1
|
Motamedi H, Shoja S, Abbasi M. Immunoinformatic evaluation for the development of a potent multi-epitope vaccine against bacterial vaginosis caused by Gardnerella vaginalis. PLoS One 2025; 20:e0316699. [PMID: 40014550 DOI: 10.1371/journal.pone.0316699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Bacterial vaginosis (BV) is the most common vaginal dysbiosis in fertile women, which is associated with side effects including the risk of premature birth. Gardnerella vaginalis (G. vaginalis) is a facultative anaerobic bacillus known as the main pathogen responsible for BV. In this study, using bioinformatics and immunoinformatics methods, a multi-epitope vaccine with optimal population coverage against BV caused by G. vaginalis was designed. METHODS Amino acid sequences of two important virulence factors (Vaginolysin and Sialidase) of G. vaginalis were retrieved from NCBI and UniProt databases. At first, three online servers ABCpred, BCPREDS and LBtope were used to predict linear B-cell epitopes (BCEs) and IEDB server was used for T cells. Then the antigenicity, toxicity, allergenicity were evaluated using bioinformatics tools. After modeling the three-dimensional (3D) structure of the vaccine by Robetta Server, molecular docking and molecular dynamics were performed. Finally, immune simulation and in silico cloning were considered effective for the design of vaccine production strategy. RESULTS In total, six epitopes of BCEs, eight epitopes from CD4+ and seven epitopes from CD8+ were selected. The designed multi-epitope vaccine was non-allergenic and non-toxic and showed high levels of antigenicity and immunogenicity. After the 3D structure was predicted, it was refined and validated, which resulted in an optimized model with a Z-score of -7.4. Molecular docking and molecular dynamics simulation of the designed vaccine revealed stable and strong binding interactions. Finally, the results of vaccine immunity simulation showed a significant increase in immunoglobulins, higher levels of IFN-γ and IL-2. CONCLUSION According to the findings, the candidate multi-epitope vaccine has stable structural features. It also has the potential to stimulate long-term immunity in the host, but wet-lab validation is needed to justify it.
Collapse
Affiliation(s)
| | - Saeed Shoja
- Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Abbasi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
Nguyen TL, Nguyen TB, Kim H. Computational identification of B and T-cell epitopes for designing a multi-epitope vaccine against SARS-CoV-2 spike glycoprotein. J Struct Biol 2025; 217:108177. [PMID: 39947305 DOI: 10.1016/j.jsb.2025.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
Although the peak of the COVID-19 pandemic has passed, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global threat and remains a public health concern. Given the ongoing risk and the substantial loss of life caused by the virus, continuous research into vaccine development is essential. This study employs immunoinformatics approaches to identify T-cell and B-cell epitopes for designing a multi-epitope peptide vaccine candidate targeting the Omicron variant. The proposed vaccine construct comprises 1435 amino acids, including eight linear B lymphocyte, seven cytotoxic T lymphocyte, and five helper T lymphocyte epitopes, along with appropriate adjuvants and linkers. The evaluation of the vaccine revealed high antigenicity, non-allergenicity, non-toxicity, and favorable physicochemical properties. To further assess its efficacy, molecular docking studies were performed to investigate interactions between the vaccine and key immune components, including Toll-like receptors and major histocompatibility complex molecules. Stability of these interactions was confirmed using molecular dynamics simulations in triplicate, conducted over 100 ns using GROMACS 2023 to compute key metrics, such as root mean square deviation, root mean square fluctuation, solvent-accessible surface area, and radius of gyration. The results demonstrate that the multi-epitope vaccine has the potential to elicit strong immune responses against the Omicron variant, providing a promising foundation for further experimental validation and clinical development in COVID-19 vaccine research.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Thong Ba Nguyen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Slepenkin A, Pal S, Rasley A, Coleman MA, de la Maza LM. Safety and efficacy of C. muridarum vaccines adjuvanted with CpG-1826 and four concentrations of Montanide-ISA-720-VG. NPJ Vaccines 2024; 9:104. [PMID: 38858418 PMCID: PMC11164897 DOI: 10.1038/s41541-024-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/19/2024] [Indexed: 06/12/2024] Open
Abstract
It is recommended that the adjuvant Montanide ISA 720 VG be used at a concentration of 70% v/v. At this concentration, Montanide causes at the site of immunization a local granuloma that can last for several weeks. To determine the safety and protective efficacy of a Chlamydia muridarum MOMP vaccine, formulated with CpG-1826 and four different concentrations of Montanide (70%, 50%, 30% and 10%), BALB/c (H-2d) female mice were immunized twice intramuscularly. Local reactogenicity was significant for vaccines formulated with 70% or 50% Montanide but not for those inoculated with 30% or 10% Montanide. Robust humoral and cell mediated memory immune responses were elicited by the 70%, 50% and 30% Montanide formulations. Mice were challenged intranasally with 104 C. muridarum inclusion forming units (IFU). Based on changes in body weight, lungs's weight and number of IFU recovered, mice vaccinated with the 70%, 50% and 30% Montanide formulations were significantly protected, but not mice receiving 10% Montanide. To conclude, we recommend the 30% Montanide concentration to be tested in humans and animal models to determine its safety and efficacy, in comparison to the 70% Montanide concentration currently used. The 30% Montanide formulation could significantly facilitate licensing of this adjuvant for human use.
Collapse
Affiliation(s)
- Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550-9234, USA
| | - Matthew A Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550-9234, USA
- University of California Davis, School of Medicine, Department of Radiation Oncology, Sacramento, CA, 95616, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA.
| |
Collapse
|
4
|
da Silva MK, Campos DMDO, Akash S, Akter S, Yee LC, Fulco UL, Oliveira JIN. Advances of Reverse Vaccinology for mRNA Vaccine Design against SARS-CoV-2: A Review of Methods and Tools. Viruses 2023; 15:2130. [PMID: 37896907 PMCID: PMC10611333 DOI: 10.3390/v15102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA vaccines are a new class of vaccine that can induce potent and specific immune responses against various pathogens. However, the design of mRNA vaccines requires the identification and optimization of suitable antigens, which can be challenging and time consuming. Reverse vaccinology is a computational approach that can accelerate the discovery and development of mRNA vaccines by using genomic and proteomic data of the target pathogen. In this article, we review the advances of reverse vaccinology for mRNA vaccine design against SARS-CoV-2, the causative agent of COVID-19. We describe the steps of reverse vaccinology and compare the in silico tools used by different studies to design mRNA vaccines against SARS-CoV-2. We also discuss the challenges and limitations of reverse vaccinology and suggest future directions for its improvement. We conclude that reverse vaccinology is a promising and powerful approach to designing mRNA vaccines against SARS-CoV-2 and other emerging pathogens.
Collapse
Affiliation(s)
- Maria Karolaynne da Silva
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil (D.M.d.O.C.)
| | - Daniel Melo de Oliveira Campos
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil (D.M.d.O.C.)
| | - Shopnil Akash
- Department of Pharmacy, Daffodil International University, Sukrabad, Dhaka 1207, Bangladesh;
| | - Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka 1205, Bangladesh;
| | - Leow Chiuan Yee
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kota Bharu 11800, Kelantan, Malaysia;
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil (D.M.d.O.C.)
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil (D.M.d.O.C.)
| |
Collapse
|
5
|
Khan S, Aziz S, Waqas M, Kakar MA, Ahmad S. Targeted vaccine development against Bilophila wadsworthia to curb colon diseases: A multiepitope approach based on reverse vaccinology and computational analysis. Int J Biol Macromol 2023; 250:126002. [PMID: 37506789 DOI: 10.1016/j.ijbiomac.2023.126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The presence of excessive hydrogen sulfide (H2S)-producing bacteria, particularly Bilophila wadsworthia in appendices, is linked to a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Thus, targeting this bacterium could reduce sulfide levels and address associated health concerns. Here, we utilized reverse vaccinology and immunoinformatics to design a chimeric vaccine against B. wadsworthia, focusing on membrane-bound and extracellular proteins. Subtractive proteome analysis identified 18 potential vaccine candidates (PVCs), from which six B-cell, eight CD8+ T cell, and six CD4+ T cell epitopes were predicted. Chosen epitopes were assessed for immunological properties and cross-reactivity with human and mouse proteomes. Subsequently, these epitopes were fused with appropriate linkers, PADRE epitope, TAT peptide, and Cholera Toxin B subunit adjuvant to form a robust multi-epitope vaccine (MEV). The MEV's tertiary structure was modelled and validated for reliable analysis. Molecular docking and dynamics simulations demonstrated stable binding of MEV with Toll-like receptor 4. The MEV showed favorable physicochemical characteristics, high expression potential in Escherichia coli, broad population coverage (∼98 %), and cross-protection against different B. wadsworthia strains. Immune simulation suggested induction of strong B and T cell responses, including primary, secondary, and tertiary immune responses. Further experimental studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Sara Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology and genetic Engineering, Hazara University, Mansehra 21120, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Oman
| | | | - Sohail Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan.
| |
Collapse
|
6
|
Mohammadzadeh Hosseini Moghri SAH, Ranjbar M, Hassannia H, Khakdan F. In silico analysis of the conserved surface-exposed epitopes to design novel multiepitope peptide vaccine for all variants of the SARS-CoV-2. J Biomol Struct Dyn 2023; 41:7603-7615. [PMID: 36124826 DOI: 10.1080/07391102.2022.2123395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Recently the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pervasive threat to generic health. The SARS-CoV-2 spike (S) glycoprotein plays a fundamental role in binds and fusion to the angiotensin-converting enzyme 2 (ACE2). The multi-epitope peptide vaccines would be able to elicit both long-lasting humoral and cellular immune responses, resulting the eliminating SARS-CoV-2 infections as asymptomatic patients are in large numbers. Recently, the omicron variant of the SARS-CoV-2 became a variant of concern that contained just 15-point mutations in the receptor-binding domain of the spike protein. In order to eliminate new evidence on coronavirus variants of concern detected through epidemic intelligence, the conserved epitopes of the receptor-binding domain (RBD) and spike cleavage site is the most probable target for vaccine development to inducing binds and fusion inhibitors neutralizing antibodies respectively. In this study, we utilized bioinformatics tools for identifying and analyzing the spike (S) glycoprotein sequence, e.g. the prediction of the potential linear B-cell epitopes, B-cell multi‑epitope design, secondary and tertiary structures, physicochemical properties, solubility, antigenicity, allergenicity, the molecular docking and molecular dynamics simulation for the promising vaccine candidate against all variant of concern of SARS-CoV-2. Among the epitopes of the RBD region are surface-exposed epitopes SVYAWNRKRISNCV and ATRFASVYAWNRKR as the conserved sequences in all variants of concern can be a good candidate to induce an immune response.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Mojtaba Ranjbar
- Microbial Biotechnology Department, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Islamic Republic of Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
7
|
Pal S, Slepenkin A, Felgner J, Huw Davies D, Felgner P, de la Maza LM. Evaluation of Four Adjuvant Combinations, IVAX-1, IVAX-2, CpG-1826+Montanide ISA 720 VG and CpG-1018+Montanide ISA 720 VG, for Safety and for Their Ability to Elicit Protective Immune Responses in Mice against a Respiratory Challenge with Chlamydia muridarum. Pathogens 2023; 12:863. [PMID: 37513710 PMCID: PMC10383793 DOI: 10.3390/pathogens12070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
There is an urgent need to produce a vaccine for Chlamydia trachomatis infections. Here, using the Chlamydia muridarum major outer membrane protein (MOMP) as an antigen, four adjuvant combinations IVAX-1 (MPLA+CpG-1018+AddaVax), IVAX-2 (MPLA+CpG-1018+AS03), CpG-1826+Montanide ISA 720 VG (CpG-1826+Mont) and CpG-1018+Montanide ISA 720 VG (CpG-1018+Mont), were tested for their local reactogenicity and ability to elicit protection in BALB/c mice against a respiratory challenge with C. muridarum. Immunization with IVAX-1 or IVAX-2 induced no significant local reactogenicity following intramuscular immunization. In contrast, vaccines containing Montanide resulted in the formation of a local granuloma. Based on the IgG2a/IgG1 ratio in serum, the four adjuvant combinations elicited Th1-biased responses. IVAX-1 induced the highest in vitro neutralization titers while CpG-1018+Mont stimulated the lowest. As determined by the levels of IFN-γ produced by T-cells, the most robust cellular immune responses were elicited in mice immunized with CpG-1018+Mont, while the weakest responses were mounted by mice receiving IVAX-1. Following the respiratory challenge, mice immunized with CpG-1018+Mont lost the least amount of body weight and had the lowest number of C. muridarum inclusion-forming units (IFUs) in the lungs, while those receiving IVAX-2 had lost the most weight and had the highest number of IFUs in their lungs. Animals vaccinated with CpG-1826+Mont had the lightest lungs while those immunized using IVAX-2 had the heaviest. To conclude, due to their safety and adjuvanticity, IVAX formulations should be considered for inclusion in human vaccines against Chlamydia.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Ahluwalia MS, Reardon DA, Abad AP, Curry WT, Wong ET, Figel SA, Mechtler LL, Peereboom DM, Hutson AD, Withers HG, Liu S, Belal AN, Qiu J, Mogensen KM, Dharma SS, Dhawan A, Birkemeier MT, Casucci DM, Ciesielski MJ, Fenstermaker RA. Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J Clin Oncol 2023; 41:1453-1465. [PMID: 36521103 PMCID: PMC9995096 DOI: 10.1200/jco.22.00996] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Despite intensive treatment with surgery, radiation therapy, temozolomide (TMZ) chemotherapy, and tumor-treating fields, mortality of newly diagnosed glioblastoma (nGBM) remains very high. SurVaxM is a peptide vaccine conjugate that has been shown to activate the immune system against its target molecule survivin, which is highly expressed by glioblastoma cells. We conducted a phase IIa, open-label, multicenter trial evaluating the safety, immunologic effects, and survival of patients with nGBM receiving SurVaxM plus adjuvant TMZ following surgery and chemoradiation (ClinicalTrials.gov identifier: NCT02455557). METHODS Sixty-four patients with resected nGBM were enrolled including 38 men and 26 women, in the age range of 20-82 years. Following craniotomy and fractionated radiation therapy with concurrent TMZ, patients received four doses of SurVaxM (500 μg once every 2 weeks) in Montanide ISA-51 plus sargramostim (granulocyte macrophage colony-stimulating factor) subcutaneously. Patients subsequently received adjuvant TMZ and maintenance SurVaxM concurrently until progression. Progression-free survival (PFS) and overall survival (OS) were reported. Immunologic responses to SurVaxM were assessed. RESULTS SurVaxM plus TMZ was well tolerated with no serious adverse events attributable to SurVaxM. Of the 63 patients who were evaluable for outcome, 60 (95.2%) remained progression-free 6 months after diagnosis (prespecified primary end point). Median PFS was 11.4 months and median OS was 25.9 months measured from first dose of SurVaxM. SurVaxM produced survivin-specific CD8+ T cells and antibody/immunoglobulin G titers. Apparent clinical benefit of SurVaxM was observed in both methylated and unmethylated patients. CONCLUSION SurVaxM appeared to be safe and well tolerated. The combination represents a promising therapy for nGBM. For patients with nGBM treated in this manner, PFS may be an acceptable surrogate for OS. A large randomized clinical trial of SurVaxM for nGBM is in progress.
Collapse
Affiliation(s)
| | - David A. Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ajay P. Abad
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - William T. Curry
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Eric T. Wong
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Sheila A. Figel
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Laszlo L. Mechtler
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | - Alan D. Hutson
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Henry G. Withers
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Song Liu
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Ahmed N. Belal
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kathleen M. Mogensen
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Sanam S. Dharma
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Andrew Dhawan
- Neurological Institute, Cleveland Clinic, Cleveland, OH
| | | | - Danielle M. Casucci
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Michael J. Ciesielski
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Robert A. Fenstermaker
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| |
Collapse
|
9
|
Ullah A, Waqas M, Aziz S, Rahman SU, Khan S, Khalid A, Abdalla AN, Uddin J, Halim SA, Khan A, Al-Harrasi A. Bioinformatics and immunoinformatics approach to develop potent multi-peptide vaccine for coxsackievirus B3 capable of eliciting cellular and humoral immune response. Int J Biol Macromol 2023; 239:124320. [PMID: 37004935 DOI: 10.1016/j.ijbiomac.2023.124320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Coxsackievirus B3 (CVB3) is a viral pathogen of various human disorders with no effective preventative interventions. Herein, we aimed to design a chimeric vaccine construct for CVB3 using reverse vaccinology and immunoinformatics approaches by screening the whole viral polyprotein sequence. Firstly, screening and mapping of viral polyprotein to predict 21 immunodominant epitopes (B-cell, CD8+ and CD4+ T-cell epitopes), fused with an adjuvant (Resuscitation-promoting factor), appropriate linkers, HIV-TAT peptide, Pan DR epitope, and 6His-tag to assemble a multi-epitope vaccine construct. The chimeric construct is predicted as probable antigen, non-allergen, stable, possess encouraging physicochemical features, and indicates a broader population coverage (98 %). The tertiary structure of the constructed vaccine was predicted and refined, and its interaction with the Toll-like receptor 4 (TLR4) was investigated through molecular docking and dynamics simulation. Computational cloning of the construct was carried out in pET28a (+) plasmid to guarantee the higher expression of the vaccine protein. Lastly, in silico immune simulation foreseen that humoral and cellular immune responses would be elicited in response to the administration of such a potent chimeric construct. Thus, the design constructed could vaccinate against CVB3 infection and various CVB serotypes. However, further in vitro/in vivo research must assess its safety and effectiveness.
Collapse
|
10
|
Motamedi H, Ari MM, Shahlaei M, Moradi S, Farhadikia P, Alvandi A, Abiri R. Designing multi-epitope vaccine against important colorectal cancer (CRC) associated pathogens based on immunoinformatics approach. BMC Bioinformatics 2023; 24:65. [PMID: 36829112 PMCID: PMC9951438 DOI: 10.1186/s12859-023-05197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND It seems that several members of intestinal gut microbiota like Streptococcus bovis, Bacteroides fragilis, Helicobacter pylori, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, Peptostreptococcus anaerobius may be considered as the causative agents of Colorectal Cancer (CRC). The present study used bioinformatics and immunoinformatics approaches to design a potential epitope-based multi-epitope vaccine to prevent CRC with optimal population coverage. METHODS In this study, ten amino acid sequences of CRC-related pathogens were retrieved from the NCBI database. Three ABCpred, BCPREDS and LBtope online servers were considered for B cells prediction and the IEDB server for T cells (CD4+ and CD8+) prediction. Then, validation, allergenicity, toxicity and physicochemical analysis of all sequences were performed using web servers. A total of three linkers, AAY, GPGPG, and KK were used to bind CTL, HTL and BCL epitopes, respectively. In addition, the final construct was subjected to disulfide engineering, molecular docking, immune simulation and codon adaptation to design an effective vaccine production strategy. RESULTS A total of 19 sequences of different lengths for linear B-cell epitopes, 19 and 18 sequences were considered as epitopes of CD4+ T and CD8+ cells, respectively. The predicted epitopes were joined by appropriate linkers because they play an important role in producing an extended conformation and protein folding. The final multi-epitope construct and Toll-like receptor 4 (TLR4) were evaluated by molecular docking, which revealed stable and strong binding interactions. Immunity simulation of the vaccine showed significantly high levels of immunoglobulins, helper T cells, cytotoxic T cells and INF-γ. CONCLUSION Finally, the results showed that the designed multi-epitope vaccine could serve as an excellent prophylactic candidate against CRC-associated pathogens, but in vitro and animal studies are needed to justify our findings for its use as a possible preventive measure.
Collapse
Affiliation(s)
- Hamid Motamedi
- grid.412112.50000 0001 2012 5829Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- grid.411746.10000 0004 4911 7066Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Farhadikia
- grid.412112.50000 0001 2012 5829Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Medical Technology Research Center, Health Technology Institute,, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Fertility and Infertility Research Center, Health Technology Institute,, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Waqas M, Aziz S, Bushra A, Halim SA, Ali A, Ullah S, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. Employing an immunoinformatics approach revealed potent multi-epitope based subunit vaccine for lymphocytic choriomeningitis virus. J Infect Public Health 2023; 16:214-232. [PMID: 36603375 DOI: 10.1016/j.jiph.2022.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lymphocytic choriomeningitis virus (LCMV) infects many individuals worldwide and causes severe infection in the immunosuppressant recipient, spontaneous abortion, and congenital disabilities in infants. OBJECTIVES There is no specific vaccine or therapeutics available to protect against LCMV infection; thus, there is a need to design a potential vaccine to combat the virus by developing immunity in the population. Herein, we attempted to design a potent multi-epitope vaccine for LCMV using immunoinformatics methods. METHODS The whole proteome of the virus was screened and mapped to extract immunodominant B-cell and T-cell epitopes which were fused with appropriate linkers (EAAAK, GGGS, AAY, GPGPG, and AAY), PADRE sequence (13aa) and an adjuvant (50 S ribosomal protein L7/L12) to formulate a multi-epitope vaccine ensemble. Codon adaptation and in silico cloning of the constructed vaccine were carried out using bioinformatics tools. The secondary and tertiary structure of the vaccine construct was predicted and refined. The physicochemical profile of the designed vaccine was analyzed, and the multi-epitope vaccine's potential to bind Toll-like receptors (TLR2 and TLR4) was evaluated through molecular docking and molecular dynamics simulations. Computational immune simulation of the designed vaccine antigen was performed using the C-ImmSim server. RESULTS The designed multi-epitope-based vaccine (613 aa) comprised 26 immunodominant (six B-cell, nine cytotoxic T lymphocytes, and 11 helper T lymphocytes) epitopes and is predicted antigenic, non-toxic, non-allergen, soluble, and topographically accessible with a suitable physicochemical profile. The designed vaccine is expected to cover a broad worldwide population (96.35 %) and stimulate a robust adaptive immune response against the virus upon administration. In silico cloning of the constructed vaccine in PET28a (+) vector ensured its optimal expression in the Escherichia coli system. Molecular docking, molecular dynamics simulation, and binding free energy estimation collectively support the stability and energetically favourable interaction of the modeled vaccine-TLR2/4 complexes. CONCLUSION The designed multi-epitope vaccine in the present study could serve as a potential vaccine candidate to protect against LMCV infection; however, the experimental validation and safety testing of the vaccine is warranted to validate the study's outcomes.
Collapse
Affiliation(s)
- Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman; Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, 2100, Pakistan
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Peshawar 25000, Pakistan
| | - Aiman Bushra
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, 2100, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
12
|
Mohammadzadeh Hosseini Moghri SAH, Mahmoodi Chalbatani G, Ranjbar M, Raposo C, Abbasian A. CD171 Multi-epitope peptide design based on immuno-informatics approach as a cancer vaccine candidate for glioblastoma. J Biomol Struct Dyn 2023; 41:1028-1040. [PMID: 36617427 DOI: 10.1080/07391102.2021.2020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GB) is a common primary malignancy of the central nervous system, and one of the highly lethal brain tumors. GB cells can promote therapeutic resistance and tumor angiogenesis. The CD171 is an adhesion molecule in neuronal cells that is expressed in glioma cells as a regulator of brain development during the embryonic period. CD171 is one of the immunoglobulin-like CAMs (cell adhesion molecules) families that can be associated with prognosis in a variety of human tumors. The multi-epitope peptide vaccines are based on synthetic peptides with a combination of both B-cell epitopes and T-cell epitopes, which can induce specific humoral or cellular immune responses. Moreover, Cholera toxin subunit B (CTB), a novel TLR agonist was utilized in the final construct to polarize CD4+ T cells toward T-helper 1 to induce strong cytotoxic T lymphocytes (CTL) responses. In the present study, several immune-informatics tools were used for analyzing the CD171 sequence and studying the important characteristics of a designed vaccine. The results included molecular docking, molecular dynamics simulation, immune response simulation, prediction and validation of the secondary and tertiary structure, physicochemical properties, solubility, conservancy, toxicity as well as antigenicity and allergenicity of the promising candidate for a vaccine against CD171. The immuno-informatic analyze suggested 12 predicted multi-epitope peptides, whose construction consists of 582 residues long. Therewith, cloning adaptation of the designed vaccine was performed, and eventually sequence was inserted into pET30a (+) vector for the application of the anti-glioblastoma vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Department of Microbial Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Catarina Raposo
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arefeh Abbasian
- Faculty of Basic Sciences, Department of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
13
|
Waqas M, Aziz S, Liò P, Khan Y, Ali A, Iqbal A, Khan F, Almajhdi FN. Immunoinformatics design of multivalent epitope vaccine against monkeypox virus and its variants using membrane-bound, enveloped, and extracellular proteins as targets. Front Immunol 2023; 14:1091941. [PMID: 36776835 PMCID: PMC9908764 DOI: 10.3389/fimmu.2023.1091941] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The current monkeypox (MPX) outbreak, caused by the monkeypox virus (MPXV), has turned into a global concern, with over 59,000 infection cases and 23 deaths worldwide. Objectives Herein, we aimed to exploit robust immunoinformatics approach, targeting membrane-bound, enveloped, and extracellular proteins of MPXV to formulate a chimeric antigen. Such a strategy could similarly be applied for identifying immunodominant epitopes and designing multi-epitope vaccine ensembles in other pathogens responsible for chronic pathologies that are difficult to intervene against. Methods A reverse vaccinology pipeline was used to select 11 potential vaccine candidates, which were screened and mapped to predict immunodominant B-cell and T-cell epitopes. The finalized epitopes were merged with the aid of suitable linkers, an adjuvant (Resuscitation-promoting factor), a PADRE sequence (13 aa), and an HIV TAT sequence (11 aa) to formulate a multivalent epitope vaccine. Bioinformatics tools were employed to carry out codon adaptation and computational cloning. The tertiary structure of the chimeric vaccine construct was modeled via I-TASSER, and its interaction with Toll-like receptor 4 (TLR4) was evaluated using molecular docking and molecular dynamics simulation. C-ImmSim server was implemented to examine the immune response against the designed multi-epitope antigen. Results and discussion The designed chimeric vaccine construct included 21 immunodominant epitopes (six B-cell, eight cytotoxic T lymphocyte, and seven helper T-lymphocyte) and is predicted non-allergen, antigenic, soluble, with suitable physicochemical features, that can promote cross-protection among the MPXV strains. The selected epitopes indicated a wide global population coverage (93.62%). Most finalized epitopes have 70%-100% sequence similarity with the experimentally validated immune epitopes of the vaccinia virus, which can be helpful in the speedy progression of vaccine design. Lastly, molecular docking and molecular dynamics simulation computed stable and energetically favourable interaction between the putative antigen and TLR4. Conclusion Our results show that the multi-epitope vaccine might elicit cellular and humoral immune responses and could be a potential vaccine candidate against the MPXV infection. Further experimental testing of the proposed vaccine is warranted to validate its safety and efficacy profile.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Fahad Nasser Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Shah SZ, Jabbar B, Mirza MU, Waqas M, Aziz S, Halim SA, Ali A, Rafique S, Idrees M, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. An Immunoinformatics Approach to Design a Potent Multi-Epitope Vaccine against Asia-1 Genotype of Crimean-Congo Haemorrhagic Fever Virus Using the Structural Glycoproteins as a Target. Vaccines (Basel) 2022; 11:61. [PMID: 36679906 PMCID: PMC9867508 DOI: 10.3390/vaccines11010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Crimean-Congo haemorrhagic fever (CCHF), caused by Crimean-Congo haemorrhagic fever virus (CCHFV), is a disease of worldwide importance (endemic yet not limited to Asia, Middle East, and Africa) and has triggered several outbreaks amounting to a case fatality rate of 10-40% as per the World Health Organization. Genetic diversity and phylogenetic data revealed that the Asia-1 genotype of CCHFV remained dominant in Pakistan, where 688 confirmed cases were reported between the 2012-2022 period. Currently, no approved vaccine is available to tackle the viral infection. Epitope-based vaccine design has gained significant attention in recent years due to its safety, timeliness, and cost efficiency compared to conventional vaccines. In the present study, we employed a robust immunoinformatics-based approach targeting the structural glycoproteins G1 and G2 of CCHFV (Asia-1 genotype) to design a multi-epitope vaccine construct. Five B-cells and six cytotoxic T-lymphocytes (CTL) epitopes were mapped and finalized from G1 and G2 and were fused with suitable linkers (EAAAK, GGGS, AAY, and GPGPG), a PADRE sequence (13 aa), and an adjuvant (50S ribosomal protein L7/L12) to formulate a chimeric vaccine construct. The selected CTL epitopes showed high affinity and stable binding with the binding groove of common human HLA class I molecules (HLA-A*02:01 and HLA-B*44:02) and mouse major histocompatibility complex class I molecules. The chimeric vaccine was predicted to be an antigenic, non-allergenic, and soluble molecule with a suitable physicochemical profile. Molecular docking and molecular dynamics simulation indicated a stable and energetically favourable interaction between the constructed antigen and Toll-like receptors (TLR2, TLR3, and TLR4). Our results demonstrated that innate, adaptive, and humoral immune responses could be elicited upon administration of such a potent muti-epitope vaccine construct. These results could be helpful for an experimental vaccinologist to develop an effective vaccine against the Asia-1 genotype of CCHFV.
Collapse
Affiliation(s)
- Syed Zawar Shah
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 21120, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Oman
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Oman
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 21120, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum 11111, Sudan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Oman
| |
Collapse
|
15
|
Danazumi AU, Iliyasu Gital S, Idris S, BS Dibba L, Balogun EO, Górna MW. Immunoinformatic design of a putative multi-epitope vaccine candidate against Trypanosoma brucei gambiense. Comput Struct Biotechnol J 2022; 20:5574-5585. [PMID: 36284708 PMCID: PMC9576565 DOI: 10.1016/j.csbj.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022] Open
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is caused by flagellated parasites of the genus Trypanosoma. HAT imposes a significant socio-economic burden on many countries in sub-Saharan Africa and its control is hampered by several drawbacks ranging from the ineffectiveness of drugs, complex dosing regimens, drug resistance, and lack of a vaccine. Despite more than a century of research and investigations, the development of a vaccine to tackle HAT is still challenging due to the complex biology of the pathogens. Advancements in computational modeling coupled with the availability of an unprecedented amount of omics data from different organisms have allowed the design of new generation vaccines that offer better antigenicity and safety profile. One of such new generation approaches is a multi-epitope vaccine (MEV) designed from a collection of antigenic peptides. A MEV can stimulate both cellular and humoral immune responses as well as avoiding possible allergenic reactions. Herein, we take advantage of this approach to design a MEV from conserved hypothetical plasma membrane proteins of Trypanosoma brucei gambiense, the trypanosome subspecies that is responsible for the west and central African forms of HAT. The designed MEV is 402 amino acids long (41.5 kDa). It is predicted to be antigenic, non-toxic, to assume a stable 3D conformation, and to interact with a key immune receptor. In addition, immune simulation foresaw adequate immune stimulation by the putative antigen and a lasting memory. Therefore, the designed chimeric vaccine represents a potential candidate that could be used to target HAT.
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland,Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland,Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands,Corresponding authors at: Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland (A.U. Danazumi, M. W. Górna).
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria,Department of Medical Laboratory Science, Kazaure School of Health Technology, Jigawa, Nigeria
| | - Lamin BS Dibba
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria,Department of Physical and Natural Sciences, School of Arts and Sciences, University of the Gambia, Brikama Campus. P.O Box 3530, Serrekunda, the Gambia
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland,Corresponding authors at: Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland (A.U. Danazumi, M. W. Górna).
| |
Collapse
|
16
|
Jalal K, Khan K, Basharat Z, Abbas MN, Uddin R, Ali F, Khan SA, Hassan SSU. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60035-60053. [PMID: 35414157 PMCID: PMC9005162 DOI: 10.1007/s11356-022-19979-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/25/2022] [Indexed: 06/01/2023]
Abstract
The ongoing COVID-19 outbreak, initially identified in Wuhan, China, has impacted people all over the globe and new variants of concern continue to threaten hundreds of thousands of people. The delta variant (first reported in India) is currently classified as one of the most contagious variants of SARS-CoV-2. It is estimated that the transmission rate of delta variant is 225% times faster than the alpha variant, and it is causing havoc worldwide (especially in the USA, UK, and South Asia). The mutations found in the spike protein of delta variant make it more infective than other variants in addition to ruining the global efficacy of available vaccines. In the current study, an in silico reverse vaccinology approach was applied for multi-epitope vaccine construction against the spike protein of delta variant, which could induce an immune response against COVID-19 infection. Non-toxic, highly conserved, non-allergenic and highly antigenic B-cell, HTL, and CTL epitopes were identified to minimize adverse effects and maximize the efficacy of chimeric vaccines that could be developed from these epitopes. Finally, V1 vaccine construct model was shortlisted and 3D modeling was performed by refinement, docking against HLAs and TLR4 protein, simulation and in silico expression. In silico evaluation showed that the designed chimeric vaccine could elicit an immune response (i.e., cell-mediated and humoral) identified through immune simulation. This study could add to the efforts of overcoming global burden of COVID-19 particularly the variants of concern.
Collapse
Affiliation(s)
- Khurshid Jalal
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS University of Karachi, Karachi, Pakistan
| | | | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Fawad Ali
- Department of Pharmacy, KUST, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, KUST, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
17
|
Yashvardhini N, Kumar A, Jha DK. Analysis of SARS-CoV-2 mutations in the main viral protease (NSP5) and its implications on the vaccine designing strategies. VACUNAS (ENGLISH EDITION) 2022. [PMCID: PMC9472678 DOI: 10.1016/j.vacune.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome), an etiolating agent of novel COVID-19 (coronavirus 2019) pandemic, rapidly spread worldwide, creating an unprecedented public health crisis globally. NSP5, the main viral protease, is a highly conserved protein, encoded by the genome of SARS-CoV-2 and plays an important role in the viral replication cycle. In the present study, we detected a total of 33 mutations from 675 sequences submitted from India in the month of March 2020 to April 2021. Out of 33 mutations, we selected 8 frequent mutations (K236R, N142L, K90R, A7V, L75F, C22N, H246Y and I43V) for further analysis. Subsequently, protein models were constructed, revealing significant alterations in the 3-D structure of NSP5 protein when compared to the wild type protein sequence which also altered the secondary structure of NSP5 protein. Further, we identified 9 B-cell, 10 T-cell and 6 MHC-I promising epitopes using predictive tools of immunoinformatics, out of these epitopes some were non-allergenic as well as highly immunogenic. Results of our study, however, revealed that 10 B-cell epitopes reside in the mutated region of NSP5. Additionally, hydrophobicity, physiochemical properties, toxicity and stability of NSP5 protein were estimated to demonstrate the specificity of the multiepitope candidates. Taken together, variations arising as a consequence of multiple mutations may cause alterations in the structure and function of NSP5 which generate crucial insights to better understand structural aspects of SARS-CoV-2. Our study also revealed, NSP5, a main protease, can be a potentially good target for the design and development of vaccine candidate against SARS-CoV-2.
Collapse
|
18
|
Khan K, Khan SA, Jalal K, Ul-Haq Z, Uddin R. Immunoinformatic approach for the construction of multi-epitopes vaccine against omicron COVID-19 variant. Virology 2022; 572:28-43. [PMID: 35576833 PMCID: PMC9087879 DOI: 10.1016/j.virol.2022.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022]
Abstract
The newly discovered SARS-CoV-2 Omicron variant B.1.1.529 is a Variant of Concern (VOC) announced by the World Health Organization (WHO). It's becoming increasingly difficult to keep these variants from spreading over the planet. The fifth wave has begun in several countries because of Omicron variant, and it is posing a threat to human civilization. As a result, we need effective vaccination that can tackle Omicron SARS-CoV-2 variants that are bound to emerge. Therefore, the current study is an initiative to design a peptide-based chimeric vaccine that may potentially battle SARS-CoV-2 Omicron variant. As a result, the most relevant epitopes present in the mutagenic areas of Omicron spike protein were identified using a set of computational tools and immunoinformatic techniques to uncover common MHC-1, MHC-II, and B cell epitopes that may have the ability to influence the host immune mechanism. A final of three epitopes from CD8+ T-cell, CD4+ T-cell epitopes, and B-cell were shortlisted from spike protein, and that are highly antigenic, IFN-γ inducer, as well as overlapping for the construction of twelve vaccine models. As a result, the antigenic epitopes were coupled with a flexible and stable peptide linker, and the adjuvant was added at the N-terminal end to create a unique vaccine candidate. The structure of a 3D vaccine candidate was refined, and its quality was assessed by using web servers. However, the applied immunoinformatic study along with the molecular docking and simulation of 12 modeled vaccines constructs against six distinct HLAs, and TLRs (TLR2, and TLR4) complexes revealed that the V1 construct was non-allergenic, non-toxic, highly immunogenic, antigenic, and most stable. The vaccine candidate's stability was confirmed by molecular dynamics investigations. Finally, we studied the expression of the suggested vaccination using codon optimization and in-silico cloning. The current study proposed V1 Multi-Epitope Vaccine (MEV) as a significant vaccine candidate that may help the scientific community to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Salman Ali Khan
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Zaheer Ul-Haq
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan; Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan.
| |
Collapse
|
19
|
Tan C, Zhu F, Xiao Y, Wu Y, Meng X, Liu S, Liu T, Chen S, Zhou J, Li C, Wu A. Immunoinformatics Approach Toward the Introduction of a Novel Multi-Epitope Vaccine Against Clostridium difficile. Front Immunol 2022; 13:887061. [PMID: 35720363 PMCID: PMC9204425 DOI: 10.3389/fimmu.2022.887061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium difficile (C.difficile) is an exclusively anaerobic, spore-forming, and Gram-positive pathogen that is the most common cause of nosocomial diarrhea and is becoming increasingly prevalent in the community. Because C. difficile is strictly anaerobic, spores that can survive for months in the external environment contribute to the persistence and diffusion of C. difficile within the healthcare environment and community. Antimicrobial therapy disrupts the natural intestinal flora, allowing spores to develop into propagules that colonize the colon and produce toxins, thus leading to antibiotic-associated diarrhea and pseudomembranous enteritis. However, there is no licensed vaccine to prevent Clostridium difficile infection (CDI). In this study, a multi-epitope vaccine was designed using modern computer methods. Two target proteins, CdeC, affecting spore germination, and fliD, affecting propagule colonization, were chosen to construct the vaccine so that it could simultaneously induce the immune response against two different forms (spore and propagule) of C. difficile. We obtained the protein sequences from the National Center for Biotechnology Information (NCBI) database. After the layers of filtration, 5 cytotoxic T-cell lymphocyte (CTL) epitopes, 5 helper T lymphocyte (HTL) epitopes, and 7 B-cell linear epitopes were finally selected for vaccine construction. Then, to enhance the immunogenicity of the designed vaccine, an adjuvant was added to construct the vaccine. The Prabi and RaptorX servers were used to predict the vaccine's two- and three-dimensional (3D) structures, respectively. Additionally, we refined and validated the structures of the vaccine construct. Molecular docking and molecular dynamics (MD) simulation were performed to check the interaction model of the vaccine-Toll-like receptor (TLR) complexes, vaccine-major histocompatibility complex (MHC) complexes, and vaccine-B-cell receptor (BCR) complex. Furthermore, immune stimulation, population coverage, and in silico molecular cloning were also conducted. The foregoing findings suggest that the final formulated vaccine is promising against the pathogen, but more researchers are needed to verify it.
Collapse
Affiliation(s)
- Caixia Tan
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Xiao
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqi Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Sidi Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Siyao Chen
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Zhou
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| |
Collapse
|
20
|
Yashvardhini N, Kumar A, Jha DK. Analysis of SARS-CoV-2 mutations in the main viral protease (NSP5) and its implications on the vaccine designing strategies. VACUNAS 2022; 23:S1-S13. [PMID: 34876891 PMCID: PMC8639442 DOI: 10.1016/j.vacun.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome), an etiolating agent of novel COVID-19 (coronavirus 2019) pandemic, rapidly spread worldwide, creating an unprecedented public health crisis globally. NSP5, the main viral protease, is a highly conserved protein, encoded by the genome of SARS-CoV-2 and plays an important role in the viral replication cycle. In the present study, we detected a total of 33 mutations from 675 sequences submitted from India in the month of March 2020 to April 2021. Out of 33 mutations, we selected 8 frequent mutations (K236R, N142L, K90R, A7V, L75F, C22N, H246Y and I43V) for further analysis. Subsequently, protein models were constructed, revealing significant alterations in the 3-D structure of NSP5 protein when compared to the wild type protein sequence which also altered the secondary structure of NSP5 protein. Further, we identified 9 B-cell, 10 T-cell and 6 MHC-I promising epitopes using predictive tools of immunoinformatics, out of these epitopes some were non-allergenic as well as highly immunogenic. Results of our study, however, revealed that 10 B-cell epitopes reside in the mutated region of NSP5. Additionally, hydrophobicity, physiochemical properties, toxicity and stability of NSP5 protein were estimated to demonstrate the specificity of the multiepitope candidates. Taken together, variations arising as a consequence of multiple mutations may cause alterations in the structure and function of NSP5 which generate crucial insights to better understand structural aspects of SARS-CoV-2. Our study also revealed, NSP5, a main protease, can be a potentially good target for the design and development of vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Niti Yashvardhini
- Department of Microbiology, Patna Women's College, Patna 800 001, India
| | - Amit Kumar
- Department of Botany, Patna University, Patna 800 005, India
| | - Deepak Kumar Jha
- Department of Zoology, P. C. Vigyan Mahavidyalaya, J. P. University, Chapra 841 301, India
| |
Collapse
|
21
|
Rafi MO, Al-Khafaji K, Sarker MT, Taskin-Tok T, Rana AS, Rahman MS. Design of a multi-epitope vaccine against SARS-CoV-2: immunoinformatic and computational methods. RSC Adv 2022; 12:4288-4310. [PMID: 35425433 PMCID: PMC8981096 DOI: 10.1039/d1ra06532g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/23/2022] [Indexed: 12/17/2022] Open
Abstract
A novel infectious agent, SARS-CoV-2, is responsible for causing the severe respiratory disease COVID-19 and death in humans. Spike glycoprotein plays a key role in viral particles entering host cells, mediating receptor recognition and membrane fusion, and are considered useful targets for antiviral vaccine candidates. Therefore, computational techniques can be used to design a safe, antigenic, immunogenic, and stable vaccine against this pathogen. Drawing upon the structure of the S glycoprotein, we are trying to develop a potent multi-epitope subunit vaccine against SARS-CoV-2. The vaccine was designed based on cytotoxic T-lymphocyte and helper T-lymphocyte epitopes with an N-terminal adjuvant via conducting immune filters and an extensive immunoinformatic investigation. The safety and immunogenicity of the designed vaccine were further evaluated via using various physicochemical, allergenic, and antigenic characteristics. Vaccine-target (toll-like receptors: TLR2 and TLR4) interactions, binding affinities, and dynamical stabilities were inspected through molecular docking and molecular dynamic (MD) simulation methods. Moreover, MD simulations for dimeric TLRs/vaccine in the membrane-aqueous environment were performed to understand the differential domain organization of TLRs/vaccine. Further, dynamical behaviors of vaccine/TLR systems were inspected via identifying the key residues (named HUB nodes) that control interaction stability and provide a clear molecular mechanism. The obtained results from molecular docking and MD simulation revealed a strong and stable interaction between vaccine and TLRs. The vaccine's ability to stimulate the immune response was assessed by using computational immune simulation. This predicted a significant level of cytotoxic T cell and helper T cell activation, as well as IgG, interleukin 2, and interferon-gamma production. This study shows that the designed vaccine is structurally and dynamically stable and can trigger an effective immune response against viral infections.
Collapse
Affiliation(s)
- Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Khattab Al-Khafaji
- Department of Medical Laboratory Technology, AL-Nisour University College Baghdad Iraq
| | - Md Takim Sarker
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Tugba Taskin-Tok
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University Gaziantep 27310 Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University Gaziantep Turkey
| | - Abdus Samad Rana
- School of Biotechnology, Jiangnan University Wuxi 214122 PR China
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| |
Collapse
|
22
|
Tarrahimofrad H, Rahimnahal S, Zamani J, Jahangirian E, Aminzadeh S. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Sci Rep 2021; 11:24485. [PMID: 34966175 PMCID: PMC8716528 DOI: 10.1038/s41598-021-03932-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human β-defensin-3 (HβD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayyeh Rahimnahal
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ehsan Jahangirian
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
23
|
Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MSS, Biswas S, Emran TB, Dhama K, Alyami SA, Moni MA, Saleh MA. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep 2021; 11:15431. [PMID: 34326355 PMCID: PMC8322212 DOI: 10.1038/s41598-021-92176-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
Currently, no approved vaccine is available against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease. The spike glycoprotein is typically considered a suitable target for MERS-CoV vaccine candidates. A computational strategy can be used to design an antigenic vaccine against a pathogen. Therefore, we used immunoinformatics and computational approaches to design a multi-epitope vaccine that targets the spike glycoprotein of MERS-CoV. After using numerous immunoinformatics tools and applying several immune filters, a poly-epitope vaccine was constructed comprising cytotoxic T-cell lymphocyte (CTL)-, helper T-cell lymphocyte (HTL)-, and interferon-gamma (IFN-γ)-inducing epitopes. In addition, various physicochemical, allergenic, and antigenic profiles were evaluated to confirm the immunogenicity and safety of the vaccine. Molecular interactions, binding affinities, and the thermodynamic stability of the vaccine were examined through molecular docking and dynamic simulation approaches, during which we identified a stable and strong interaction with Toll-like receptors (TLRs). In silico immune simulations were performed to assess the immune-response triggering capabilities of the vaccine. This computational analysis suggested that the proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat viral infections; however, experimental evaluations remain necessary to verify the exact safety and immunogenicity profile of this vaccine.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Mst Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Faculty of Medicine, WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh.
| |
Collapse
|
24
|
In silico designing of vaccine candidate against Clostridium difficile. Sci Rep 2021; 11:14215. [PMID: 34244557 PMCID: PMC8271013 DOI: 10.1038/s41598-021-93305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a spore-forming gram-positive bacterium, recognized as the primary cause of antibiotic-associated nosocomial diarrhoea. Clostridium difficile infection (CDI) has emerged as a major health-associated infection with increased incidence and hospitalization over the years with high mortality rates. Contamination and infection occur after ingestion of vegetative spores, which germinate in the gastro-intestinal tract. The surface layer protein and flagellar proteins are responsible for the bacterial colonization while the spore coat protein, is associated with spore colonization. Both these factors are the main concern of the recurrence of CDI in hospitalized patients. In this study, the CotE, SlpA and FliC proteins are chosen to form a multivalent, multi-epitopic, chimeric vaccine candidate using the immunoinformatics approach. The overall reliability of the candidate vaccine was validated in silico and the molecular dynamics simulation verified the stability of the vaccine designed. Docking studies showed stable vaccine interactions with Toll‐Like Receptors of innate immune cells and MHC receptors. In silico codon optimization of the vaccine and its insertion in the cloning vector indicates a competent expression of the modelled vaccine in E. coli expression system. An in silico immune simulation system evaluated the effectiveness of the candidate vaccine to trigger a protective immune response.
Collapse
|
25
|
Akbay B, Abidi SH, Ibrahim MAA, Mukhatayev Z, Ali S. Multi-Subunit SARS-CoV-2 Vaccine Design Using Evolutionarily Conserved T- and B- Cell Epitopes. Vaccines (Basel) 2021; 9:702. [PMID: 34206865 PMCID: PMC8310312 DOI: 10.3390/vaccines9070702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
The SARS-CoV-2 pandemic has created a public health crisis worldwide. Although vaccines against the virus are efficiently being rolled out, they are proving to be ineffective against certain emerging SARS-CoV-2 variants. The high degree of sequence similarity between SARS-CoV-2 and other human coronaviruses (HCoV) presents the opportunity for designing vaccines that may offer protection against SARS-CoV-2 and its emerging variants, with cross-protection against other HCoVs. In this study, we performed bioinformatics analyses to identify T and B cell epitopes originating from spike, membrane, nucleocapsid, and envelope protein sequences found to be evolutionarily conserved among seven major HCoVs. Evolutionary conservation of these epitopes indicates that they may have critical roles in viral fitness and are, therefore, unlikely to mutate during viral replication thus making such epitopes attractive candidates for a vaccine. Our designed vaccine construct comprises of twelve T and six B cell epitopes that are conserved among HCoVs. The vaccine is predicted to be soluble in water, stable, have a relatively long half-life, and exhibit low allergenicity and toxicity. Our docking results showed that the vaccine forms stable complex with toll-like receptor 4, while the immune simulations predicted that the vaccine may elicit strong IgG, IgM, and cytotoxic T cell responses. Therefore, from multiple perspectives, our multi-subunit vaccine design shows the potential to elicit a strong immune-protective response against SARS-CoV-2 and its emerging variants while carrying minimal risk for causing adverse effects.
Collapse
Affiliation(s)
- Burkitkan Akbay
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Zhussipbek Mukhatayev
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| | - Syed Ali
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| |
Collapse
|
26
|
Yashvardhini N, Kumar A, Jha DK. Immunoinformatics Identification of B- and T-Cell Epitopes in the RNA-Dependent RNA Polymerase of SARS-CoV-2. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:6627141. [PMID: 33936347 PMCID: PMC8061227 DOI: 10.1155/2021/6627141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) is a newly emerged beta coronavirus and etiolating agent of COVID-19. Considering the unprecedented increasing number of COVID-19 cases, the World Health Organization declared a public health emergency internationally on 11th March 2020. However, existing drugs are insufficient in dealing with this contagious virus infection; therefore, a vaccine is exigent to curb this pandemic disease. In the present study, B- and T-cell immune epitopes were identified for RdRp (RNA-dependent RNA polymerase) protein using immunoinformatic techniques, which is proved to be a rapid and efficient method to explore the candidate peptide vaccine. Subsequently, antigenicity and interactions with HLA (human leukocyte antigen) alleles were estimated. Further, physicochemical properties, allergenicity, toxicity, and stability of RdRp protein were evaluated to demonstrate the specificity of the epitope candidates. Interestingly, we identified a total of 36 B-cell and 16 T-cell epitopes using epitopes predictive tools. Among the predicted epitopes, 26 B-cell and 9 T-cell epitopes showed non-allergenic, non-toxic, and highly antigenic properties. Altogether, our study revealed that RdRp of SARS-CoV-2 (an epitope-based peptide fragment) can be a potentially good candidate for the development of a vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Niti Yashvardhini
- Department of Microbiology, Patna Women's College, Patna 800 001, Bihar, India
| | - Amit Kumar
- Department of Botany, Patna University, Patna 800 005, Bihar, India
| | - Deepak Kumar Jha
- Department of Zoology, P. C. Vigyan Mahavidyalaya, Chapra, Bihar 841 301, India
| |
Collapse
|
27
|
Rehman HM, Mirza MU, Ahmad MA, Saleem M, Froeyen M, Ahmad S, Gul R, Alghamdi HA, Aslam MS, Sajjad M, Bhinder MA. A Putative Prophylactic Solution for COVID-19: Development of Novel Multiepitope Vaccine Candidate against SARS-COV-2 by Comprehensive Immunoinformatic and Molecular Modelling Approach. BIOLOGY 2020; 9:E296. [PMID: 32962156 PMCID: PMC7563440 DOI: 10.3390/biology9090296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory infection (COVID-19) has spread in China, and the World Health Organization has declared it a pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive and through a few repurposed drugs. The urgency of the situation requires the development of SARS-CoV-2-based vaccines. Immunoinformatic and molecular modelling are time-efficient methods that are generally used to accelerate the discovery and design of the candidate peptides for vaccine development. In recent years, the use of multiepitope vaccines has proved to be a promising immunization strategy against viruses and pathogens, thus inducing more comprehensive protective immunity. The current study demonstrated a comprehensive in silico strategy to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs), which trigger an innate and adaptive immune response. Later, the in silico cloning in a known pET28a vector system also estimated the possibility of MVC expression in Escherichia coli. Despite that this study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can be present as a better prophylactic solution against COVID-19.
Collapse
Affiliation(s)
- Hafiz Muzzammel Rehman
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium; (M.U.M.); (M.F.)
| | - Mian Azhar Ahmad
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
- Department of Health, Government of the Punjab, Lahore 54590, Punjab, Pakistan
| | - Mahjabeen Saleem
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium; (M.U.M.); (M.F.)
| | - Sarfraz Ahmad
- Drug Design and Development Research Group (DDDRG), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Roquyya Gul
- Faculty of Life Sciences, Gulab Devi Educational Complex, Lahore 54590, Punjab, Pakistan;
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia;
| | - Muhammad Shahbaz Aslam
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid e Azam Campus, Lahore 54590, Punjab, Pakistan;
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
| |
Collapse
|
28
|
Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, Srivastava AP. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 2020; 10:10895. [PMID: 32616763 PMCID: PMC7331818 DOI: 10.1038/s41598-020-67749-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2. The overall quality of the candidate vaccine was validated in silico and Molecular Dynamics Simulation confirmed the stability of the designed vaccine. Docking studies revealed stable interactions of the vaccine with Toll-Like Receptors and MHC Receptors. The in silico cloning and codon optimization supported the proficient expression of the designed vaccine in E. coli expression system. The efficiency of the candidate vaccine to trigger an effective immune response was assessed by an in silico immune simulation. The computational analyses suggest that the designed multi-epitope vaccine is structurally stable which can induce specific immune responses and thus, can be a potential vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tamalika Kar
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Utkarsh Narsaria
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Srijita Basak
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Debashrito Deb
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Via dei Taurini, Rome, Italy
| | - David M Mueller
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The gradual replacement of inactivated whole cell and live attenuated vaccines with subunit vaccines has generally reduced reactogenicity but in many cases also immunogenicity. Although only used when necessary, adjuvants can be key to vaccine dose/antigen-sparing, broadening immune responses to variable antigens, and enhancing immunogenicity in vulnerable populations with distinct immunity. Licensed vaccines contain an increasing variety of adjuvants, with a growing pipeline of adjuvanted vaccines under development. RECENT FINDINGS Most adjuvants, including Alum, Toll-like receptor agonists and oil-in-water emulsions, activate innate immunity thereby altering the quantity and quality of an adaptive immune response. Adjuvants activate leukocytes, and induce mediators (e.g., cytokines, chemokines, and prostaglandin-E2) some of which are biomarkers for reactogenicity, that is, induction of local/systemic side effects. Although there have been safety concerns regarding a hypothetical risk of adjuvants inducing auto-immunity, such associations have not been established. As immune responses vary by population (e.g., age and sex), adjuvant research now incorporates principles of precision medicine. Innovations in adjuvant research include use of human in vitro models, immuno-engineering, novel delivery systems, and systems biology to identify biomarkers of safety and adjuvanticity. SUMMARY Adjuvants enhance vaccine immunogenicity and can be associated with reactogenicity. Novel multidisciplinary approaches hold promise to accelerate and de-risk targeted adjuvant discovery and development. VIDEO ABSTRACT: http://links.lww.com/MOP/A53.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - David J. Dowling
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - Ofer Levy
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Development of Functional Antibodies Directed to Human Dialyzable Leukocyte Extract (Transferon®). J Immunol Res 2019; 2019:2754920. [PMID: 31223627 PMCID: PMC6541944 DOI: 10.1155/2019/2754920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/16/2019] [Indexed: 11/17/2022] Open
Abstract
Transferon® is an immunomodulator made of a complex mixture of peptides from human dialyzable leucocyte extracts (hDLEs). Development of surrogate antibodies directed to hDLE is an indispensable tool for studies during process control and preclinical trials. These antibodies are fundamental for different analytical approaches, such as identity test and drug quantitation, as well as to characterize its pharmacokinetic and mechanisms of action. A previous murine study showed the inability of the peptides of Transferon® to induce antibody production by themselves; therefore, in this work, two approaches were tested to increase its immunogenicity: chemical conjugation of the peptides of Transferon® to carrier proteins and the use of a rabbit model. Bioconjugates were generated with Keyhole Limpet Hemocyanin (KLH) or Bovine Serum Albumin (BSA) through maleimide-activated carrier proteins. BALB/c mice and New Zealand rabbits were immunized with Transferon® conjugated to KLH or nonconjugated Transferon®. Animals that were immunized with conjugated Transferon® showed significant production of antibodies as evinced by the recognition of Transferon®-BSA conjugate in ELISA assays. Moreover, rabbits showed higher antibody titers when compared with mice. Neither mouse nor rabbits developed antibodies when immunized with nonconjugated Transferon®. Interestingly, rabbit antibodies were able to partially block IL-2 production in Jurkat cells after costimulation with Transferon®. In conclusion, it is feasible to elicit specific and functional antibodies anti-hDLE with different potential uses during the life cycle of the product.
Collapse
|
31
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
32
|
Tifrea DF, Pal S, Le Bon C, Giusti F, Popot JL, Cocco MJ, Zoonens M, de la Maza LM. Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Vaccine 2018; 36:6640-6649. [PMID: 30293763 DOI: 10.1016/j.vaccine.2018.09.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Chlamydial infections are spread worldwide and a vaccine is needed to control this pathogen. The goals of this study were to determine if the delivery of an adjuvant associated to the antigen, via a derivatized amphipol, and adjuvant combinations improve vaccine protection. METHODS A novel approach, trapping the Chlamydia muridarum (Cm) native MOMP (nMOMP) with amphipols (A8-35), bearing a covalently conjugated peptide (EP67), was used. Adjuvants incorporated were: EP67 either conjugated to A8-35, which was used to trap nMOMP (nMOMP/EP67-A8-35), or free as a control, added to nMOMP/A8-35 complexes (nMOMP/A8-35+EP67); Montanide ISA 720 to enhance humoral responses, and CpG-1826 to elicit robust cell-mediated immunity (CMI). BALB/c mice were immunized by mucosal and systemic routes. Intranasal immunization with live Cm was used as positive control and three negative controls were included. Mice were challenged intranasally with Cm and changes in body weight, lungs weight and number of Cm-inclusion forming units (IFU) recovered from the lungs were evaluated to establish protection. To assess local responses levels of IFN- γ and Cm-specific IgA were determined in lungs' supernatants. RESULTS Structural assays demonstrated that nMOMP secondary structure and thermal stability were maintained when A8-35 was covalently modified. Mice vaccinated with nMOMP/EP67-A8-35 were better protected than animals immunized with nMOMP/A8-35+EP67. Addition of Montanide enhanced Th2 responses and improved protection. Including CpG-1826 further broadened, intensified and switched to Th1-biased immune responses. With delivery of nMOMP and the three adjuvants, as determined by changes in body weight, lungs weight and number of IFU recovered from lungs, protection at 10 days post-challenge was equivalent to that induced by immunization with live Cm. CONCLUSIONS Covalent association of EP67 to A8-35, used to keep nMOMP water-soluble, improves protection over that conferred by free EP67. Adjuvant combinations including EP67+Montanide+CpG-1826, by broadening and intensifying cellular and humoral immune responses, further enhanced protection.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Christel Le Bon
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Fabrice Giusti
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Melanie J Cocco
- Department of Molecular Biology and Biochemistry, Department of Pharmaceutical Sciences, 1218 Natural Sciences, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Manuela Zoonens
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
33
|
Ricciardi A, Zelt NH, Visitsunthorn K, Dalton JP, Ndao M. Immune Mechanisms Involved in Schistosoma mansoni-Cathepsin B Vaccine Induced Protection in Mice. Front Immunol 2018; 9:1710. [PMID: 30090103 PMCID: PMC6068236 DOI: 10.3389/fimmu.2018.01710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 01/13/2023] Open
Abstract
A vaccine against schistosomiasis would contribute to a long-lasting decrease in disease spectrum and transmission. Our previous protection studies in mice using Schistosoma mansoni Cathepsin B (Sm-Cathepsin B) resulted in 59 and 60% worm burden reduction with CpG oligodeoxynucleotides and Montanide ISA720 VG as adjuvants, respectively. While both formulations resulted in significant protection in a mouse model of schistosomiasis, the elicited immune responses differed. Therefore, in this study, we aimed to decipher the mechanisms involved in Sm-Cathepsin B vaccine-mediated protection. We performed in vitro killing assays using schistosomula stage parasites as targets for lung-derived leukocytes and serum obtained from mice immunized with Sm-Cathepsin B adjuvanted with either Montanide ISA 720 VG or CpG and from non-vaccinated controls. Lung cells and immune sera from the Sm-Cathepsin B + Montanide group induced the highest killing (63%) suggesting the importance of antibodies in cell-mediated parasite killing. By contrast, incubation with lung cells from Sm-Cathepsin B + CpG immunized animals induced significant parasite killing (53%) independent of the addition of immune serum. Significant parasite killing was also observed in the animals immunized with Sm-Cathepsin B alone (41%). For the Sm-Cathepsin B + Montanide group, the high level killing effect was lost after the depletion of CD4+ T cells or natural killer (NK) cells from the lung cell preparation. For the Sm-Cathepsin B + CpG group, high parasite killing was lost after CD8+ T cell depletion, and a reduction to 39% was observed upon depletion of NK cells. Finally, the parasite killing in the Sm-Cathepsin B alone group was lost after the depletion of CD4+ T cells. Our results demonstrate how the different Sm-Cathepsin B formulations influence the immune mechanisms involved in parasite killing and protection against schistosomiasis.
Collapse
Affiliation(s)
- Alessandra Ricciardi
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Center, Infectious Diseases and Immunity in Global Health (IDIGH) Program, National Reference Center for Parasitology, Montreal, QC, Canada
| | - Nicholas H Zelt
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Center, Infectious Diseases and Immunity in Global Health (IDIGH) Program, National Reference Center for Parasitology, Montreal, QC, Canada
| | | | - John P Dalton
- School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Ireland
| | - Momar Ndao
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Center, Infectious Diseases and Immunity in Global Health (IDIGH) Program, National Reference Center for Parasitology, Montreal, QC, Canada
| |
Collapse
|
34
|
Tritama E, Riani C, Rudiansyah I, Hidayat A, Kharisnaeni SA, Retnoningrum DS. Evaluation of alum-based adjuvant on the immunogenicity of salmonella enterica serovar typhi conjugates vaccines. Hum Vaccin Immunother 2018; 14:1524-1529. [PMID: 29359991 DOI: 10.1080/21645515.2018.1431599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The function of adjuvant in maintaining the long-term immune response to Typhoid conjugate vaccine (TCV) was evaluated in. Two TCV products, Vi-DT and Vi-TT, were formulated in either aluminum phosphate (AlPO4) or aluminum hydroxide (AlOH) as adjuvants and TCV formulated in phosphate buffer saline were used as controls. In each case, a group of Balb/c mice was injected intramuscularly with two doses of the formulated vaccine at two-week intervals. The anti-Vi IgG responses were monitored by Enzyme-Linked Immunosorbent Assay and the levels of CD4+ T-cells expressing cytokine were characterized using intracellular cytokine staining. All mice immunized by TCV formulated in adjuvant elicited anti-Vi response to a higher level than the group receiving TCV formulated in PBS. The extent of adsorption of TCV in AlOH was greater than that in AlPO4, and this finding correlated well with the observation that the mice immunized with two doses of Vi-DT(AlOH) elicited anti-Vi IgG to a level higher than that seen with Vi-DT(AlPO4). The mice primed with Vi-TT(AlOH) produced lower anti-Vi IgG (25.901 GM) compared to those receiving Vi-TT(AlPO4) (49.219 GM). However, after the second injection, the former raised the antibody level significantly to 137.008 GM while the latter provided a value of only 104.966 GM. The groups of mice vaccinated by TCV formulated in AlOH expressed IL4 at higher levels than the other groups, which correlated positively with the high Anti-Vi IgG in these animals. In conclusion, AlOH could be recommended as an effective adjuvant for TCV to provide a long-term immune response.
Collapse
Affiliation(s)
- Erman Tritama
- a Laboratory of Pharmaceutical Biotechnology , Department of Pharmacy, School of Pharmacy, Institute of Technology Bandung , Bandung , West Java , Indonesia.,b Research and Development Division, PT. Bio Farma , Bandung , West Java , Indonesia
| | - Catur Riani
- a Laboratory of Pharmaceutical Biotechnology , Department of Pharmacy, School of Pharmacy, Institute of Technology Bandung , Bandung , West Java , Indonesia
| | - Indra Rudiansyah
- b Research and Development Division, PT. Bio Farma , Bandung , West Java , Indonesia
| | - Arip Hidayat
- b Research and Development Division, PT. Bio Farma , Bandung , West Java , Indonesia
| | | | - Debbie Sofie Retnoningrum
- a Laboratory of Pharmaceutical Biotechnology , Department of Pharmacy, School of Pharmacy, Institute of Technology Bandung , Bandung , West Java , Indonesia
| |
Collapse
|
35
|
Garg R, Kaur M, Saxena A, Prasad R, Bhatnagar R. Alum adjuvanted rabies DNA vaccine confers 80% protection against lethal 50 LD 50 rabies challenge virus standard strain. Mol Immunol 2017; 85:166-173. [PMID: 28267643 DOI: 10.1016/j.molimm.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 11/24/2022]
Abstract
Rabies is a serious concern world-wide. Despite availability of rabies vaccines for long; their efficacy, safety, availability and cost effectiveness has been a tremendous issue. This calls for improvement of rabies vaccination strategies. DNA vaccination has immense potential in this regard. The DNA vaccine pgp.LAMP-1 conferred 60% protection to BALB/c mice against 20 LD50 rabies challenge virus standard (CVS) strain challenge. Upon supplementation with Emulsigen-D, the vaccine formulation conferred complete protection against lethal challenge. To assess the feasibility of this vaccine formulation for human use, it was tested along with other FDA approved adjuvants, namely, Alum, Immuvac, Montanide ISA720 VG. Enhanced immune response correlated with high IgG antibody titer, Th2 biased response with a high level of rabies virus neutralizing antibodies (RVNAs) and IgG1/IgG2a ratio >1, observed upon alum supplementation of the rabies DNA vaccine. The total IgG antibody titer was 2IU/ml and total RVNA titer was observed to be 4IU/ml which is eight times higher than the minimum protective titer recommended by WHO. Furthermore, it conferred 80% protection against challenge with 50 LD50 of the rabies CVS strain, conducted in compliance with the potency test for rabies recommended by the National Institutes of Health (NIH), USA. Previously, we have established pre-clinical safety of this vaccine as per the guidelines of Schedule Y, FDA as well as The European Agency for evaluation of Medicinal Products. The vaccine showed no observable toxicity at the site of injection as well as at systemic level in Wistar rats when administered with 10X recommended dose. Therefore, supplementation of rabies DNA vaccine, pgp.LAMP-1 with alum would lead to development of a non-toxic, efficacious, stable and affordable vaccine that can be used to combat high numbers of fatal rabies infections tormenting developing countries.
Collapse
Affiliation(s)
- Rajni Garg
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 Delhi, India; Amity Institute of Biotechnology, Amity University, Gurgaon (Manesar), 122413 Haryana, India
| | - Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 Delhi, India; Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
| | - Ankur Saxena
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 Delhi, India; Fish Health Division, Diagnostic Virology Laboratory, ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Industrial Area, Bhimtal 263136, District Nainital, Uttarakhand, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University, Gurgaon (Manesar), 122413 Haryana, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 Delhi, India.
| |
Collapse
|
36
|
Shokri M, Roohvand F, Alimohammadian MH, Ebrahimirad M, Ajdary S. Comparing Montanide ISA 720 and 50-V2 adjuvants formulated with LmSTI1 protein of Leishmania major indicated the potential cytokine patterns for induction of protective immune responses in BALB/c mice. Mol Immunol 2016; 76:108-15. [DOI: 10.1016/j.molimm.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
37
|
Sabur A, Asad M, Ali N. Lipid based delivery and immuno-stimulatory systems: Master tools to combat leishmaniasis. Cell Immunol 2016; 309:55-60. [PMID: 27470274 DOI: 10.1016/j.cellimm.2016.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Disease management of leishmaniasis is appalling due to lack of a human vaccine and the toxicity and resistance concerns with limited therapeutic drugs. The challenges in development of a safe vaccine for generation and maintenance of robust antileishmanial protective immunity through a human administrable route of immunization can be addressed through immunomodulation and targeted delivery. The versatility of lipid based particulate system for deliberate delivery of diverse range of molecules including immunomodulators, antigens and drugs have essentially found pivotal role in design of proficient vaccination and therapeutic strategies against leishmaniasis. The prospects of lipid based preventive and curative formulations for leishmaniasis have been highlighted in this review.
Collapse
Affiliation(s)
- Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
38
|
Herrmann VL, Wieland DE, Legler DF, Wittmann V, Groettrup M. The STEAP1(262-270) peptide encapsulated into PLGA microspheres elicits strong cytotoxic T cell immunity in HLA-A*0201 transgenic mice--A new approach to immunotherapy against prostate carcinoma. Prostate 2016; 76:456-68. [PMID: 26715028 DOI: 10.1002/pros.23136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/01/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND PLGA microsphere-based vaccination has been proven to be effective in immunotherapy of syngeneic model tumors in mice. The critical step for the translation to humans is the identification of immunogenic tumor antigens and potent vaccine formulations to overcome immune tolerance. METHODS HLA-A*0201 transgenic mice were immunized with eight different human prostate cancer peptide antigens co-encapsulated with TLR ligands into PLGA microspheres and analyzed for antigen-specific and functional cytotoxic T lymphocyte responses. RESULTS Only vaccination with STEAP1(262-270) peptide encapsulated in PLGA MS could effectively crossprime CTLs in vivo. These CTLs recognized STEAP1(262-270) /HLA-A*0201 complexes on human dendritic cells and prostate cancer cell lines and specifically lysed target cells in vivo. Vaccination with PLGA microspheres was much more potent than with incomplete Freund's adjuvant. CONCLUSIONS Our data suggests that there exist great differences in the immunogenicity of human PCa peptide antigens despite comparable MHC class I binding characteristics. Immunogenic STEAP1(262-270) peptide encapsulated into PLGA microspheres however was able to induce vigorous and functional antigen-specific CTLs and therefore is a promising novel approach for immunotherapy against advanced stage prostate cancer.
Collapse
Affiliation(s)
- Valerie L Herrmann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Daniel E Wieland
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
39
|
Ricciardi A, Visitsunthorn K, Dalton JP, Ndao M. A vaccine consisting of Schistosoma mansoni cathepsin B formulated in Montanide ISA 720 VG induces high level protection against murine schistosomiasis. BMC Infect Dis 2016; 16:112. [PMID: 26945988 PMCID: PMC4779570 DOI: 10.1186/s12879-016-1444-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/24/2016] [Indexed: 01/13/2023] Open
Abstract
Background Schistosomiasis is the most important human helminth infection due to its impact on public health. The clinical manifestations are chronic and significantly decrease an individual’s quality of life. Infected individuals suffer from long-term organ pathologies including fibrosis which eventually leads to organ failure. The development of a vaccine against this parasitic disease would contribute to a long-lasting decrease in disease spectrum and transmission. Method Our group has chosen Schistosoma mansoni (Sm) cathepsin B, a peptidase involved in parasite feeding, as a prospective vaccine candidate. Our experimental formulation consisted of recombinant Sm-cathepsin B formulated in Montanide ISA 720 VG, a squalene based adjuvant containing a mannide mono-oleate emulsifier. Parasitological burden was assessed by determining adult worm, hepatic egg, and intestinal egg numbers in each mouse. Serum was used in ELISAs to evaluate production of antigen-specific antibodies, and isolated splenocytes were stimulated with the antigen for the analysis of cytokine secretion levels. Results The Sm-cathepsin B and Montanide formulation conferred protection against a challenge infection by significantly reducing all forms of parasitological burdens. Worm burden, hepatic egg burden and intestinal egg burden were decreased by 60 %, 62 %, and 56 %, respectively in immunized animals compared to controls (P = 0.0002, P < 0.0001, P = 0.0009, respectively). Immunizations with the vaccine elicited robust production of Sm-cathepsin B specific antibodies (endpoint titers = 122,880). Both antigen-specific IgG1 and IgG2c titers were observed, with the former having more elevated titers. Furthermore, splenocytes isolated from the immunized animals, compared to control animals, secreted higher levels of key Th1 cytokines, IFN-γ, IL-12, and TNF-α, as well as the Th2 cytokines IL-5 and IL-4 when stimulated with recombinant Sm-cathepsin B. The Th17 cytokine IL-17, the chemokine CCL5, and the growth factor GM-CSF were also significantly increased in the immunized animals compared to the controls. Conclusion The formulation tested in this study was able to significantly reduce all forms of parasite burden, stimulate robust production of antigen-specific antibodies, and induce a mixed Th1/Th2 response. These results highlight the potential of Sm-cathepsin B/Montanide ISA 720 VG as a vaccine candidate against schistosomiasis. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1444-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Ricciardi
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.,National Reference Center for Parasitology, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | | | - John P Dalton
- Institute of Parasitology, McGill University, Montreal, QC, Canada.,School of Biological Sciences, Medical Biology Centre (MBC) Queen's University Belfast, Belfast, Northern Ireland
| | - Momar Ndao
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada. .,National Reference Center for Parasitology, Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
40
|
Kumai T, Kobayashi H, Harabuchi Y. Novel targets for natural killer/T-cell lymphoma immunotherapy. Immunotherapy 2015; 8:45-55. [PMID: 26642249 DOI: 10.2217/imt.15.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Extranodal natural killer/T-cell lymphoma, nasal type (NKTL) is a rare but highly aggressive Epstein-Barr virus-related malignancy, which mainly occurs in nasopharyngeal and nasal/paranasal areas. In addition to its high prevalence in Asian, Central American and South American populations, its incidence rate has been gradually increasing in Western countries. The current mainstay of treatment is a combination of multiple chemotherapies and irradiation. Although chemoradiotherapy can cure NKTL, it often causes severe and fatal adverse events. Because a growing body of evidence suggests that immunotherapy is effective against hematological malignancies, this treatment could provide an alternative to chemoradiotherapy for treatment of NKTL. In this review, we focus on how recent findings could be used to develop efficient immunotherapies against NKTL.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Otolaryngology, Head & Neck Surgery, Asahikawa Medical University, Midorigaoka-East 2-1-1-1, Asahikawa 078-8510, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-East 2-1-1-1, Asahikawa 078-8510, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head & Neck Surgery, Asahikawa Medical University, Midorigaoka-East 2-1-1-1, Asahikawa 078-8510, Japan.,Department of Pathology, Asahikawa Medical University, Midorigaoka-East 2-1-1-1, Asahikawa 078-8510, Japan
| |
Collapse
|
41
|
Rivera F, Espino AM. Adjuvant-enhanced antibody and cellular responses to inclusion bodies expressing FhSAP2 correlates with protection of mice to Fasciola hepatica. Exp Parasitol 2015; 160:31-8. [PMID: 26632503 DOI: 10.1016/j.exppara.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 01/02/2023]
Abstract
Fasciola hepatica saposin-like protein-2 (FhSAP2) is a protein differentially expressed in various developmental stages of F. hepatica. Recombinant FhSAP2 has demonstrated the induction of partial protection in mice and rabbits when it is administered subcutaneously (SC) in Freund's adjuvant. Because FhSAP2 is overexpressed in bacteria in the form of inclusion bodies (IBs), we isolated IBs expressing FhSAP2 and tested their immunogenicity when administered SC in mice emulsified in two different adjuvants: QS-21 and Montanide TM ISA720. Animals received three injections containing 20 μg of protein two weeks apart and 4 weeks after the third injection, mice were infected with 10 F. hepatica metacercariae by oral route. The percentages of protection induced by FhSAP2-IBs were estimated to be between 60.0 and 62.5% when compared with adjuvant-vaccinated, infected controls. By determining the levels of IgG1 and IgG2a antibodies and IL-4 and IFNγ cytokines in the serum of experimental animals, it was found that both Th1 and Th2 immune responses were significantly increased in the FhSAP2-IBs vaccinated groups compared with the adjuvant-vaccinated, infected control groups. The adjuvant-vaccinated groups had significantly lower IgG1 to IgG2a ratios and lower IL-4 to IFNγ ratios than the FhSAP2-IBs vaccinated animals, which is indicative of higher levels of Th2 immune responses. Irrespective to the adjuvant used, animals vaccinated with FhSAP2-IBs exhibited significantly higher survival percentage and less liver damage than the adjuvant-control groups. This study suggests that FhSAP2 has potential as vaccine against F. hepatica and that the protection elicited by this molecule could be linked to a mechanism driven by the CD4-Th1 cells.
Collapse
Affiliation(s)
- Francheska Rivera
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine, Puerto Rico
| | - Ana M Espino
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine, Puerto Rico.
| |
Collapse
|
42
|
Rahimian S, Fransen MF, Kleinovink JW, Christensen JR, Amidi M, Hennink WE, Ossendorp F. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. J Control Release 2015; 203:16-22. [PMID: 25660830 DOI: 10.1016/j.jconrel.2015.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/22/2022]
Abstract
The aim of the current study was to develop a cancer vaccine formulation for treatment of human papillomavirus (HPV)-induced malignancies. Synthetic long peptides (SLPs) derived from HPV16 E6 and E7 oncoproteins have been used for therapeutic vaccination in clinical trials with promising results. In preclinical and clinical studies adjuvants based on mineral oils (such as incomplete Freund's adjuvant (IFA) and Montanide) are used to create a sustained release depot at the injection site. While the depot effect of mineral oils is important for induction of robust immune responses, their administration is accompanied with severe adverse and long lasting side effects. In order to develop an alternative for IFA family of adjuvants, polymeric nanoparticles (NPs) based on hydrophilic polyester (poly(d,l lactic-co-hydroxymethyl glycolic acid) (pLHMGA)) were prepared. These NPs were loaded with a synthetic long peptide (SLP) derived from HPV16 E7 oncoprotein and a toll like receptor 3 (TLR3) ligand (poly IC) by double emulsion solvent evaporation technique. The therapeutic efficacy of the nanoparticulate formulations was compared to that of HPV SLP+poly IC formulated in IFA. Encapsulation of HPV SLP antigen in NPs substantially enhanced the population of HPV-specific CD8+ T cells when combined with poly IC either co-encapsulated with the antigen or in its soluble form. The therapeutic efficacy of NPs containing poly IC in tumor eradication was equivalent to that of the IFA formulation. Importantly, administration of pLHMGA nanoparticles was not associated with adverse effects and therefore these biodegradable nanoparticles are excellent substitutes for IFA in cancer vaccines.
Collapse
Affiliation(s)
- Sima Rahimian
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Willem Kleinovink
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonatan Riis Christensen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maryam Amidi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
43
|
The role of Montanide ISA 70 as an adjuvant in immune responses against Leishmania major induced by thiol-specific antioxidant-based protein vaccine. J Parasit Dis 2014; 40:760-7. [PMID: 27605780 DOI: 10.1007/s12639-014-0574-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022] Open
Abstract
Leishmaniasis is a parasitic disease caused by several species of the genus Leishmania. Montanide ISA 70 is an adjuvant composed of a natural metabolizable oil and a very refined emulsifier from the manide monooleate family. The TSA (thiol-specific antioxidant) is a important antigen of Leishmania major. The purpose of this work was protein-vaccine efficacy as an protection and excellent candidate in the presence Montanide. The expression of recombinant protein was confirmed with SDS (sodium dodecyl sulfate) page and Western bloting. 48 BALB/c mice were divided into four groups (TSA/Freund,TSA/Alum + BCG, TSA/Montanide and PBS groups) and immunized with 20 μg of vaccine subcutaneously three times intervals on days 0, 14 and 28. The mice were challenged with parasite 21 days after final immunization. The lymphocyte proliferation was evaluated with Brdu method. Cytokines and also total antibody and subclasses were evaluated with ELISA method. The vaccine formulated with the recombinant TSA protein with Montanide induced lymphocytes proliferation cytokines and total antibody and subclasses as compared with the control group.
Collapse
|
44
|
Xiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M. Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 2014; 7:1103-19. [DOI: 10.1586/14760584.7.7.1103] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Safety, immunogenicity and efficacy assessment of HIV immunotherapy in a multi-centre, double-blind, randomised, Placebo-controlled Phase Ib human trial. Vaccine 2013; 31:5680-6. [PMID: 24120550 DOI: 10.1016/j.vaccine.2013.09.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/05/2013] [Accepted: 09/24/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Combination antiretroviral therapy (cART) is the main therapeutic management tool for HIV/AIDS. Despite its success in controlling viral load and disease progression, cART is expensive, associated with a range of significant side effects and depends for its efficacy on the patient's life-long commitment to high levels of treatment adherence. Immunotherapeutic agents can provide potential solutions to these shortcomings. Here we describe a Phase Ib trial of HIV-v, a synthetic immunotherapy that elicits T- and B-cell effector responses against HIV infected cells. METHODS Fifty-nine cART-naive HIV-infected males aged 18-50 years with viral load of 5000-500,000 copies/ml and CD4 counts >350/μl were recruited for this multi-centre, randomised, double blind study. Volunteers received one low (250 μg) or high (500 μg) dose of HIV-v, either alone or adjuvanted (ISA-51). Safety, immunogenicity, CD4 count and viral load were monitored over 168 Days. RESULTS HIV-v was well tolerated and the adjuvanted formulations elicited IgG responses in up to 75% of volunteers. The high adjuvanted dose also elicited cellular responses in 45% of tested volunteers. In these responding subjects viral loads were reduced by over 1 log (p=0.04) compared to Placebo and non-responders. No changes in CD4 count were observed. CONCLUSIONS HIV-v is safe and can elicit T- and B-cell responses in ART-naive HIV patients that significantly reduce viral load. Improved dosing regimens and further research on long term efficacy are required, but HIV-v appears to have potential as an immunotherapeutic anti-viral agent. Trial registered as EudraCT-2009-010593-37 (ClinicalTrials.gov Identifier: NCT01071031).
Collapse
|
46
|
Nanotechnological Approaches for Genetic Immunization. DNA AND RNA NANOBIOTECHNOLOGIES IN MEDICINE: DIAGNOSIS AND TREATMENT OF DISEASES 2013. [PMCID: PMC7121080 DOI: 10.1007/978-3-642-36853-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genetic immunization is one of the important findings that provide multifaceted immunological response against infectious diseases. With the advent of r-DNA technology, it is possible to construct vector with immunologically active genes against specific pathogens. Nevertheless, site-specific delivery of constructed genetic material is an important contributory factor for eliciting specific cellular and humoral immune response. Nanotechnology has demonstrated immense potential for the site-specific delivery of biomolecules. Several polymeric and lipidic nanocarriers have been utilized for the delivery of genetic materials. These systems seem to have better compatibility, low toxicity, economical and capable to delivering biomolecules to intracellular site for the better expression of desired antigens. Further, surface engineering of nanocarriers and targeting approaches have an ability to offer better presentation of antigenic material to immunological cells. This chapter gives an overview of existing and emerging nanotechnological approaches for the delivery of genetic materials.
Collapse
|
47
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
48
|
Cruz LJ, Rueda F, Tacken P, Albericio F, Torensma R, Figdor CG. Enhancing immunogenicity and cross-reactivity of HIV-1 antigens by in vivo targeting to dendritic cells. Nanomedicine (Lond) 2013; 7:1591-610. [PMID: 23148541 DOI: 10.2217/nnm.12.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current retroviral treatments have reduced AIDS to a chronic disease for most patients. However, given drug-related side effects, the emergence of drug-resistant strains and the persistence of viral replication, the development of alternative treatments is a pressing need. This review focuses on recent developments in HIV immunotherapy treatments, with particular emphasis on current vaccination strategies for optimizing the induction of an effective immune response by the recruitment of dendritic cells. In addition to cell-based therapies, targeted strategies aiming to deliver synthetic HIV peptides to dendritic cell-specific receptors in vivo will be discussed.
Collapse
Affiliation(s)
- Luis J Cruz
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
49
|
Jang SI, Kim DK, Lillehoj HS, Lee SH, Lee KW, Bertrand F, Dupuis L, Deville S, Ben Arous J, Lillehoj EP. Evaluation of Montanide™ ISA 71 VG adjuvant during profilin vaccination against experimental coccidiosis. PLoS One 2013; 8:e59786. [PMID: 23593150 PMCID: PMC3620231 DOI: 10.1371/journal.pone.0059786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/18/2013] [Indexed: 12/23/2022] Open
Abstract
Chickens were immunized subcutaneously with an Eimeria recombinant profilin protein plus Montanide™ ISA 70 VG (ISA 70) or Montanide™ ISA 71 VG (ISA 71) water-in-oil adjuvants, or with profilin alone, and comparative RNA microarray hybridizations were performed to ascertain global transcriptome changes induced by profilin/ISA 70 vs. profilin alone and by profilin/ISA 71 vs. profilin alone. While immunization with profilin/ISA 70 vs. profilin alone altered the levels of more total transcripts compared with profilin/ISA 71 vs. profilin alone (509 vs. 296), the latter was associated with a greater number of unique biological functions, and a larger number of genes within these functions, compared with the former. Further, canonical pathway analysis identified 10 pathways that were associated with genes encoding the altered transcripts in animals immunized with profilin/ISA 71 vs. profilin alone, compared with only 2 pathways in profilin/ISA 70 vs. profilin alone. Therefore, ISA 71 was selected as a candidate adjuvant in conjunction with profilin vaccination for in vivo disease protection studies. Vaccination with profilin/ISA 71 was associated with greater body weight gain following E. acervulina infection, and decreased parasite fecal shedding after E. maxima infection, compared with profilin alone. Anti-profilin antibody levels were higher in sera of E. maxima- and E. tenella-infected chickens vaccinated with profilin/ISA 71 compared with profilin alone. Finally, the levels of transcripts encoding interferon-γ, interleukin (IL)-2, IL-10, and IL-17A were increased in intestinal lymphocytes from E. acervulina-, E. maxima-, and/or E. tenella-infected chickens vaccinated with profilin/ISA 71 compared with profilin alone. None of these effects were seen in chickens injected with ISA 71 alone indicating that the adjuvant was not conferring non-specific immune stimulation. These results suggest that profilin plus ISA 71 augments protective immunity against selective Eimeria species in chickens.
Collapse
Affiliation(s)
- Seung I. Jang
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Duk Kyung Kim
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Hyun S. Lillehoj
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
- * E-mail:
| | - Sung Hyen Lee
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Kyung Woo Lee
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | | | | | | | | | - Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
50
|
Mutiso JM, Macharia JC, Gicheru MM. Immunization with Leishmania vaccine-alum-BCG and montanide ISA 720 adjuvants induces low-grade type 2 cytokines and high levels of IgG2 subclass antibodies in the vervet monkey (Chlorocebus aethiops) model. Scand J Immunol 2012; 76:471-7. [PMID: 22862788 DOI: 10.1111/j.1365-3083.2012.02764.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The availability of hundreds of adjuvants has prompted a need for identifying rational standards for the selection of adjuvant formulation based on sound immunological principles for human vaccines. As cytokines elaborated by activated T cells are required for the regulation of isotype switch during B-cell development, a study of Th2 cytokines and subclass distribution of the antibodies may shed new light on the processes involved in the polarization of the immune responses during vaccination studies. The aim of this study was to identify an appropriate Leishmania vaccine adjuvant based on low Th2 cytokine and high value IgG2 antibody responses. Groups of vervet monkeys were immunized with Leishmania donovani sonicate antigen (Ag) alone or in conjunction with alum-BCG (AlBCG), monophosphoryl lipid A (MPL) or montanide ISA 720 (MISA) as adjuvants. Following three time point intradermal injections on days 0, 28 and 42, IL-4, IL-10 and IgG antibody subclasses were quantified by enzyme-linked immunosorbent assay (ELISA) and data analysed by one-way analysis of variance, Tukey-Kramer test and Spearman's rank correlation analysis. Results indicated relatively higher IL-4 and IL-10 cytokine responses following MPL + Ag as compared to AlBCG + Ag or MISA + Ag immunization. There was a positive significant correlation between IL-4 and IL-10 levels (r = 1.000; P = 0.0167). Significantly higher IgG2 antibody responses were associated with either AlBCG + Ag or MISA + Ag as compared to MPL + Ag immunization (P < 0.05). The study concludes that both AlBCG and MISA may be used in Leishmania vaccine studies that favour low Th2 cytokine and strong IgG2 antibody responses.
Collapse
Affiliation(s)
- J M Mutiso
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya.
| | | | | |
Collapse
|