1
|
Ajibo DN, Orish CN, Ruggieri F, Bocca B, Battistini B, Frazzoli C, Orish FC, Orisakwe OE. An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:3538-3564. [PMID: 38017235 DOI: 10.1007/s12011-023-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
There is increasing evidence that the imbalance of metals as cobalt (Co) and chromium (Cr) may increase the risk of development and progression of neurodegenerative diseases (NDDs). The human exposure to Co and Cr is derived mostly from industry, orthopedic implants, and polluted environments. Neurological effects of Co and Cr include memory deficit, olfactory dysfunction, spatial disorientation, motor neuron disease, and brain cancer. Mechanisms of Co and Cr neurotoxicity included DNA damage and genomic instability, epigenetic changes, mitochondrial disturbance, lipid peroxidation, oxidative stress, inflammation, and apoptosis. This paper seeks to overview the Co and Cr sources, the mechanisms by which these metals induce NDDs, and their levels in fluids of the general population and patients affected by NDDs. To this end, evidence of Co and Cr unbalance in the human body, mechanistic data, and neurological symptoms were collected using in vivo mammalian studies and human samples.
Collapse
Affiliation(s)
- Doris Nnena Ajibo
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome Viale Regina Elena, 29900161, Rome, Italy
| | | | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
2
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
Tripathi S, Parmar D, Fathima S, Raval S, Singh G. Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced Oxidative Stress and DNA Damage by Stimulating Nrf2/HO-1 Pathway in the Experimental Model. Biol Trace Elem Res 2023; 201:2427-2441. [PMID: 35953644 DOI: 10.1007/s12011-022-03358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Hexavalent chromium [Cr(VI)] has emerged as a prevailing environmental and occupational contaminant over the past few decades. However, the knowledge is sparse regarding Cr(VI)-induced neurological aberrations, and its remediation through natural bioactive compounds has not been fully explored. This study intended to probe the possible invigorative effects of nutraceuticals such as coenzyme Q10 (CoQ10), biochanin A (BCA), and phloretin (PHL) on Cr(VI) intoxicated Swiss albino mice with special emphasis on Nrf2/HO-1/NQO1 gene expressions. Mice received potassium dichromate (75 ppm) through drinking water and were simultaneously co-treated intraperitoneally with CoQ10 (10 mg/kg), BCA, and PHL (50 mg/kg) each for 30-day treatment period. The statistics highlight the elevated levels of lipid peroxidation (LPO) and protein carbonyl content (PCC) with a concomitant reduction in the superoxide dismutase (SOD), glutathione-S-transferase (GST), reduced glutathione (GSH), total thiols (TT), catalase (CAT), and cholinesterase activities in the Cr(VI)-exposed mice. The collateral assessment of DNA fragmentation, DNA breakages, and induced histological alterations was in conformity with the above findings in conjugation with the dysregulation in the Nrf2 and associated downstream HO-1 and NQO1 gene expressions. Co-treatment with the selected natural compounds reversed the above-altered parameters significantly, thereby bringing cellular homeostasis in alleviating the Cr(VI)-induced conciliated impairments. Our study demonstrated that the combination of different bioactive compounds shields the brain better against Cr(VI)-induced neurotoxicity by revoking the oxidative stress-associated manifestations. These compounds may represent a new potential combination therapy due to their ability to modulate the cellular antioxidant responses by upregulating the Nrf2/HO-1/NQO1 signaling pathway against Cr(VI)-exposed population. HIGHLIGHTS: Cr(VI)-associated heavy metal exposure poses a significant threat to the environment, especially to living organisms. Cr(VI) exposure for 30 days resulted in the free radical's generation that caused neurotoxicity in the Swiss albino mice. Natural compounds such as coenzyme Q10, biochanin A, and phloretin counteracted the neurotoxic effect due to Cr(VI) exposure in scavenging of free radicals by enhancing Nrf2/HO-1/NQO1 gene expressions in maintaining the cellular homeostasis.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, 380009, India
| | - Dharati Parmar
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Shabrin Fathima
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Samir Raval
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, 385506, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India.
| |
Collapse
|
4
|
Chakraborty R, Renu K, Eladl MA, El-Sherbiny M, Elsherbini DMA, Mirza AK, Vellingiri B, Iyer M, Dey A, Valsala Gopalakrishnan A. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed Pharmacother 2022; 151:113119. [PMID: 35613529 DOI: 10.1016/j.biopha.2022.113119] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Heavy metal Chromium (Cr), can adversely affect humans and their health if accumulated in organs of the body, such as the lungs, liver, and kidneys. Cr (VI) is highly toxic and has a higher solubility in water than Cr (III). One of the most common routes for Cr exposure is through inhalation and is associated with liver, lung, kidney damage, widespread dermatitis, GI tract damage, human lung cancer, cardiomyopathies, and cardiovascular disease. The increase in ROS production has been attributed to most of the damage caused by Cr toxicity. Cr-induced ROS-mediated oxidative stress has been seen to cause a redox imbalance affecting the antioxidant system balance in the body. The Nrf2 pathway dysregulation has been implicated in the same. Deregulation of histone acetylation and methylation has been observed, together with gene methylation in genes such as p16, MGMT, APC, hMLH1, and also miR-143 repression. Several ultra-structural changes have been observed following Cr (VI)-toxicity, including rough ER dilation, alteration in the mitochondrial membrane and nuclear membrane, pycnotic nuclei formation, and cytoplasm vacuolization. A significant change was observed in the metabolism of lipid, glucose, and the metabolism of protein after exposure to Cr. Cr-toxicity also leads to immune system dysregulations with changes seen in the expression of IL-8, IL-4, IgM, lymphocytes, and leukocytes among others. P53, as well as pro-and anti-apoptotic proteins, are involved in apoptosis. These Cr-induced damages can be alleviated via agents that restore antioxidant balance, regulate Nrf-2 levels, or increase anti-apoptotic proteins while decreasing pro-apoptotic proteins.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Arshi Khalid Mirza
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
5
|
Wise JP, Young JL, Cai J, Cai L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. ENVIRONMENT INTERNATIONAL 2022; 158:106877. [PMID: 34547640 PMCID: PMC8694118 DOI: 10.1016/j.envint.2021.106877] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/21/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a global environmental pollutant that increases risk for several types of cancers and is increasingly being recognized as a neurotoxicant. Traditionally, the brain has been viewed as a largely post-mitotic organ due to its specialized composition of neurons, and consequently, clastogenic effects were not considered in neurotoxicology. Today, we understand the brain is composed of at least eight distinct cell types - most of which continue mitotic activity throughout lifespan. We have learned these dividing cells play essential roles in brain and body health. This review focuses on Cr(VI), a potent clastogen and known human carcinogen, as a potentially neurotoxic agent targeting mitotic cells of the brain. Despite its well-established role as a human carcinogen, Cr(VI) neurotoxicity studies have failed to find a significant link to brain cancers. In the few studies that did find a link, Cr(VI) was identified as a risk for gliomas. Instead, in the human brain, Cr(VI) appears to have more subtle deleterious effects that can impair childhood learning and attention development, olfactory function, social memory, and may contribute to motor neuron diseases. Studies of Cr(VI) neurotoxicity with animal and cell culture models have demonstrated elevated markers of oxidative damage and redox stress, with widespread neurodegeneration. One study showed mice exposed to Cr(VI)-laden tannery effluent exhibited longer periods of aggressive behavior toward an "intruder" mouse and took longer to recognize mice previously encountered, recapitulating the social memory deficits observed in humans. Here we conducted a critical review of the available literature on Cr(VI) neurotoxicity and synthesize the collective observations to thoroughly evaluate Cr(VI) neurotoxicity - much remains to be understood and recognized.
Collapse
Affiliation(s)
- John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jun Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
6
|
Aguilar L, Lara-Flores M, Rendón-von Osten J, Kurczyn JA, Vilela B, da Cruz AL. Effects of polycyclic aromatic hydrocarbons on biomarker responses in Gambusia yucatana, an endemic fish from Yucatán Peninsula, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47262-47274. [PMID: 33891236 DOI: 10.1007/s11356-021-13952-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are petroleum components that, when dissolved in the aquatic environment, can disrupt normal animal physiological functions and negatively affect species populations. Gambusia yucatana is an endemic fish of the Yucatán Peninsula that seems to be particularly sensitive to the presence of PAHs dissolved in the water. Here, we examined PAH effects on gene expressions linked to endocrine disruption and biotransformation in this species. Specifically, we examined the expression of vitellogenin I (vtg1), vitellogenin II (vtg2), oestrogen receptor α (esr1), oestrogen receptor β (esr2), aryl hydrocarbon receptor (AhR) and the cytochrome P4503A (CYP3A) genes. We exposed G. yucatana to different concentrations of PAHs (3.89, 9.27, 19.51 μg/L) over a period of 72 h and found changes associated with reproduction, such as increases in hepatic expression of vtg, esr, AhR and CYP3A, mainly at concentrations of 9.27 and 19.51 μg/L. Our results also indicate that benzo[a]pyrene was probably the main PAH responsible for the observed effects. The genes examined here can be used as molecular markers of endocrine-disrupting compounds, as the PAHs, present in the environment, as gene expression increases could be observed as early as after 24 h. These biomarkers can help researchers and conservationists rapidly identify the impacts of oil spills and improve mitigation before the detrimental effects of environmental stressors become irreversible.
Collapse
Affiliation(s)
- Letícia Aguilar
- Institute of Biology, Laboratory of Animal Physiology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil
| | - Maurílio Lara-Flores
- Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Laboratory of Ecotoxicology, Autonomous University of Campeche, Av. Héroe de Nacozari 480, C.P. 24029, San Francisco de Campeche, Campeche, Mexico
| | - Jaime Rendón-von Osten
- Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Laboratory of Ecotoxicology, Autonomous University of Campeche, Av. Héroe de Nacozari 480, C.P. 24029, San Francisco de Campeche, Campeche, Mexico
| | - Jorge A Kurczyn
- Institute of Engineering, Coastal Engineering and Processes Laboratory, National Autonomous University of Mexico, Puerto de Abrigo s/n, 97356, Sisal, Yucatán, Mexico
| | - Bruno Vilela
- Institute of Biology, Spatial Ecology Laboratory, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil
| | - André Luis da Cruz
- Institute of Biology, Laboratory of Animal Physiology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil.
| |
Collapse
|
7
|
da Silva CQ, Fernandes ADS, Teixeira GF, França RJ, Marques MRDC, Felzenszwalb I, Falcão DQ, Ferraz ERA. Risk assessment of coffees of different qualities and degrees of roasting. Food Res Int 2021; 141:110089. [PMID: 33641967 DOI: 10.1016/j.foodres.2020.110089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 01/16/2023]
Abstract
During the coffee beans roasting process, occurs the formation of polycyclic aromatic hydrocarbons, which are associated with the incidence of cancer in humans. This study aimed to evaluate the influence of coffee bean quality and roasting degree regarding mutagenicity, cytotoxicity and genotoxicity. Six samples of coffee drink made with roasted and ground Coffea arabica beans from different qualities and roast degrees were used after freeze-drying. Both commercial and special quality grains suffered light, medium and dark roasting. According to the Salmonella/microsome assay, the highest concentration of commercial grain sample (dark roast) significantly increased the number of revertants of the TA98 strain in the absence of metabolization. All the samples induced cytotoxicity to HepG2 cells. These effects can be ranked in the following order from most to least toxic: medium roast - special grain > light roast - special grain > dark roast - commercial grain > dark roast - special grain > light roast - commercial grain > medium roast - commercial grain. None of the samples induced genotoxicity in HepG2 cells. Our findings show that the harmful effects of coffee depend not only on the degree of roasting but also on the grain quality.
Collapse
Affiliation(s)
- Carina Quintanilha da Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Andréia da Silva Fernandes
- Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Gabriela Félix Teixeira
- Department of Pharmacy and Pharmaceutical Administration, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Rodrigo José França
- Department of Organic Chemistry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Mônica Regina da Costa Marques
- Department of Organic Chemistry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Deborah Quintanilha Falcão
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Elisa Raquel Anastácio Ferraz
- Department of Pharmacy and Pharmaceutical Administration, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| |
Collapse
|
8
|
Khalaf AA, Hassanen EI, Ibrahim MA, Tohamy AF, Aboseada MA, Hassan HM, Zaki AR. Rosmarinic acid attenuates chromium-induced hepatic and renal oxidative damage and DNA damage in rats. J Biochem Mol Toxicol 2020; 34:e22579. [PMID: 32662917 DOI: 10.1002/jbt.22579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 12/26/2022]
Abstract
Hexavelant chromium (Cr (V1)) is a widely distributed environmental pollutant inducing damage in different organs of human and animals. The current study was designed to investigate the mechanistic role of rosmarinic acid (RA) to diminish chromium-induced hepatorenal oxidative damage and preneoplastic lesions in rats. Plant material was collected, identified, and extracted. The isolated RA was elucidated relying on the nuclear magnetic resonance spectroscopic data. Twenty-eight male Wistar rats received the following materials daily via oral gavage for 60 days; (Gp1): normal saline, (Gp2) 25 mg/kg.bwt RA, (Gp3) 10 mg/kg.bwt potassium dichromate (K2 Cr2 O7 ), (Gp4) K2 Cr2 O7 + RA. All rats were euthanized at the end of the experiment by cervical dislocation and the liver and kidney were collected. Prolonged continuous exposure of rats to chromium-induced oxidant/antioxidant imbalance manifested by significant elevation of malondialdehyde with reduction in reduced glutathione levels. Remarkable histopathological alterations in the liver and kidney tissue sections were recorded and confirmed by overexpression of the immunohistochemical staining of caspase-3, placental glutathione-S transferase, proliferating cell nuclear antigen together with a significant downregulation of nuclear factor erythroid-2 related factor 2 (Nrf2) gene and upregulation of nibrin gene. Observable improvements in the entire toxicopathological parameters were recorded in group cotreated with RA. Our findings revealed that Cr-induced preneoplastic lesions on the liver and kidney tissues of rats when exposed daily for long period of time, as well as confirmed the ability of RA to alleviate this toxicity through upregulation of Nrf2 pathway and its powerful antioxidant effects.
Collapse
Affiliation(s)
- Azem A Khalaf
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Adel F Tohamy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
- Faculty of Health Sciences, Highest Colleges of Technology, Sharjah, United Arab Emirates
| | - Mahmoud A Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amr R Zaki
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
9
|
Hexachloronaphthalene Induces Mitochondrial-Dependent Neurotoxicity via a Mechanism of Enhanced Production of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2479234. [PMID: 32685088 PMCID: PMC7335409 DOI: 10.1155/2020/2479234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Hexachloronaphthalene (PCN67) is one of the most toxic among polychlorinated naphthalenes. Despite the known high bioaccumulation and persistence of PCN67 in the environment, it is still unclear to what extent exposure to these substances may interfere with normal neuronal physiology and lead to neurotoxicity. Therefore, the primary goal of this study was to assess the effect of PCN67 in neuronal in vitro models. Neuronal death was assessed upon PCN67 treatment using differentiated PC12 cells and primary hippocampal neurons. At 72 h postexposure, cell viability assays showed an IC50 value of 0.35 μg/ml and dose-dependent damage of neurites and concomitant downregulation of neurofilaments L and M. Moreover, we found that younger primary neurons (DIV4) were much more sensitive to PCN67 toxicity than mature cultures (DIV14). Our comprehensive analysis indicated that the application of PCN67 at the IC50 concentration caused necrosis, which was reflected by an increase in LDH release, HMGB1 protein export to the cytosol, nuclear swelling, and loss of homeostatic control of energy balance. The blockage of mitochondrial calcium uniporter partially rescued the cell viability, loss of mitochondrial membrane potential (ΔΨm), and the overproduction of reactive oxygen species, suggesting that the underlying mechanism of neurotoxicity involved mitochondrial calcium accumulation. Increased lipid peroxidation as a consequence of oxidative stress was additionally seen for 0.1 μg/ml of PCN67, while this concentration did not affect ΔΨm and plasma membrane permeability. Our results show for the first time that neuronal mitochondria act as a target for PCN67 and indicate that exposure to this drug may result in neuron loss via mitochondrial-dependent mechanisms.
Collapse
|
10
|
Wang Y, Hao J, Zhang S, Li L, Wang R, Zhu Y, Liu Y, Liu J. Inflammatory injury and mitophagy induced by Cr(VI) in chicken liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22980-22988. [PMID: 32329004 DOI: 10.1007/s11356-020-08544-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Cr(VI) is a widely used chemical. Excessive Cr(VI) exposure not only causes inflammatory damage but also induces mitophagy. This study aimed to demonstrate the effect of Cr(VI) on inflammatory injury and mitophagy in chicken liver. A total of 120 Hyland Brown cockerels (1 day old) were randomly divided into four groups and orally treated with different Cr(VI) doses (10% median lethal dose, 6% median lethal dose, 2% median lethal dose, and 0% median lethal dose) daily for 45 days to explore the underlying mechanism. Results showed that excessive Cr(VI) increased tumor necrosis factor-α, interleukin-6, and heat shock protein but decreased interferon-γ expression and adenosine triphosphate content in chicken liver. Cr(VI) significantly increased reactive oxygen species production, induced mitochondrial membrane potential collapse, and promoted autophagosome formation. Cr(VI) treatment also caused an increase in LC3-II, stimulated Parkin translocation, and inhibited the expression of p62/SQSTM1 and translocase of outer mitochondrial membrane 20. Therefore, excessive Cr(VI) caused inflammatory damage and mitophagy in chicken liver.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiajia Hao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shuo Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Liping Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Run Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yiran Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
11
|
Yang L, Zeng C, Zhang Y, Wang F, Takamiya M, Strähle U. Functions of thioredoxin1 in brain development and in response to environmental chemicals in zebrafish embryos. Toxicol Lett 2019; 314:43-52. [DOI: 10.1016/j.toxlet.2019.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022]
|
12
|
Ruszkiewicz JA, Miranda-Vizuete A, Tinkov AA, Skalnaya MG, Skalny AV, Tsatsakis A, Aschner M. Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. J Mol Neurosci 2019; 67:312-342. [DOI: 10.1007/s12031-018-1241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
13
|
Kim H, Kim JS, Kim PJ, Won EJ, Lee YM. Response of antioxidant enzymes to Cd and Pb exposure in water flea Daphnia magna: Differential metal and age - Specific patterns. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209:28-36. [PMID: 29625344 DOI: 10.1016/j.cbpc.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 02/02/2023]
Abstract
To investigate oxidative stress responses to cadmium and lead, the freshwater water flea Daphnia magna was exposed to Cd and Pb for 48 h. Following treatment with sub-lethal concentrations, intracellular reactive oxygen species (ROS) levels, as well as modulation of multiple biomarker, such as superoxide dismutase (SOD) activity, glutathione (GSH) contents, glutathione S-transferase (GST) activity, antioxidant enzyme - coding genes (three GST isoforms, glutaredoxin [GRx], glutathione peroxidase [GPx], and thioredoxin [TRx]), and stress-response proteins (heat shock protein 70 [Hsp70] and Hsp90) were examined. The results showed that intracellular ROS level was not changed at 24 h, but reduced at 48 h. Levels of total GSH content were reduced by Cd, but highly induced by Pb. SOD and GST activities were stimulated 48 h after exposure to Cd and Pb. A significant modulation of oxidative stress marker genes was observed after exposure to each element with different expression patterns depending on the metal and developmental stages. In particular, the expression levels of GST-sigma, HSP70, and HSP90 genes were enhanced in Cd - and Pb - exposed neonates. These findings imply that oxidative stress markers appear to be actively involved in cellular protection against metal-induced oxidative stress in D. magna. This study would facilitate the understanding of the molecular response to Cd and Pb exposure in water fleas.
Collapse
Affiliation(s)
- Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Ji-Soo Kim
- Biosafety Research Team, Environmental Health Research Department, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Pyoung-Joong Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
14
|
Yahia D, Ali MF. Assessment of neurohepatic DNA damage in male Sprague-Dawley rats exposed to organophosphates and pyrethroid insecticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15616-15629. [PMID: 29572745 DOI: 10.1007/s11356-018-1776-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The current work was undertaken to test the genotoxic potential of chlorpyrifos (CPF), dimethoate, and lambda cyhalothrin (LCT) insecticides in rat brain and liver using the single cell gel electrophoresis (comet assay). Three groups of adult male Sprague-Dawley rats were exposed orally to one third LD50of CPF, dimethoate, or LCT for 24 and 48 h while the control group received corn oil. Serum samples were collected for estimation of malondialdehyde (MDA) and glutathione peroxidase (GPx); the brain and liver samples were used for comet assay and for histopathological examination. Results showed that signs of neurotoxicity appeared clinically as backward stretching of hind limb and splayed gait in dimethoate and LCT groups, respectively. CPF, LCT, and dimethoate induced oxidative stress indicated by increased MDA and decreased GPx levels. CPF and LCT caused severe DNA damage in the brain and liver at 24 and 48 h indicated by increased percentage of DNA in tail, tail length, tail moment, and olive tail moment. Dimethoate induced mild DNA damage in the brain and liver at 48 h. Histopathological changes were observed in the cerebrum, cerebellum, and liver of exposed rats. The results concluded that CPF, LCT, and dimethoate insecticides induced oxidative stress and DNA damage associated with histological changes in the brain and liver of exposed rats.
Collapse
Affiliation(s)
- Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Marwa F Ali
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Suh KS, Choi EM, Kim HS, Park SY, Chin SO, Rhee SY, Pak YK, Choe W, Ha J, Chon S. Xanthohumol ameliorates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cellular toxicity in cultured MC3T3-E1 osteoblastic cells. J Appl Toxicol 2018. [DOI: 10.1002/jat.3613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, College of Health Sciences; Cheongju University; Cheongju Chungbuk 360-764 Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology; Kyung Hee University, College of Medicine; Seoul 130-701 Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| |
Collapse
|
16
|
Karami-Mohajeri S, Ahmadipour A, Rahimi HR, Abdollahi M. Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research. Arh Hig Rada Toksikol 2018; 68:261-275. [DOI: 10.1515/aiht-2017-68-2989] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023] Open
Abstract
Abstract
Organophosphorus pesticides (OPs) are widely used volatile pesticides that have harmful effects on the liver in acute and chronic exposures. This review article summarises and discusses a wide collection of studies published over the last 40 years reporting on the effects of OPs on the liver, in an attempt to propose general mechanisms of OP hepatotoxicity and possible treatment. Several key biological processes have been reported as involved in OP-induced hepatotoxicity such as disturbances in the antioxidant defence system, oxidative stress, apoptosis, and mitochondrial and microsomal metabolism. Most studies show that antioxidants can attenuate oxidative stress and the consequent changes in liver function. However, few studies have examined the relationship between OP structures and the severity and mechanism of their action. We hope that future in vitro, in vivo, and clinical trials will answer the remaining questions about the mechanisms of OP hepatotoxicity and its management.
Collapse
Affiliation(s)
- Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Tehran , Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Ahmad Ahmadipour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Tehran , Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Mohammad Abdollahi
- Kerman University of Medical Sciences, Kerman , Pharmaceutical Sciences Research Center, Iran
- Department of Toxicology and Pharmacology4, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran , Iran
| |
Collapse
|
17
|
Ahmadian E, Khosroushahi AY, Eghbal MA, Eftekhari A. Betanin reduces organophosphate induced cytotoxicity in primary hepatocyte via an anti-oxidative and mitochondrial dependent pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 144:71-78. [PMID: 29463411 DOI: 10.1016/j.pestbp.2017.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Organophosphates (OP) are potent pesticide commonly utilized in agricultural and domestic use. However, plentitude of data represent their side effects in different body tissues. We attempted to study whether betanin (a natural pigment) is able to mitigate some OPs-induced hepatotoxicity in primary rat hepatocytes. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) formation, lipid peroxidation (LPO), glutathione (GSH) depletion and mitochondrial depolarization were tested as toxicity markers. The outcomes revealed that betanin (25μM) significantly increased cell viability, plummeted ROS formation and LPO, restored cellular GSH reservoirs and protected mitochondria after chlorpyrifos (CPF) (300μM), diazinon (DZN) (600μM) and dichlrovos (DDVP) (400μM) treatment. Taken together, all data suggests the potential protective role of betanin in OPs-induced hepatotoxicity in which the mechanism appears to be inhibition of ROS formation and mitochondrial protection.
Collapse
Affiliation(s)
- Elham Ahmadian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran; Toxicology Research Center, , Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran; Toxicology Research Center, , Maragheh University of Medical Sciences, Maragheh, Iran; Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran; Managerial Epidemiology Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
18
|
Zebra blenny protein hydrolysates as a source of bioactive peptides with prevention effect against oxidative dysfunctions and DNA damage in heart tissues of rats fed a cholesterol-rich diet. Food Res Int 2017; 100:423-432. [DOI: 10.1016/j.foodres.2017.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/15/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
|
19
|
Abd El-Moneam NM, Shreadah MA, El-Assar SA, Nabil-Adam A. Protective role of antioxidants capacity of Hyrtios aff. Erectus sponge extract against mixture of persistent organic pollutants (POPs)-induced hepatic toxicity in mice liver: biomarkers and ultrastructural study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22061-22072. [PMID: 28791578 DOI: 10.1007/s11356-017-9805-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The current study investigates the hepatoprotective effect of Hyrtios aff. Erectus sponge extract against POPs intoxication on endogenous antioxidant enzymes and lipid peroxidation in mice liver tissue. In the present study, the mice BALB/C were assigned into four groups: group I: received saline subcutaneously for 7 days and served as negative control; group II: received subcutaneously for 7 days, 130.6 mg/100 g/b. w/day POPs mixture(mixture of PCB 28, PCB 52,, PCB 101, PCB 118, PCB 153, PCB 138 and PCB 180, alpha-Hexachlorocyclohexane, beta-Hexachloro-cyclohexane, gamma-hexachlorocyclohexane, Aldrin, O,P'-DDE, Dieldrin, P,p DDE, O,P DDD, Endrin, P,p DDD and P,pDDT were extracted from sediments collected from Lake Mariout), and served as induced group; group III: pretreated with Hyrtios aff. Erectus sponge extract for 7 days, as a protection dose and then treated with POPs as group II and served as protective group; and group IV: received i.p Hyrtios aff. Erectus sponge extract of dose 0.7 mg/100 g b.wt/day for 7 days and served as positive control. After 7 days (experimental period), mice were scarified and the liver was harvested for biochemical estimation. Significant reduction in lipid peroxidation (p < 0.002) was noticed compared to POPs-protected group. The antioxidant biomarkers levels were significantly increase as the hepatic GSH and GST increased by 69.9 and 89.9%, respectively. Such increase was accompanied by a decrease in tyrosine kinase activity by 59.82%, additionally remarkable histopathological changes in liver tissue indicate the protective effect of Hyrtios aff. Erectus sponge extract. The results of this study revealed that the Hyrtios aff. Erectus sponge extract has the potential to diminish the destructive effect of POPs intoxication through enhancement of the endogenous antioxidant status. The hepatoprotective activity of Hyrtios aff. Erectus sponge extract is mediated, by the antioxidant effect of its active constituents. The active constituents of Hyrtios aff. Erectus sponge extract were identified by LC-MS/MS.
Collapse
Affiliation(s)
- Nehad M Abd El-Moneam
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Shreadah
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt
| | - Samy A El-Assar
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt.
| |
Collapse
|
20
|
Mahmoud AM, Abd El-Twab SM. Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomed Pharmacother 2017; 91:303-311. [PMID: 28463793 DOI: 10.1016/j.biopha.2017.04.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is commonly used in industry, and is a proven toxin and carcinogen. However, the information regarding its neurotoxic mechanism is not completely understood. The present study was designed to scrutinize the possible protective effects of caffeic acid phenethyl ester (CAPE), a bioactive phenolic of propolis extract, on Cr(VI)-induced brain injury in rats, with an emphasis on the JAK/STAT signaling pathway. Rats received 2mg/kgK2CrO4 and concurrently treated with 20mg/kg CAPE for 30 days. Cr(VI)-induced rats showed a significant increase in cerebral lipid peroxidation, nitric oxide and pro-inflammatory cytokines, with concomitantly declined antioxidants and acetylcholinesterase. CAPE attenuated oxidative stress and inflammation and enhanced antioxidant defenses in the cerebrum of rats. Cr(VI) significantly up-regulated JAK2, STAT3 and SOCS3, an effect that was reversed by CAPE. In conclusion, CAPE protects the brain against Cr(VI) toxicity through abrogation of oxidative stress, inflammation and down-regulation of JAK2/STAT3 signaling in a SOCS3-independent mechanism.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| | - Sanaa M Abd El-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
21
|
Muthusamy S, Peng C, Ng JC. Effects of multi-component mixtures of polyaromatic hydrocarbons and heavy metal/loid(s) on Nrf2-antioxidant response element (ARE) pathway in ARE reporter-HepG2 cells. Toxicol Res (Camb) 2016; 5:1160-1171. [PMID: 30090422 PMCID: PMC6072108 DOI: 10.1039/c6tx00024j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
Exposure to polyaromatic hydrocarbons (PAHs) and heavy metal/loid(s) has been demonstrated to induce an oxidative stress response in mammalian cells. The combined effect of PAHs and heavy metal/loid(s) on the oxidative stress response has not been reported extensively. The Nrf2 antioxidant response pathway plays an important role in cellular antioxidant defense against oxidative stress-induced cell damage. In this study, we have determined the combined effect of four PAHs (benzo[a]pyrene (B[a]P), naphthalene (Nap), phenanthrene (Phe) and pyrene (Pyr)) and three heavy metal/loid(s) (arsenic (As), cadmium (Cd) and lead (Pb)) on the Nrf2 antioxidant pathway using the ARE reporter-HepG2 cell line. The mixture study was carried out for binary, ternary, quaternary and seven-component combinations of PAHs and heavy metal/loid(s). Initially, individual dose responses for the PAHs (B[a]P, Nap, Phe and Pyr) and heavy metal/loid(s) (As, Cd and Pb), as well as their respective concentrations that induced an induction ratio of 1.5 (ECIR1.5), were determined. The luciferase assay system was used to quantify the induction of the Nrf2 antioxidant pathway. The individual dose response study showed that both PAHs and heavy metal/loid(s) activated the Nrf2 antioxidant pathway in ARE reporter-HepG2 cells. Among these chemicals, Cd was the most potent inducer, followed by B[a]P and As. Based on the individual dose response findings, PAHs and heavy metal/loid(s) were mixed at equipotent ratios using a fixed concentration ratio, and the effects of the mixtures of PAHs and heavy metal/loid(s) (binary to seven-component) on the Nrf2 antioxidant pathway were determined. The mixture effects were predicted by using the concentration addition (CA) model. Overall, the results showed that the multi-component mixtures of PAHs and heavy metal/loid(s) induced an oxidative stress response in ARE reporter-HepG2 cells, and that the CA model is an appropriate model to predict the interaction effect of these selected mixtures. A human cell line-based reporter gene assay system was successfully used to determine the mixture effects of two groups of common contaminants on oxidative stress response pathway.
Collapse
Affiliation(s)
- Sasikumar Muthusamy
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Member of Queensland Alliance for Environmental Health Science (QAEHS) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| | - Cheng Peng
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Member of Queensland Alliance for Environmental Health Science (QAEHS) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| | - Jack C Ng
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Member of Queensland Alliance for Environmental Health Science (QAEHS) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| |
Collapse
|
22
|
Ktari N, Belguith-Hadriche O, Ben Amara I, Ben Hadj A, Turki M, Makni-Ayedi F, Boudaouara T, El Feki A, Boualga A, Ben Salah R, Nasri M. Cholesterol regulatory effects and antioxidant activities of protein hydrolysates from zebra blenny (Salaria basilisca) in cholesterol-fed rats. Food Funct 2016; 6:2273-82. [PMID: 26065510 DOI: 10.1039/c5fo00492f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aims to explore the hypocholesterolemic effects and antioxidative activities of zebra blenny protein hydrolysates (ZBPHs) in rats fed with a hypercholesterolemic diet. The rats were fed during eight weeks a standard laboratory diet (normal rats), a high-cholesterol diet (HCD) (1%) or a HCD and orally treated with ZBPHs or undigested zebra blenny proteins (UZBPs) (400 mg per kg per day). Results showed that a hypercholesterolemic diet induced the increase of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Treatment with ZBPHs increased the level of high-density lipoprotein cholesterol (HDL-C) and decreased significantly the levels of TC, TG, and LDL-C. In addition, ZBPH treatment showed significant normalization of thiobarbituric acid-reactive substance (TBARS) levels as well as catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in renal and hepatic tissues. Furthermore, ZBPHs may also exert significant protective effects on liver and kidney functions, evidenced by a marked decrease in the level of serum urea, uric acid, creatinine, alkaline phosphatase (ALP), and alanine aminotransferase (ALAT). Histological studies confirmed that ZBPHs effectively protected the livers and kidneys against hypercholesterolemia-mediated oxidative damage. Therefore, the study strengthens the hypothesis that ZBPHs can be used as novel antioxidants and hypocholesterolemic compounds against hyperlipidemia induced atherosclerosis.
Collapse
Affiliation(s)
- Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, P.O. 1173-3038, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dashti A, Soodi M, Amani N. Cr (VI) induced oxidative stress and toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid. ENVIRONMENTAL TOXICOLOGY 2016; 31:269-77. [PMID: 25213303 DOI: 10.1002/tox.22041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Chromium (Cr) is a widespread metal ion in the workplace, industrial effluent, and water. The toxicity of chromium (VI) on various organs including the liver, kidneys, and lung were studied, but little is known about neurotoxicity. In this study, neurotoxic effects of Cr (VI) have been investigated by cultured cerebellar granule neurons (CGNs). Immature and mature neurons were exposed to different concentrations of potassium dichromate for 24 h and cytotoxicity was measured by MTT assay. In addition, immature neurons were exposed for 5 days as regards cytotoxic effect in development stages. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the protective effect of Rosmarinic acid on mature and immature neurons exposed to potassium dichromate, were measured. Furthermore, lipid peroxidation, glutathione peroxidase (GPx), and acetylcholinesterase activity in mature neurons were assessed following exposure to potassium dichromate. The results indicate that toxicity of Cr (VI) dependent on maturation steps. Cr (VI) was less toxic for immature neurons. Also, Cr (VI) induced MMP reduction and ROS production in both immature and mature neurons. In Cr (VI) treated neurons, increased lipid peroxidation and GPx activity but not acetylcholinesterase activity was observed. Interestingly, Rosmarinic acid, as a natural antioxidant, could protect mature but not immature neurons against Cr (VI) induced toxicity. Our findings revealed vulnerability of mature neurons to Cr (VI) induced toxicity and oxidative stress.
Collapse
Affiliation(s)
- Abolfazl Dashti
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nahid Amani
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Wan C, Han R, Liu L, Zhang F, Li F, Xiang M, Ding W. Role of miR-155 in fluorooctane sulfonate-induced oxidative hepatic damage via the Nrf2-dependent pathway. Toxicol Appl Pharmacol 2016; 295:85-93. [PMID: 26844784 DOI: 10.1016/j.taap.2016.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
Studies demonstrated that perfluorooctane sulfonate (PFOS) tends to accumulate in the liver and is capable to cause hepatomegaly. In the present study, we investigated the roles of miR-155 in PFOS-induced hepatotoxicity in SD rats and HepG2 cells. Male SD rats were orally administrated with PFOS at 1 or 10mg/kg/day for 28 days while HepG2 cells were treated with 0-50 μM of PFOS for 24h or 50 μM of PFOS for 1, 3, 6, 12 or 24h, respectively. We found that PFOS significantly increased the liver weight and serum alanine transaminase (ALT) and aspartate amino transferase (AST) levels in rats. Morphologically, PFOS caused actin filament remodeling and endothelial permeability changes in the liver. Moreover, PFOS triggered reactive oxygen species (ROS) generation and induced apoptosis in both in vivo and in vitro assays. Immunoblotting data showed that NF-E2-related factor-2 (Nrf2) expression and activation and its target genes were all suppressed by PFOS in the liver and HepG2 cells. However, PFOS significantly increased miR-155 expression. Further studies showed that pretreatment of HepG2 cells with catalase significantly decreased miR-155 expression and substantially increased Nrf2 expression and activation, resulting in reduction of PFOS-induced cytotoxicity and oxidative stress. Taken together, these results indicated that miR-155 plays an important role in the PFOS-induced hepatotoxicity by disrupting Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Chong Wan
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Rui Han
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Limin Liu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Fang Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mingdeng Xiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
25
|
Consideration of non-linear, non-threshold and threshold approaches for assessing the carcinogenicity of oral exposure to hexavalent chromium. Regul Toxicol Pharmacol 2015; 73:834-52. [DOI: 10.1016/j.yrtph.2015.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/19/2015] [Accepted: 10/15/2015] [Indexed: 12/28/2022]
|
26
|
Bailey LA, Nascarella MA, Kerper LE, Rhomberg LR. Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis. Crit Rev Toxicol 2015; 46:1-42. [PMID: 26202831 PMCID: PMC4732411 DOI: 10.3109/10408444.2015.1061477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022]
Abstract
Inhalation of naphthalene causes olfactory epithelial nasal tumors in rats (but not in mice) and benign lung adenomas in mice (but not in rats). The limited available human data have not identified an association between naphthalene exposure and increased respiratory cancer risk. Assessing naphthalene's carcinogenicity in humans, therefore, depends entirely on experimental evidence from rodents. We evaluated the respiratory carcinogenicity of naphthalene in rodents, and its potential relevance to humans, using our Hypothesis-Based Weight-of-Evidence (HBWoE) approach. We systematically and comparatively reviewed data relevant to key elements in the hypothesized modes of action (MoA) to determine which is best supported by the available data, allowing all of the data from each realm of investigation to inform interpretation of one another. Our analysis supports a mechanism that involves initial metabolism of naphthalene to the epoxide, followed by GSH depletion, cytotoxicity, chronic inflammation, regenerative hyperplasia, and tumor formation, with possible weak genotoxicity from downstream metabolites occurring only at high cytotoxic doses, strongly supporting a non-mutagenic threshold MoA in the rat nose. We also conducted a dose-response analysis, based on the likely MoA, which suggests that the rat nasal MoA is not relevant in human respiratory tissues at typical environmental exposures. Our analysis illustrates how a thorough WoE evaluation can be used to support a MoA, even when a mechanism of action cannot be fully elucidated. A non-mutagenic threshold MoA for naphthalene-induced rat nasal tumors should be considered as a basis to determine human relevance and to guide regulatory and risk-management decisions.
Collapse
|
27
|
Elshazly MO, Abd El-Rahman SS, Morgan AM, Ali ME. The Remedial Efficacy of Spirulina platensis versus Chromium-Induced Nephrotoxicity in Male Sprague-Dawley Rats. PLoS One 2015; 10:e0126780. [PMID: 26029926 PMCID: PMC4450866 DOI: 10.1371/journal.pone.0126780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to investigate the possible protective effect of Spirulina platensis against chromium-induced nephrotoxicity. A total of 36 adult male Sprague-Dawley rats were divided into 4 equal groups (Gps). Gp1 served as control, rats of Gps 2, 3, and 4 were exposed to Spirulina platensis (300 mg/kg b.wt per os) and sodium dichromate dihydrate (SDD) via drinking water at concentration of 520 mg /l respectively. Chromium administration caused alterations in the renal function markers as evidenced by significant increase of blood urea and creatinine levels accompanied with significant increase in kidney’s chromium residues and MDA level as well as decreased catalase activity and glutathion content in kidney tissue. Histologically, Cr provoked deleterious changes including: vascular congestion, wide spread tubular epithelium necrobiotic changes, atrophy of glomerular tuft and proliferative hyperplasia. The latter was accompanied with positive PCNA expression in kidney tissues as well as DNA ploidy interpretation of major cellular population of degenerated cells, appearance of tetraploid cells, high proliferation index and high DNA index. Morphometrical measurements revealed marked glomerular and tubular lumen alterations. On contrary, spirulina co-treatment with Cr significantly restored the histopathological changes, antioxidants and renal function markers and all the previously mentioned changes as well.
Collapse
Affiliation(s)
- M. O. Elshazly
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sahar S. Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- * E-mail:
| | - Ashraf M. Morgan
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Merhan E. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
28
|
Madejczyk MS, Baer CE, Dennis WE, Minarchick VC, Leonard SS, Jackson DA, Stallings JD, Lewis JA. Temporal changes in rat liver gene expression after acute cadmium and chromium exposure. PLoS One 2015; 10:e0127327. [PMID: 25993096 PMCID: PMC4437902 DOI: 10.1371/journal.pone.0127327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na2Cr2O7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH), resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers.
Collapse
Affiliation(s)
- Michael S. Madejczyk
- ORISE Postdoctoral Fellow at the US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | | | - William E. Dennis
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Valerie C. Minarchick
- National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| | - Stephen S. Leonard
- National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| | - David A. Jackson
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Jonathan D. Stallings
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - John A. Lewis
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- * E-mail:
| |
Collapse
|
29
|
Huang Y, Liu X, Zhao L, Li F, Xiong Z. Kidney tissue targeted metabolic profiling of glucocorticoid-induced osteoporosis and the proposed therapeutic effects of Rhizoma Drynariae studied using UHPLC/MS/MS. Biomed Chromatogr 2015; 28:878-84. [PMID: 24861758 DOI: 10.1002/bmc.3194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Traditional Chinese medicine and modern science have indicated that there is a close relationship between bone and kidney. In light of this, this project was designed to study the metabolic profiling by UHPLC/MS/MS of glucocorticoid-induced osteoporosis in kidney tissue and the possible therapeutic effects of Rhizoma Drynariae (RD), a classic traditional Chinese medicine, in improving the kidney function and strengthening bone. Twenty-one Wistar rats were divided into three groups: control group (rats before prednisolone inducing), a model group (prednisolone-induced group) and a treatment group (prednisolone-induced rats that were then administered RD ethanol extracts). By using pattern recognition analysis, a significant change in the metabolic profile of kidney tissue samples was observed in the model group and restoration of the profile was observed after the administration of RD ethanol extracts. Some significantly changed biomarkers related to osteoporosis such as sphingolipids (C16 dihydrosphingosine, C18 dihydrosphingosine, C18 phytosphingosine, C20 phytosphingosine), lysophosphatidycholines (C16:0 LPC, C18:0 LPC) and phenylalanine were identified. As a complement to the metabolic profiling of RD in plasma, these biomarkers suggest that kidney damage, cell cytotoxicity and apoptosis exist in osteoporosis rats, which is helpful in further understanding the underlying process of glucocorticoid-induced osetoporosis and the suggested therapeutic effects of RD. The method shows that tissue target metabonomics might provide a powerful tool to further understand the process of disease and the mechanism of therapeutic effect of Chinese medicines.
Collapse
Affiliation(s)
- Yue Huang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | | | | | | | | |
Collapse
|
30
|
Elsharkawy EE, Yahia D, El-Nisr NA. Chlorpyrifos induced testicular damage in rats: ameliorative effect of glutathione antioxidant. ENVIRONMENTAL TOXICOLOGY 2014; 29:1011-1019. [PMID: 23172834 DOI: 10.1002/tox.21831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 10/15/2012] [Accepted: 10/20/2012] [Indexed: 06/01/2023]
Abstract
This study investigated the induction of oxidative stress in the testes of adult rats exposed to chlorpyrifos (CPF). CPF was administered orally, in a dose of 30 mg/kg body weight to male rats for 90 days, twice weekly. Coadministration of water-soluble nonenzymatic antioxidant glutathione (GSH) was performed in a dose of 100 mg/kg body weight, orally, for the same period. Another two groups of male rats were administered GSH and corn oil, respectively. The activities of superoxide dismutase and GSH reductase were decreased while the levels of lipid peroxidation were increased in the testicular tissues of the exposed animals. Testosterone level in the serum was significantly decreased. A decrease in the histochemical determination of testicular alkaline phosphatase was observed in CPF-treated rats. A significant decrease in all stages of spermatogenesis in the seminiferous tubules was recorded in the exposed animals. Coadministration of GSH restored these parameters.
Collapse
Affiliation(s)
- Eman E Elsharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | | | | |
Collapse
|
31
|
Ilavarasi K, Chermakani P, Arif Nisha S, Sheeja Malar D, Pandima Devi K. Antioxidant compounds in the seaweedGelidiella acerosaprotects human Peripheral Blood Mononuclear Cells against TCDD induced toxicity. Drug Chem Toxicol 2014; 38:133-44. [DOI: 10.3109/01480545.2014.919582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Dioxins and polychlorinated biphenyls contamination in poultry liver related to food safety – A review. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Involvement of oxidative stress and inflammation in liver injury caused by perfluorooctanoic acid exposure in mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:409837. [PMID: 24724082 PMCID: PMC3958804 DOI: 10.1155/2014/409837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/19/2014] [Indexed: 02/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely present in the environment and has been reported to induce hepatic toxicity in animals and humans. In this study, mice were orally administered different concentrations of PFOA (2.5, 5, or 10 mg/kg/day). Histological examination showed that the exposure to PFOA for 14 consecutive days led to serious hepatocellular injury and obvious inflammatory cell infiltration. In addition, malondialdehyde formation and hydrogen peroxide generation, indicators of oxidative stress, were significantly induced by PFOA treatment in the liver of mice. Furthermore, hepatic levels of interleukin-6, cyclooxygenase-2, and C-reactive protein, markers of inflammatory response, were markedly increased by exposure to PFOA in mice. These results demonstrated that PFOA-induced hepatic toxicity may be involved in oxidative stress and inflammatory response in mice.
Collapse
|
34
|
Solak KA, Wijnolts FMJ, Pralong FP, Blaauboer BJ, van den Berg M, Westerink RH, van Duursen MBM. In vitro neuroendocrine effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the AhR-expressing hypothalamic rat GnV-3 cell line. Toxicology 2013; 311:124-34. [PMID: 23871856 DOI: 10.1016/j.tox.2013.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/27/2013] [Accepted: 07/09/2013] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is involved in a wide variety of biological and toxicological responses, including neuroendocrine signaling. Due to the complexity of neuroendocrine pathways in e.g. the hypothalamus and pituitary, there are limited in vitro models available despite the strong demand for such systems to study and predict neuroendocrine effects of chemicals. In this study, the applicability of the AhR-expressing rat hypothalamic GnV-3 cell line was investigated as a novel model to screen for neuroendocrine effects of AhR ligands using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as reference compound. The qRT-PCR analyses demonstrated the presence of several sets of neurotransmitter receptors in the GnV-3 cells. TCDD (10nM) altered neurotransmitter signaling by up-regulation of glutamate (Grik2), gamma-amino butyric acid (Gabra2) and serotonin (Ht2C) receptor mRNA levels. However, no significant changes in basal and serotonin-evoked intracellular Ca(2+) concentration ([Ca(2+)]i) or serotonin release were observed. On the other hand, TCDD de-regulated period circadian protein homolog 1 (Per1) and gonadotropin releasing hormone (Gnrh) mRNA levels within a 24-h time period. Both Per1 and Gnrh genes displayed a similar mRNA expression pattern in GnV-3 cells. Moreover, the involvement of AhR in TCDD-induced alteration of Neuropeptide Y (Npy) gene expression was found and confirmed by using siRNA targeted against Ahr in GnV-3 cells. Overall, the combined results demonstrate that GnV-3 cells may be a suitable model to predict some mechanisms of action and effects of AhR ligands in the hypothalamus.
Collapse
Affiliation(s)
- K A Solak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mehany HA, Abo-youssef AM, Ahmed LA, Arafa ESA, Abd El-Latif HA. Protective effect of vitamin E and atorvastatin against potassium dichromate-induced nephrotoxicity in rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2013. [DOI: 10.1016/j.bjbas.2013.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Kim JT, Kim SS, Jun DW, Hwang YH, Park WH, Pak YK, Lee HK. Serum arylhydrocarbon receptor transactivating activity is elevated in type 2 diabetic patients with diabetic nephropathy. J Diabetes Investig 2013; 4:483-91. [PMID: 24843699 PMCID: PMC4025111 DOI: 10.1111/jdi.12081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/07/2023] Open
Abstract
Aims/Introduction Evidence is emerging that exposure to persistent organic pollutants (POPs) is a risk factor for obesity‐related diseases and for diabetes mellitus (DM). We found that POPs could be measured by a cell‐based arylhydrocarbon receptor (AhR)‐dependent reporter assay. We tested if serum AhR transactivating (AHRT) activities are a risk factor for diabetic nephropathy in people with type 2 diabetes. Materials and Methods We enrolled diabetic patients with normoalbuminuria (n = 36), microalbuminuria (n = 29), macroalbuminuria (n = 8) and end‐stage renal disease (n = 31). Sera were tested for their AHRT activities, which were standardized by an AhR ligand, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and expressed as TCDD equivalents (TCDDeq pmol/L). Results Mean serum AHRT activities were higher in patients with microalbuminuria (40.1 ± 7.1 pmol/L), macroalbuminuria (37.4 ± 5.5 pmol/L) and end‐stage renal disease (59.1 ± 20.0 pmol/L) than in subjects with normoalbuminuria (12.7 ± 5.4 pmol/L; P < 0.05 for all comparisons). Serum AhR ligands showed a correlation with estimated glomerular filtration rate (eGFR; r = −0.663, P < 0.001), serum creatinine level (r = 0.635, P < 0.001), systolic blood pressure (r = 0.223, P = 0.026), glycated hemoglobim (r = 0.339, P < 0.001) and diabetic duration (r = 0.394, P < 0.001). In a multiple regression analysis, diabetic nephropathy was found to be an independent risk factor for higher AHRT activity after controlling for the confounding factors. Conclusions The present findings suggest serum AHRT activity, thus serum AhR ligands, is a risk factor for diabetic nephropathy. Further studies are required to clarify if an accumulation of POPs in the body is causally related to diabetic nephropathy.
Collapse
Affiliation(s)
- Jin Taek Kim
- Department of Internal Medicine College of Medicine Eulji University Seoul Korea
| | | | - Dae Won Jun
- Department of Internal Medicine College of Medicine Hanyang University Seoul Korea
| | - Young Hwan Hwang
- Department of Internal Medicine College of Medicine Eulji University Seoul Korea
| | - Wook-Ha Park
- Department of Physiology College of Medicine Kyung Hee University Seoul Korea
| | - Youngmi Kim Pak
- Department of Physiology College of Medicine Kyung Hee University Seoul Korea
| | - Hong Kyu Lee
- Department of Internal Medicine College of Medicine Eulji University Seoul Korea
| |
Collapse
|
37
|
Aly HAA, El-Shitany NA, El-Beshbishy HA, Ashour OM. Ameliorative effect of lycopene against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced rat liver microsomal toxicity. Toxicol Ind Health 2013; 31:938-50. [DOI: 10.1177/0748233713475504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of the current study was to investigate the potential oxidative damage of 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) in hepatic microsomal fractions in vitro and to further elucidate the potential modulatory effect of lycopene. Rat liver microsomes were divided into four groups. Group I served as a control and is incubated with vehicle (toluene). Groups II and IV were incubated with 20 µM lycopene for 1 h before further incubating; groups III and IV with 15 nM of TCDD for further 1 h. Hydrogen peroxide (H2O2) production, lipid peroxidation (LPO), protein carbonyl content and activities of uridine 5′-diphospho-glucuronyltransferase (UDPGT) and P450 were significantly increased. Moreover, the activity of antioxidant enzymes superoxide dismutase, glutathione peroxidase, catalse, glutathione- S-transferase and glutathione reductase as well as the microsomal thiol content were significantly decreased. Incubation with lycopene (group IV) maintained near normal activities of the enzymes, normalized thiol and carbonyl content and significantly reduced LPO and H2O2 production. In conclusion, the findings of the study indicate that TCDD induces a significant oxidative stress in liver microsomes as manifested by increased LPO, H2O2 production, protein carbonyl content and activities of UDPGT and P450 and decreased antioxidant enzymes activities and thiol content. By the reversal of biochemical and oxidative markers toward normalcy, the protective role of lycopene is illuminated in rat liver microsomal toxicity.
Collapse
Affiliation(s)
- Hamdy AA Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Nagla A El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Tanta University, Tanta, Egypt
| | - Hesham A El-Beshbishy
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawwarrah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Elsharkawy EE, Yahia D, El-Nisr NA. Sub-chronic exposure to chlorpyrifos induces hematological, metabolic disorders and oxidative stress in rat: attenuation by glutathione. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:218-227. [PMID: 23333651 DOI: 10.1016/j.etap.2012.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 12/08/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
The current work aimed to investigate the different toxic effects of chlorpyrifos (CPF) in subchronic exposure. Two groups of Sprague-Dawley male rats were exposed to CPF alone in a dose of 30 mg/kg body weight, or CPF dose as previous plus glutathione (GSH) in a dose of 100 mg/kg body weight, for 90 days, twice weekly, orally. Another two groups of rat were given corn oil (control) or GSH. There is a significant decrease in hemoglobin concentration, haematocrit percentage, thrombocytic indices, total protein and albumin levels in CPF-exposed group. CPF induced hyperglycemia and significant increase in total cholesterol, but a significant decrease in triglyceride levels was obtained. A significant increase in the levels of lipid peroxidation was obtained while a significant decrease of the total antioxidant was recorded. The decrease in glycogen content and some histopathological changes were observed in liver after CPF exposure. Furthermore, co-administration of GSH can restore some of these alterations.
Collapse
Affiliation(s)
- Eman E Elsharkawy
- Department of Forensic Medicine and Toxicology Faculty of Veterinary Medicine, Assuit University, Egypt.
| | | | | |
Collapse
|
39
|
Thompson CM, Proctor DM, Suh M, Haws LC, Kirman CR, Harris MA. Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Crit Rev Toxicol 2013; 43:244-74. [PMID: 23445218 PMCID: PMC3604738 DOI: 10.3109/10408444.2013.768596] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
Abstract
Abstract Chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water causes intestinal adenomas and carcinomas in mice, but not in rats. Cr(VI) causes damage to intestinal villi and crypt hyperplasia in mice after only one week of exposure. After two years of exposure, intestinal damage and crypt hyperplasia are evident in mice (but not rats), as are intestinal tumors. Although Cr(VI) has genotoxic properties, these findings suggest that intestinal tumors in mice arise as a result of chronic mucosal injury. To better understand the mode of action (MOA) of Cr(VI) in the intestine, a 90-day drinking water study was conducted to collect histological, biochemical, toxicogenomic and pharmacokinetic data in intestinal tissues. Using MOA analyses and human relevance frameworks proposed by national and international regulatory agencies, the weight of evidence supports a cytotoxic MOA with the following key events: (a) absorption of Cr(VI) from the intestinal lumen, (b) toxicity to intestinal villi, (c) crypt regenerative hyperplasia and (d) clonal expansion of mutations within the crypt stem cells, resulting in late onset tumorigenesis. This article summarizes the data supporting each key event in the MOA, as well as data that argue against a mutagenic MOA for Cr(VI)-induced intestinal tumors.
Collapse
|
40
|
Sefi M, Amara IB, Troudi A, Soudani N, Hakim A, Zeghal KM, Boudawara T, Zeghal N. Effect of selenium on methimazole-induced liver damage and oxidative stress in adult rats and their offspring. Toxicol Ind Health 2012; 30:653-69. [DOI: 10.1177/0748233712462445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the protective effect of selenium (Se) on methimazole (MMI; an antithyroid drug)-induced hepatotoxicity in adult rats and their progeny. Female Wistar rats were randomly divided into four groups of six rats in each group: group I served as controls that received standard diet; group II received MMI in drinking water as 250 mg L−1 and standard diet; group III received both MMI (250 mg L−1, orally) and Se (0.5 mg kg−1 of diet); group IV received Se (0.5 mg kg−1 of diet) as sodium selenite. Treatments were started from the 14th day of pregnancy until day 14 after delivery. Exposure of rats to MMI promoted oxidative stress with an increase in liver malondialdehyde levels, advanced oxidation protein products and protein carbonyl contents and a decrease in the levels of glutathione, nonprotein thiols and vitamin C. A decrease in the activities of liver glutathione peroxidase, superoxide dismutase, catalase and lactate dehydrogenase and in the levels of plasma total protein and albumin was also observed. Plasma transaminase activities and total, direct and indirect bilirubin levels increased. Coadministration of Se through diet improved all biochemical parameters. The histopathological changes confirmed the biochemical results. Therefore, our investigation revealed that Se, a trace element with antioxidant properties, was effective in preventing MMI-induced liver damage.
Collapse
Affiliation(s)
- Mediha Sefi
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| | - Ibtissem Ben Amara
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| | - Afef Troudi
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| | - Nejla Soudani
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| | - Ahmed Hakim
- Faculty of Medicine, Laboratory of Pharmacology, Sfax University, Tunisia
| | | | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, Sfax University, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| |
Collapse
|
41
|
Tomasini MC, Beggiato S, Ferraro L, Tanganelli S, Marani L, Lorenzini L, Antonelli T. Prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin produces alterations in cortical neuron development and a long-term dysfunction of glutamate transmission in rat cerebral cortex. Neurochem Int 2012; 61:759-66. [DOI: 10.1016/j.neuint.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
42
|
Greń A, Barbasz A, Kreczmer B, Sieprawska A, Rudolphi-Skórska E, Filek M. Protective effect of ascorbic acid after single and repetitive administration of cadmium in Swiss mice. Toxicol Mech Methods 2012; 22:597-604. [DOI: 10.3109/15376516.2012.704957] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Luís LG, Guilhermino L. Short-term toxic effects of naphthalene and pyrene on the common prawn (Palaemon serratus) assessed by a multi-parameter laboratorial approach: mechanisms of toxicity and impairment of individual fitness. Biomarkers 2012; 17:275-85. [DOI: 10.3109/1354750x.2012.666765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Ben Ameur W, de Lapuente J, El Megdiche Y, Barhoumi B, Trabelsi S, Camps L, Serret J, Ramos-López D, Gonzalez-Linares J, Driss MR, Borràs M. Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). MARINE POLLUTION BULLETIN 2012; 64:241-251. [PMID: 22206722 DOI: 10.1016/j.marpolbul.2011.11.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/27/2011] [Accepted: 11/30/2011] [Indexed: 05/31/2023]
Abstract
The aim of the study was to evaluate the impact of environmental contaminants on oxidative stress, genotoxic and histopathologic biomarkers in liver of mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) collected from a polluted coastal lagoon (Bizerte Lagoon) in comparison to a reference site (the Mediterranean Sea). Antioxidant enzyme activities were lower in fish from the polluted site compared with fish from the reference site, suggesting deficiency of the antioxidant system to compensate for oxidative stress. DNA damage was higher in both fish species from the contaminated site indicating genotoxic effects. The liver histopathological analysis revealed alterations in fish from Bizerte Lagoon. Hepatocytes from both fish species featured extensive lipid-type vacuolation and membrane disruption. Results suggest that the selected biomarkers in both fish species are useful for the assessment of pollution impacts in coastal environments influenced by multiple pollution sources.
Collapse
Affiliation(s)
- Walid Ben Ameur
- Laboratory of Environmental Analytical Chemistry (05/UR/12-03), University of Carthage, Faculty of Sciences, Bizerte, 7021 Zarzouna, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Soudani N, Ben Amara I, Sefi M, Boudawara T, Zeghal N. Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. ACTA ACUST UNITED AC 2011; 63:541-8. [DOI: 10.1016/j.etp.2010.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/08/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
46
|
Effect of chromium supplementation on the diabetes induced-oxidative stress in liver and brain of adult rats. Biometals 2011; 22:1075-87. [PMID: 19693677 DOI: 10.1007/s10534-009-9258-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
This study was designed to investigate the susceptibility of liver and brain tissues, as insulinin-dependent tissues, of normal adult male rats to the oxidative challenge of subchronic supplementation with chromium picolinate (CrPic) at low (human equivalent) and high doses (2.90 and 13.20 μg Cr kg(-1) day(-1), respectively). Also, the modulative effect of CrPic administration on the enhanced oxidative stress in the liver and brain tissues of alloxan-diabetic rats was studied. Fasting serum glucose level was not modified in normal rats but significantly reduced in diabetic rats that had received CrPic supplement. A mild oxidative stress was observed in the liver and brain of CrPic-supplemented normal rats confirmed by the dose-dependent reductions in the levels of hepatic and cerebral free fatty acids, superoxide dismutase and glutathione peroxidase activities, and in contrast increased tissue malondialdehyde concentration. On the other hand, hepatic and cerebral catalase activity was reduced in the high dose group only. CrPic supplementation did not act as a peroxisome proliferator confirmed by the significant reductions in liver and brain peroxisomal palmitoyl CoA oxidase activity. The non significant alterations in liver protein/DNA and RNA/DNA ratios indicate that CrPic did not affect protein synthesis per cell, and that mild elevations in hepatic total protein and RNA concentrations might be due to block or decrease in the export rate of synthesized proteins from the liver to the plasma. In diabetic rats, elevated levels of hepatic and cerebral free fatty acids and malondialdehyde, and in contrast the overwhelmed antioxidant enzymes, were significantly modulated in the low dose group and near-normalized in the high dose group. The significant increases observed in liver total protein and RNA concentrations, as well as protein/DNA and RNA/ DNA ratios in diabetic rats supplemented with the high dose of Cr, compared to untreated diabetics, may be related to the improvement in the glycemic status of the diabetic animals rather than the direct effect of CrPic on protein anabolism.
Collapse
|
47
|
Soudani N, Ibtissem Ben Amara, Troudi A, Bouaziz H, Boudawara T, Zeghal N. Oxidative stress induced by chromium (VI) in bone of suckling rats. Toxicol Ind Health 2011; 27:724-34. [DOI: 10.1177/0748233710395992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Exposure to hexavalent chromium Cr(VI) compounds is of concern in many Cr-related industries and their surrounding environments. K2Cr2O7 is widely recognized as an animal and human carcinogen, mutagen, and teratogen. The present study investigated the bone maturity of suckling rats whose mothers were treated with K2Cr2O7. Experiments were carried out on female Wistar rats given 700 ppm of K2Cr2O7 in their drinking water from the 14th day of pregnancy until day 14 after delivery. Exposing dams to K2Cr2O7 caused disorders in the bone of their progeny. As corollary to this, malondialdehyde levels increased, while glutathione, a non-protein thiol and vitamin C decreased. Alteration of the antioxidant system in the treated group was also confirmed by the significant decline of superoxide dismutase, catalase, and glutathione peroxidase activities. Furthermore, K2Cr2O7 induced changes in bone mineralization, especially calcium and phosphorus levels, which decreased. Whereas, in plasma and urine, they increased and decreased inversely. These results suggest that K2Cr2O7 accelerated bone resorption activity. In fact, in treated pups, total tartrate-resistant acid phosphatase, which reflected bone resorption, was enhanced while total alkaline phosphatase, which reflected bone formation, was reduced. The impairment of bone function was corresponded histologically.
Collapse
Affiliation(s)
- Nejla Soudani
- Animal Physiology Laboratory, Sfax Faculty of Sciences, University of Sfax, Tunisia
| | - Ibtissem Ben Amara
- Animal Physiology Laboratory, Sfax Faculty of Sciences, University of Sfax, Tunisia
| | - Afef Troudi
- Animal Physiology Laboratory, Sfax Faculty of Sciences, University of Sfax, Tunisia
| | - Hanen Bouaziz
- Animal Physiology Laboratory, Sfax Faculty of Sciences, University of Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Sfax Faculty of Sciences, University of Sfax, Tunisia,
| |
Collapse
|
48
|
Ilavenil S, Kaleeswaran B, Ravikumar S. Protective effects of lycorine against carbon tetrachloride induced hepatotoxicity in Swiss albino mice. Fundam Clin Pharmacol 2011; 26:393-401. [DOI: 10.1111/j.1472-8206.2011.00942.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Soudani N, Troudi A, Bouaziz H, Ben Amara I, Boudawara T, Zeghal N. Cardioprotective effects of selenium on chromium (VI)-induced toxicity in female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:513-520. [PMID: 20580087 DOI: 10.1016/j.ecoenv.2010.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/05/2010] [Accepted: 06/09/2010] [Indexed: 05/29/2023]
Abstract
Acute exposure to hexavalent chromium compounds can cause cardiotoxicity. Our study pertains to the protective effect of selenium against K(2)Cr(2)O(7)-induced cardiotoxicity. Female Wistar rats were divided into four groups of six each: group I served as controls which received standard diet; group II received in drinking water K(2)Cr(2)O(7) alone (700 ppm); group III received both K(2)Cr(2)O(7) and Se (0.5 Na(2)SeO(3) mg/kg of diet); group IV received Se (0.5 mg/kg of diet) for 3 weeks. The exposure of rats to chromium promoted oxidative stress with an increase in malondialdehyde levels and a decrease in antioxidant non-enzymatic levels such as glutathione, non-protein thiol and vitamin C, while, an increase in glutathione peroxidase, superoxide dismutase and catalase activities was observed. However, plasma transaminases, lactate dehydrogenase activities, cholesterol, triglycerides and low density lipoprotein-cholesterol levels increased, and high density lipoprotein-cholesterol decreased. Coadministration of Se restored the parameters cited above to near-normal values. The histopathological findings confirmed the biochemical results.
Collapse
Affiliation(s)
- Nejla Soudani
- Animal Physiology Laboratory, Life Sciences Department, UR/08-73, Sfax Faculty of Sciences, BP1171, 3000 Sfax , Tunisia
| | | | | | | | | | | |
Collapse
|
50
|
Wang J, Liang Q, Ji L, Liu H, Wang C, Wang Z. Gender-related difference in liver injury induced by Dioscorea bulbifera L. rhizome in mice. Hum Exp Toxicol 2010; 30:1333-41. [DOI: 10.1177/0960327110389926] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was undertaken to investigate the gender-related liver injury induced by Dioscorea bulbifera L. (DB), a traditional medicinal plant, in mice, and further explored its hepatotoxic chemical compound. Serum and liver tissue samples were collected at 0, 4, 8, 12 h, after mice were administrated orally with 640 mg/kg ethyl acetate extracts (EF) isolated from DB. After treatments, serum alanine transaminase (ALT) and aspartate transaminase (AST) activities were both significantly elevated. Liver lipid peroxidation (LPO) level increased, while glutathione amounts, glutathione- S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) activities all decreased in the time-dependent manner. Further analysis demonstrated that ALT and AST activities in female mice were significantly lower than those in male. Meanwhile, liver glutathione amounts and CAT activity in female mice after giving EF for 12 h were both higher than those in male. Further, comparing the liver injury induced by Diosbulbin B isolated from DB with that induced by EF on the basis of chemical analysis for the amounts of Diosbulbin B in EF of DB, we found that Diosbulbin B could be the main hepatotoxic chemical compound in DB. Taken together, our results show that DB can induce gender-related liver oxidative stress injury in mice, and its main hepatotoxic chemical compound is Diosbulbin B, for the first time.
Collapse
Affiliation(s)
- Junming Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingning Liang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Hai Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| |
Collapse
|