1
|
Amir Kalvanagh P, Karimi H, Soleimanjahi H, Ebtekar M, Kokhaei P, Matloubi Z, Rahimi R, Kazemi-Sefat NA, Rajaei H. The Cooperation of IL-29 and PLGA Nanoparticles Improves the Protective Immunity of the gD-1 DNA Vaccine Against Herpes Simplex Virus Type 1 in Mice. Immunol Invest 2023; 52:779-795. [PMID: 37610337 DOI: 10.1080/08820139.2023.2243979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In clinical practice, the low immunogenicity and low stability of the DNA plasmid vaccine candidates are two significant shortcomings in their application against infectious diseases. To overcome these two disadvantages, the plasmid expressing IL-29 (pIL-29) as a genetic adjuvant and polylactic-co-glycolic acid (PLGA) as a non-viral delivery system were used, respectively. In this study, the pIL-29 encapsulated in PLGA nanoparticles (nanoIL-29) and the pgD1 encapsulated in PLGA nanoparticles (nanoVac) were simultaneously applied to boost immunologic responses against HSV-1. We generated spherical nanoparticles with encapsulation efficiency of 75 ± 5% and sustained the release of plasmids from them. Then, Balb/c mice were subcutaneously immunized twice with nanoVac+nanoIL-29, Vac+IL-29, nanoVac, Vac, nanoIL-29, and/or IL-29 in addition to negative and positive control groups. Cellular immunity was evaluated via lymphocyte proliferation assay, cytotoxicity test, and IFN-γ, IL-4, and IL-2 measurements. Mice were also challenged with 50X LD50 of HSV-1. The nanoVac+nanoIL-29 candidate vaccine efficiently enhances CTL and Th1-immune responses and increases the survival rates by 100% in mice vaccinated by co-administration of nanoVac and nanoIL-29 against the HSV-1 challenge. The newly proposed vaccine is worth studying in further clinical trials, because it could effectively improve cellular immune responses and protected mice against HSV-1.
Collapse
Affiliation(s)
- Parisa Amir Kalvanagh
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Massoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Matloubi
- Department of Immunology, Faculty of Medical Sciences, Sabzevar University, Sabzevar, Iran
| | - Roghieh Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Hajar Rajaei
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Gary EN, Kutzler MA. Defensive Driving: Directing HIV-1 Vaccine-Induced Humoral Immunity to the Mucosa with Chemokine Adjuvants. J Immunol Res 2018; 2018:3734207. [PMID: 30648120 PMCID: PMC6311813 DOI: 10.1155/2018/3734207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
A myriad of pathogens gain access to the host via the mucosal route; thus, vaccinations that protect against mucosal pathogens are critical. Pathogens such as HIV, HSV, and influenza enter the host at mucosal sites such as the intestinal, urogenital, and respiratory tracts. All currently licensed vaccines mediate protection by inducing the production of antibodies which can limit pathogen replication at the site of infection. Unfortunately, parenteral vaccination rarely induces the production of an antigen-specific antibody at mucosal surfaces and thus relies on transudation of systemically generated antibody to mucosal surfaces to mediate protection. Mucosa-associated lymphoid tissues (MALTs) consist of a complex network of immune organs and tissues that orchestrate the interaction between the host, commensal microbes, and pathogens at these surfaces. This complexity necessitates strict control of the entry and exit of lymphocytes in the MALT. This control is mediated by chemoattractant chemokines or cytokines which recruit immune cells expressing the cognate receptors and adhesion molecules. Exploiting mucosal chemokine trafficking pathways to mobilize specific subsets of lymphocytes to mucosal tissues in the context of vaccination has improved immunogenicity and efficacy in preclinical models. This review describes the novel use of MALT chemokines as vaccine adjuvants. Specific attention will be placed upon the use of such adjuvants to enhance HIV-specific mucosal humoral immunity in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Ebony N. Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michele A. Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- The Division of Infectious Diseases and HIV Medicine, The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
CCL17 combined with CCL19 as a nasal adjuvant enhances the immunogenicity of an anti-caries DNA vaccine in rodents. Acta Pharmacol Sin 2016; 37:1229-36. [PMID: 27546005 DOI: 10.1038/aps.2016.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
AIM CCL19 and its receptor CCR7 are essential molecules for facilitating the trafficking of mature dendritic cells (DCs) and helping to establish a microenvironment in lymphoid tissues to initiate primary immune responses, whereas CCL17 is required in the CCR7-CCL19-dependent migration of DCs. In this study we examined whether co-administration of CCL17 and CCL19 could enhance the immunogenicity of an anti-caries DNA vaccine, pCIA-P, in rodents. METHODS Plasmids encoding CCL17 (pCCL17/VAX) and CCL19 (pCCL19/VAX) were constructed. BALB/c mice were intranasally administered pCCL17/VAX, pCCL19/VAX, or pCCL17/VAX plus pCCL19/VAX, the migration of DCs to the spleen and draining lymph nodes (DLNs) was assessed with flow cytometry. The mice were co-administered pCIA-P; and the anti-PAc antibodies in the serum and saliva were detected with ELISA. Wistar rats were orally challenged with Streptococcus mutans and then administered pCIA-P in combination with pCCL17/VAX, pCCL19/VAX, or pCCL17/VAX plus pCCL19/VAX. The amount of S mutans sustained on rat molar surfaces was assessed using a colony forming assay. Caries activity was scored with the Keyes method. RESULTS Co-administration of the CCL17 and CCL19 genes in mice caused a greater increase in the number of mature DCs in the spleen and DLNs compared with administration of CCL17 or CCL19 genes alone. CCL17 and CCL19 double-adjuvant plus pCIA-P induced significantly higher levels of anti-PAc salivary IgA and anti-PAc serum IgG antibody in mice, and strengthened the ability of pCIA-P in inhibiting the colonization of S mutans on rat tooth surfaces. The caries activity of the combined adjuvant group was significantly lower than that of the pCCL17/VAX or the pCCL19/VAX group. CONCLUSION A nasal adjuvant consisting of a combination of CCL17 and CCL19 attracts more mature DCs to secondary lymphoid tissues, inducing enhanced antibody responses against the anti-caries DNA vaccine pCIA-P and reducing S mutans infection in rodents.
Collapse
|
4
|
CCL4 as an adjuvant for DNA vaccination in a Her2/neu mouse tumor model. Cancer Gene Ther 2016; 23:162-7. [PMID: 27056671 DOI: 10.1038/cgt.2016.9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/28/2022]
Abstract
Chemokines are key regulators of both innate and adaptive immune responses. CCL4 (macrophage inflammatory protein-1β, MIP-1β) is a CC chemokine that has a broad spectrum of target cells including immature dendritic cells, which express the cognate receptor CCR5. We asked whether a plasmid encoding CCL4 is able to improve tumor protection and immune responses in a Her2/neu+ mouse tumor model. Balb/c mice were immunized twice intramuscularly with plasmid DNA on days 1 and 15. On day 25, a tumor challenge was performed with 2 × 10(5) syngeneic Her2/neu+ D2F2/E2 tumor cells. Different groups of mice were vaccinated with pDNA(Her2/neu) plus pDNA(CCL4), pDNA(Her2/neu), pDNA(CCL4) or mock vector alone. Our results show that CCL4 is able to (i) improve tumor protection and (ii) augment a TH1-polarized immune response against Her2/neu. Although Her2/neu-specific humoral and T-cell immune responses were comparable with that induced in previous studies using CCL19 or CCL21 as adjuvants, tumor protection conferred by CCL4 was inferior. Whether this is due to a different spectrum of (innate) immune cells, remains to be clarified. However, combination of CCL19/21 with CCL4 might be a reasonable approach in the future, particularly for DNA vaccination in Her2/neu+ breast cancer in the situation of minimal residual disease.
Collapse
|
5
|
Jia Y, Krishnan L, Omri A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv 2015; 12:993-1008. [PMID: 25952104 DOI: 10.1517/17425247.2015.1044435] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Many human pathogens cause respiratory illness by colonizing and invading the respiratory mucosal surfaces. Preventing infection at local sites via mucosally active vaccines is a promising and rational approach for vaccine development. However, stimulating mucosal immunity is often challenging. Particulate adjuvants that can specifically target mucosal immune cells offer a promising opportunity to stimulate local immunity at the nasal and/or pulmonary mucosal surfaces. AREAS COVERED This review analyzes the common causes of respiratory infections, the challenges in the induction of mucosal and systemic responses and current pulmonary and nasal mucosal vaccination strategies. The ability of various particulate adjuvant formulations, including lipid-based particles, polymers and other particulate systems, to be effectively utilized for mucosal vaccine delivery is discussed. EXPERT OPINION Induction of antibody and cell-mediated mucosal immunity that can effectively combat respiratory pathogens remains a challenge. Particulate delivery systems can be developed to target mucosal immune cells and effectively present antigen to evoke a rapid and long-term local immunity in the respiratory mucosa. In particular, particulate delivery systems offer the versatility of being formulated with multiple adjuvants and antigenic cargo, and can be tailored to effectively prime immune responses across the mucosal barrier. The opportunity for rational design of novel subunit particulate vaccines is emerging.
Collapse
Affiliation(s)
- Yimei Jia
- National Research Council of Canada-Human Health Therapeutics , Ottawa, Ontario K1A 0R6 , Canada +1 613 991 3210 ;
| | | | | |
Collapse
|
6
|
Wang X, Meng D. Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell 2014; 6:170-84. [PMID: 25503634 PMCID: PMC4348248 DOI: 10.1007/s13238-014-0125-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/18/2014] [Indexed: 12/01/2022] Open
Abstract
Vaccination is an effective strategy to prevent infectious or immune related diseases, which has made remarkable contribution in human history. Recently increasing attentions have been paid to mucosal vaccination due to its multiple advantages over conventional ways. Subunit or peptide antigens are more reasonable immunogens for mucosal vaccination than live or attenuated pathogens, however adjuvants are required to augment the immune responses. Many mucosal adjuvants have been developed to prime desirable immune responses to different etiologies. Compared with pathogen derived adjuvants, innate endogenous molecules incorporated into mucosal vaccines demonstrate prominent adjuvanticity and safety. Nowadays, cytokines are broadly used as mucosal adjuvants for participation of signal transduction of immune responses, activation of innate immunity and polarization of adaptive immunity. Desired immune responses are promptly and efficaciously primed on basis of specific interactions between cytokines and corresponding receptors. In addition, some other innate molecules are also identified as potent mucosal adjuvants. This review focuses on innate endogenous mucosal adjuvants, hoping to shed light on the development of mucosal vaccines.
Collapse
Affiliation(s)
- Xiaoguang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,
| | | |
Collapse
|
7
|
Hartoonian C, Sepehrizadeh Z, Tabatabai Yazdi M, Jang YS, Langroudi L, Amir Kalvanagh P, Negahdari B, Karami A, Ebtekar M, Azadmanesh K. Enhancement of Immune Responses by Co-delivery of CCL19/MIP-3beta Chemokine Plasmid With HCV Core DNA/Protein Immunization. HEPATITIS MONTHLY 2014; 14:e14611. [PMID: 24693317 PMCID: PMC3955266 DOI: 10.5812/hepatmon.14611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/01/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Using molecular adjuvants offers an attractive strategy to augment DNA vaccine-mediated immune responses. Several studies have revealed that an efficient HCV vaccine model should be able to induce both humoral and cell mediated immune responses targeting the conserved regions of the virus to circumvent the immune escape mutants. The beta chemokine Macrophage Inflammatory Protein 3-beta (MIP-3beta) is a key modulator of dendritic cells (DCs) and T-cells interaction, functions during immune response induction and is secreted specifically by cells in the lymphoid tissues. OBJECTIVES In the present study, we questioned whether co-administration of MIP-3beta gene could enhance the immune responses to HCV core in DNA vaccination. MATERIALS AND METHODS Expression and biological activity of MIP-3beta expressing plasmid were evaluated by ELISA and transwell migration assays, respectively. HCV core DNA vaccine ± plasmid expressing MIP-3beta were electroporated subcutaneously to the front foot pads of BALB/c mice on days 0 and 14, and HCV core protein booster was applied to all core-DNA-vaccine received mice on the day 28. Both cell mediated immunity (proliferation, IFN-γ and IL-4 cytokine release, IFN-γ ELISpot and cytotoxic Granzyme B release assays) and humoral immune responses (total IgG and IgG2a/IgG1 subtyping) were evaluated ten days after final immunization. RESULTS Mice covaccinated with MIP-3beta elicited an enhanced Th1 biased systemic immune response as evidenced by higher IFN-γ/IL-4 and anti-core IgG2a/IgG1 ratio, lymphoproliferation, strong cytolytic GrzB release and enhanced population of IFN-γ producing immunocytes. Likewise, the humoral immune response assumed as the total anti-core IgG level was augmented by MIP-3beta co-delivery. CONCLUSIONS These results exhibited the immuno potentiator effects of MIP-3beta plasmid when coadministrated with the HCV core DNA vaccine. Complimentary studies integrating MIP-3beta as a genetic adjuvant in HCV-core-DNA vaccination models are warranted.
Collapse
Affiliation(s)
- Christine Hartoonian
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Authors: Zargham Sepehrizadeh, Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2164122301, Fax: + 98-2166461178, E-mail: ; Kayhan Azadmanesh, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| | - Mojtaba Tabatabai Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Yong Suk Jang
- Departments of Molecular Biology and Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Lida Langroudi
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Parisa Amir Kalvanagh
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modaress University, Tehran, IR Iran
| | - Babak Negahdari
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modaress University, Tehran, IR Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ali Karami
- Department of Research Center of Molecular Biology, Baqyiatallah University of Medical Sciences, Tehran, IR Iran
| | - Massoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modaress University, Tehran, IR Iran
| | - Kayhan Azadmanesh
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Zargham Sepehrizadeh, Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2164122301, Fax: + 98-2166461178, E-mail: ; Kayhan Azadmanesh, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| |
Collapse
|
8
|
Yan YH, Qi SC, Su LK, Xu QA, Fan MW. Co-delivery of ccl19 gene enhances anti-caries DNA vaccine pCIA-P immunogenicity in mice by increasing dendritic cell migration to secondary lymphoid tissues. Acta Pharmacol Sin 2013; 34:432-40. [PMID: 23334235 DOI: 10.1038/aps.2012.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To investigate how co-delivery of the gene encoding C-C chemokine ligand-19 (CCL-19) affected the systemic immune responses to an anti-caries DNA vaccine pCIA-P in mice. METHODS Plasmid encoding CCL19-GFP fusion protein (pCCL19/GFP) was constructed by inserting murine ccl19 gene into GFP-expressing vector pAcGFP1-N1. Chemotactic effect of the fusion protein on murine dendritic cells (DCs) was assessed in vitro and in vivo using transwell and flow cytometric analysis, respectively. BALB/c mice were administered anti-caries DNA vaccine pCIA-P plus pCCL19/GFP (each 100 μg, im) or pCIA-P alone. Serum level of anti-PAc IgG was assessed with ELISA. Splenocytes from the mice were stimulated with PAc protein for 48 h, and IFN-γ and IL-4 production was measured with ELISA. The presence of pCCL19/GFP in spleen and draining lymph nodes was assessed using PCR. The expression of pCCL19/GFP protein in these tissues was analyzed under microscope and with flow cytometry. RESULTS The expression level of CCL19-GFP fusion protein was considerably increased 48 h after transfection of COS-7 cells with pCCL19/GFP plasmids. The fusion protein showed potent chemotactic activity on DCs in vitro. The level of serum PAc-specific IgG was significantly increased from 4 to 14 weeks in the mice vaccinated with pCIA-P plus pCCL19/GFP. Compared to mice vaccinated with pCIA-P alone, the splenocytes from mice vaccinated with pCIA-P plus pCCL19/GFP produced significantly higher level of IFN-γ, but IL-4 production had no significant change. Following intromuscular co-delivery, pCCL19/GFP plasmid and fusion protein were detected in the spleen and draining lymph nodes. Administration of CCL19 gene in mice markedly increased the number of mature DCs in secondary lymphoid tissues. CONCLUSION CCL19 serves as an effective adjuvant for anti-caries DNA vaccine by inducing chemotactic migration of DCs to secondary lymphoid tissues.
Collapse
|
9
|
Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy 2013; 4:807-40. [PMID: 22947009 DOI: 10.2217/imt.12.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major role of chemokines is to mediate leukocyte migration through interaction with G-protein-coupled receptors. Various delivery systems have been developed to utilize the chemokine properties for combating disease. Viral and mutant viral vectors expressing chemokines, genetically modified dendritic cells with chemokine or chemokine receptors, engineered chemokine-expressing tumor cells and pDNA encoding chemokines are among these methods. Another approach for inducing a targeted immune response is fusion of a targeting antibody or antibody fragment to a chemokine. In addition, chemokines induce more effective antitumor immunity when used as adjuvants. In this regard, chemokines are codelivered along with antigens or fused as a targeting unit with antigenic moieties. In this review, several chemokines with their role in inducing immune response against different diseases are discussed, with a major emphasis on cancer.
Collapse
Affiliation(s)
- Elham Mohit
- Molecular Immunology & Vaccine Research Lab, Pasteur Institute of Iran, Tehran 13164, Iran
| | | |
Collapse
|
10
|
Kathuria N, Kraynyak KA, Carnathan D, Betts M, Weiner DB, Kutzler MA. Generation of antigen-specific immunity following systemic immunization with DNA vaccine encoding CCL25 chemokine immunoadjuvant. Hum Vaccin Immunother 2012; 8:1607-19. [PMID: 23151454 DOI: 10.4161/hv.22574] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A significant hurdle in vaccine development for many infectious pathogens is the ability to generate appropriate immune responses at the portal of entry, namely mucosal sites. The development of vaccine approaches resulting in secretory IgA and mucosal cellular immune responses against target pathogens is of great interest and in general, requires live viral infection at mucosal sites. Using HIV-1 and influenza A antigens as models, we report here that a novel systemically administered DNA vaccination strategy utilizing co-delivery of the specific chemokine molecular adjuvant CCL25 (TECK) can produce antigen-specific immune responses at distal sites including the lung and mesenteric lymph nodes in mice. The targeted vaccines induced infiltration of cognate chemokine receptor, CCR9+/CD11c+ immune cells to the site of immunization. Furthermore, data shows enhanced IFN-λ secretion by antigen-specific CD3+/CD8+ and CD3+/CD4+ T cells, as well as elevated HIV-1-specific IgG and IgA responses in secondary lymphoid organs, peripheral blood, and importantly, at mucosal sites. These studies have significance for the development of vaccines and therapeutic strategies requiring mucosal immune responses and represent the first report of the use of plasmid co-delivery of CCL25 as part of the DNA vaccine strategy to boost systemic and mucosal immune responses following intramuscular injection.
Collapse
Affiliation(s)
- Noshin Kathuria
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
11
|
Rhee JH, Lee SE, Kim SY. Mucosal vaccine adjuvants update. Clin Exp Vaccine Res 2012; 1:50-63. [PMID: 23596577 PMCID: PMC3623511 DOI: 10.7774/cevr.2012.1.1.50] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/25/2012] [Accepted: 06/15/2012] [Indexed: 12/16/2022] Open
Abstract
Mucosal vaccination, capable of inducing protective immune responses both in the mucosal and systemic immune compartments, has many advantages and is regarded as a blue ocean in the vaccine industry. Mucosal vaccines can offer lower costs, better accessability, needle-free delivery, and higher capacity of mass immunizations during pandemics. However, only very limited number of mucosal vaccines was approved for human use in the market yet. Generally, induction of immune responses following mucosal immunization requires the co-administration of appropriate adjuvants that can initiate and support the effective collaboration between innate and adaptive immunity. Classically, adjuvant researches were rather empirical than keenly scientific. However, during last several years, fundamental scientific achievements in innate immunity have been translated into the development of new mucosal adjuvants. This review focuses on recent developments in the concepts of adjuvants and innate immunity, mucosal immunity with special interest of vaccine development, and basic and applied researches in mucosal adjuvant.
Collapse
Affiliation(s)
- Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea. ; Department of Microbiology and Research Institute of Vibrio Infections, Chonnam National University Medical School, Gwangju, Korea
| | | | | |
Collapse
|
12
|
Nguyen-Hoai T, Baldenhofer G, Ahmed MS, Pham-Duc M, Gries M, Lipp M, Dörken B, Pezzutto A, Westermann J. CCL19 (ELC) improves TH1-polarized immune responses and protective immunity in a murine Her2/neu DNA vaccination model. J Gene Med 2012; 14:128-37. [PMID: 22228591 DOI: 10.1002/jgm.1651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND DNA vaccination is an attractive approach for tumor vaccination because plasmid DNA (pDNA) can be used as a 'general vaccine' across major histocompatibility complex barriers. Coexpression of immunomodulatory molecules can help to amplify the immunogenicity of DNA vaccines. CCL19 (ELC) is a CC chemokine with immunoregulatory properties, binding to the chemokine receptor CCR7 that is expressed on dendritic cells (DCs) and T cells. In vivo, CCL19 is a key regulator for the interactions between DCs and T cells in regional lymph nodes. METHODS pDNA encoding Her2/neu and CCL19 was used as an intramuscular vaccine. Vaccination was performed in BALB/c mice, which were subsequently challenged with syngeneic Her2/neu(+) tumor cells. Groups of mice were immunized with pDNA(Her2/neu) plus pDNA(CCL19), pDNA(Her2/neu) plus pDNA(CCL19) plus pDNA(GM-CSF), pDNA(Her2/neu) plus pDNA(GM-CSF), pDNA(Her2/neu), pDNA(CCL19), pDNA(GM-CSF) or mock vector. Tumor protection by the vaccine and immune responses were monitored. RESULTS Coadministration of pDNA(Her2/neu) and pDNA(CCL19) led to substantial improvement of tumor protection by the vaccine and induced a TH1-polarized, Her2/neu-specific immune response. Forty-seven days after the tumor challenge, 58% of the mice coinjected with pDNA(Her2/neu) and pDNA(CCL19) remained tumor-free compared to 22% after vaccination with pDNA(Her2/neu) alone. Additional administration of pDNA(GM-CSF) led to further improvement of tumor protection and an amplification of Her2/neu-specific immune responses. CONCLUSIONS CCL19 is able to induce a TH-1 polarization of the anti-Her2/neu immune response, which can be further amplified by granulocyte macrophage-colony-stimulating factor (GM-CSF). Clinical use of a pDNA(Her2/neu-CCL19 ± GM-CSF) vaccine might be promising in Her2/neu + breast cancer in the clinical situation of minimal residual disease.
Collapse
Affiliation(s)
- Tam Nguyen-Hoai
- Department of Hematology, Oncology and Tumor Immunology, Charité-, University Medicine Berlin, Campus Berlin-Buch and Campus Virchow-Klinikum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim SB, Han YW, Rahman MM, Kim SJ, Yoo DJ, Kang SH, Kim K, Eo SK. Modulation of protective immunity against herpes simplex virus via mucosal genetic co-transfer of DNA vaccine with beta2-adrenergic agonist. Exp Mol Med 2010; 41:812-23. [PMID: 19641376 DOI: 10.3858/emm.2009.41.11.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholera toxin, which has been frequently used as mucosal adjuvant, leads to an irreversible activation of adenylyl cyclase, thereby accumulating cAMP in target cells. Here, it was assumed that beta(2)-adrenergic agonist salbutamol may have modulatory functions of immunity induced by DNA vaccine, since beta(2)-adrenergic agonists induce a temporary cAMP accumulation. To test this assumption, the present study evaluated the modulatory functions of salbutamol co-administered with DNA vaccine expressing gB of herpes simplex virus (HSV) via intranasal (i.n.) route. We found that the i.n. co-administration of salbutamol enhanced gB-specific IgG and IgA responses in both systemic and mucosal tissues, but optimal dosages of co-administered salbutamol were required to induce maximal immune responses. Moreover, the mucosal co-delivery of salbutamol with HSV DNA vaccine induced Th2-biased immunity against HSV antigen, as evidenced by IgG isotypes and Th1/Th2-type cytokine production. The enhanced immune responses caused by co-administration of salbutamol provided effective and rapid responses to HSV mucosal challenge, thereby conferring prolonged survival and reduced inflammation against viral infection. Therefore, these results suggest that salbutamol may be an attractive adjuvant for mucosal genetic transfer of DNA vaccine.
Collapse
Affiliation(s)
- Seong Bum Kim
- Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Li YG, Wang ZP, Tian JQ, Tian BQ, Rodrigues R, Shang PF, Zhang T. Dendritic cell transfected with secondary lymphoid-tissue chemokine and/or interleukin-2 gene-enhanced cytotoxicity of T-lymphocyte in human bladder tumor cell S in vitro. Cancer Invest 2009; 27:909-17. [PMID: 19832038 DOI: 10.3109/07357900802375746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate whether dendritic cells (DCs) transfected with human secondary lymphoid-tissue chemokine (hSLC) and human interleukin-2 (hIL-2) genes are capable of improving DC's proliferation and to produce a marked antitumor effect in vitro combined with T-lymphocyte (TC). METHODS SLC gene primer was designed based on the corresponding gene sequence in GenBank. The Kpn I site was introduced into the upstream of the primer and Xho I site into the downstream. The SLC gene was amplified with the template of pET32a(+)-SLC by polymerase chain reaction. SLC was cloned into pBudCE4.1/IL-2 (TRAIL was cut from pBudCE4.1/TRAIL- IL-2 before) to construct recombinant plasmid pBudCE4.1/SLC-IL-2(PSI). DCs were transfected with pBudCE4.1/SLC-IL-2 by gene electric transfection. Protein expression was determined with Western blot and enzyme-linked immunosorbent assays. Cytotoxicity of TC and DC against the human bladder tumor cell were examined by chromium release assay. Flow cytometric analyses were performed to determine the apoptosis of tumor cells and the percentage of Treg. RESULTS A high level of expression of SLC and IL-2 was observed in DCs transfected with SLC and IL-2 genes. The mean production of IL-2 was 19.8 +/- 2.5, 511.10 +/- 52.36, and 541.3 +/- 62.04 ng/10(6) cells/24 hours in the DC/vector, DC/IL-2, and DC/SLC-IL-2, respectively. The mean SLC production was 29.8 +/- 4.43, 506.10 +/- 42.36, and 567.34 +/- 52.05 ngs/10(6)cells/24 hours in the DC/ vector, DC/SLC, and DC/SLC-IL-2, respectively. Cytotoxicity to bladder cancer cells was increased. The mean cytotoxicity (the effector/target ratio, 40:1) of TC-DC/parental, TC-DC/IL-2, TC-DC/SLC, and TC-DC/SLC-IL-2(TDSI) to the human bladder cancer cells was 32.1 +/- 5.5%, 63.5 +/- 6.6%, 78.1 +/- 9.63%, respectively. The apoptotsis rate of bladder cancer cells treated with TDSI was 18.6% by flow cytometry. Treg cells' percentage was very small in the DC medium. CONCLUSIONS SLC and IL-2 were produced by autocrine in DCs transfected with SLC and IL-2 genes. DC/SLC-IL-2 can promote DC proliferation, while TC-DC/SLC-IL-2 and TC-DC/SLC could strongly enhance significant cytotoxicity against bladder cancer cell that was induced by the coculture of DCs (transfected with SLC and IL-2) and TC.
Collapse
Affiliation(s)
- Yong-Gang Li
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou University Clinical Medical College, Lanzhou, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Muthumani G, Laddy DJ, Sundaram SG, Fagone P, Shedlock DJ, Kannan S, Wu L, Chung CW, Lankaraman KM, Burns J, Muthumani K, Weiner DB. Co-immunization with an optimized plasmid-encoded immune stimulatory interleukin, high-mobility group box 1 protein, results in enhanced interferon-gamma secretion by antigen-specific CD8 T cells. Immunology 2009; 128:e612-20. [PMID: 19740322 DOI: 10.1111/j.1365-2567.2009.03044.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA vaccination is a novel immunization strategy that has great potential for the development of vaccines and immune therapeutics. This strategy has been highly effective in mice, but is less immunogenic in non-human primates and in humans. Enhancing DNA vaccine potency remains a challenge. It is likely that antigen-presenting cells (APCs), and especially dendritic cells (DCs), play a significant role in the presentation of the vaccine antigen to the immune system. A new study reports the synergistic recruitment, expansion and activation of DCs in vivo by high-mobility group box 1 (HMGB1) protein. Such combinational strategies for delivering vaccine in a single, simple platform will hypothetically bolster the cellular immunity in vivo. Here, we combined plasmid encoding human immunodeficiency virus-1 (HIV-1) Gag and Env with an HMGB1 plasmid as a DNA adjuvant in BALB/c mice (by intramuscular immunization via electroporation), and humoral and cellular responses were measured. Co-administration of this potent immunostimulatory adjuvant strongly enhanced the cellular interferon-gamma (IFN-gamma) and humoral immune response compared with that obtained in mice immunized with vaccine only. Our results show that co-immunization with HMGB1 can have a strong adjuvant activity, driving strong cellular and humoral immunity that may be an effective immunological adjuvant in DNA vaccination against HIV-1.
Collapse
Affiliation(s)
- Gowtham Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Toll-like receptors (TLRs) are central mediators of innate antimicrobial and inflammatory responses and play instructive roles in the development of the adaptive immune response. Thus when stimulated by certain agonists, TLRs serve as adjuvant receptors that link innate and adaptive immunity. However, when excessively activated or inadequately controlled during an infection, TLRs may contribute to immunopathology associated with inflammatory diseases, such as periodontitis. Moreover, certain microbial pathogens appear to exploit aspects of TLR signalling in ways that enhance their adaptive fitness. The diverse and important roles played by TLRs suggest that therapeutic manipulation of TLR signalling may have implications in the control of infection, attenuation of inflammation, and the development of vaccine adjuvants for the treatment of periodontitis. Successful application of TLR-based therapeutic modalities in periodontitis would require highly selective and precisely targeted intervention. This would in turn necessitate precise characterization of TLR signalling pathways in response to periodontal pathogens, as well as development of effective and specific agonists or antagonists of TLR function and signalling. This review summarizes the current status of TLR biology as it relates to periodontitis, and evaluates the potential of TLR-based approaches for host-modulation therapy in this oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Periodontics/ Oral Health and Systemic Disease, School of Dentistry, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
- Department of Immunology and Microbiology, School of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| |
Collapse
|
17
|
Pack CD, Gierynska M, Rouse BT. An intranasal heat shock protein based vaccination strategy confers protection against mucosal challenge with herpes simplex virus. HUMAN VACCINES 2008; 4:360-4. [PMID: 18382144 DOI: 10.4161/hv.4.5.5978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Herpes simplex virus-1 (HSV-1) represents a significant obstacle for vaccine designers, despite decades of investigation. The virus primarily infects the host at vulnerable mucosal surfaces that progresses to lesion development, latency in nervous tissue, and possible reactivation. Therefore, protection at the site of infection is crucial. Mucosal adjuvants are critical for the development of an effective vaccine approach and heat-shock protein 70 (Hsp70) represents an attractive candidate for this purpose. This study demonstrates that Hsp70 coupled to gB498-505 from HSV-1 induced mucosal and systemic priming of CD8(+) T cells capable of protecting C57BL/6 mice against a lethal vaginal challenge. Elevated gB-specific cytotoxicity was observed in the spleen of mice immunized with conjugated Hsp70 and gB498-505. In addition, both vaginal IFNgamma levels and viral clearance were enhanced in mice mucosally immunized with Hsp70 and gB peptide versus peptide only control mice or mice receiving Hsp70 and a control peptide. These studies demonstrate that Hsp70 can be used as an effective mucosal adjuvant capable of generating a protective cell-mediated immune response against HSV-1.
Collapse
Affiliation(s)
- Christopher D Pack
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
18
|
Han YW, Aleyas AG, George JA, Kim SJ, Kim HK, Yoo DJ, Kang SH, Eo SK. Genetic co-transfer of CCR7 ligands enhances immunity and prolongs survival against virulent challenge of pseudorabies virus. Immunol Cell Biol 2008; 87:91-9. [PMID: 18794906 DOI: 10.1038/icb.2008.69] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CC chemokine receptor 7 (CCR7) and cognate CCR7 ligands, CCL19 and CCL21, help establish microenvironments in lymphoid tissue that can facilitate encounters between naive T cells and mature dendritic cells (DCs). This study was conducted to determine if CCR7 ligands can augment the immunogenicity of a DNA vaccine that expresses glycoprotein B (gB) of the pseudorabies virus (PrV). The genetic co-transfer of CCR7 ligands along with a PrV DNA vaccine increased the levels of serum PrV-specific immunoglobulin (Ig) G by 2- to 2.5-fold. In addition, the level of PrV-specific IgG2a isotype was significantly enhanced by co-injection of CCR7 ligand DNA, which indicates that CCR7 ligand biases the humoral immunity toward the Th1-type pattern. The co-injection of CCR7 ligand DNA consistently enhanced the level of Th1-type cytokines (IL-2 and IFN-gamma) produced by stimulated immune cells when compared with a group that was vaccinated with the PrV DNA vaccine. Also, the genetic co-transfer of CCR7 ligand DNAs with PrV DNA vaccine provided prolonged survival against a virulent challenge by PrV. Moreover, the co-administration of CCR7 ligand DNA increased the number of mature DCs into the secondary lymphoid tissues, which appeared to enhance the proliferation of PrV-immune CD4(+) T cells. Taken together, these findings indicate that CCR7 ligands are an attractive adjuvant for a PrV DNA vaccine that can offer protective immunity against the PrV.
Collapse
Affiliation(s)
- Young Woo Han
- Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ma K, Xu W, Shao X, Hu L, Xu H, Yuan Z, Zheng X, Xiong S. Coimmunization with RANTES plasmid polarized Th1 immune response against hepatitis B virus envelope via recruitment of dendritic cells. Antiviral Res 2007; 76:140-9. [PMID: 17655942 DOI: 10.1016/j.antiviral.2007.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 06/16/2007] [Accepted: 06/19/2007] [Indexed: 11/25/2022]
Abstract
Induction of T help cell type 1 (Th1) response seems to be a prerequisite of HBV clearance. DNA vaccines have shown its potential to elicit Th1-biased immune response. However, its immunogenicity needs to be improved. Regulated upon activation normal T cell expressed and secreted (RANTES) is an inflammatory chemokine that promotes the accumulation and activation of CD4+, CD8+ T cells, and dendritic cells (DCs), which would favor antiviral immunity. In this study, the efficacy of a DNA vaccine encoding hepatitis B virus (HBV) preS2 plus S protein was enhanced through co-injection of a plasmid encoding RANTES in a BALB/c model. Co-injection of RANTES gene resulted in a moderate increase in the HBV specific humoral and cellular immune responses and a significant increase following an HBsAg booster vaccination compared to DNA encoding HBsAg alone. This enhancement was due to an enrichment of DCs in the draining lymph node and an up-regulation of DCs maturation by RANTES. More importantly, RANTES polarized the specific immunity towards a dominant Th1 profile and even converted an established Th2 response to a Th1 phenotype. Our study suggested the feasibility of using a plasmid-encoded RANTES as a modulatory Th1 adjuvant in genetic vaccination.
Collapse
Affiliation(s)
- Ke Ma
- Institute for ImmunoBiology and Department of Immunology, Shanghai Medical College of Fudan University, 138, Yi Xue Yuan Road, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Westermann J, Nguyen-Hoai T, Baldenhofer G, Höpken UE, Lipp M, Dörken B, Pezzutto A. CCL19 (ELC) as an adjuvant for DNA vaccination: induction of a TH1-type T-cell response and enhancement of antitumor immunity. Cancer Gene Ther 2007; 14:523-32. [PMID: 17384577 DOI: 10.1038/sj.cgt.7701042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coexpression of tumor antigens together with immunomodulatory molecules is a strategy in DNA vaccination aiming at an amplification of the antitumor immune response. Epstein-Barr virus-induced-molecule-1-ligand-chemokine (ELC/CCL19) is a CC chemokine that binds to the chemokine receptor CCR7. CCR7 is expressed on mature dendritic cells (DC) and distinct T- and B-cell subpopulations. CCL19 (ELC) is mainly expressed in secondary lymphoid organs and plays a central role in regulating the encounters between DC and T cells. We asked whether CCL19 is able to augment immunogenicity of a DNA vaccine in a C57BL/6 mouse model with syngeneic MCA205 (beta-gal) tumor cells. Mice were vaccinated twice intramuscularly on days 1 and 15 and tumor challenge was performed subcutaneously on day 25. Coadministration of plasmid DNA (pDNA) (beta-gal) plus pDNA (CCL19) was compared with pDNA (beta-gal), pDNA (CCL19), mock vector and phosphate-buffered saline (PBS) alone. Coexpression of CCL19 resulted in enhancement of a Th1-polarized immune response with substantial improvement of the protective effect of the DNA vaccine. Immunohistochemical staining revealed an increased CD8+ T-cell infiltration in the tumor tissue of mice that had been immunized with pDNA (beta-gal) plus pDNA (CCL19). We conclude that CCL19 is an attractive adjuvant for DNA vaccination able to augment antitumor immunity and that this effect is partially caused by enhanced CD8+ T-cell recruitment.
Collapse
Affiliation(s)
- J Westermann
- Department of Hematology, Charité - University Medicine Berlin, Campus Berlin-Buch, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Song R, Liu S, Leong KW. Effects of MIP-1 alpha, MIP-3 alpha, and MIP-3 beta on the induction of HIV Gag-specific immune response with DNA vaccines. Mol Ther 2007; 15:1007-1015. [PMID: 17356539 PMCID: PMC2365720 DOI: 10.1038/mt.sj.6300129] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 01/25/2007] [Indexed: 11/09/2022] Open
Abstract
Transfection of DNA vaccines with chemokines may recruit dendritic cells (DCs) locally to capture the antigenic genes and their gene products to generate enhanced CD8(+) cytotoxic T lymphocytes (CTLs). In this study, we investigated the effects of macrophage inflammatory protein (MIP)-1 alpha, MIP-3 alpha, and MIP-3beta on human immunodeficiency virus (HIV) Gag DNA vaccination. The chemokine plasmids markedly enhanced the local infiltration of inflammatory cells and increased the presence of CD11c(+) B7.2(+)-activated DCs. MIP-1 alpha and MIP-3 alpha were potent adjuvants in augmenting CTLs and afforded strong protection to immunized animals against challenge with vaccinia virus expressing Gag (vv-Gag). However, decreased humoral response was observed. MIP-3beta plasmid did not dramatically alter immunity. The chemokine inoculation time with respect to DNA vaccine priming was also investigated. The injection of pMIP-3 alpha three days before Gag plasmid (pGag) vaccination markedly increased specific CTLs compared with simultaneous injection and led to higher protection against vv-Gag. Immunity was also shifted toward a T-helper type-1 (Th1) response. In contrast, inoculation with pMIP-3 alpha three days after pGag vaccination shifted immunity toward a Th2 response. Our data suggest that administration of a chemokine with DNA vaccines offers a valuable strategy to modulate the efficacy and polarization of specific immunity and that chemokine-antigen timing is critical in determining overall biological effects.
Collapse
Affiliation(s)
- Ruijiang Song
- Department of Pharmacology and Molecular Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
22
|
Abstract
Vaccination with DNA is one of the most promising novel immunization techniques against a variety of pathogens and tumors, for which conventional vaccination regimens have failed. DNA vaccines are able to stimulate both arms of the immune system simultaneously, without carrying the safety risks associated with live vaccines, therefore representing not only an alternative to conventional vaccines but also significant progress in the prevention and treatment of fatal diseases and infections. However, translation of the excellent results achieved in small animals to similar success in primates or large animals has so far proved to be a major hurdle. Moreover, biosafety issues, such as the removal of antibiotic resistance genes present in plasmid DNA used for vaccination, remain to be addressed adequately. This review describes strategies to improve the design and production of conventional plasmid DNA, including an overview of safety and regulatory issues. It further focuses on novel systems for the optimization of plasmid DNA and the development of diverse plasmid DNA delivery systems for vaccination purposes.
Collapse
Affiliation(s)
- Wolfgang Jechlinger
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A- 1210, Vienna, Austria.
| |
Collapse
|
23
|
Yoon HA, Aleyas AG, George JA, Park SO, Han YW, Lee JH, Kang HY, Kang SH, Cho JG, Eo SK. Modulation of Immune Responses Induced by DNA Vaccine Expressing Glycoprotein B of Pseudorabies Virus via Coadministration of IFN-γ-Associated Cytokines. J Interferon Cytokine Res 2006; 26:730-8. [PMID: 17032167 DOI: 10.1089/jir.2006.26.730] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The immunomodulatory efficacy of interferon-gamma (IFN-gamma)-associated cytokines coadministered with a plasmid DNA vaccine has been investigated, with variable results. Therefore, to test the immunomodulatory effect of IFN-gamma-associated cytokines as vaccine adjuvant, the present study evaluated the immune responses induced by pseudorabies virus (PrV) gB-encoded plasmid DNA vaccine coadministered with IFN-gamma-associated cytokines and chemokines. These cytokines and chemokines included interleukin-12 (IL-12) and IL-18, as potent inducers of IFN-gamma, and IFN-gamma-inducible protein (IP-10), the production of which is IFN-gamma dependent. A coinjection of either IL-12 or IL-18 strongly suppressed the humoral antibody responses but increased the production of the Th1-type cytokines IFN-gamma and IL-2 from immune T cells. Such antibody suppression was closely related to the increased susceptibility against a virulent viral challenge. On the other hand, IP-10 exhibited enhanced immune responses in both antibody responses and IFN-gamma production of immune T cells and facilitated the prolonged survival of infected mice. In contrast, there was no significant change in the immune responses of the mice that received codelivery of IFN-gamma. Therefore, IFN-gamma-associated cytokines, as Th1-type inducers, can generate unexpected and unwanted effects, and their application as a vaccine adjuvant should be carefully evaluated depending on the target antigens.
Collapse
Affiliation(s)
- Hyun A Yoon
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Significant progress made in the field of tumor immunology by the characterization of a large number of tumor antigens, and the better understanding of the mechanisms preventing immune responses to malignancies has led to the extensive study of cancer immunization approaches such as DNA vaccines encoding tumor antigens. This article reviews major aspects of DNA immunization in cancer. It gives a brief history and then discusses the proposed mechanism of action, preclinical and clinical studies, and methods of enhancing the immune responses induced by DNA vaccines.
Collapse
Affiliation(s)
- Rodica Stan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
25
|
Jimenez N, Coll J, Salguero FJ, Tafalla C. Co-injection of interleukin 8 with the glycoprotein gene from viral haemorrhagic septicemia virus (VHSV) modulates the cytokine response in rainbow trout (Oncorhynchus mykiss). Vaccine 2006; 24:5615-26. [PMID: 16725233 DOI: 10.1016/j.vaccine.2006.04.061] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 04/03/2006] [Accepted: 04/10/2006] [Indexed: 11/30/2022]
Abstract
Since previous results showed that interleukin 8 (IL-8) was induced in rainbow trout (Oncorhynchus mykiss) in response to viral hemorrhagic septicemia virus (VHSV) infection, we have cloned IL-8 in an expression vector (pIL8+) and studied its possible adjuvant effect on the early response to a VHSV immunization model, focusing on the early response of several cytokines induced by a vector coding for the glycoprotein of VHSV (pMCV1.4-G) in the spleen and head kidney. First, we demonstrated that the pIL8+ successfully transcribed IL-8, by induction of IL-8 transcription in the muscle and blood, and by a massive infiltration of neutrophils at the muscle inoculation site. We have studied the effect of pIL8+ co-administration on the expression of two pro-inflammatory cytokines, such as IL-1beta and tumour necrosis factor alpha (TNF-alpha); cytokines that have mainly an inhibitory role, IL-11 and transforming growth factor beta (TGF-beta); and a Th1 type cytokine, IL-18. We demonstrated that the co-administration of pIL8+ with pMCV1.4-G modulates the cytokine response that is induced, mainly by having its effect increasing pro-inflammatory cytokines (IL-1beta and TNF-alpha1), with a greater impact on the spleen, and to a lesser extent in the head kidney. All these data suggest that IL-8 is able to modulate the early cytokine immune response that is produced in response to a DNA vaccine, and therefore, might be a potential immune adjuvant in fish viral vaccination. More work should be done to determine if this modulation has a beneficial effect on protection as seen in other mammal viral models.
Collapse
Affiliation(s)
- N Jimenez
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8,1, Valdeolmos 28130, Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Yoon HA, Aleyas AG, George JA, Park SO, Han YW, Lee JH, Cho JG, Eo SK. Cytokine GM-CSF genetic adjuvant facilitates prophylactic DNA vaccine against pseudorabies virus through enhanced immune responses. Microbiol Immunol 2006; 50:83-92. [PMID: 16490926 DOI: 10.1111/j.1348-0421.2006.tb03773.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Granulocyte/macrophage colony-stimulatory factor (GM-CSF) is an attractive adjuvant for a DNA vaccine on account of its ability to recruit antigen-presenting cells (APCs) to the site of antigen synthesis as well as its ability to stimulate the maturation of dendritic cells (DCs). This study evaluated the utility of GM-CSF cDNA as a DNA vaccine adjuvant for glycoprotein B (gB) of pseudorabies virus (PrV) in a murine model. The co-injection of GM-CSF DNA enhanced the levels of serum PrV-specific IgG with a 1.5-to 2-fold increase. Moreover, GM-CSF co-injection inhibited the production of IgG2a isotype. However, it enhanced production of an IgG1 isotype resulting in humoral responses biased to the Th2-type against PrV antigen. In contrast, the co-administration of GM-CSF DNA enhanced the T cell-mediated immunity biased to the Th1-type, as judged by the significantly higher level of cytokine IL-2 and IFN-gamma production but not IL-4. When challenged with a lethal dose of PrV, the GM-CSF co-injection enhanced the resistance against a PrV infection. This suggests that co-inoculation with a vector expressing GM-CSF enhanced the protective immunity against a PrV infection. This immunity was caused by the induction of increased humoral and cellular immunity in response to PrV antigen.
Collapse
Affiliation(s)
- Hyun A Yoon
- Laboratories of Microbiology and College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pepose JS, Keadle TL, Morrison LA. Ocular herpes simplex: changing epidemiology, emerging disease patterns, and the potential of vaccine prevention and therapy. Am J Ophthalmol 2006; 141:547-557. [PMID: 16490506 DOI: 10.1016/j.ajo.2005.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/29/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE To review the changing epidemiology of herpes simplex virus infection, emerging patterns of herpetic ocular disease, and the challenges and promise of herpes simplex virus vaccine therapy. DESIGN Perspective. METHODS Literature review. RESULTS An epidemic increase in genital herpes simplex type 2 infection is reflected in a 30% increase in HSV-2 antibodies in the United States since 1976. Approximately one in four people in the United States over age 30 is infected with HSV-2. Primary acquisition of herpes simplex type 1 is becoming progressively delayed in many industrialized countries, in contrast to developing nations where the virus is acquired early in life and is ubiquitous. Changes in sexual behavior among young adults have been associated with a recent increase in genital HSV-1 infection, resulting from oral-genital rather than genital-genital contact. Clinical trials of HSV vaccines using selected herpes simplex virus type 2 proteins mixed in adjuvant have shown limited efficacy in seronegative women, but not in men. CONCLUSIONS The recent epidemic of genital herpes simplex type 2 infection is likely to result in an increase in neonatal ocular herpes and in delayed cases of acute retinal necrosis syndrome. The increase in genital HSV-1 may lead to industry production of vaccines that contain components of both HSV-1 and HSV-2 targeted toward limiting genital disease and transmission. As newer herpes simplex vaccines become available, ophthalmologists must be vigilant that a boost in immunity against HSV does not have a paradoxical effect in exacerbating break-through cases that develop immune-mediated herpes simplex stromal keratitis.
Collapse
Affiliation(s)
- Jay S Pepose
- Pepose Vision Institute, 16216 Baxter Road, Ste. 205, Chesterfield, MO 63107, USA.
| | | | | |
Collapse
|
28
|
van Duin D, Medzhitov R, Shaw AC. Triggering TLR signaling in vaccination. Trends Immunol 2005; 27:49-55. [PMID: 16310411 DOI: 10.1016/j.it.2005.11.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/18/2005] [Accepted: 11/10/2005] [Indexed: 11/22/2022]
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors that are an important link between innate and adaptive immunity. Many established, as well as experimental, vaccines incorporate ligands for TLRs, not only to protect against infectious diseases but also in therapeutic immunization against noninfectious diseases, such as cancer. We review the underlying mechanisms by which engagement of TLR signaling pathways might trigger an adaptive immune response after immunization. Although the engagement of TLR signaling pathways is a promising mechanism for boosting vaccine responses, questions of efficacy, feasibility and safety remain the subject of active investigation.
Collapse
Affiliation(s)
- David van Duin
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208022, New Haven, CT 06520, USA
| | | | | |
Collapse
|
29
|
Rajcáni J, Mosko T, Rezuchová I. Current developments in viral DNA vaccines: shall they solve the unsolved? Rev Med Virol 2005; 15:303-25. [PMID: 15906276 DOI: 10.1002/rmv.467] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review describes the mechanisms of immune response following DNA vaccination. The efficacy of DNA vaccines in animal models is highlighted, especially in viral diseases against which no widely accepted vaccination is currently available. Emphasis is given to possible therapeutic vaccination in chronic infections due to persisting virus genomes, such as recurrent herpes (HSV-1 and HSV-2), pre-AIDS (HIV-1) and/or chronic hepatitis B (HBV). In these, the problem of introducing foreign viral DNA may not be of crucial importance, since the immunised subject is already a viral DNA (or provirus) carrier. The DNA-based immunisation strategies may overcome several problems of classical viral vaccines. Novel DNA vaccines could induce immunity against multiple viral epitopes including the conservative type common ones, which do not undergo antigenic drifts. Within the immunised host, they mimic the effect of live attenuated viral vaccines when continuously expressing the polypeptide in question. For this reason they directly stimulate the antigen-presenting cells, especially dendritic cells. The antigen encoded by plasmid elicits T helper cell activity (Th1 and Th2 type responses), primes the cytotoxic T cell memory and may induce a satisfactory humoral response. The efficacy of DNA vaccines can be improved by adding plasmids encoding immunomodulatory cytokines and/or their co-receptors.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
30
|
An LL, Yang YH, Ma XT, Lin YM, Li G, Song YH, Wu KF. LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFRJ6-1 DNA vaccine. Leuk Res 2005; 29:535-43. [PMID: 15755506 DOI: 10.1016/j.leukres.2004.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 11/03/2004] [Indexed: 11/23/2022]
Abstract
DNA vaccine against M-CSFR(J6-1) (macrophage colony-stimulating factor receptor cloned from the J6-1 leukemic cell line) has shown both protective and therapeutic effects. In this study, to explore the adjuvant effects of LL-37 to M-CSFR(J6-1) DNA vaccines, we constructed genetically fused vaccines encoding M-CSFR(J6-1) and LL-37(pF). After immunizing BALB/c mice, specific humoral and cellular immune responses were detected. Compared with pR (encoding the extracellular region of M-CSFR(J6-1)), pF was more effective in inducing humoral and cytotoxic immune response, prolonging survival of mice challenged with SP2/0-CSFR(J6-1) tumor cells, and inducing IFN-gamma and IL-4 release by splenocytes. In this study, we also constructed pLL37 (encoding the mature LL-37) and coadministrated pLL37 and pR to see whether the genetic fusion was necessary. We found that compared with pR alone, pLL37+pR could not prolong survival of mice challenged with SP2/0-CSFR(J6-1) tumor cells. Our results suggest that when genetically fused with M-CSFR(J6-1), LL-37 could enhance adaptive immune response against M-CSFR(J6-1) in a murine model challenged with tumor cells bearing M-CSFR(J6-1).
Collapse
Affiliation(s)
- Li-Li An
- National Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Toka FN, Gieryńska M, Suvas S, Schoenberger SP, Rouse BT. Rescue of memory CD8+ T cell reactivity in peptide/TLR9 ligand immunization by codelivery of cytokines or CD40 ligation. Virology 2005; 331:151-8. [PMID: 15582662 DOI: 10.1016/j.virol.2004.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/23/2004] [Accepted: 10/11/2004] [Indexed: 11/30/2022]
Abstract
The capability of cellular immune components to rapidly recall upon challenge in most situations decides the efficacy of a vaccine. Here, we show that immunization of mice with SSIEFARL peptide (immunodominant epitope in glycoprotein B of herpes simplex virus type 1, aa498-505) combined with TLR9 ligand in the absence of helper CD4(+) T cell activation generates a functionally impaired CD8(+) T cell memory response. Codelivery of IL-12, IL-15, or anti-CD40 together with MHC class-I-restricted peptide combined with TLR9 ligand at inception of immunization resulted in generation of memory CD8(+) T cells that were several fold less compromised than immunization with peptide alone. Furthermore, administration of either plasmid DNA encoding IL-15 or anti-CD40 mAb but not rIL-12 during the memory phase restored the reactivity of memory CD8(+) T cells. Moreover, the rescued CD8(+) T cells preserved their cytotoxic capability and were able to clear a recombinant vaccinia virus encoding glycoprotein B of HSV. Our results indicate that good memory CD8(+) T cell response to peptide immunization can be achieved by using costimulatory procedures at the time of priming or recall immunization.
Collapse
Affiliation(s)
- Felix N Toka
- Department of Microbiology, M-409 Walter's Life Sciences Building, University of Tennessee, Knoxville, TN 37996-0845, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Mucosal surfaces represent the entry route of a multitude of viral pathogens. For many of these viruses, such as the herpes simplex viruses and human immunodeficiency virus, no effective vaccine exists. Hence, it is important that prospective vaccines engender maximal immunity at these susceptible sites. Genetic vaccines encoding adjuvant molecules represent one approach to optimize mucosal as well as systemic immunity. Promising candidates include various inflammatory cytokines and chemokines that might be used to enhance the primary response to a level sufficient for protection. Encouraging studies involving cytokines such as granulocyte/macrophage colony-stimulating factor, interleukin-2 (IL-2), IL-12, IL-18, and many others are examined. Notable chemokines that may offer hope in such efforts include IL-8, RANTES, CCL19, CCL21, and a few others. Combinatorial approaches utilizing several cytokines and chemokines will most likely yield the greatest success. In addition, as more is discovered regarding the requirements for memory development of T cells, boosters involving key cytokines such as IL-15 and IL-23 may prove beneficial to long-term maintenance of the memory pool. This review summarizes the progress in the use of genetic vaccines to achieve mucosal immunity and discusses the needed strategies to maximize long-term prospective immunity at this vulnerable entry site.
Collapse
Affiliation(s)
- Felix N Toka
- Department of Microbiology, University of Tennessee, Walter's Life Sciences Building, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
33
|
Jones CA, Cunningham AL. Development of prophylactic vaccines for genital and neonatal herpes. Expert Rev Vaccines 2004; 2:541-9. [PMID: 14711338 DOI: 10.1586/14760584.2.4.541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over five decades numerous conventional candidate live attenuated and killed vaccines have failed to prevent genital herpes in clinical trials. However, a vaccine consisting of recombinant glycoprotein D from herpes simplex virus (HSV)-2 and deacylated monophosphoryl lipid A adjuvant has recently shown partial efficacy against clinical disease transmitted from HSV-1 and -2 seronegative women (73-74%). Comparisons between the efficacy of this vaccine and previous failed candidates and their effects on the immune system should help guide development of better vaccines through selection of appropriate HSV proteins, adjuvants or cytokines and newer vaccine vectors, such as DNA vaccines, recombinant viral vaccines and specific HSV mutants.
Collapse
Affiliation(s)
- Cheryl A Jones
- Herpesvirus Research Unit, & Department of Immunology and Infectious Diseases, The Children's Hospital at Westmead, Westmead, Australia
| | | |
Collapse
|
34
|
Otero M, Calarota SA, Felber B, Laddy D, Pavlakis G, Boyer JD, Weiner DB. Resiquimod is a modest adjuvant for HIV-1 gag-based genetic immunization in a mouse model. Vaccine 2004; 22:1782-90. [PMID: 15068862 DOI: 10.1016/j.vaccine.2004.01.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA vaccines have been effective at generating useful immune responses in many animal species. However, it is clearly desirable to increase their potency. The identification of adjuvants that increase their cell-mediated immune (CMI) response is therefore an important goal. Resiquimod is an imiquimod analog proven to activate dendritic cells through TLR-7. The adjuvant capacity of resiquimod has not, to our knowledge, been studied in the context of genetic immunization. Here, we studied resiquimod as an adjuvant for plasmid vaccine therapy by intra-muscular immunization of BALB/c mice with HIV-1 gag DNA vaccine without and with several concentrations of resiquimod (ranging from 5-100nM). We observed that resiquimod moderately enhanced IFN-gamma production as measured by a peptide-based ELISPOT assay compared to that obtained in mice immunized with DNA gag only. Antigen-specific T-cell proliferation studies showed a several-fold increase in the stimulation index in mice immunized with DNA gag +50 nM of resiquimod as compared to mice receiving DNA gag alone. Antibody titer also increased, while the antibody isotyping data showed a strong Th1 biased type response. Analysis of cytokine production in serum samples demonstrated a stronger Th1 cytokine bias in the presence of resiquimod. Furthermore, relevant increase in IL-4 production, as measured by ELISPOT assay, was not observed. Our results show that resiquimod can have modest adjuvant activity, in a DNA formulation, driving the immune system towards a cell-mediated immune response. Additional studies involving this adjuvant for DNA vaccines are underway.
Collapse
Affiliation(s)
- Miguel Otero
- Department of Pathology, School of Medicine, University of Pennsylvania, 422 Curie Blvd., 505 Stellar-Chance Bldg., Philadelphia, PA 19104-6100, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Castagliuolo I, Sardina M, Brun P, DeRos C, Mastrotto C, Lovato L, Palù G. Clostridium difficile toxin A carboxyl-terminus peptide lacking ADP-ribosyltransferase activity acts as a mucosal adjuvant. Infect Immun 2004; 72:2827-36. [PMID: 15102793 PMCID: PMC387895 DOI: 10.1128/iai.72.5.2827-2836.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The receptor binding domains of the most potent mucosal adjuvants, bacterial toxins and plant lectins, are organized in repeat units to recognize specific sugar residues. The lectin-like structure of the C-terminal region of Clostridium difficile toxin A prompted us to investigate the mucosal adjuvant properties of a nontoxigenic peptide corresponding to amino acids 2394 to 2706 (TxA(C314)). We compared TxA(C314) adjuvant activity to those of cholera toxin (CT) and Escherichia coli heat-labile enterotoxin subunit B (EtxB) coadministered orally or nasotracheally with poor peptide antigens (keyhole limpet hemocyanin [KLH] and hen egg lysozyme [HEL]). Levels of anti-KLH-specific serum immunoglobulin G (IgG) and IgA as well as that of mucosal IgA were significantly higher in animals immunized orally with TxA(C314) plus KLH than with KLH alone, CT plus KLH, or EtxB plus KLH. Following intranasal immunization with TxA(C314) plus HEL, levels of serum- and mucosa-specific antibodies were comparable to those induced by coadministering HEL with CT or EtxB. The TxA(C314) adjuvant effect following oral, but not intranasal, immunization was dose dependent. The analysis of the subclasses of anti-KLH-specific IgG isotypes and the cytokines released from splenocytes of immunized mice challenged in vitro with KLH indicates the induction of a mixed Th1/Th2-type immune response, with prevalence of the Th1 branch. We conclude that TxA(C314) enhances immune responses against mucosa-coadministered foreign antigens and represents a promising mucosal adjuvant, especially because its ability to stimulate mixed Th1/Th2 responses with a strong a Th1 component is extremely worthwhile against intracellular pathogens.
Collapse
Affiliation(s)
- Ignazio Castagliuolo
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Gregor PD, Wolchok JD, Ferrone CR, Buchinshky H, Guevara-Patiño JA, Perales MA, Mortazavi F, Bacich D, Heston W, Latouche JB, Sadelain M, Allison JP, Scher HI, Houghton AN. CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine 2004; 22:1700-8. [PMID: 15068853 DOI: 10.1016/j.vaccine.2003.10.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenogeneic DNA vaccination can elicit tumor immunity through T cell and antibody-dependent effector mechanisms. Blockade of CTLA-4 engagement with B7 expressed on APCs has been shown to enhance T cell-dependent immunity. We investigated whether CTLA-4 blockade could increase T-cell responses and tumor immunity elicited by DNA vaccines. CTLA-4 blockade enhanced B16 tumor rejection in mice immunized against the melanoma differentiation antigens tyrosinase-related protein 2 and gp100, and this effect was stronger when anti-CTLA-4 was administered with booster vaccinations. CTLA-4 blockade also increased the T-cell responses to prostate-specific membrane antigen (PSMA) when given with the second or third vaccination. Based on these pre-clinical studies, we suggest that anti-CTLA-4 should be tested with xenogeneic DNA vaccines against cancer and that special attention should be given to sequence and schedule of administration.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antigens, CD
- Antigens, Differentiation/immunology
- Antigens, Differentiation/pharmacology
- Autoantigens/immunology
- Autoimmunity/immunology
- CTLA-4 Antigen
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Flow Cytometry
- Humans
- Immunity, Cellular/immunology
- Immunization Schedule
- Immunosuppressive Agents/pharmacology
- Male
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Transplantation
- Neoplasms/immunology
- Plasmids/immunology
- Prostate/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Polly D Gregor
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Toka FN, Gierynska M, Rouse BT. Codelivery of CCR7 ligands as molecular adjuvants enhances the protective immune response against herpes simplex virus type 1. J Virol 2004; 77:12742-52. [PMID: 14610196 PMCID: PMC262576 DOI: 10.1128/jvi.77.23.12742-12752.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Humoral and cellular immunity, associated with long-term protective immunological memory, defines the efficacy of a given vaccine formulation. However, few vaccines achieve this target without the aid of a suitable adjuvant. Molecular adjuvants in vaccination against infectious agents offer a noninvasive means of enhancing the immune response against target antigens. To examine the potency of two beta-chemokines as immunomodulators, plasmid DNA encoding beta-chemokines CCL19 and CCL21 (CCR7L) was codelivered intranasally with plasmid DNA or recombinant vaccinia virus encoding herpes simplex virus (HSV) gB (HSV-gB) in a prime-and-boost vaccination strategy. This vaccination regimen increased serum and vaginal immunoglobulin G (IgG) and IgA, respectively, as well as the numbers of HSV-gB(498-505) peptide-specific gamma interferon-producing CD8(+) T cells. Distinctively, a high number of cytotoxic T lymphocytes was achieved when pCCR7L was applied at both prime and boost as opposed to omission of pCCR7L. A rapid-recall response was induced in the genital tract upon challenge with the HSV McKrae strain, affording a high level of protection and survival of vaccinated mice. Our results demonstrate that high innate immune kinetics and distribution of adaptive response induced in the nasal mucosa appears to be key factors in generating protective memory responses against HSV. Thus CCR7L expressed ectopically may serve as a molecular adjuvant to boost the immune response to a codelivered antigen in mucosal surfaces.
Collapse
Affiliation(s)
- Felix N Toka
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
38
|
Kim SJ, Suh D, Park SE, Park JS, Byun HM, Lee C, Lee SY, Kim I, Oh YK. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES. Virology 2003; 314:84-91. [PMID: 14517062 DOI: 10.1016/s0042-6822(03)00417-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG(2a) rather than IgG(1) antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8(+) T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES.
Collapse
Affiliation(s)
- Seung Jo Kim
- Pundang CHA General Hospital, Sungnam, Kyonggi-do, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee Y, Eo SK, Rouse RJD, Rouse BT. Influence of CCR7 ligand DNA preexposure on the magnitude and duration of immunity. Virology 2003; 312:169-80. [PMID: 12890630 DOI: 10.1016/s0042-6822(03)00199-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The CC chemokine receptor (CCR) 7 ligands CCL21 and CCL19 were recently described as essential elements for establishing the microenvironment needed to initiate optimal immune responses in secondary lymphoid tissues. In the present study we have kinetically investigated the primary responses of naive DO11.10 TCR-transgenic CD4+ T cells (OVA323-339 peptide specific) adoptively transferred into normal BALB/c mice given plasmid DNA encoding CCR7 ligands. The primary responses of CD4+ Tg-T cells in CCR7 ligand DNA recipients occurred more promptly, reaching levels higher than those observed in vector controls. In line with enhanced specific immunity, the T-cell population in CCR7 ligand recipients underwent more in vivo cell division following Ag stimulation, and a higher percentage of Ag-specific T cells expressed an activation phenotype. Moreover, the enhanced primary responses of naive CD4+ T cells appeared to act via affects on migration and maturation of CD11c+ dendritic cells in the draining lymph nodes. In addition following mucosal challenge of herpes simplex virus-immune mice with virus, those that had received CCL21 or CCL19 during priming contained a higher frequency of responding CD4 T cells in lymph nodes and the site of infection. Moreover, CCL21- and CCL19-treated mice showed less severe disease and better survival following challenge. Our results are discussed in terms of the relevance of CCR7 ligand preimmunization to improve vaccine.
Collapse
Affiliation(s)
- Yunsang Lee
- Laboratory of Viral Immunology, Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
40
|
Lee S, Gierynska M, Eo SK, Kuklin N, Rouse BT. Influence of DNA encoding cytokines on systemic and mucosal immunity following genetic vaccination against herpes simplex virus. Microbes Infect 2003; 5:571-8. [PMID: 12787733 DOI: 10.1016/s1286-4579(03)00108-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of our investigation was to improve the effectiveness of DNA vaccines against herpes simplex virus (HSV) infection. We chose coimmunization with DNA encoding cytokines known to emphasize components of immune defense that best correlate with immune protection. These include interferon-producing T and NK cells and the IgG2a isotype immunoglobulin. Our results show that the coadministration of plasmid DNA encoding IL-12 or IL-18 along with glycoprotein B (gB) DNA improves immune induction. Recipients of the coimmunization procedure had elevated humoral as well as IFN-gamma-producing T cell responses and showed greater resistance to vaginal challenge with a lethal dose of HSV-1. The adjuvant effects were observed when the vaccines were administered either systemically or mucosally. By most assays, the adjuvant effect of IL-18 was superior to IL-12, although gB DNA plus IL-18 failed to induce levels of immunity achieved by UV-inactivated HSV immunization. Mucosal immunization proved as an effective means of inducing systemic immunity, but was less effective than the systemic route for inducing protection from vaginal challenge. Our results also demonstrated that protection from such challenges was mainly a property of IFN-gamma. Thus, immunized IFN-gamma-/- mice remained susceptible to challenges even while generating readily measurable immune responses. The approach of using DNA vaccines combined with DNA encoding cytokines holds promise and represents a potentially useful approach for vaccines.
Collapse
MESH Headings
- Administration, Intranasal
- Administration, Intravaginal
- Animals
- Antibodies, Viral/biosynthesis
- Female
- Herpes Simplex/immunology
- Herpes Simplex/prevention & control
- Herpes Simplex Virus Vaccines/administration & dosage
- Herpes Simplex Virus Vaccines/genetics
- Herpes Simplex Virus Vaccines/immunology
- Hypersensitivity, Delayed/immunology
- Immunity, Cellular
- Immunity, Mucosal
- Injections, Intramuscular
- Interferon-gamma/metabolism
- Interleukin-12/genetics
- Interleukin-18/genetics
- Mice
- Mice, Inbred BALB C
- Mucous Membrane/immunology
- Simplexvirus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Sujin Lee
- Department of Microbiology, The University of Tennessee, M409 Walters Life Sciences Building, Knoxville, TN 37996-0845, USA
| | | | | | | | | |
Collapse
|
41
|
Holmgren J, Czerkinsky C, Eriksson K, Mharandi A. Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 2003; 21 Suppl 2:S89-95. [PMID: 12763689 DOI: 10.1016/s0264-410x(03)00206-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mucosal immunisation may be used both to prevent mucosal infections through the activation of anti-microbial immunity and to treat selected autoimmune, allergic or infectious-immunopathological disorders through the induction of antigen-specific tolerance. The development of mucosal vaccines, whether for prevention of infectious diseases or for immunotherapy, requires antigen delivery and adjuvant systems that can efficiently help to present vaccine or immunotherapy antigens to the mucosal immune system. Promising advances have recently been made in the design of more efficient mucosal adjuvants based on detoxified bacterial toxin derivatives or CpG motif-containing DNA, and perhaps even more striking progress has been done in the use of virus-like particles as mucosal delivery systems for vaccines and of cholera toxin B subunit as antigen vector for immunotherapeutic tolerance induction. However, it is a memento that two recently developed mucosal vaccines for human use against rotavirus diarrhoea and influenza were withdrawn after a short period in the market because of adverse reactions among the vaccinees, thus emphasising the difficult and challenging task also for mucosal immunisation of combining vaccine and adjuvant efficacy with safety and acceptability.
Collapse
Affiliation(s)
- Jan Holmgren
- Department of Medical Microbiology & Immunology, Göteborg University Vaccine Research Institute (GUVAX), Göteborg University, Sweden.
| | | | | | | |
Collapse
|
42
|
Abstract
DNA vaccines have been widely used in laboratory animals and non-human primates over the last decade to induce antibody and cellular immune responses. This approach has shown some promise, in models of infectious diseases of both bacterial and viral origin as well as in tumour models. Clinical trials have shown that DNA vaccines appear safe and well tolerated, but need to be made much more potent to be candidates for preventive immunisation of humans. This review describes recent work to improve the delivery of plasmid DNA vaccines and also to increase the immunogenicity of antigens expressed from the DNA vaccine plasmids, including various formulations and molecular adjuvants. Because DNA vaccines are relatively new and represent a novel vaccine technology, certain safety issues, such as the potential for induction of autoimmune disease and integration into the host genome, must be examined carefully. If potency can be improved and safety established, plasmid DNA vaccines offer advantages in speed, simplicity, and breadth of immune response that may be useful for the immunisation of humans against infectious diseases and cancers.
Collapse
Affiliation(s)
- John Donnelly
- Chiron Corporation, 4560 Horton Street--M/S 4.3, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
43
|
Lundberg P, Cantin E. A potential role for CXCR3 chemokines in the response to ocular HSV infection. Curr Eye Res 2003; 26:137-50. [PMID: 12815542 DOI: 10.1076/ceyr.26.3.137.14898] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Corneal infection with herpes simplex virus (HSV) leads to the recruitment of immune cells to the eye itself, the trigeminal ganglion and the brainstem. In addition, some resident cells in these target tissues are infected by HSV, activated during the inflammatory response or both. Chemokine signaling is an important component of the regulatory circuit governing the host immune response to virus infection. This review discusses chemokine responses in relation to HSV infection of the cornea emphasizing the role of CXCR3 chemokine signaling by the IFN-gamma inducible ligands MIG, IP10 and I-TAC and includes discussion of their potential role in immunopathology in the nervous system.
Collapse
Affiliation(s)
- Patric Lundberg
- Department of Virology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California, USA.
| | | |
Collapse
|
44
|
Koelle DM, Corey L. Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 2003; 16:96-113. [PMID: 12525427 PMCID: PMC145296 DOI: 10.1128/cmr.16.1.96-113.2003] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) cause prevalent, chronic infections that have serious outcomes in some individuals. Neonatal herpes may occur when the infant traverses the cervix during maternal genital herpes. Genital herpes is a major risk factor for human immunodeficiency virus type 1 transmission. Considerable efforts have been made to design and test vaccines for HSV, focusing on genital infection with HSV-2. Several protein subunit vaccines based on HSV-2 envelope glycoproteins have reached advanced-phase clinical trials. These antigens were chosen because they are the targets of neutralizing-antibody responses and because they elicit cellular immunity. Encouraging results have been reported in studies of treatment of HSV-seronegative women with a vaccine consisting of truncated glycoprotein D of HSV-2 and a novel adjuvant. Because most sexual HSV transmission occurs during asymptomatic shedding, it is important to evaluate the impact of vaccination on HSV-2 infection, clinically apparent genital herpes, and HSV shedding among vaccine recipients who acquire infection. There are several other attractive formats, including subunit vaccines that target cellular immune responses, live attenuated virus strains, and mutant strains that undergo incomplete lytic replication. HSV vaccines have also been evaluated for the immunotherapy of established HSV infection.
Collapse
Affiliation(s)
- David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
45
|
Abstract
Mucosal vaccines may be used both to prevent mucosal infections through the activation of antimicrobial immunity and to treat systemic inflammatory diseases through the induction of antigen-specific mucosal tolerance. New, efficient mucosal adjuvants for human use have been designed based on, amongst others, bacterial toxins and their derivatives, CpG-containing DNA, and different cytokines and chemokines, with the aim of improving the induction of mucosal Th1 and Th2 responses. Mucosal delivery systems, in particular virus-like particles, have been shown to enhance the binding, uptake and half-life of the antigens, as well as target the vaccine to mucosal surfaces. DNA vaccines are currently being developed for administration at mucosal surfaces. However, there have also been failures, such as the withdrawal of an oral vaccine against rotavirus diarrhea and a nasal vaccine against influenza, because of their potential side effects.
Collapse
Affiliation(s)
- Kristina Eriksson
- Department of Medical Microbiology and Immunology and Göteborg University Vaccine Research Institute (GUVAX), Göteborg University, Guldhedsgatan 10A, 413 46 Göteborg, Sweden.
| | | |
Collapse
|
46
|
Abstract
Herpes simplex viruses (HSV) cause lifelong persistent infections with numerous disease manifestations. Genital herpes infections are widespread in populations throughout the world and a vaccine to protect against or subdue established genital herpes infections has been under development for decades. Vaccine-mediated protection against persistent viral infections can be extremely difficult to achieve. The more rapidly a virus reaches its target tissue for persistence, the more vigorously a vaccine-induced immune response must defend the vaccinated individual. After exposure to HSV through sexual contact, only a few days are required for the virus to establish latent infection of its host. Despite numerous improvements, traditional vaccine approaches of whole virus or protein subunits have met with only marginal success. The many disappointments have heightened interest in determining correlates of immune protection, studies pursued both in animal models and in humans. They have also led to reassessment of the goals of vaccination. Necessity has sparked several creative new vaccine approaches involving nucleic acid or live attenuated viruses and vectors. With improved concepts of protective immune responses has come fervent discussion of the means to stimulate and maintain cell-mediated immunity. The result of this work is likely to be a more thorough understanding of antiviral immunity in the genital mucosa and the nervous system, and of HSV pathogenesis and immune evasion strategies, as additional strides are taken toward the goal of a successful vaccine with which to confront HSV.
Collapse
Affiliation(s)
- Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Missouri 63104, USA.
| |
Collapse
|