - Fanny Langlet
- Institut National de la Santé et de la Recherche Médicale, Jean-Pierre Aubert Research Center, Unité 837, F-59000 Lille, France
- Faculté de Médecine, Université Droit et Santé de Lille, F-59000 Lille, France
| | - Chrystel Lafont
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| | - François Molino
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
- University Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5221, Laboratoire Charles Coulomb, F-34095 Montpellier, France
| | - David J. Hodson
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| | | | | | - Pascal Verdié
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5247, Institut des Biomolécules Max Mousseron, Faculty of Pharmacy, Universities of Montpellier 1 and 2, F-34093 Montpellier Cedex 5, France; and
| | | | - Bénédicte Dehouck
- Institut National de la Santé et de la Recherche Médicale, Jean-Pierre Aubert Research Center, Unité 837, F-59000 Lille, France
- Faculté de Médecine, Université Droit et Santé de Lille, F-59000 Lille, France
- Université d’Artois, F-62800 Liévin, France
| | - Jean-Louis Banères
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5247, Institut des Biomolécules Max Mousseron, Faculty of Pharmacy, Universities of Montpellier 1 and 2, F-34093 Montpellier Cedex 5, France; and
| | - Jean Martinez
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5247, Institut des Biomolécules Max Mousseron, Faculty of Pharmacy, Universities of Montpellier 1 and 2, F-34093 Montpellier Cedex 5, France; and
| | - Pierre-François Méry
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| | | | | | - Jean-Alain Fehrentz
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5247, Institut des Biomolécules Max Mousseron, Faculty of Pharmacy, Universities of Montpellier 1 and 2, F-34093 Montpellier Cedex 5, France; and
| | - Vincent Prévot
- Institut National de la Santé et de la Recherche Médicale, Jean-Pierre Aubert Research Center, Unité 837, F-59000 Lille, France
- Faculté de Médecine, Université Droit et Santé de Lille, F-59000 Lille, France
| | - Patrice Mollard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| |
Collapse
|
34
|
Abstract
Ghrelin was discovered in 1999 as growth hormone secretagouge released from the gut. Soon after it was recognized that ghrelin is a fundamental driver of appetite in rodents and humans and that its mode of action requires alteration of hypothalamic circuit function. Here we review aspects of ghrelin's action that revolve around the central nervous system with the goal to highlight these pathways in integrative physiology of metabolism regulation including ghrelin's cross-talk with the action of the adipose hormone, leptin.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Neuroscience, Carlton University, Ottawa, ON, Canada
| | - Tamas L. Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Alvarez-Crespo M, Skibicka KP, Farkas I, Molnár CS, Egecioglu E, Hrabovszky E, Liposits Z, Dickson SL. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence. PLoS One 2012; 7:e46321. [PMID: 23071554 PMCID: PMC3468604 DOI: 10.1371/journal.pone.0046321] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R) are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL) and ventromedial (LaVM) parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field), intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like) behaviors if food is not available.
Collapse
Affiliation(s)
- Mayte Alvarez-Crespo
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karolina P. Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csilla S. Molnár
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Emil Egecioglu
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Suzanne L. Dickson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Tung S, Hardy AB, Wheeler MB, Belsham DD. Serotonin (5-HT) activation of immortalized hypothalamic neuronal cells through the 5-HT1B serotonin receptor. Endocrinology 2012; 153:4862-73. [PMID: 22919062 DOI: 10.1210/en.2012-1538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Serotonin [or 5-hydroxytryptamine or (5-HT)] has been implicated as a key modulator in energy homeostasis and a primary focus in the treatment of obesity. There is growing evidence that 5-HT, acting through the 5-HT 1B receptor (5-HT(1B)R) in the paraventricular nucleus of the hypothalamus (PVN), is important to this regulation. However, there is some contention as to whether 5-HT(1B)R action occurs directly on PVN neurons or indirectly via inhibitory inputs into the PVN. To address these questions, we used a novel clonal, hypothalamic neuronal cell model, adult mouse hypothalamic-2/30 (mHypoA-2/30), expressing a PVN-specific marker, single-minded homolog 1, as well as a complement of PVN neuropeptides, including TRH, vasopressin, ghrelin, nucleobindin-2, and galanin. Adult mouse hypothalamic-2/30 neurons were also found to express the 5-HT(1B)R and 5-HT 6 receptor, but not 2C, all previously linked to feeding regulation. Direct serotonergic stimulation (100 nm to 10 μm) of these neurons resulted in dose-dependent cFos activation. 5-HT (10 μm) suppressed forskolin-induced cAMP levels and induced a rise in intracellular Ca(2+) through ER Ca(2+) release, effects that were mimicked by the 5-HT(1B)R agonists, CGS12066B and CP93129, and that were attenuated in the presence of the 5-HT(1B)R-specific inhibitors, GR55562 and isamoltane hemifumarate. Modest transcriptional changes in ghrelin and nucleobindin-2 were also observed in response to 100 nm and 10 μm 5-HT, respectively. These findings support the model wherein 5-HT action through the 1B receptor subtype occurs directly on PVN neurons, leading to potential modification of neuronal transcriptional and secretory machinery.
Collapse
Affiliation(s)
- Stephanie Tung
- Departments of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
37
|
Scott MM, Perello M, Chuang JC, Sakata I, Gautron L, Lee CE, Lauzon D, Elmquist JK, Zigman JM. Hindbrain ghrelin receptor signaling is sufficient to maintain fasting glucose. PLoS One 2012; 7:e44089. [PMID: 22952883 PMCID: PMC3432098 DOI: 10.1371/journal.pone.0044089] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022] Open
Abstract
The neuronal coordination of metabolic homeostasis requires the integration of hormonal signals with multiple interrelated central neuronal circuits to produce appropriate levels of food intake, energy expenditure and fuel availability. Ghrelin, a peripherally produced peptide hormone, circulates at high concentrations during nutrient scarcity. Ghrelin promotes food intake, an action lost in ghrelin receptor null mice and also helps maintain fasting blood glucose levels, ensuring an adequate supply of nutrients to the central nervous system. To better understand mechanisms of ghrelin action, we have examined the roles of ghrelin receptor (GHSR) expression in the mouse hindbrain. Notably, selective hindbrain ghrelin receptor expression was not sufficient to restore ghrelin-stimulated food intake. In contrast, the lowered fasting blood glucose levels observed in ghrelin receptor-deficient mice were returned to wild-type levels by selective re-expression of the ghrelin receptor in the hindbrain. Our results demonstrate the distributed nature of the neurons mediating ghrelin action.
Collapse
Affiliation(s)
- Michael M. Scott
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mario Perello
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jen-Chieh Chuang
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Ichiro Sakata
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Charlotte E. Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Danielle Lauzon
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Joel K. Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Psychiatry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail: (JKE); (JMZ)
| | - Jeffrey M. Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Psychiatry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail: (JKE); (JMZ)
| |
Collapse
|
38
|
Fu RG, Wang L, Yao GL, Xue RL, Ge H, Ren ST, Ma LQ, Jiang HL, Liu X. Chronic Renal Failure Impacts the Expression of Ghrelin and Its Receptor in Hypothalamus and Hippocampus. Ren Fail 2012; 34:1027-32. [DOI: 10.3109/0886022x.2012.708379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Attenuating the effect of Ghrelin on memory storage via bilateral reversible inactivation of the basolateral amygdale. Behav Brain Res 2012; 232:391-4. [DOI: 10.1016/j.bbr.2012.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 11/23/2022]
|
40
|
Cabral A, Suescun O, Zigman JM, Perello M. Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS One 2012; 7:e31462. [PMID: 22363652 PMCID: PMC3282735 DOI: 10.1371/journal.pone.0031462] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/08/2012] [Indexed: 01/30/2023] Open
Abstract
Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos – a marker of cellular activation – in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Olga Suescun
- Laboratory of Reproductive Endocrinology, Multidisciplinary Institute of Cell Biology, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Jeffrey M. Zigman
- Divisions of Hypothalamic Research and Endocrinology and Metabolism, Department of Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
41
|
Currie PJ, Khelemsky R, Rigsbee EM, Dono LM, Coiro CD, Chapman CD, Hinchcliff K. Ghrelin is an orexigenic peptide and elicits anxiety-like behaviors following administration into discrete regions of the hypothalamus. Behav Brain Res 2012; 226:96-105. [PMID: 21907737 PMCID: PMC4104180 DOI: 10.1016/j.bbr.2011.08.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/04/2011] [Accepted: 08/25/2011] [Indexed: 12/11/2022]
Abstract
Previous evidence indicates that peripherally administered ghrelin significantly increases corticotropin releasing hormone (CRH) mRNA and serum corticosterone. In addition, intraventricular administration of ghrelin has been reported to elicit anxiety-like behaviors suggesting that the peptide plays a role in mediating neuroendocrine and behavioral responses to stress. In the present study, we characterized the orexigenic, metabolic, and anxiogenic actions of ghrelin following microinjection into the arcuate nucleus (ARN), paraventricular nucleus (PVN), perifornical hypothalamus (PFH), and ventromedial nucleus (VMN). To assess ghrelin's role in anxiogenic behavior, rats were injected with vehicle or 50-800pmol of ghrelin and then placed in an elevated plus maze (EPM) for 10min. Each test was performed as a single trial per animal. In separate behavioral testing we measured the induction of stereotypic behaviors. Doses of 200pmol or higher administered into the ARN and PVN elicited anxiety-like behaviors, including an increased avoidance of the open arms of the EPM. However, in the PFH and VMN, higher doses of ghrelin (400-800pmol) were required to induce anxiety. Ghrelin doses as low as 50pmol stimulated eating and altered energy substrate oxidation (respiratory quotient; RQ) when injected into the ARN and PVN. Injections into the PFH and VMN elicited more modest effects on eating and RQ at doses of 400pmol or greater. Our findings indicate that regions of the hypothalamus appear to be differentially sensitive and responsive to the feeding-stimulant, metabolic, and anxiogenic actions of ghrelin and that the ARN and PVN, in particular, exert a primary role in mediating these effects.
Collapse
Affiliation(s)
- Paul J. Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Renata Khelemsky
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Elizabeth M. Rigsbee
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Lindsey M. Dono
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Christina D. Coiro
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Colin D. Chapman
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| | - Kate Hinchcliff
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202
| |
Collapse
|
42
|
Kirsz K, Zieba DA. Ghrelin-mediated appetite regulation in the central nervous system. Peptides 2011; 32:2256-64. [PMID: 21524673 DOI: 10.1016/j.peptides.2011.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/28/2022]
Abstract
The gut hormone and neuropeptide ghrelin was initially identified in the periphery as a compound released in the bloodstream in response to a negative energetic status. In the central nervous system (CNS), ghrelin mainly acts on the hypothalamus and the limbic system, with its best-known biological role being the regulation of appetitive functions. Recent research has shown that ghrelin is not an indispensable factor in the regulation of food intake. However, it plays a key role in the metabolic changes of lipids, mainly those involving hypothalamic NOS, AMPK, CaMKK2, CPT1 and UCP2 proteins. Ghrelin participates in the regulation of memory processes and the feeling of pleasure resulting from eating, both of which are metabolism-dependent and may be essential for the successful achievement of adaptive appetitive behavior. Ghrelin exerts its biological effect through a complicated network of neuroendocrine links, including the melanocortin and endocannabinoid systems. The activity of ghrelin is connected with circadian and annual fluctuations, which depend on seasons and food availability.
Collapse
Affiliation(s)
- Katarzyna Kirsz
- Department of Swine and Small Ruminant Breeding, Laboratory of Genomics and Biotechnology, University of Agriculture, Krakow 30-059, Poland
| | | |
Collapse
|
43
|
Jacoby SM, Currie PJ. SKF 83566 attenuates the effects of ghrelin on performance in the object location memory task. Neurosci Lett 2011; 504:316-20. [PMID: 21982806 DOI: 10.1016/j.neulet.2011.09.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/28/2011] [Accepted: 09/23/2011] [Indexed: 01/08/2023]
Abstract
Increasing research implicates ghrelin, a metabolic signaling peptide, in memory processes including acquisition, consolidation, and retention. The present study investigated the effects of ghrelin on spatial memory acquisition by utilizing the object location memory task paradigm. Given the co-expression of ghrelin and dopamine D(1) receptors within hippocampal neurons, we examined a potential interaction between these two systems on memory performance. When injected into the dorsal third ventricle (D3V) of male Sprague-Dawley rats, proximal to hippocampal tissue, ghrelin (500 pmol) increased the amount of time spent with objects in novel locations. This effect was completely reversed by the D(1) antagonist SKF 83566 (100 μg/kg IP), although when administered alone, the antagonist had no effect on task performance (10-100 μg/kg). We also examined the feeding effects of D3V ghrelin and found that the peptide reliably increased food intake (500 pmol) but that this effect was not blocked by SKF 83566 (100 μg/kg). When given alone, SKF 83566 did not alter food intake (10-100 μg/kg). Our findings indicate that, in addition to an orexigenic effect, ghrelin improves acquisition of spatial location memories. Furthermore, D(1) receptor activation is necessary for ghrelin to improve the encoding of spatial memories but does not impact the increase in food intake elicited by the peptide.
Collapse
Affiliation(s)
- Sarah M Jacoby
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | | |
Collapse
|
44
|
Mercer RE, Chee MJS, Colmers WF. The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 2011; 32:398-415. [PMID: 21726573 DOI: 10.1016/j.yfrne.2011.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action.
Collapse
Affiliation(s)
- Rebecca E Mercer
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
45
|
Shan X, Yeo GSH. Central leptin and ghrelin signalling: comparing and contrasting their mechanisms of action in the brain. Rev Endocr Metab Disord 2011; 12:197-209. [PMID: 21331644 DOI: 10.1007/s11154-011-9171-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past two decades, two major discoveries have greatly contributed to our current knowledge on the central control of food intake and body-weight; the discovery of the anorexigenic adipocyte derived hormone leptin in 1994 and the orexigenic gut derived hormone ghrelin in 1999. Both hormones act as crucial signals to indicate nutritional status as well as to modulate feeding behaviour through a variety of distinct pathways. They target overlapping CNS regions in order to mediate their obvious opposing effects on energy balance. Here we depict the integral picture of leptin and ghrelin on central regulation of food intake by reviewing their actions across the CNS, in regions of the hypothalamus, brainstem, mesolimbic reward pathway and other higher brain areas.
Collapse
Affiliation(s)
- Xiaoye Shan
- University of Cambridge Metabolic Research Labs, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
46
|
Abstract
Ghrelin is a brain-gut peptide that was discovered through reverse pharmacology and was first isolated from extracts of porcine stomach. Ghrelin binds to growth hormone secretagogue receptor (GHS-R) and is acylated on its serine 3 residue by ghrelin O-acyltransferase (GOAT). Several important biological functions of ghrelin have been identified, which include its growth hormone-releasing and appetite-inducing effects. Ghrelin exerts its central orexigenic effect mainly by acting on the hypothalamic arcuate nucleus via the activation of the GHS-R. Peripherally ghrelin has multiple metabolic effects which include promoting gluconeogenesis and fat deposition. These effects together with the increased food intake lead to an overall body weight gain. AMP-activated protein kinase, which is a key enzyme in energy homeostasis, has been shown to mediate the central and peripheral metabolic effects of ghrelin. The hypothalamic fatty acid pathway, hypothalamic mitochondrial respiration and uncoupling protein 2 have all been shown to act as the downstream targets of AMPK in mediating the orexigenic effects of ghrelin. Abnormal levels of ghrelin are associated with several metabolic conditions such as obesity, type 2 diabetes, Prader-Willi syndrome and anorexia nervosa. The ghrelin/GOAT/GHS-R system is now recognised as a potential target for the development of anti-obesity treatment.
Collapse
Affiliation(s)
- Chung Thong Lim
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, UK.
| | | | | |
Collapse
|
47
|
Pirnik Z, Bundziková J, Holubová M, Pýchová M, Fehrentz JA, Martinez J, Zelezná B, Maletínská L, Kiss A. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice. Neurochem Int 2011; 59:889-95. [PMID: 21843570 DOI: 10.1016/j.neuint.2011.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/18/2022]
Abstract
Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in trials for clinical purposes.
Collapse
Affiliation(s)
- Z Pirnik
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska Str. 3, 83306 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dickson SL, Egecioglu E, Landgren S, Skibicka KP, Engel JA, Jerlhag E. The role of the central ghrelin system in reward from food and chemical drugs. Mol Cell Endocrinol 2011; 340:80-7. [PMID: 21354264 DOI: 10.1016/j.mce.2011.02.017] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Here we review recent advances that identify a role for the central ghrelin signalling system in reward from both natural rewards (such as food) and artificial rewards (that include alcohol and drugs of abuse). Whereas ghrelin emerged as a stomach-derived hormone involved in energy balance, hunger and meal initiation via hypothalamic circuits, it now seems clear that it also has a role in motivated reward-driven behaviours via activation of the so-called "cholinergic-dopaminergic reward link". This reward link comprises a dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens together with a cholinergic input, arising primarily from the laterodorsal tegmental area. Ghrelin administration into the VTA or LDTg activates the "cholinergic-dopaminergic" reward link, suggesting that ghrelin may increase the incentive value of motivated behaviours such as reward-seeking behaviour ("wanting" or "incentive motivation"). Further, direct injection of ghrelin into the brain ventricles or into the VTA increases the consumption of rewarding foods as well as alcohol in mice and rats. Studies in rodents show beneficial effects of ghrelin receptor (GHS-R1A) antagonists to suppress the intake of palatable food, to reduce preference for caloric foods, to suppress food reward and motivated behaviour for food. They have also been shown to reduce alcohol consumption, suppress reward induced by alcohol, cocaine and amphetamine. Furthermore, variations in the GHS-R1A and pro-ghrelin genes have been associated with high alcohol consumption, smoking and increased weight gain in alcohol dependent individuals as well as with bulimia nervosa and obesity. Thus, the central ghrelin signalling system interfaces neurobiological circuits involved in reward from food as well as chemical drugs; agents that directly or indirectly suppress this system emerge as potential candidate drugs for suppressing problematic over-eating that leads to obesity as well as for the treatment of substance use disorder.
Collapse
Affiliation(s)
- Suzanne L Dickson
- Department of Physiology, University of Gothenburg, Gothenburg Sweden.
| | | | | | | | | | | |
Collapse
|
49
|
Lim CT, Kola B, Korbonits M, Grossman AB. Ghrelin's role as a major regulator of appetite and its other functions in neuroendocrinology. PROGRESS IN BRAIN RESEARCH 2010; 182:189-205. [PMID: 20541666 DOI: 10.1016/s0079-6123(10)82008-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ghrelin is a circulating growth-hormone-releasing and appetite-inducing brain-gut peptide. It is a known natural ligand of the growth hormone secretagogue receptor (GHS-R). Ghrelin is acylated on its serine 3 residue by ghrelin O-acyltransferase (GOAT). The acylation is essential for its orexigenic and adipogenic effects. Ghrelin exerts its central orexigenic effect through activation of various hypothalamic and brain stem neurons. Several new intracellular targets/mediators of the appetite-inducing effect of ghrelin in the hypothalamus have recently been identified, including the AMP-activated protein kinase, its upstream kinase calmodulin kinase kinase 2, components of the fatty acid pathway and the uncoupling protein 2. The ghrelin/GOAT/GHS-R system is now recognised as a potential target for the development of anti-obesity treatment. Ghrelin regulates the function of the anterior pituitary through stimulation of secretion not only of growth hormone, but also of adrenocorticotrophin and prolactin. The implication of ghrelin and its receptor in the pathogenesis of the neuroendocrine tumors will also be discussed in this review.
Collapse
Affiliation(s)
- Chung Thong Lim
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
50
|
Emanuel AJ, Ritter S. Hindbrain catecholamine neurons modulate the growth hormone but not the feeding response to ghrelin. Endocrinology 2010; 151:3237-46. [PMID: 20463049 PMCID: PMC2903929 DOI: 10.1210/en.2010-0219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gastrointestinal peptide, ghrelin, elicits feeding and secretion when administered systemically or centrally. Previous studies have suggested that hypothalamic projections of hindbrain catecholamine neurons are involved in both of these actions of ghrelin. The purpose of this study was to further assess the role of hindbrain catecholamine neurons in ghrelin-induced feeding and GH secretion and to determine the anatomical distribution of the catecholamine neurons involved. We lesioned noradrenergic and adrenergic neurons that innervate the medial hypothalamus by microinjecting the retrogradely transported immunotoxin, saporin (SAP) conjugated to antidopamine-beta-hydroxylase (DSAP) into the paraventricular nucleus of the hypothalamus. Controls were injected with unconjugated SAP. We found that the DSAP lesion did not impair the feeding response to central or peripheral ghrelin administration, indicating that these neurons are not required for ghrelin's orexigenic effect. However, the GH response to ghrelin was prolonged significantly in DSAP-lesioned rats. We also found that expression of Fos, an indicator of neuronal activation, was significantly enhanced over baseline levels in A1, A1/C1, C1, and A5 cell groups after ghrelin treatment and in A1, A1/C1, and A5 cell groups after GH treatment. The similar pattern of Fos expression in catecholamine cell groups after GH and ghrelin and the prolonged GH secretion in response to ghrelin in DSAP rats together suggest that activation of hindbrain catecholamine neurons by ghrelin or GH could be a component of a negative feedback response controlling GH levels.
Collapse
Affiliation(s)
- Alan J Emanuel
- Programs in Neuroscience, Washington State University, Pullman, WA 99164-6520, USA
| | | |
Collapse
|