1
|
Fatima F, Chourasiya NK, Mishra M, Kori S, Pathak S, Das R, Kashaw V, Iyer AK, Kashaw SK. Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective. Curr Med Chem 2024; 31:3668-3714. [PMID: 37221681 DOI: 10.2174/0929867330666230522144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023]
Abstract
The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the "Cure-all" therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.
Collapse
Affiliation(s)
- Firdous Fatima
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Nikhil Kumar Chourasiya
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Mitali Mishra
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sandhya Pathak
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
2
|
Lvova MN, Ponomarev DV, Tarasenko AA, Kovner AV, Minkova GA, Tsyganov MA, Li M, Lou Y, Evseenko VI, Dushkin AV, Sorokina IV, Tolstikova TG, Mordvinov VA, Avgustinovich DF. Curcumin and Its Supramolecular Complex with Disodium Glycyrrhizinate as Potential Drugs for the Liver Fluke Infection Caused by Opisthorchis felineus. Pathogens 2023; 12:819. [PMID: 37375509 DOI: 10.3390/pathogens12060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Opisthorchiosis is a parasitic liver disease found in mammals that is widespread throughout the world and causes systemic inflammation. Praziquantel remains the drug of choice for the treatment of opisthorchiosis, despite its many adverse effects. An anthelmintic effect is attributed to the main curcuminoid of Curcuma longa L. roots-curcumin (Cur)-along with many other therapeutic properties. To overcome the poor solubility of curcumin in water, a micellar complex of curcumin with the disodium salt of glycyrrhizic acid (Cur:Na2GA, molar ratio 1:1) was prepared via solid-phase mechanical processing. In vitro experiments revealed a noticeable immobilizing effect of curcumin and of Cur:Na2GA on mature and juvenile Opisthorchis felineus individuals. In vivo experiments showed that curcumin (50 mg/kg) had an anthelmintic effect after 30 days of administration to O. felineus-infected hamsters, but the effect was weaker than that of a single administration of praziquantel (400 mg/kg). Cur:Na2GA (50 mg/kg, 30 days), which contains less free curcumin, did not exert this action. The complex, just as free curcumin or better, activated the expression of bile acid synthesis genes (Cyp7A1, Fxr, and Rxra), which was suppressed by O. felineus infection and by praziquantel. Curcumin reduced the rate of inflammatory infiltration, whereas Cur:Na2GA reduced periductal fibrosis. Immunohistochemically, a decrease in liver inflammation markers was found, which is determined by calculating the numbers of tumor-necrosis-factor-positive cells during the curcumin treatment and of kynurenine-3-monooxygenase-positive cells during the Cur:Na2GA treatment. A biochemical blood test revealed a normalizing effect of Cur:Na2GA (comparable to that of curcumin) on lipid metabolism. We believe that the further development and investigation of therapeutics based on curcuminoids in relation Opisthorchis felineus and other trematode infections will be useful for clinical practice and veterinary medicine.
Collapse
Affiliation(s)
- Maria N Lvova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Denis V Ponomarev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alena A Tarasenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna V Kovner
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Galina A Minkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Michail A Tsyganov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Meijun Li
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yan Lou
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Veronica I Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V Dushkin
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina V Sorokina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Tatiana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Viatcheslav A Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Damira F Avgustinovich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Plants-based medicine implication in the evolution of chronic liver diseases. Biomed Pharmacother 2023; 158:114207. [PMID: 36916432 DOI: 10.1016/j.biopha.2022.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatic disorders are considered major health problems, due to their high incidence, increased risk of chronicling or death and the costs involved in therapies. A large number of patients with chronic liver diseases use herbal medicines and dietary supplements in parallel with allopathic treatment. The current review provides a thorough analysis of the studies conducted on the most important species of medicinal plants used in this disease, bioactive compounds and on the activity of herbal medicines in the evolution of chronic liver diseases. However, a negative aspect is that there is frequently a lack of comprehensive data on the progression of the illness and the living standards of patients who are affected when evaluating the effects of these phytocomponents on the evolution of chronic liver disease, the patients' health, and their quality of life. It is essential to take this impairment into account when evaluating the long-term effects of herbal treatments on the health of individuals who suffer from liver illness. Bioactive phytocomponents may be a suitable source for the development of novel medications due to the correlation between traditional uses and medical advances. Additional high-quality preclinical examinations utilizing cutting-edge approaches are needed to assess safety and effectiveness and to detect, categorize, and standardize the active substances and their formulations for the most suitable therapeutic management of liver illnesses.
Collapse
|
5
|
Singh K, Srichairatanakool S, Chewonarin T, Prommaban A, Samakradhamrongthai RS, Brennan MA, Brennan CS, Utama-ang N. Impact of Green Extraction on Curcuminoid Content, Antioxidant Activities and Anti-Cancer Efficiency (In Vitro) from Turmeric Rhizomes ( Curcuma longa L.). Foods 2022; 11:foods11223633. [PMID: 36429224 PMCID: PMC9689051 DOI: 10.3390/foods11223633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Turmeric (Curcuma longa L.) powder is widely used as a spice and seasoning in Asian countries. This study investigated the effect of turmeric extracts on the anticancer activity of Huh7 and HCT 116 cells. The curcumin bioactive compounds were extracted using various methods such as microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and traditional extraction (TDE). The yield of dried extracts from MAE was found to be the highest at 17.89%, followed by UAE and TDE, with 11.34% and 5.54%, respectively. Antioxidant activities such as TPC, DPPH and FRAP from MAE were higher than those of UAE and TDE. The total curcuminoid contents from the novel extractions were higher than those from traditional extraction methods. For instance, curcuminoid contents from MAE, UAE and TDE were 326.79, 241.17 and 215.83 mg/g, respectively. Due to having the highest bioactive compounds and extraction yield, turmeric extract from MAE was used to investigate the potential anticancer properties. The extract showed significant cytotoxic potential against the human liver (Huh7) and human colon (HCT116) cell lines, in concentrations ranging from 31.25 to 1000.00 µg/mL. Turmeric extracts using MAE have potential anticancer effects on Huh7 and HCT116 cells. This study serves as scientific data for the chemotherapeutic properties of turmeric extracts and their use as functional ingredients.
Collapse
Affiliation(s)
- Kanjana Singh
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Somdet Srichairatanakool
- Cluster of High Value Products from Thai Rice and Plant for Health, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Adchara Prommaban
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Rajnibhas Sukeaw Samakradhamrongthai
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of High Value Products from Thai Rice and Plant for Health, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Margaret Anne Brennan
- School of Science, RMIT University, Melbourne 3000, Australia
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Science, Lincoln University, Christchurch 7647, New Zealand
| | - Charles Stephen Brennan
- School of Science, RMIT University, Melbourne 3000, Australia
- Correspondence: (C.S.B.); (N.U.-a.); Tel.: +61-399254177 (C.S.B.); +66-53948233 (N.U.-a.)
| | - Niramon Utama-ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of High Value Products from Thai Rice and Plant for Health, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: (C.S.B.); (N.U.-a.); Tel.: +61-399254177 (C.S.B.); +66-53948233 (N.U.-a.)
| |
Collapse
|
6
|
Racz LZ, Racz CP, Pop LC, Tomoaia G, Mocanu A, Barbu I, Sárközi M, Roman I, Avram A, Tomoaia-Cotisel M, Toma VA. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022; 27:molecules27206854. [PMID: 36296447 PMCID: PMC9608994 DOI: 10.3390/molecules27206854] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, β-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein–curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.
Collapse
Affiliation(s)
- Levente Zsolt Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Csaba Pal Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Lucian-Cristian Pop
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Gen. Traian Mosoiu Str., RO-400132 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Aurora Mocanu
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Ioana Barbu
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
| | | | - Ioana Roman
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
| | - Alexandra Avram
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
7
|
Altındağ F, Boğokşayan S, Bayram S. Eumelanin protects the liver against diethylnitrosamine-induced liver injury. Toxicology 2022; 480:153311. [PMID: 36113623 DOI: 10.1016/j.tox.2022.153311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
This study aims to evaluate in vivo protective effects of eumelanin (EU) on diethylnitrosamine (DEN)-induced liver injury. Wistar albino male rats were divided into 6 groups (n = 6), Control, DMSO, DEN, DEN + EU10, DEN + EU15, and DEN + EU20. Animals in the DEN group were injected i.p a single dose of 200 mg/kg DEN, DEN + EU10 group was given 10 mg/kg EU, DEN + EU15 group was given 15 mg/kg, DEN + EU20 group was given 20 mg/kg EU for a week. The results showed that there was no significant difference in vessel volume density between the groups. Inflammatory cell infiltration, hydropic degeneration, and necrotic cells were observed in the DEN group, and these histopathological changes were significantly reduced in all treatment groups. Although there was a low intensity of PAS-positive staining in the DEN groups, moderate staining was observed in the treatment groups. While Caspase-3, PCNA, TNF-α, and IL-6 expressions increased in the DEN group, their expressions decreased in the EU-treated groups. DEN increased AST, ALT, and MDA levels and decreased CAT levels. In particular, the EU10 dose significantly improved these parameters. The present study revealed that eumelanin has protective effects against DEN-induced liver injury.
Collapse
Affiliation(s)
- Fikret Altındağ
- Department of Histology and Embryology, Van Yüzüncü Yıl University Faculty of Medicine, Van, Turkey.
| | - Seda Boğokşayan
- Department of Histology and Embryology, Van Yüzüncü Yıl University Faculty of Medicine, Van, Turkey
| | - Sinan Bayram
- Department of Medical Services and Techniques, Vocational School of Health Services, Bayburt University, Bayburt, Turkey
| |
Collapse
|
8
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
9
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
10
|
Alhusain A, Fadda L, Sarawi W, Alomar H, Ali H, Mahamad R, Hasan I, Badr A. The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III Expression. Dose Response 2022; 20:15593258221078394. [PMID: 35250410 PMCID: PMC8891863 DOI: 10.1177/15593258221078394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background and objectives N-(4-hydroxyphenyl) acetamide (NHPA) is the most commonly used analgesic and antipyretic agent worldwide; however, it remains the leading cause of drug-induced acute liver failure. This study explored the potential impact of curcumin (Curc) and/or α-lipoic acid (Lip acid) on liver damage induced by NHPA overdose. Materials and Methods Male Wistar rats were intoxicated with a single oral dose of NHPA (1000 mg/kg) and treated with Curc (200 mg/kg p. o.) and/or Lip acid (100 mg/kg i. p.). These treatments were given in 2 doses at 2 hours and 10 hours post-NHPA-administration. Animals were sacrificed 24 hours post-NHPA-administration. Results Treatment with Curc and/or Lip acid showed effective reduction of NHPA-induced liver injury, demonstrated by reducing serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, as well as hepatic nitric oxide and malondialdehyde. Curc and/or Lip acid treatments counteracted these changes. They also ameliorated NHPA-induced centrilobular hepatocellular necrosis, evidenced by histopathological examination. Moreover, Curc and Lip acid reduced the expression of alpha-smooth muscle actin and collagen III, upregulated by NHPA intoxication in response to oxidative stress and inflammation. Discussion and Conclusion Curc and Lip acid can be considered as promising natural therapies against liver injury, induced by NHPA, through their antioxidant and antifibrotic actions.
Collapse
Affiliation(s)
- Ahlam Alhusain
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatun Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa Ali
- Department of Genetics and Cytology, National Research Centre, Dokki, Egypt
| | - Raeesa Mahamad
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Iman Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
12
|
Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9924328. [PMID: 34257824 PMCID: PMC8257365 DOI: 10.1155/2021/9924328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer arises through a complex interplay between genetic, behavioral, metabolic, and environmental factors that combined trigger cellular changes that over time promote malignancy. In terms of cancer prevention, behavioral interventions such as diet can promote genetic programs that may facilitate tumor suppression; and one of the key tumor suppressors responsible for initiating such programs is p53. The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. Due to its role in cell fate decisions after DNA damage, regulatory pathways controlled by p53 help to maintain genome stability and thus “guard the genome” against mutations that cause cancer. Dietary intake of flavonoids, a C15 group of polyphenols, is known to inhibit cancer progression and assist DNA repair through p53-mediated mechanisms in human cells via their antioxidant activities. For example, quercetin arrests human cervical cancer cell growth by blocking the G2/M phase cell cycle and inducing mitochondrial apoptosis through a p53-dependent mechanism. Other polyphenols such as resveratrol upregulate p53 expression in several cancer cell lines by promoting p53 stability, which in colon cancer cells results in the activation of p53-mediated apoptosis. Finally, among vitamins, folic acid seems to play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in patients with premalignant lesions by significantly increased expression of p53. In this review, we discuss the role of these and other dietary antioxidants in p53-mediated cell signaling in relation to cancer chemoprevention and tumor suppression in normal and cancer cells.
Collapse
|
13
|
Fadda LM, Alsharidah R, Hasan IH. Turmeric and vitamin C mitigate testicular atrophy induced by lead diacetate via regulation of GRP-78/17β-HSD pathways in rat's model. Andrologia 2021; 53:e14120. [PMID: 34028854 DOI: 10.1111/and.14120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Occupational and ecological contacts to lead persist as a universal concern. Lead alters most of the physiological processes via enhancing oxidative stress. Thus, this study was purposed to assess the influence of turmeric (TMRC) and/or vitamin C (VIT-C) on Lead diacetate (Lead diAC)-induced testicular atrophy with an emphasis on oxidative stress, inflammation, BAX/STAR and GRP-78/17β-HSD signalling. Rats were injected with Lead diAC and then treated with TMRC and/or VIT-C orally for 1 week. Lead diAC decreased serum testosterone and testicular glutathione levels. It also decreased superoxide dismutase activity. On the contrary, levels of malondialdehyde, tumour necrosis factor-α, IL-1β and caspase-3 were increased. mRNA levels and protein expressions of GRP-78 and BAX were upregulated, while the expression of both steroidogenic acute regulatory protein and 17β-HSD were downregulated. DNA fragmentation was increased as well. These changes were further confirmed by histopathological findings. Supplementation with TMRC and/or VIT-C ameliorated all of the above parameters. In Conclusion: TMRC or VIT-C specially in combination group prevents Lead diAC testicular damage via reduction of oxidative injury as well as inflammation, downregulation of GRP-78/BAX and upregulation of 17β-HSD and STAR expression as well as improvement in the histological architecture of the testis.
Collapse
Affiliation(s)
- Laila Mohamed Fadda
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Reem Alsharidah
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Iman Huseein Hasan
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
15
|
Alhusaini AM, Fadda LM, Hasan IH, Ali HM, Badr A, Elorabi N, Alomar H, Alqahtani Q, Zakaria E, Alanazi A. Role of some natural anti-oxidants in the down regulation of Kim, VCAM1, Cystatin C protein expression in lead acetate-induced acute kidney injury. Pharmacol Rep 2020; 72:360-367. [PMID: 32109309 DOI: 10.1007/s43440-020-00072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 10/24/2022]
Abstract
BACKGROUND Lead is a dangerous systemic toxicant and can provoke life-threatening renal injury. The plan of this study was to evaluate the potential impact of curcumin (CRMN) and L-ascorbic acid (L-ascb) alone or together to counteract lead acetate (Pb-acetate)-induced renal damage in rats and to find out the underlying mechanisms of action of these nutraceuticals. METHODS Pb-acetate (100 mg/kg/day, i.p.) was injected in male rats along with L-ascb (250 mg/kg/day) and/or CRMN (200 mg/kg/day) orally for 7 days. RESULTS Pb-acetate administration increased serum urea, creatinine and uric acid. Renal tissue showed a marked depletion in reduced glutathione level and superoxide dismutase activity and elevation in nitric oxide and malondialdehyde levels. Serum C-reactive protein and IL-1β levels were elevated. Up-regulation of the expression of kidney injury molecule, vascular adhesion molecule-1 and Cystatin C were noticed after Pb-acetate administration. DNA fragmentation was also increased in renal tissues. Histopathological examination revealed a destructed partial layer of Bowman's capsule, proximal and distal convoluted tubules. Treatment with the aforementioned antioxidants ameliorated most of the altered measured biomarker levels. CONCLUSION Interestingly, the combination of L-ascb and CRMN showed the superlative protective effect against Pb-acetate-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Laila M Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M Ali
- Common First Year Deanship, King Saud University, Riyadh, Saudi Arabia.,Department of Genetics and Cytology, National Research Centre, Dokki, Egypt
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, AIN Shams University, Cairo, Egypt
| | - Najlaa Elorabi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Hatun Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Qamraa Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Enas Zakaria
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Mo'men YS, Hussein RM, Kandeil MA. A novel chemoprotective effect of tiopronin against diethylnitrosamine-induced hepatocellular carcinoma in rats: Role of ASK1/P38 MAPK-P53 signalling cascade. Clin Exp Pharmacol Physiol 2019; 47:322-332. [PMID: 31663622 DOI: 10.1111/1440-1681.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Oxidative stress contributes significantly to HCC pathogenesis. In this study, we investigated the possible chemoprotective effect of the thiol group-containing compound, tiopronin, against HCC induced chemically by diethylnitrosamine (DENA) in rats. In addition, we elucidated the possible underlying molecular mechanism. Adult male Wistar rats were divided into: Control group, DENA-treated group and tiopronin + DENA-treated group. Liver function tests (ALT, AST, ALP, albumin, total and direct bilirubin) as well as alpha fetoprotein (AFP) concentration were measured in the sera of samples. Oxidative stress biomarkers such as malondialdehyde, nitric oxide, catalase and glutathione peroxidase were measured in the liver tissue homogenates. Determination of the phosphorylated apoptosis signal-regulating kinase 1 (phospho-ASK1), phospho-P38 and phospho-P53 proteins by western blotting, caspase 3 by immunofluorescence in addition to histopathological examination of the liver tissues were performed. Our results showed that tiopronin prevented the DENA-induced elevation of the liver function enzymes and AFP. It also preserved the activities of antioxidant enzymes as well as providing protection from the appearance of HCC histopathological features. Interestingly, tiopronin significantly decreased the expression level of phospho-ASK1, phospho-P38 and phospho-P53, caspase 3 in the liver tissues. These novel findings suggested that tiopronin is an antioxidant drug with a chemoprotective effect against DENA-induced HCC through maintaining the normal activity of ASK1/ P38 MAPK/ P53 signalling pathway.
Collapse
Affiliation(s)
- Yomna S Mo'men
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
17
|
Animal Models of Hepatocellular Carcinoma Prevention. Cancers (Basel) 2019; 11:cancers11111792. [PMID: 31739536 PMCID: PMC6895981 DOI: 10.3390/cancers11111792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly disease and therapeutic efficacy in advanced HCC is limited. Since progression of chronic liver disease to HCC involves a long latency period of a few decades, a significant window of therapeutic opportunities exists for prevention of HCC and improve patient prognosis. Nonetheless, there has been no clinical advancement in instituting HCC chemopreventive strategies. Some of the major challenges are heterogenous genetic aberrations of HCC, significant modulation of tumor microenvironment and incomplete understanding of HCC tumorigenesis. To this end, animal models of HCC are valuable tools to evaluate biology of tumor initiation and progression with specific insight into molecular and genetic mechanisms involved. In this review, we describe various animal models of HCC that facilitate effective ways to study therapeutic prevention strategies that have translational potential to be evaluated in a clinical context.
Collapse
|
18
|
Obaidi I, Higgins M, Bahar B, Davis JL, McMorrow T. Identification of the Multifaceted Chemopreventive Activity of Curcumin Against the Carcinogenic Potential of the Food Additive, KBrO3. Curr Pharm Des 2019; 24:595-614. [PMID: 29278208 PMCID: PMC6204662 DOI: 10.2174/1381612824666171226143201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Background: Potassium bromate (KBrO3), a food additive, has been used in many bakery products as an oxidizing agent. It has been shown to induce renal cancer in many in-vitro and in-vivo experimental models Objectives: This study evaluated the carcinogenic potential of potassium bromate (KBrO3) and the chemopreventive mechanisms of the anti-oxidant and anti-inflammatory phytochemical, curcumin against KBrO3-induced carcinogenicity. Method: Lactate dehydrogenase (LDH) cytotoxicity assay and morphological characteristics were used to assess curcumin's cytoprotective potential against KBrO3 toxicity. To assess the chemopreventive potential of curcumin against KBrO3-induced oxidative insult, intracellular H2O2 and the nuclear concen-tration of the DNA adduct 8-OHdG were measured. PCR array, qRT-PCR, and western blot analysis were used to identify dysregulated genes by KBrO3 exposure. Furthermore, immunofluorescence was used to evaluate the ciliary loss and the disturbance of cellular tight junction induced by KBrO3. Results: Oxidative stress assays showed that KBrO3 increased the levels of intracellular H2O2 and the DNA adduct 8-OHdG. Combination of curcumin with KBrO3 efficiently reduced the level of H2O2 and 8-OHdG while up-regulating the expression of catalase. PCR array, qRT-PCR, and western blot analysis revealed that KBrO3 dysregulated multiple genes involved in inflammation, proliferation, and apoptosis, namely CTGF, IL-1, and TRAF3. Moreover, qRT-PCR and immunofluorescence studies showed that KBrO3 negatively affected the tight junctional protein (ZO-1) and induced a degeneration of primary ciliary proteins. The negative impact of KBrO3 on cilia was markedly repressed by curcumin. Conclusion: Curcumin could potentially be used as a protective agent against carcinogenicity of KBrO3.
Collapse
Affiliation(s)
- Ismael Obaidi
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland.,School of Pharmacy, University of Babylon, Babylon, Iraq
| | - Michael Higgins
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bojlul Bahar
- International Institute of Nutritional Sciences and Applied Food Safety Studies, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Jessica L Davis
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Tara McMorrow
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Sivalingam K, Amirthalingam V, Ganasan K, Huang CY, Viswanadha VP. Neferine suppresses diethylnitrosamine-induced lung carcinogenesis in Wistar rats. Food Chem Toxicol 2019; 123:385-398. [DOI: 10.1016/j.fct.2018.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
|
20
|
Alhusaini A, Hasan IH, Aldowsari N, Alsaadan N. Prophylactic Administration of Nanocurcumin Abates the Incidence of Liver Toxicity Induced by an Overdose of Copper Sulfate: Role of CYP4502E1, NF-κB and Bax Expressions. Dose Response 2018; 16:1559325818816284. [PMID: 30622449 PMCID: PMC6302274 DOI: 10.1177/1559325818816284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/17/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022] Open
Abstract
Background The consequences of excess copper in human tissue are the alterations in the oxidative stress markers and peroxidative damage of membrane lipids. Unselective copper binding may be the clue to damaging impact to protein construction and hence modifying their biological functions. The aim of this study is to match the hepatoprotective efficacy of curcumin (CM) or nanocurcumin (NCM) with that of desferrioxamine (DSF; standard heavy metal chelator) against toxic doses of copper sulphate (CuSO4). Method All treatments were given simultaneously with CuSO4 for 7 days. Result CuSO4 administration elevated serum alanine transaminase, and hepatic nitric oxide (NO), lipid peroxide, and caspase-3 as well as protein expression of cytochrome P4502E1, and nuclear factor-κB (NF-κB) and Bax gene expressions. On the other hand, hepatic levels of reduced glutathione, superoxide dismutase, and interleukin-10 were decreased, whereas DNA degradation was increased as well compared with the control group. The administration of the aforementioned antioxidants ameliorated all the previous altered measured parameters. Interestingly, NCM achieved the most pronounced hepatoprotective effect nearly equivalent to that of DSF. Conclusion It was concluded that NCM is considered a promising candidate against CuSO4 toxicity, and cytochrome P450, NF-κB, and Bax are involved in its toxicity and treatment.
Collapse
Affiliation(s)
- Ahlam Alhusaini
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman H Hasan
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Aldowsari
- Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Njood Alsaadan
- Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Chen DQ, Hu HH, Wang YN, Feng YL, Cao G, Zhao YY. Natural products for the prevention and treatment of kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:50-60. [PMID: 30466992 DOI: 10.1016/j.phymed.2018.09.182] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is one of the common causes resulting in a high morbidity and mortality. Renal fibrosis is the main pathological features of CKD. Natural products have begun to gain widely popularity worldwide for promoting healthcare and preventing CKD, and have been used as a conventional or complementary therapy for CKD treatment. PURPOSE The present paper reviewed the therapeutic effects of natural products on CKD and revealed the molecular mechanisms of their anti-fibrosis. METHODS All the available information on natural products against renal fibrosis was collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Splinker, etc.). RESULTS Accumulated evidence demonstrated that natural products exhibited the beneficial effects for CKD treatment and against renal fibrosis. This review presents an overview of the molecular mechanism of CKD and natural products against renal fibrosis, followed by an in-depth discussion of their molecular mechanism of natural products including isolated compounds and crude extracts against renal fibrosis in vitro and in vivo. A number of isolated compounds have been confirmed to retard renal fibrosis. CONCLUSION The review provides comprehensive insights into pathophysiological mechanisms of CKD and natural products against renal fibrosis. Particular challenges are presented and placed within the context of future applications of natural products against renal fibrosis.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
22
|
Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018; 10:E1618. [PMID: 30400131 PMCID: PMC6266803 DOI: 10.3390/nu10111618] [Citation(s) in RCA: 816] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
This review offers a systematic understanding about how polyphenols target multiple inflammatory components and lead to anti-inflammatory mechanisms. It provides a clear understanding of the molecular mechanisms of action of phenolic compounds. Polyphenols regulate immunity by interfering with immune cell regulation, proinflammatory cytokines' synthesis, and gene expression. They inactivate NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and modulate mitogen-activated protein Kinase (MAPk) and arachidonic acids pathways. Polyphenolic compounds inhibit phosphatidylinositide 3-kinases/protein kinase B (PI3K/AkT), inhibitor of kappa kinase/c-Jun amino-terminal kinases (IKK/JNK), mammalian target of rapamycin complex 1 (mTORC1) which is a protein complex that controls protein synthesis, and JAK/STAT. They can suppress toll-like receptor (TLR) and pro-inflammatory genes' expression. Their antioxidant activity and ability to inhibit enzymes involved in the production of eicosanoids contribute as well to their anti-inflammation properties. They inhibit certain enzymes involved in reactive oxygen species ROS production like xanthine oxidase and NADPH oxidase (NOX) while they upregulate other endogenous antioxidant enzymes like superoxide dismutase (SOD), catalase, and glutathione (GSH) peroxidase (Px). Furthermore, they inhibit phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) leading to a reduction in the production of prostaglandins (PGs) and leukotrienes (LTs) and inflammation antagonism. The effects of these biologically active compounds on the immune system are associated with extended health benefits for different chronic inflammatory diseases. Studies of plant extracts and compounds show that polyphenols can play a beneficial role in the prevention and the progress of chronic diseases related to inflammation such as diabetes, obesity, neurodegeneration, cancers, and cardiovascular diseases, among other conditions.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Majed Jambi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| |
Collapse
|
23
|
Abdalla M, Khairy E, Louka ML, Ali-Labib R, Ibrahim EAS. Vitamin D receptor gene methylation in hepatocellular carcinoma. Gene 2018; 653:65-71. [PMID: 29432829 DOI: 10.1016/j.gene.2018.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
Worldwide, hepatocellular carcinoma (HCC) is the major subtype of primary liver cancers. HCC is typically diagnosed late in its course. With respect to cancer, the genomic actions of vitamin D are mediated through binding to the Vitamin D Receptor (VDR), which allows it to modulate the expression of genes in a cell-and tissue-specific manner. Epigenetics is a rapidly evolving field of genetic study applicable to HCC. Changes in DNA methylation patterns are thought to be early events in hepatocarcinogenesis. Curcumin has great potential as an epigenetic agent. Accordingly, the current study has been designed to study the methylation status of VDR gene promoter for the first time in HCC aiming to find its clinical significance and potential screening role in chronic Liver Disease (CLD). Additionally, we aimed to investigate, the effect of Curcumin on HCC cell line, aiming to discover new therapeutic targets through epigenetics. This study was conducted on 45 formalin-fixed, paraffin-embedded liver tissue blocks including 15 HCC samples (group A), 15 CLD samples (group B) and 15 apparently normal tissue taken from around benign lesions (group C). Methylation Specific Restriction Digestion and qPCR were done on all samples after DNA extraction. The percentage of VDR gene promoter methylation was significantly higher in the HCC group compared to both CLD and control groups (p < 0.01). VDR promoter methylation by (MS-qPCR) was decreased and the relative expression of VDR by (qRT-PCR) was markedly increased in a dose-dependent fashion in cells grown in Curcumin-adequate medium. In conclusion, this study may open a new gate for the use of VDR promoter methylation as a potential biomarker in HCC.
Collapse
Affiliation(s)
- Mai Abdalla
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. box 11381, Egypt
| | - Eman Khairy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. box 11381, Egypt.
| | - Manal L Louka
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. box 11381, Egypt
| | - Randa Ali-Labib
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. box 11381, Egypt
| | | |
Collapse
|
24
|
Loullis A, Pinakoulaki E. Carob as cocoa substitute: a review on composition, health benefits and food applications. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-3018-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Rajmani RS, Singh P, Singh LV. Apoptotic and Immunosuppressive Effects of Turmeric Paste on 7, 12 Di Methyl Benz (a) Anthracene Induced Skin Tumor Model of Wistar Rat. Nutr Cancer 2017; 69:1245-1255. [PMID: 29016221 DOI: 10.1080/01635581.2017.1367933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dietary components with potent anticancerous property are gaining attention as therapeutic agents due to low cost of therapy and minimal toxic effects. Turmeric is one such miracle spices of Indian and South Asian recipes with multiple medicinal properties. The anticarcinogenic properties of its active compound curcumin have been studied in detail. However, studies on the medicinal properties of crude turmeric used as dietary agents are lacking. Therefore, in this study we investigated the effects of dietary and topical crude turmeric paste on DMBA induced skin tumor of male Wistar rats. We observed the apoptotic effect of crude turmeric paste on DMBA induced tumor with depletion of T cells response. Our results demonstrated the significant expression of major pro-apoptotic genes like caspase-2, 3, 8, 9, PARP, and p53 and down regulation of major pro-inflammatory (NF-κB) and pro-angiogenic factors and (VEGF) in turmeric treated tumor tissues. We also observed significant decrease in CD4+, CD8+, and Natural Killer cell population as compared to the untreated group.
Collapse
Affiliation(s)
- R S Rajmani
- a Centre for Infectious Disease Research (CIDR) , Indian Institute of Science , Bengaluru , India.,b Indian Veterinary Research Institute , Izatnagar , Uttar Pradesh , India
| | - Prafull Singh
- b Indian Veterinary Research Institute , Izatnagar , Uttar Pradesh , India
| | - Lakshya Veer Singh
- b Indian Veterinary Research Institute , Izatnagar , Uttar Pradesh , India
| |
Collapse
|
26
|
Kumar V, Bhatt PC, Rahman M, Kaithwas G, Choudhry H, Al-Abbasi FA, Anwar F, Verma A. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. Int J Nanomedicine 2017; 12:6747-6758. [PMID: 28932118 PMCID: PMC5600267 DOI: 10.2147/ijn.s136629] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Umbelliferone β-D-galactopyranoside (UFG), isolated from plants, exhibits promising inhibitory action on numerous diseases. The present research was initiated to develop a suitable delivery system for UFG with an intention to enhance its therapeutic efficacy against diethyl nitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in Wistar rats. UFG-loaded polymeric nanoparticles prepared by sonication were scrutinized for average size, drug loading capacity, zeta potential, and drug release potency in animals. HCC cell lines HuH-7 and Hep G2 were used for in vitro cytotoxic investigation. Several hepatic, nonhepatic, antioxidant, and anti-inflammatory biochemical parameters were estimated to establish the anticancer potential of UFG nanoformulation. Microscopical and histopathological investigations were also undertaken to substantiate the results of our work. Umbelliferone β-D-galactopyranoside-loaded poly(d,l-lactide-co-glycolide) nanoparticles (UFG-PLGA-NP) with particle size of 187.1 nm and polydispersity index 0.16 were uniform in nature with 82.5% release of the total amount of drug after 48 h. Our study successfully established the development and characterization of UFG-PLGA-NP with noticeable effect against both in vivo and in vitro models. The anticancer potential of UFG-PLGA-NP was brought about by the management of DEN-induced reactive oxygen species generation, mitochondrial dysfunction, proinflammatory cytokines alteration, and induction of apoptosis. Positive zeta potential on the surface of UFG-PLGA-NP would have possibly offered higher hepatic accumulation of UFG, particularly in the electron-dense mitochondria organelles, and this was the take-home message from this study. Our results demonstrated that such polymer-loaded delivery systems of UFG can be a better option and can be further explored to improve the clinical outcomes against hepatic cancer.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (Central University), Vidya Vihar, Rai Bareli Road, Lucknow, India
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amita Verma
- Bio-organic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
27
|
Srinivasan K. Antimutagenic and cancer preventive potential of culinary spices and their bioactive compounds. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci Rep 2017; 7:10114. [PMID: 28860665 PMCID: PMC5579036 DOI: 10.1038/s41598-017-10693-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the protective role and underlying mechanisms of curcumin on glycerol-induced acute kidney injury (AKI) in rats. Glycerol (10 ml/kg BW, 50% v/v in sterile saline, i.m.) was used to induce AKI, followed by curcumin (200 mg/kg/day, p.o.) administration for 3 days. To confirm renal damage and the effects of curcumin on AKI, serum BUN, Scr, and CK as well as renal SOD, MDA, GSH-Px were measured. Additionally, morphological changes were identified by H&E staining and transmission electron microscopy. The expression of several factors including chemotactic factor MCP-1, proinflammatory cytokines including TNF-α and IL-6, as well as the kidney injury markers, as Kim-1 and Lipocalin-2 were also assessed using q-PCR. Finally, cell apoptosis in renal tissue was detected using in situ TUNEL apoptosis fluorescence staining and expression of proteins associated with apoptotic, oxidative stress and lipid oxidative related signaling pathways were detected using immunohistochemical staining and western blot. The results showed that curcumin exerts renoprotective effects by inhibiting oxidative stress in rhabdomyolysis-induced AKI through regulation of the AMPK and Nrf2/HO-1 signaling pathways, and also ameliorated RM-associated renal injury and cell apoptosis by activating the PI3K/Akt pathway.
Collapse
|
29
|
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2017; 58:1271-1293. [PMID: 27874279 DOI: 10.1080/10408398.2016.1252711] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin, i.e., colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal, and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions, i.e., nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- a Department of Diet and Nutritional Sciences , Imperial College of Business Studies , Lahore , Pakistan.,b National Institute of Food Science and Technology , University of Agriculture Faisalabad , Pakistan
| | - Azmat Ullah
- e Department of Food Science and Human Nutrition , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farhan Saeed
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | - Muhammad Nadeem
- d Department of Environmental Sciences , COMSATS Institute of Information Technology Vehari , Pakistan
| | - Muhammad Umair Arshad
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | | |
Collapse
|
30
|
Amawi H, Ashby CR, Samuel T, Peraman R, Tiwari AK. Polyphenolic Nutrients in Cancer Chemoprevention and Metastasis: Role of the Epithelial-to-Mesenchymal (EMT) Pathway. Nutrients 2017; 9:nu9080911. [PMID: 28825675 PMCID: PMC5579704 DOI: 10.3390/nu9080911] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) has received significant interest as a novel target in cancer prevention, metastasis, and resistance. The conversion of cells from an epithelial, adhesive state to a mesenchymal, motile state is one of the key events in the development of cancer metastasis. Polyphenols have been reported to be efficacious in the prevention of cancer and reversing cancer progression. Recently, the antimetastatic efficacy of polyphenols has been reported, thereby expanding the potential use of these compounds beyond chemoprevention. Polyphenols may affect EMT pathways, which are involved in cancer metastasis; for example, polyphenols increase the levels of epithelial markers, but downregulate the mesenchymal markers. Polyphenols also alter the level of expression and functionality of important proteins in other signaling pathways that control cellular mesenchymal characteristics. However, the specific proteins that are directly affected by polyphenols in these signaling pathways remain to be elucidated. The aim of this review is to analyze current evidence regarding the role of polyphenols in attenuating EMT-mediated cancer progression and metastasis. We also discuss the role of the most important polyphenol subclasses and members of the polyphenols in reversing metastasis and targeting EMT. Finally, limitations and future directions to improve our understanding in this field are discussed.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University Queens, New York, NY 11432, USA.
| | - Temesgen Samuel
- Department of Pathology, School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| | - Ramalingam Peraman
- Medicinal chemistry Division, Raghavendra Institute of Pharmaceutical education and Research (RIPER)-Autonomous, Anantapur 515721, India.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
31
|
Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, Tao H, Lu J, Wang Y, Chen X. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr 2017; 57:1451-1523. [PMID: 27229295 DOI: 10.1080/10408398.2016.1176554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcuma, a valuable genus in the family Zingiberaceae, includes approximately 110 species. These plants are native to Southeast Asia and are extensively cultivated in India, China, Sri Lanka, Indonesia, Peru, Australia, and the West Indies. The plants have long been used in folk medicine to treat stomach ailments, stimulate digestion, and protect the digestive organs, including the intestines, stomach, and liver. In recent years, substantial progress has been achieved in investigations regarding the chemical and pharmacological properties, as well as in clinical trials of certain Curcuma species. This review comprehensively summarizes the current knowledge on the chemistry and briefly discusses the biological activities of Curcuma species. A total of 720 compounds, including 102 diphenylalkanoids, 19 phenylpropene derivatives, 529 terpenoids, 15 flavonoids, 7 steroids, 3 alkaloids, and 44 compounds of other types isolated or identified from 32 species, have been phytochemically investigated. The biological activities of plant extracts and pure compounds are classified into 15 groups in detail, with emphasis on anti-inflammatory and antitumor activities.
Collapse
Affiliation(s)
- Wen Sun
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Sheng Wang
- b State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Wenwen Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Chuanhong Wu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Shuhui Guo
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongwei Gao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongxun Tao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Jinjian Lu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
32
|
Bansal AK, Bansal M, Soni G, Bhatnagar D. Modulation of N-nitrosodiethylamine (NDEA) induced oxidative stress by vitamin E in rat erythrocytes. Hum Exp Toxicol 2016; 24:297-302. [PMID: 16004196 DOI: 10.1191/0960327105ht533oa] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nitrosamines, such as N-nitrosodiethylamine (NDEA), induced oxidative stress due to the generation of reactive oxygen species, which are capable of initiating peroxidative damage to the cell. The present study was designed to establish whether pre-treatment with vitamin E (40 mg/kg body wt, intraperitoneally (ip), twice a week for 4 weeks) to NDEA induced rats provides protection against oxidative stress caused by NDEA. A single necrogenic dose of NDEA (200 mg/kg body wt) was administered intraperitoneally (ip) to the rats with or without vitamin E pre-treatment and the animals were sacrificed on Day 7, 14 or 21 after NDEA administration. Lipid peroxidation (LPO) and the activities of antioxidant enzymes were determined in erythrocytes as indices of oxidative damage. The result showed elevated levels of LPO in erythrocytes with NDEA treatment, however, vitamin E pre-treated rats administered NDEA showed decreased LPO (Day 14 and 21). Superoxide dismutase (SOD) enzyme activity and the glutathione (GSH) content increased with NDEA treatment and remained high in vitamin E pre-treated group. Catalase (CAT), glutathione reductase (GSH-R) and glutathione-S-transferase (GST) enzyme activities declined with NDEA treatment; however, vitamin E pre-treated rats administered NDEA, showed elevation in the enzyme activities. Glutathione peroxidase (GSH-Px) activity increased in erythrocytes in vitamin E pre-treated rats administered NDEA, while SeGSH-Px activity was not affected significantly. This study demonstrates that the pre-treatment with vitamin E prior to the administration of NDEA was effective in counteracting and modulating oxidative stress in rat erythrocytes in a time-dependent manner.
Collapse
Affiliation(s)
- A K Bansal
- Department of Biochemistry, Government Medical College, Patiala, India.
| | | | | | | |
Collapse
|
33
|
Bastaki SMA, Al Ahmed MM, Al Zaabi A, Amir N, Adeghate E. Effect of turmeric on colon histology, body weight, ulcer, IL-23, MPO and glutathione in acetic-acid-induced inflammatory bowel disease in rats. Altern Ther Health Med 2016; 16:72. [PMID: 26907175 PMCID: PMC4763431 DOI: 10.1186/s12906-016-1057-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Background This study investigates the protective effects of turmeric (Curcuma longa, CL) on acetic acid-induced colitis in rats. Method Inflammatory bowel disease (IBD) was induced in male Wistar rats by intra-rectal administration of 1 ml of 4 % acetic acid at 8 cm proximal to the anus for 30 s. Curcuma longa (CL) powder, (1, 10, or 100 mg/kg/day) was administered for either 3 days before or after IBD for 7 days. The body weight, macroscopic and microscopic analysis of the colon of CL-treated IBD rats and that of control rats (no IBD, no CL) were performed on 0 day, 2, 4 and 7th day. Myeloperoxidase (MPO), IL-23 and glutathione levels in control, untreated and treated rats were measured by ELISA. Results CL significantly (P < 0.05) improved IBD-induced reduction in mean body weight and mean macroscopic ulcer score. Administration of CL also significantly (P < 0.01) reduced the mean microscopic ulcer score when compared to untreated IBD control. Intake of CL by rats resulted in a significant (P < 0.05) increase in the mean serum glutathione level compared to untreated control. CL reduced both MPO and IL-23 levels in the colonic mucosa of the rat. Conclusion CL improved body weight gain, mean macroscopic and microscopic ulcer scores in the colon of rats suffering from acetic acid-induced IBD. CL reduced both MPO and IL-23 in the mucosa of the colon. The increase in the mean serum glutathione level may help in the reduction of oxidative stress associated with IBD.
Collapse
|
34
|
Kumar G, Mittal S, Sak K, Tuli HS. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci 2016; 148:313-28. [PMID: 26876915 DOI: 10.1016/j.lfs.2016.02.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/11/2022]
Abstract
In recent years, natural compounds have received considerable attention in preventing and curing most dreadful diseases including cancer. The reason behind the use of natural compounds in chemoprevention is associated with fewer numbers of side effects than conventional chemotherapeutics. Curcumin (diferuloylmethane, PubMed CID: 969516), a naturally occurring polyphenol, is derived from turmeric, which is used as a common Indian spice. It governs numerous intracellular targets, including proteins involved in antioxidant response, immune response, apoptosis, cell cycle regulation and tumor progression. A huge mass of available studies strongly supports the use of Curcumin as a chemopreventive drug. However, the main challenge encountered is the low bioavailability of Curcumin. This extensive review covers various therapeutic interactions of Curcumin with its recognized cellular targets involved in cancer treatment, strategies to overcome the bioavailability issue and adverse effects associated with Curcumin consumption.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, Delhi University, South Campus, New Delhi, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Estonia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mulana-Ambala, India.
| |
Collapse
|
35
|
Bastos CCC, Ávila PHMD, Filho EXDS, Ávila RID, Batista AC, Fonseca SG, Lima EM, Marreto RN, Mendonça EFD, Valadares MC. Use of Bidens pilosa L. (Asteraceae) and Curcuma longa L. (Zingiberaceae) to treat intestinal mucositis in mice: Toxico-pharmacological evaluations. Toxicol Rep 2015; 3:279-287. [PMID: 28959548 PMCID: PMC5615376 DOI: 10.1016/j.toxrep.2015.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Several studies towards the development of an effective treatment for intestinal mucositis have been reported, since this condition represents a major problem in clinical oncology practice due to cytotoxic effects of chemotherapy. However standardized protocols and universally accepted treatment options are yet to be established. OBJECTIVES Given above, this study evaluated the protective effects of a mucoadhesive formulation containing both Bidens pilosa L. (Asteraceae) (BP) and curcuminoids from Curcuma longa L. (Zingiberaceae) (CL) on intestinal mucositis induced by 5-fluoruoacil (5-FU) in mice. RESULTS As expected, animals only treated with 5-FU (200 mg/kg) showed a significant reduction of 60.3 and 42.4% in villi and crypts size, respectively, when compared to control. On the other hand, the proposed therapeutic/prophylactic treatment with mucoadhesive formulations managed to reduce histopathologic changes in mice bearing mucositis, especially at 125 mg/kg BP + 15 mg/kg CL dose. The formulation promoted an increase of 275.5% and 148.7% for villi and crypts size, respectively. Moreover, chemotherapy-related weight loss was reduced by 7.4% following the treatment. In addition, an increase of 10 and 30.5% in red and white blood cells was observed when compared to 5-FU group. Furthermore, treatments with the mucoadhesive formulation containing BP/CL up modulated Ki-67 and Bcl-2 expression while reduced pro-apoptotic regulator Bax. The formulation also modulated inflammatory response triggered by 5-FU through reduction of 68% of myeloperoxidase activity and a 4-fold increase in anti-inflammatory IL-10 levels. In parallel, the oxidative stress via lipid peroxidation was reduced as indicated by decrease of 63% of malondialdehyde concentrations. Additionally, the new formulation presented low acute oral systemic toxicity, being classified in the category 5 (2000 mg/kg < LD50 < 5000 mg/kg) of the Globally Harmonized Classification System. CONCLUSIONS This study showed an interesting potential of the mucoadhesive formulation of BP/CL for the treatment of 5-FU-induced intestinal mucositis. Given the perspectives for the development of a new medicine, clinical studies are in progress to better understand the protective effects of this innovative formulation in treating mucositis.
Collapse
Affiliation(s)
- Carla Caroline Cunha Bastos
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Paulo Henrique Marcelino de Ávila
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Edvande Xavier Dos Santos Filho
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Aline Carvalho Batista
- Laboratório de Patologia Bucal, Faculdade de Odontologia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Simone Gonçalves Fonseca
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Laboratório de Tecnologia Farmacêutica-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Ricardo Neves Marreto
- Laboratório de Tecnologia Farmacêutica-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
36
|
Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 2015; 10:1615-1623. [PMID: 26640527 DOI: 10.3892/etm.2015.2749] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.
Collapse
Affiliation(s)
- Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Giovanni Giannatempo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Alfredo DE Lillo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Luigi Laino
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| |
Collapse
|
37
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
38
|
Rajan B, Ravikumar R, Premkumar T, Devaki T. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats. FOOD SCIENCE AND HUMAN WELLNESS 2015. [DOI: 10.1016/j.fshw.2015.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Abdel-Latif M, Sakran T, El-Shahawi G, El-Fayoumi H, El-Mallah AM. Immunomodulatory effect of diethylcarbamazine citrate plus filarial excretory-secretory product on rat hepatocarcinogenesis. Int Immunopharmacol 2014; 24:173-181. [PMID: 25499729 DOI: 10.1016/j.intimp.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/06/2014] [Accepted: 12/01/2014] [Indexed: 01/03/2023]
Abstract
Diethylcarbamazine citrate (DEC) had a significance in anti-filarial chemotherapy, while excretory-secretory product (ES) is released from adult filarial females. The target of the current study was to examine the immunomodulatory effect of DEC, Setaria equina ES or a combination of them on rat hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN). In vitro effect of combined DEC and ES or ES alone on lipopolysaccharide (LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs) was tested through IFN-γ assay in culture supernatants. In addition, single or repeated doses of DEC, ES or DEC+ES have been applied in white albino rats to test the effect on HCC. Levels of IFN-γ and anti-ES IgG antibodies in rat serum were assayed using ELISA. Hemolytic complement activity (CH50) was determined in serum while the concentration of nitric oxide (NO) was assayed in liver tissue. The infiltration of NK cells as well as the expression of MHC Iproliferating cell nuclear antigen (PCNA), inducible NO synthase (iNOS), Bcl2 and p53 were determined using immunohistochemistry. There was a dose-dependent increase in IFN-γ after in vitro exposure to DEC+ES. Repeated ES doses increased NO concentration (p<0.05) and expression of iNOS but reduced CH50 (p<0.001), while repeated DEC+ES doses could increase anti-ES IgG (p<0.01), IFN-γ level (p<0.05) and NK cell infiltration. The same treatments could also reduce the expression of MHC I expression, PCNA, Bcl2 and p53. This study has shown immunomodulatory and protective effects of DEC+ES repeated doses on rat HCC.
Collapse
Affiliation(s)
- Mahmoud Abdel-Latif
- Zoology Department, Faculty of Science, Beni-Suef University, 62511 Salah Salem Street, Beni-Suef, Egypt.
| | - Thabet Sakran
- Zoology Department, Faculty of Science, Beni-Suef University, 62511 Salah Salem Street, Beni-Suef, Egypt
| | - Gamal El-Shahawi
- Zoology Department, Faculty of Science, Beni-Suef University, 62511 Salah Salem Street, Beni-Suef, Egypt
| | - Hoda El-Fayoumi
- Zoology Department, Faculty of Science, Beni-Suef University, 62511 Salah Salem Street, Beni-Suef, Egypt
| | - Al-Mahy El-Mallah
- Zoology Department, Faculty of Science, Beni-Suef University, 62511 Salah Salem Street, Beni-Suef, Egypt
| |
Collapse
|
40
|
Al-Rubaei ZMM, Mohammad TU, Ali LK. Effects of local curcumin on oxidative stress and total antioxidant capacity in vivo study. Pak J Biol Sci 2014; 17:1237-1241. [PMID: 26027171 DOI: 10.3923/pjbs.2014.1237.1241] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plants have been one of the important sources of medicine even since the-dawn of human civilization. Curcumin has been found to possess tremendous therapeutic potency as antiinflammatory, antioxidant and antimicrobial agent. The present study was designed to examine possible potential therapeutic and protective effect of curcumin from oxidative stress and on total antioxidant capacity in liver damage. The study was conducted using H2O2 as inducing agent of oxidative stress in vivo. Rats were randomly divided into five groups, where n = 20 for each group. Group 1 (G1) rats served as control group. Group 2 (G2) rats subjected to experimentally induced oxidative stress by the ad libitum supply of drinking water containing 0.5% H2O2(v/v) was prepared daily over entire 60 days. Group 3 (G3) rats received H2O2 for sixty days followed by giving 200 mg kg(-1) of curcumin for 30 days. Group 4 (G4) was simultaneously given curcumin (200 mg kg(-1)) for 15 days then followed by receiving H2O2 with curcumin for sixty days. Group 5 (G5) rats was received H2O2 for sixty days followed by giving 200 mg kg(-1) of N-acetyl 1-cystine as standard drug for 30 days. Levels of marker enzymes (ALT, AST and ALP), uric acid, Total Protein (TP) and tumor necrosis factor (α-TNF) were assessed in serum for all studied groups. Malondialdehyde (MDA), 8-hydroxy-2-deoxyguinosine, Total Antioxidant Capacity (TAC), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) were assayed in liver homogenates for all studied groups. The results revealed significant increase (p < 0.05) in levels of ALT, AST, ALP, uric acid and α-TNF while there are significant decrease (p < 0.05) in levels of TP in G2 comparing to G1. Also there are significant differences (p < 0.05) between G3 and G4 comparing to G2 and between G3, G4 and G5 which curcumin elicited a significant hepatoprotective activity by lowering the levels of serum marker enzymes and lipid peroxidation. The results also revealed a significant increase (p < 0.05) in levels of MDA and 8-H-2-deoxy guinosine while there was significant reduction (p < 0.05) in TAC, GSH, SOD and catalase in G2 comparing to G1. Also there are significant differences (p < 0.05) between G3 and G4 comparing to G2 and between G3, G4 and G5. The conclusion could be drown from this study that the ability of curcumin as therapeutic agent and hepatoprotective against liver damage from oxidative damage and on TAC more than N-acetyl 1-cystine related to its antioxidant and free radical scavenger activity.
Collapse
|
41
|
Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model. Tumour Biol 2014; 36:1667-78. [DOI: 10.1007/s13277-014-2767-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 12/14/2022] Open
|
42
|
Bishayee A. The role of inflammation and liver cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:401-35. [PMID: 24818732 DOI: 10.1007/978-3-0348-0837-8_16] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Persistent inflammation is known to promote and exacerbate malignancy. Primary liver cancer, mostly hepatocellular carcinoma (HCC), is a clear example of inflammation-related cancer as more than 90 % of HCCs arise in the context of hepatic injury and inflammation. HCC represents the fifth most common malignancy and the third leading cause of cancer-related death worldwide with about one million new cases diagnosed every year with almost an equal number of deaths. Chronic unresolved inflammation is associated with persistent hepatic injury and concurrent regeneration, leading to sequential development of fibrosis, cirrhosis, and eventually HCC. Irrespective of the intrinsic differences among various etiological factors, a common denominator at the origin of HCC is the perpetuation of a wound-healing response activated by parenchymal cell death and the resulting inflammatory cascade. Hence, the identification of fundamental inflammatory signaling pathways causing transition from chronic liver injury to dysplasia and HCC could depict new predictive biomarkers and targets to identify and treat patients with chronic liver inflammation. This chapter critically discusses the roles of several major cytokines, chemokines, growth factors, transcription factors, and enzymes as well as a distinct network of inflammatory signaling pathways in the development and progression of HCC. It also highlights and analyzes preclinical animal studies showing innovative approaches of targeting inflammatory mediators and signaling by a variety of natural compounds and synthetic agents to achieve effective therapy as well as prevention of hepatic malignancy. Additionally, current limitations and potential challenges associated with the inhibition of inflammatory signaling as well as future directions of research to accelerate clinical development of anti-inflammatory agents to prevent and treat liver cancer are presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, 1600 East Hill Street, Signal Hill, CA, 90755, USA,
| |
Collapse
|
43
|
Basniwal RK, Khosla R, Jain N. Improving the anticancer activity of curcumin using nanocurcumin dispersion in water. Nutr Cancer 2014; 66:1015-22. [PMID: 25068616 DOI: 10.1080/01635581.2014.936948] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Curcumin is a highly potent, nontoxic bioactive agent found in turmeric and is known to have significant anticancer properties against different types of cancer cells. The major disadvantage associated with the use of curcumin, however, is its low systemic bioavailability due to its poor aqueous solubility. The focus of the present study was to generate nanoparticles of curcumin with improved aqueous phase solubility, and to investigate their efficacy in treating cancer cells. Curcumin nanoparticles having particle size in the range 2-40 nm and aqueous solubility of up to a maximum of 3 mg/mL were prepared. Evaluation of anticancer properties of curcumin nanodispersion was carried out in 3 different cancer cell lines: lung (A549), liver (HepG2), and skin (A431). The results demonstrated that under aqueous conditions curcumin nanoparticles exhibited similar or a much stronger antiproliferative effect on the cancer cells compared to normal curcumin in DMSO. Our results lead way toward unharnessed potential of curcumin in the form of its nanoparticles as an adjuvant therapy for clinical application in treating various cancers.
Collapse
Affiliation(s)
- Rupesh Kumar Basniwal
- a Amity Institute of Advanced Research and Studies , Amity University , Noida , Uttar Pradesh , India
| | | | | |
Collapse
|
44
|
Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20:7312-7324. [PMID: 24966602 PMCID: PMC4064077 DOI: 10.3748/wjg.v20.i23.7312] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/16/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
Collapse
|
45
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
46
|
Dhule SS, Penfornis P, He J, Harris MR, Terry T, John V, Pochampally R. The combined effect of encapsulating curcumin and C6 ceramide in liposomal nanoparticles against osteosarcoma. Mol Pharm 2014; 11:417-27. [PMID: 24380633 DOI: 10.1021/mp400366r] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examines the antitumor potential of curcumin and C6 ceramide (C6) against osteosarcoma (OS) cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Three liposomal formulations were prepared: curcumin liposomes, C6 liposomes and C6-curcumin liposomes. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with curcumin liposomes alone. Importantly, C6-curcumin liposomes were found to be less toxic on untransformed primary human cells (human mesenchymal stem cells) in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. The efficiency of the preparations was tested in vivo using a human osteosarcoma xenograft assay. Using pegylated liposomes to increase the plasma half-life and tagging with folate (FA) for targeted delivery in vivo, a significant reduction in tumor size was observed with C6-curcumin-FA liposomes. The encapsulation of two water insoluble drugs, curcumin and C6, in the lipid bilayer of liposomes enhances the cytotoxic effect and validates the potential of combined drug therapy.
Collapse
Affiliation(s)
- Santosh S Dhule
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Hu Y, Wang S, Wu X, Zhang J, Chen R, Chen M, Wang Y. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:601-12. [PMID: 23916858 DOI: 10.1016/j.jep.2013.07.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) as the major histological subtype of primary liver cancer remains one of the most common malignancies worldwide. Due to the complicated molecular pathogenesis of HCC, the option for effective systemic treatment is quite limited. There exists a critical need to explore and evaluate possible alternative strategies for effective control of HCC. With a long history of clinical use, Chinese herbal medicine (CHM) is emerging as a noticeable choice for its multi-level, multi-target and coordinated intervention effects against HCC. With the aids of phytochemistry and molecular biological approaches, in the past decades many CHM-derived compounds have been carefully studied through both preclinical and clinical researches and have shown great potential in novel anti-HCC natural product development. The present review aimed at providing the most recent developments on anti-HCC compounds derived from CHM, especially their underlying pharmacological mechanisms. MATERIALS AND METHODS A systematic search of anti-HCC compounds from CHM was carried out focusing on literatures published both in English (PubMed, Scopus, Web of Science and Medline) and in Chinese academic databases (Wanfang and CNKI database). RESULTS In this review, we tried to give a timely and comprehensive update about the anti-HCC effects and targets of several representative CHM-derived compounds, namely curcumin, resveratrol, silibinin, berberine, quercetin, tanshinone II-A and celastrol. Their mechanisms of anti-HCC behaviors, potential side effects or toxicity and future research directions were discussed. CONCLUSION Herbal compounds derived from CHM are of much significance in devising new drugs and providing unique ideas for the war against HCC. We propose that these breakthrough findings may have important implications for targeted-HCC therapy and modernization of CHM.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Lourenço TC, Mendonça EP, Nalevaiko PC, Melo RT, Silva PL, Rossi DA. Antimicrobial effect of turmeric (Curcuma longa) on chicken breast meat contamination. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2013. [DOI: 10.1590/s1516-635x2013000200002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
D'Souza AA, Devarajan PV. RAPID AND SIMULTANEOUS HPLC ANALYSIS OF CURCUMIN AND ITS METABOLITE TETRAHYDROCURCUMIN FROM PLASMA AND LIVER HOMOGENATES. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.698680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anisha A. D'Souza
- a Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology, N. P Marg, Matunga , Mumbai , India
| | - Padma V. Devarajan
- a Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology, N. P Marg, Matunga , Mumbai , India
| |
Collapse
|
50
|
Khorsandi L, Mirhoseini M, Mohamadpour M, Orazizadeh M, Khaghani S. Effect of curcumin on dexamethasone-induced testicular toxicity in mice. PHARMACEUTICAL BIOLOGY 2013; 51:206-212. [PMID: 23116244 DOI: 10.3109/13880209.2012.716854] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Curcumin is a yellow-orange polyphenol derived from turmeric [Curcuma longa L. (Zingiberaceaerhizomes)]. Turmeric is a main ingredient of Indian, Persian, and Thai dishes. Extensive studies within the last half a century have demonstrated the protective action of curcumin in many disorders of the body. OBJECTIVE This study evaluated the protective effect of curcumin on dexamethasone-induced spermatogenesis defects in mice. MATERIALS AND METHODS Thirty-two NMRI mice were randomly divided into 4 groups. The first (control) group received 1 mL/day of distilled water by intraperitoneal (i.p.) injection for 7 days. The second group received 200 mg/kg/day of curcumin (Cur) for 10 days. Third group received 7 mg/kg/day of dexamethasone (Dex) for 7 days. Forth group received 200 mg/kg of curcumin for 10 days after dexamethasone treatment. Testicular histopathology, morphometric analysis, head sperm counting, and immunohistochemistry assessments were performed for evaluation of the dexamethasone and curcumin effects. RESULTS Expression of Bcl-2 was significantly increased in the curcumin + dexamethasone group compared with dexamethasone-treated animals (p < 0.05). Dexamethasone induced spermatogenesis defects including epithelial vacuolizations, sloughing of germ cells, reduction of seminiferous tubule diameter, reduction in the number of sperm heads and significant maturation arrest (p < 0.001). Curcumin + dexamethasone treatment significantly prevented these changes (p < 0.05). DISCUSSION AND CONCLUSION The results of this study demonstrate that curcumin increases the expression of Bcl-2 protein, an important anti-apoptotic factor, and improves the spermatogenesis defects in dexamethasone treated mice. Curcumin has a potent protective effect against the testicular toxicity and might be clinically useful.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cell & Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | | | | | | |
Collapse
|