1
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. Int J Mol Sci 2023; 24:16494. [PMID: 38003684 PMCID: PMC10671398 DOI: 10.3390/ijms242216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - T. Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
3
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic stressors unmask behavioral influences of PMAT deficiency in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555632. [PMID: 37693400 PMCID: PMC10491137 DOI: 10.1101/2023.08.30.555632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Marissa M Nicodemus
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Allianna K Hite
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Isabella R Spalding
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Lauren R Scrimshaw
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Sarah K Kassis
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Julie M Reichert
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Matthew T Ford
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Cameron N Russell
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Elayna M Hallal
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - T Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
4
|
Therapeutic treatment with fluoxetine using the chronic unpredictable stress model induces changes in neurotransmitters and circulating miRNAs in extracellular vesicles. Heliyon 2023; 9:e13442. [PMID: 36852042 PMCID: PMC9958461 DOI: 10.1016/j.heliyon.2023.e13442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The most widely prescribed antidepressant, fluoxetine (FLX), is known for its antioxidant and anti-inflammatory effects when administered post-stress. Few studies have evaluated the effects of FLX treatment when chronic stress has induced deleterious effects in patients. Our objective was to evaluate FLX treatment (20 mg/kg/day, i.v.) once these effects are manifested, and the drug's relation to extracellular circulating microRNAs associated with inflammation, a hedonic response (sucrose intake), the forced swim test (FST), and corticosterone levels (CORT) and monoamine concentrations in limbic areas. A group of Wistar rats was divided into groups: Control; FLX; CUMS (for six weeks of exposure to chronic, unpredictable mild stress); and CUMS + FLX, a mixed group. After CUMS, the rats performed the FST, and serum levels of CORT and six microRNAs (miR-16, -21, -144, -155, -146a, -223) were analyzed, as were levels of dopamine, noradrenaline, and serotonin in the prefrontal cortex, hippocampus, and hypothalamus. CUMS reduced body weight, sucrose intake, and hippocampal noradrenaline levels, but increased CORT, immobility behavior on the FST, dopamine concentrations in the prefrontal cortex, and all miRNAs except miR-146a expression. Administering FLX during CUMS reduced CORT levels and immobility behavior on the FST and increased the expression of miR-16, -21, -146a, -223, and dopamine. FLX protects against the deleterious effects of stress by reducing CORT and has an antidepressant effect on the FST, with minimally-modified neurotransmitter levels. FLX increased the expression of miRNAs as part of the antidepressant effect. It also regulates both neuroinflammation and serotoninergic neurotransmission through miRNAs, such as the miR-16.
Collapse
|
5
|
Varma M, Kaur A, Bhandari R, Kumar A, Kuhad A. Major depressive disorder (mdd): emerging immune targets at preclinical level. Expert Opin Ther Targets 2023; 27:479-501. [PMID: 37334668 DOI: 10.1080/14728222.2023.2225216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Major depressive disorder is a mental health disorder that is characterized by a persistently low mood and loss of interest. MDD is affecting over 3.8% of the global population as a major health problem. Its etiology is complex, and involves the interaction between a number of factors, including genetic predisposition and the presence of environmental stresses. AREAS COVERED The role of the immune and inflammatory systems in depression has been gaining interest, with evidence suggesting the potential involvement of pro-inflammatory molecules like TNF, interleukins, prostaglandins, and other cytokines, among others, has been put forth. Along with this, the potential of agents, from NSAIDs to antibiotics, are being evaluated in therapy for depression. The current review will discuss emerging immune targets at the preclinical level. EXPERT OPINION With increasing evidence to show that immune and inflammatory mediators are implicated in MDD, increasing research toward their potential as drug targets is encouraged. At the same time, agents acting on these mediators and possessing anti-inflammatory potential are also being evaluated as future therapeutic options for MDD, and increasing focus toward non-conventional drugs which can act through these mechanisms is important as regards the future prospects of the use of anti-inflammatory agents in depression.
Collapse
Affiliation(s)
- Manasi Varma
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Arshpreet Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ranjana Bhandari
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ashwani Kumar
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Anurag Kuhad
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| |
Collapse
|
6
|
Vizcarra VS, Barber KR, Franca-Solomon G, Majuta L, Smith A, Langlais PR, Largent-Milnes TM, Vanderah TW, Riegel AC. Targeting 5-HT 2A receptors and Kv7 channels in PFC to attenuate chronic neuropathic pain in rats using a spared nerve injury model. Neurosci Lett 2022; 789:136864. [PMID: 36063980 PMCID: PMC10088904 DOI: 10.1016/j.neulet.2022.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Chronic pain remains a disabling disease with limited therapeutic options. Pyramidal neurons in the prefrontal cortex (PFC) express excitatory Gq-coupled 5-HT2A receptors (5-HT2AR) and their effector system, the inhibitory Kv7 ion channel. While recent publications show these cells innervate brainstem regions important for regulating pain, the cellular mechanisms underlying the transition to chronic pain are not well understood. The present study examined whether local blockade of 5-HT2AR or enhanced Kv7 ion channel activity in the PFC would attenuate mechanical allodynia associated with spared nerve injury (SNI) in rats. Following SNI, we show that inhibition of PFC 5-HT2ARs with M100907 or opening of PFC Kv7 channels with retigabine reduced mechanical allodynia. Parallel proteomic and RNAScope experiments evaluated 5-HT2AR/Kv7 channel protein and mRNA. Our results support the role of 5-HT2ARs and Kv7 channels in the PFC in the maintenance of chronic pain.
Collapse
Affiliation(s)
- Velia S Vizcarra
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Translational Biomedical Sciences Graduate Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box URNI, Rochester, NY, 14642, USA
| | - Kara R Barber
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Gabriela Franca-Solomon
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Lisa Majuta
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Angela Smith
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 52242, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona, 85721, USA
| | - Tally M Largent-Milnes
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Todd W Vanderah
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Arthur C Riegel
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA; Department of Neuroscience, College of Science, University of Arizona, Tucson, Arizona, 85721, USA; James C. Wyant College of Optical Sciences, the University of Arizona, Tucson, Arizona, 85721, USA.
| |
Collapse
|
7
|
Naffaa MM, Al-Ewaidat OA. Ligand modulation of KCNQ-encoded (K V7) potassium channels in the heart and nervous system. Eur J Pharmacol 2021; 906:174278. [PMID: 34174270 DOI: 10.1016/j.ejphar.2021.174278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
KCNQ-encoded (KV7) potassium channels are diversely distributed in the human tissues, associated with many physiological processes and pathophysiological conditions. These channels are increasingly used as drug targets for treating diseases. More selective and potent molecules on various types of the KV7 channels are desirable for appropriate therapies. The recent knowledge of the structure and function of human KCNQ-encoded channels makes it more feasible to achieve these goals. This review discusses the role and mechanism of action of many molecules in modulating the function of the KCNQ-encoded potassium channels in the heart and nervous system. The effects of these compounds on KV7 channels help to understand their involvement in many diseases, and to search for more selective and potent ligands to be used in the treatment of many disorders such as various types of cardiac arrhythmias, epilepsy, and pain.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Ola A Al-Ewaidat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
8
|
Lu F, Ma Y, Huang H, Zhang Y, Kong H, Zhao Y, Qu H, Wang Q, Liu Y, Kang Z. Edible and highly biocompatible nanodots from natural plants for the treatment of stress gastric ulcers. NANOSCALE 2021; 13:6809-6818. [PMID: 33885482 DOI: 10.1039/d1nr01099a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The incidence rate of stress ulcers has increased in recent years, with an increase in life pressure, unavoidable trauma and other factors. The therapy of acute stress ulcers has always been an important challenge. Carbon dots (CDs) have been reported to show excellent biological activities, but research on the stress ulcer curative effect of CDs is unprecedented. Here, we prepared a series of semi-carbonized nanodots (SCNDs) from natural plants or herbs as precursors and the as prepared SCNDs were later proved to be effective in the treatment and inhibition of stress gastric ulcers in a rat model. One kind of SCND from edible and medicinal plants, charred Atractylodes macrocephala (SCNDs-1), is demonstrated in detail for its strong anti-stress gastric ulcer effect with inhibition up to 90% and shows extremely high biocompatibility and ultra-low toxicity. These SCNDs lead to the reduction of inflammatory factors and oxidative stress, and the protection of the gastric mucosa. The SCNDs also reduce the excessive neuroendocrine response caused by stress, regulate the energy metabolism and the structure of intestinal flora, improve the damage to the body caused by the stress state, thus alleviating the occurrence of stress-induced gastric ulcers. This work provides new insights into the preparation of carbon nanomaterials from natural plants through a semi-carbonization process and opens new ways to apply bio-active and bio-safe SCNDs in the modern pharmaceutical field.
Collapse
Affiliation(s)
- Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
This paper introduces a new construct, the 'pivotal mental state', which is defined as a hyper-plastic state aiding rapid and deep learning that can mediate psychological transformation. We believe this new construct bears relevance to a broad range of psychological and psychiatric phenomena. We argue that pivotal mental states serve an important evolutionary function, that is, to aid psychological transformation when actual or perceived environmental pressures demand this. We cite evidence that chronic stress and neurotic traits are primers for a pivotal mental state, whereas acute stress can be a trigger. Inspired by research with serotonin 2A receptor agonist psychedelics, we highlight how activity at this particular receptor can robustly and reliably induce pivotal mental states, but we argue that the capacity for pivotal mental states is an inherent property of the human brain itself. Moreover, we hypothesize that serotonergic psychedelics hijack a system that has evolved to mediate rapid and deep learning when its need is sensed. We cite a breadth of evidences linking stress via a variety of inducers, with an upregulated serotonin 2A receptor system (e.g. upregulated availability of and/or binding to the receptor) and acute stress with 5-HT release, which we argue can activate this primed system to induce a pivotal mental state. The pivotal mental state model is multi-level, linking a specific molecular gateway (increased serotonin 2A receptor signaling) with the inception of a hyper-plastic brain and mind state, enhanced rate of associative learning and the potential mediation of a psychological transformation.
Collapse
Affiliation(s)
- Ari Brouwer
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | | |
Collapse
|
10
|
Zhang S, Li X, Zhao S, Drobizhev M, Ai HW. A fast, high-affinity fluorescent serotonin biosensor engineered from a tick lipocalin. Nat Methods 2021; 18:258-261. [PMID: 33633410 DOI: 10.1038/s41592-021-01078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Abstract
Serotonin (5-HT) is an important signaling monoamine and neurotransmitter. We report structure-guided engineering of a green fluorescent, genetically encoded serotonin sensor (G-GESS) from a 5-HT-binding lipocalin in the soft tick Argas monolakensis. G-GESS shows fast response kinetics and high affinity, specificity, brightness and photostability. We used G-GESS to image 5-HT dynamics in cultured cells, brain slices and behaving mice.
Collapse
Affiliation(s)
- Shen Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Xinyu Li
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Shengyu Zhao
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Mikhail Drobizhev
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA. .,Department of Chemistry, University of Virginia, Charlottesville, VA, USA. .,The UVA Cancer Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
11
|
TODOROKI K, NAKANO M, YOSHIDA H, NOHTA H, YAMAGUCHI M. Sensitive and Selective LC Determination of 5-Hydroxyindoles Through Online Electrochemical Fluorescence Derivatization Using Benzylamine. CHROMATOGRAPHY 2021. [DOI: 10.15583/jpchrom.2020.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Masaki NAKANO
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | - Hitoshi NOHTA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Masatoshi YAMAGUCHI
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| |
Collapse
|
12
|
Unger EK, Keller JP, Altermatt M, Liang R, Matsui A, Dong C, Hon OJ, Yao Z, Sun J, Banala S, Flanigan ME, Jaffe DA, Hartanto S, Carlen J, Mizuno GO, Borden PM, Shivange AV, Cameron LP, Sinning S, Underhill SM, Olson DE, Amara SG, Temple Lang D, Rudnick G, Marvin JS, Lavis LD, Lester HA, Alvarez VA, Fisher AJ, Prescher JA, Kash TL, Yarov-Yarovoy V, Gradinaru V, Looger LL, Tian L. Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. Cell 2020; 183:1986-2002.e26. [PMID: 33333022 PMCID: PMC8025677 DOI: 10.1016/j.cell.2020.11.040] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 06/22/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.
Collapse
Affiliation(s)
- Elizabeth K Unger
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Jacob P Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Michael Altermatt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruqiang Liang
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Chunyang Dong
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Olivia J Hon
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zi Yao
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Junqing Sun
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Samba Banala
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David A Jaffe
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Samantha Hartanto
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Jane Carlen
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Grace O Mizuno
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Phillip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lindsay P Cameron
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Steffen Sinning
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Suzanne M Underhill
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Mental Health, NIH, Bethesda, MD 20892, USA
| | - David E Olson
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Susan G Amara
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Mental Health, NIH, Bethesda, MD 20892, USA
| | - Duncan Temple Lang
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Andrew J Fisher
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vladimir Yarov-Yarovoy
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA.
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Kudryashov NV, Kalinina TS, Shimshirt AA, Volkova AV, Narkevich VB, Naplekova PL, Kasabov KA, Kudrin VS, Voronina TA, Fisenko VP. The Behavioral and Neurochemical Aspects of the Interaction between Antidepressants and Unpredictable Chronic Mild Stress. Acta Naturae 2020; 12:63-72. [PMID: 32477600 PMCID: PMC7245955 DOI: 10.32607/actanaturae.10942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023] Open
Abstract
The behavioral and neurochemical effects of amitriptyline (10 mg/kg, i.p.) and fluoxetine (20 mg/kg, i.p.) after single and chronic administration in the setting of unpredictable mild stress in outbred ICR (CD-1) mice were studied. After a 28-day exposure to stress, we observed an increase in depressive reaction in a forced swim test in mice, as well as reduced hippocampal levels of serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and an increased hypothalamic level of noradrenaline (NA). Single and chronic administration of amitriptyline and fluoxetine shortened the immobility period and increased the time corresponding to active swimming in the forced swim test. The antidepressant-like effect of fluoxetine - but not of amitriptyline - after a single injection coincided with an increase in the 5-HT turnover in the hippocampus. Chronic administration of the antidepressants increased the hypothalamic levels of NA. Thus, the antidepressant- like effect of amitriptyline and fluoxetine may result from an enhancement of the stress-dependent adaptive mechanisms depleted by chronic stress.
Collapse
Affiliation(s)
- N. V. Kudryashov
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russia
- N.K. Koltsov Institute of Developmental Biology RAS, Moscow, 119334 Russia
| | - T. S. Kalinina
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
- N.K. Koltsov Institute of Developmental Biology RAS, Moscow, 119334 Russia
| | - A. A. Shimshirt
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - A. V. Volkova
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. B. Narkevich
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - P. L. Naplekova
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - K. A. Kasabov
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. S. Kudrin
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - T. A. Voronina
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. P. Fisenko
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russia
| |
Collapse
|
14
|
Sargin D, Jeoung HS, Goodfellow NM, Lambe EK. Serotonin Regulation of the Prefrontal Cortex: Cognitive Relevance and the Impact of Developmental Perturbation. ACS Chem Neurosci 2019; 10:3078-3093. [PMID: 31259523 DOI: 10.1021/acschemneuro.9b00073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prefrontal cortex is essential for both executive function and emotional regulation. The interrelationships among these behavioral domains are increasingly recognized, as well as their sensitivity to serotonin (5-hydroxytryptamine, 5-HT). Prefrontal cortex receives serotonergic inputs from the dorsal and median raphe nuclei and is modulated by multiple subtypes of 5-HT receptor across its layers and cell types. Extremes of serotonergic modulation alter mood regulation in vulnerable individuals, yet the impact of serotonin under more typical physiological parameters remains unclear. In this regard, new tools are permitting a closer examination of the behavioral impact of the serotonin system. Optogenetic and chemogenetic manipulations of dorsal raphe 5-HT neurons reveal that serotonin has a greater impact on executive function than previously appreciated. Domains that appear sensitive to fluctuations in 5-HT neuronal excitability include patience and cognitive flexibility. This work is broadly consistent with ex vivo research investigating how 5-HT regulates prefrontal cortex and its output projections. A growing literature suggests 5-HT modulation of these prefrontal circuits is unexpectedly flexible to alteration during development by genetic, behavioral, environmental or pharmacological manipulations, with lasting repercussions for cognition and emotional regulation. Here, we review the cellular and circuit mechanisms of prefrontal serotonergic modulation, investigate recent research into the cognitive consequences of the serotonergic system, and probe the lasting consequences of developmental perturbations. Understanding both the complexity of the prefrontal serotonin system and its sensitivity during development are essential to learn more about the vulnerabilities of this system in mood and anxiety disorders and the underappreciated cognitive consequences of these disorders and their treatment.
Collapse
Affiliation(s)
- Derya Sargin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Ha-Seul Jeoung
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Evelyn K. Lambe
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of OBGYN, University of Toronto, Toronto, ON M5G 1E2, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
15
|
Li Y, Zu Y, Li X, Zhao S, Ou F, Li L, Zhang X, Wang W, He T, Liang Y, Sun X, Tang M. Acute corticosterone treatment elicits antidepressant-like actions on the hippocampal 5-HT and the immobility phenotype. Brain Res 2019; 1714:166-173. [DOI: 10.1016/j.brainres.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|
16
|
P2X7 Receptor Signaling in Stress and Depression. Int J Mol Sci 2019; 20:ijms20112778. [PMID: 31174279 PMCID: PMC6600521 DOI: 10.3390/ijms20112778] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Stress exposure is considered to be the main environmental cause associated with the development of depression. Due to the limitations of currently available antidepressants, a search for new pharmacological targets for treatment of depression is required. Recent studies suggest that adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation channel localized in different cell types in the central nervous system (CNS), playing a crucial role in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression in humans. This review will discuss recent findings linked to the P2X7R involvement in stress and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and neuroplastic mechanisms.
Collapse
|
17
|
Sparks DW, Tian MK, Sargin D, Venkatesan S, Intson K, Lambe EK. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex. Front Neural Circuits 2018; 11:107. [PMID: 29354034 PMCID: PMC5758509 DOI: 10.3389/fncir.2017.00107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.
Collapse
Affiliation(s)
- Daniel W Sparks
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael K Tian
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Derya Sargin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Katheron Intson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Abstract
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Collapse
Affiliation(s)
- RL Carhart-Harris
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - DJ Nutt
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
19
|
Jukić MM, Opel N, Ström J, Carrillo-Roa T, Miksys S, Novalen M, Renblom A, Sim SC, Peñas-Lledó EM, Courtet P, Llerena A, Baune BT, de Quervain DJ, Papassotiropoulos A, Tyndale RF, Binder EB, Dannlowski U, Ingelman-Sundberg M. Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment. Mol Psychiatry 2017; 22:1155-1163. [PMID: 27895323 DOI: 10.1038/mp.2016.204] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/21/2016] [Accepted: 10/04/2016] [Indexed: 01/17/2023]
Abstract
The polymorphic CYP2C19 enzyme metabolizes psychoactive compounds and is expressed in the adult liver and fetal brain. Previously, we demonstrated that the absence of CYP2C19 is associated with lower levels of depressive symptoms in 1472 Swedes. Conversely, transgenic mice carrying the human CYP2C19 gene (2C19TG) have shown an anxious phenotype and decrease in hippocampal volume and adult neurogenesis. The aims of this study were to: (1) examine whether the 2C19TG findings could be translated to humans, (2) evaluate the usefulness of the 2C19TG strain as a tool for preclinical screening of new antidepressants and (3) provide an insight into the molecular underpinnings of the 2C19TG phenotype. In humans, we found that the absence of CYP2C19 was associated with a bilateral hippocampal volume increase in two independent healthy cohorts (N=386 and 1032) and a lower prevalence of major depressive disorder and depression severity in African-Americans (N=3848). Moreover, genetically determined high CYP2C19 enzymatic capacity was associated with higher suicidality in depressed suicide attempters (N=209). 2C19TG mice showed high stress sensitivity, impaired hippocampal Bdnf homeostasis in stress, and more despair-like behavior in the forced swim test (FST). After the treatment with citalopram and 5-HT1A receptor agonist 8OH-DPAT, the reduction in immobility time in the FST was more pronounced in 2C19TG mice compared with WTs. Conversely, in the 2C19TG hippocampus, metabolic turnover of serotonin was reduced, whereas ERK1/2 and GSK3β phosphorylation was increased. Altogether, this study indicates that elevated CYP2C19 expression is associated with depressive symptoms, reduced hippocampal volume and impairment of hippocampal serotonin and BDNF homeostasis.
Collapse
Affiliation(s)
- M M Jukić
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - N Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - J Ström
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - T Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Miksys
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Novalen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - A Renblom
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S C Sim
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E M Peñas-Lledó
- CICAB Clinical Research Center, Extremadura University Hospital and Medical School, Badajoz, Spain.,CIBERSAM, Madrid, Spain
| | - P Courtet
- CHU Montpellier, Hôpital Lapeyronie, Psychiatric Emergency and Post-Acute Care Department, Pole Urgence, Montpellier, France
| | - A Llerena
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - D J de Quervain
- Transfaculty Research Platform, Department of Psychology, University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - A Papassotiropoulos
- Transfaculty Research Platform, Department of Psychology, University Psychiatric Clinics, University of Basel, Basel, Switzerland.,Life Sciences Training Facility, Department Biozentrum, University of Basel, Basel, Switzerland
| | - R F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - E B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - U Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, University of Marburg, Marburg, Germany
| | - M Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Tian MK, Schmidt EF, Lambe EK. Serotonergic Suppression of Mouse Prefrontal Circuits Implicated in Task Attention. eNeuro 2016; 3:ENEURO.0269-16.2016. [PMID: 27844060 PMCID: PMC5099606 DOI: 10.1523/eneuro.0269-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
Serotonin (5-HT) regulates attention by neurobiological mechanisms that are not well understood. Layer 6 (L6) pyramidal neurons of prefrontal cortex play an important role in attention and express 5-HT receptors, but the serotonergic modulation of this layer and its excitatory output is not known. Here, we performed whole-cell recordings and pharmacological manipulations in acute brain slices from wild-type and transgenic mice expressing either eGFP or eGFP-channelrhodopsin in prefrontal L6 pyramidal neurons. Excitatory circuits between L6 pyramidal neurons and L5 GABAergic interneurons, including a population of interneurons essential for task attention, were investigated using optogenetic techniques. Our experiments show that prefrontal L6 pyramidal neurons are subject to strong serotonergic inhibition and demonstrate direct 5-HT-sensitive connections between prefrontal L6 pyramidal neurons and two classes of L5 interneurons. This work helps to build a neurobiological framework to appreciate serotonergic disruption of task attention and yields insight into the disruptions of attention observed in psychiatric disorders with altered 5-HT receptors and signaling.
Collapse
Affiliation(s)
- Michael K Tian
- Department of Physiology, University of Toronto , Toronto, ON, Canada
| | - Eric F Schmidt
- Laboratory of Molecular Biology, Rockefeller University , New York, NY
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Kaneko F, Kawahara Y, Kishikawa Y, Hanada Y, Yamada M, Kakuma T, Kawahara H, Nishi A. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors. Int J Neuropsychopharmacol 2016; 19:pyw026. [PMID: 27029212 PMCID: PMC5006198 DOI: 10.1093/ijnp/pyw026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/23/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. METHODS The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. RESULTS Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. CONCLUSIONS Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress.
Collapse
Affiliation(s)
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan (Ms Kaneko and Drs Kawahara, Kishikawa, Hanada, and Nishi); Department of Psychiatry, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan (Dr Yamada); Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan (Dr Kakuma); Department of Dental Anesthesiology, School of Dentistry, Tsurumi University, Tsurumi-ku, Yokohama, Kanagawa, Japan (Dr Kawahara).
| | | | | | | | | | | | | |
Collapse
|
22
|
Treatment of cognitive dysfunction in major depressive disorder—a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin–norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. Eur J Pharmacol 2015; 753:19-31. [DOI: 10.1016/j.ejphar.2014.07.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/06/2014] [Accepted: 07/24/2014] [Indexed: 02/02/2023]
|
23
|
Li C, Huang P, Lu Q, Zhou M, Guo L, Xu X. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats. Neuroscience 2014; 280:19-30. [PMID: 25234320 DOI: 10.1016/j.neuroscience.2014.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/17/2022]
Abstract
Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences.
Collapse
Affiliation(s)
- C Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - P Huang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Q Lu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - M Zhou
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - L Guo
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - X Xu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
24
|
Acute effects of restraint, shock and training in the elevated T-Maze on noradrenaline and serotonin systems of the prefrontal cortex. ACTA COLOMBIANA DE PSICOLOGIA 2014. [DOI: 10.14718/acp.2014.17.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The prefrontal cortex (PFC) participates in cognitive functions and stress regulation. Noradrenaline (NA) and serotonin (5-HT) levels in some regions of the central nervous system are modified by acute stress. The effects depend on the type of stressor and the time elapsed between the presence of the stressor and the assessment. The aims of the present study were to assess the acute effect of different stressors on NA and 5-HT activities in the PFC and its relation with corticosterone levels. Independent groups of male Wistar rats (250-280 g) were submitted to restraint, footshock or training in the elevated T-maze (ETMT). The animals were sacrificed immediately (T0) or one hour (T1) after stress exposure. An untreated group sacrificed concurrently with treated animals was included as control. Samples of the PFC were dissected and the concentration of NA, 5-HT and their metabolites were measured by HPLC. Corticosterone levels were measured in serum. None of the treatments modified NA levels in the PFC. Animals exposed to footshock or ETMT showed significantly higher concentrations of 5-HT at T0. Restraint and footshock treatments were associated with higher corticosterone levels at T0 and T1 after the respective treatment. Taken together the results show that in the PFC, the noradrenergic and serotonergic systems, and the corticosterone levels respond in different ways to different stressors.
Collapse
|
25
|
Concerted derivatization and concentration method with dispersive liquid–liquid microextraction for liquid chromatographic analysis of 5-hydroxyindoles in human serum. Talanta 2013; 117:27-31. [DOI: 10.1016/j.talanta.2013.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022]
|
26
|
Roni MA, Rahman S. Antidepressant-like effects of lobeline in mice: behavioral, neurochemical, and neuroendocrine evidence. Prog Neuropsychopharmacol Biol Psychiatry 2013. [PMID: 23200829 DOI: 10.1016/j.pnpbp.2012.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Preclinical and clinical studies suggest that neuronal nicotinic acetylcholine receptor (nAChR) antagonists have antidepressant-like properties. The present study examined the effects of lobeline, a nAChR antagonist, in the forced swim test (FST), tail suspension test (TST), and novelty suppressed feeding test (NSFT) of antidepressant efficacy. Lobeline (1 or 4 mg/kg, s.c.) was administered 20 min before the FST and TST in C57BL/6J mice. Pretreatment with lobeline significantly reduced immobility time in the FST but not in the TST. Repeated lobeline (1 or 4 mg/kg, s.c.) treatment for 21 days significantly reduced feeding latency in the NSFT. We also determined the effects of lobeline on forced swim stress (FSS)-induced increased in plasma corticosterone levels using enzyme immunoassay. Pretreatment with lobeline (1 mg/kg, s.c.) significantly attenuated the corticosterone levels. Further, the effects of lobeline on FSS-induced increased in norepinephrine (NE) and serotonin levels in the prefrontal cortex (PFC) and hippocampus were determined using high performance liquid chromatography. Pretreatment with lobeline (1 or 10 mg/kg, s.c.) significantly reduced NE levels in the PFC. Overall, the present study indicates that lobeline produces antidepressant-like effects by targeting brain nAChRs and/or neuroendocrine and brain noradrenergic systems.
Collapse
Affiliation(s)
- Monzurul Amin Roni
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
27
|
Park JY, Myung SW, Kim IS, Choi DK, Kwon SJ, Yoon SH. Simultaneous Measurement of Serotonin, Dopamine and Their Metabolites in Mouse Brain Extracts by High-Performance Liquid Chromatography with Mass Spectrometry Following Derivatization with Ethyl Chloroformate. Biol Pharm Bull 2013. [DOI: 10.1248/bpb.b12-00689] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ju-Young Park
- Department of Molecular Science and Technology, Ajou University
| | | | - In-Soo Kim
- Department of Biotechnology, Konkuk University
| | | | - Soon-Jung Kwon
- Department of Molecular Science and Technology, Ajou University
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University
| |
Collapse
|
28
|
Uchihashi S, Nishikawa M, Sakaki T, Ikushiro SI. Comparison of serotonin glucuronidation activity of UDP-glucuronosyltransferase 1a6a (Ugt1a6a) and Ugt1a6b: evidence for the preferential expression of Ugt1a6a in the mouse brain. Drug Metab Pharmacokinet 2012; 28:260-4. [PMID: 23089803 DOI: 10.2133/dmpk.dmpk-12-nt-091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mouse UDP-glucuronosyltransferase (Ugt) 1a6a and Ugt1a6b share 98% sequence homology, but there have been no reports to date that compare their expression levels or enzymatic activities in serotonin glucuronidation. Thus, we designed specific primers for Ugt1a6a and Ugt1a6b to compare their expression in mouse brain regions and livers. Ugt1a6a was dominantly expressed in mouse brains, especially the hippocampus, while both Ugt1a6a and Ugt1a6b were highly expressed in mouse livers, indicating that there are significant differences in the expression patterns of Ugt1a6a and Ugt1a6b among mouse tissues. Glucuronidation of endogenous neurotransmitter serotonin was catalyzed by Ugt1a6b with k(cat)/K(m) (4.5 M(-1)·s(-1)) slightly higher than that of Ugt1a6a (2.4 M(-1)·s(-1)). However, the difference in expression levels between Ugt1a6a and Ugt1a6b in the hippocampus led us to speculate that Ugt1a6a is likely the predominant catalyst of serotonin glucuronidation in the mouse brain. In conclusion, we successfully elucidated the differences between Ugt1a6a and Ugt1a6b expression in the mouse brain. Our new findings indicate that Ugt1a6a and Ugt1a6b play different roles in mice, driven by differences in expression and kinetic properties for serotonin glucuronidation.
Collapse
Affiliation(s)
- Shinsuke Uchihashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | | | | | | |
Collapse
|
29
|
Jabeen Haleem D. Raphe-Hippocampal Serotonin Neurotransmission In The Sex Related Differences of Adaptation to Stress: Focus on Serotonin-1A Receptor. Curr Neuropharmacol 2012; 9:512-21. [PMID: 22379463 PMCID: PMC3151603 DOI: 10.2174/157015911796558019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/07/2010] [Accepted: 10/29/2010] [Indexed: 12/24/2022] Open
Abstract
Stress is the major predisposing and precipitating factor in the onset of depression which is the most significant mental health risk for women. Behavioral studies in animal models show that female sex though less affected by an acute stressor; exposure to repeated stressors induces coping deficits to impair adaptation in them. A decrease in the function of 5-hydroxytryptamine (5-HT; serotonin) in the hippocampus and an increased function of the 5-HT-1A receptor in the raphe nucleus coexist in depression. Pharmacological and neurochemical data are relevant that facilitation of serotonin neurotransmission via hippocampus due to desensitization of somatodendritic 5-HT1A receptors may lead to adaptation to stress. The present article reviews research on sex related differences of raphe-hippocampal serotonin neurotransmission to find a possible answer that may account for the sex differences of adaptation to stress reported in preclinical research and greater incidence of depression in women than men.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Department of Biochemistry, Neurochemistry and Biochemical Neuropharmacology Research Unit, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
30
|
Abstract
BACKGROUND AND PURPOSE Stress-induced central effects are regulated by brain neurotransmitters, glucocorticoids and oxidative processes. Therefore, we aimed to evaluate the simultaneous alterations in the monoamine and antioxidant systems in selected brain regions (frontal cortex, striatum and hippocampus) at 1 hour (h) and 24h following the exposure of restraint stress (RS), to understand their initial response and possible crosstalk. METHODS AND RESULTS RS (150 min immobilization) significantly increased the dopamine levels in the frontal cortex and decreased them in the striatum and hippocampus, with selective increase of dopamine metabolites both in the 1h and 24h RS groups compared to control values. The serotonin and its metabolite levels were significantly increased in both time intervals, while noradrenaline levels were decreased in the frontal cortex and striatum only. The activities of superoxide dismutase, glutathione peroxidase and the levels of lipid peroxidation were significantly increased with significant decrease of glutathione levels in the frontal cortex and striatum both in the 1h and 24h RS groups. There was no significant change in the catalase activity in any group. In the hippocampus, the glutathione levels were significantly decreased only in the 1h RS group. CONCLUSIONS Our study implies that the frontal cortex and striatum are more sensitive to oxidative burden which could be related to the parallel monoamine perturbations. This provides a rational look into the simultaneous compensatory central mechanisms operating during acute stress responses which are particular to precise brain regions and may have long lasting effects on various neuropathological alterations.
Collapse
|
31
|
Haleem DJ. Behavioral deficits and exaggerated feedback control over raphe-hippocampal serotonin neurotransmission in restrained rats. Pharmacol Rep 2012; 63:888-97. [PMID: 22001976 DOI: 10.1016/s1734-1140(11)70604-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 02/16/2011] [Indexed: 01/07/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), acting via the hippocampus, is thought to be critical for the neuroadaptation that alleviates the adverse effects of stress on emotion and behavior. It was hypothesized that a decrease in raphe-hippocampal serotonin neurotransmission caused by exaggerated feedback inhibition of 5-HT synthesis and release significantly contributes to stress-induced behavioral deficits. Acute exposure to 2 h of restraint stress increased 5-HT metabolism in the cortex and raphe region but had no such effect in the hippocampus. Exposure to 2 h of restraint stress elicited anxiety-like behavior, which was monitored in the light-dark transition test the next day. Animals sacrificed 24 h after termination of the stress period exhibited a decrease in the concentration of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the hippocampus but not in the cortex and raphe. 8-Hydroxy-2-di-n-propylaminotetralin (8-OH-DPAT) injected at doses of 0.125, 0.25 and 0.5 mg/kg decreased 5-HT metabolism in the raphe, cortex and hippocampus of restrained and unrestrained animals, and the decreases in the raphe and hippocampus, but not those in the cortex, were greater in restrained than unrestrained animals. Exaggerated feedback control over raphe-hippocampal serotonin neurotransmission may be involved in the inability of the organism to cope with increased stress and elicits behavioral depression.
Collapse
Affiliation(s)
- Darakhshan J Haleem
- Department of Biochemistry, Neurochemistry and Biochemical Neuropharmacology Research Unit, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
32
|
Hall IC, Sell GL, Chester EM, Hurley LM. Stress-evoked increases in serotonin in the auditory midbrain do not directly result from elevations in serum corticosterone. Behav Brain Res 2012; 226:41-9. [DOI: 10.1016/j.bbr.2011.08.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/26/2011] [Accepted: 08/27/2011] [Indexed: 11/26/2022]
|
33
|
Kavitha N, Babu SM, Rao MEB. Influence of Momordica charantia on oxidative stress-induced perturbations in brain monoamines and plasma corticosterone in albino rats. Indian J Pharmacol 2011; 43:424-8. [PMID: 21844998 PMCID: PMC3153706 DOI: 10.4103/0253-7613.83114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/02/2011] [Accepted: 04/25/2011] [Indexed: 11/05/2022] Open
Abstract
Objectives: The objective of this study was to evaluate the antistress activity of Momordica charantia (MC) fruit extract on stress-induced changes in albino rats and also to explore attenuating effects of MC on in vitro lipid peroxidation in rat brain. Materials and Methods: In this study, Wistar albino rats (180–200 g) were used. Plasma corticosterone and monoamines—5-hydroxy tryptamine (5-HT), norepinephrine (NE), epinephrine (E) and dopamine (DA) in cortex, hypothalamus and hippocampus regions of brain were determined in animals under different stressful conditions. Ethanolic fruit extract of MC, at doses of 200 and 400 mg/kg, was used. The oxidative stress paradigms used in in vivo models were acute stress (AS) and chronic unpredictable stress (CUS). Panax quinquefolium (PQ) was used as a standard in in vivo models and ascorbic acid was used as a reference standard in the in vitro method. Results: Subjecting the animals to AS (immobilization for 150 min once only) resulted in significant elevation of plasma corticosterone levels and brain monoamine levels. Pretreatment with MC at doses of 200 and 400 mg/kg p.o. significantly countered AS-induced changes and a similar effect was exhibited by PQ at 100 mg/kg p.o. In the CUS regimen (different stressors for 7 days), plasma corticosterone levels were significantly elevated whereas the levels of 5-HT, NE, E, and DA were depleted significantly. Pretreatment with MC (200 and 400 mg/kg) attenuated the CUS-induced changes in the levels of above monoamines in cortex, hypothalamus, and hippocampus regions of brain and plasma corticosterone in a dose-dependent manner. Furthermore, MC extract (1000–5000 μg/mL) exhibited a significant quenching effect on in vitro lipid peroxidation indicating its strong antioxidant activity which was compared with ascorbic acid. Conclusions: This study reveals the antistress activity of MC as it significantly reverted the stress-induced changes, and the activity might be attributed to its antioxidant activity since stress is known to involve several oxidative mechanisms.
Collapse
Affiliation(s)
- Naga Kavitha
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Berhampur, Orissa, India
| | | | | |
Collapse
|
34
|
Browne CA, Clarke G, Dinan TG, Cryan JF. Differential stress-induced alterations in tryptophan hydroxylase activity and serotonin turnover in two inbred mouse strains. Neuropharmacology 2011; 60:683-91. [DOI: 10.1016/j.neuropharm.2010.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
35
|
Orchiectomy modifies the antidepressant-like response of nicotine in the forced swimming test. Physiol Behav 2010; 101:456-61. [DOI: 10.1016/j.physbeh.2010.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 05/14/2010] [Accepted: 07/26/2010] [Indexed: 11/19/2022]
|
36
|
Uphouse L, Guptarak J, Hiegel C. Progesterone reduces the inhibitory effect of a serotonin 1B receptor agonist on lordosis behavior. Pharmacol Biochem Behav 2010; 97:317-24. [PMID: 20816890 DOI: 10.1016/j.pbb.2010.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 08/19/2010] [Accepted: 08/28/2010] [Indexed: 11/16/2022]
Abstract
Ovariectomized Fischer inbred rats were hormonally primed with 10μg estradiol benzoate and sesame seed oil (EO rats) or with estradiol benzoate and 500μg progesterone (EP rats). Four to six hours after progesterone or oil, rats were pretested for sexual behavior and then infused bilaterally into the ventromedial nucleus of the hypothalamus with 0, 50, 100 or 200ng of the 5-HT(1B) receptor agonist, 1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-pyrrol[3,2-bi]pyridin-5-one-dihydrochloride (CP 93129). Sexual receptivity was monitored by the lordosis to mount (L/M) ratio. EO rats showed a transient decline in lordosis behavior following infusion with the saline vehicle and this was amplified by CP 93129. There were no effects of any infusion in EP rats. These findings are discussed in terms of the possible stress effect of the intracranial infusion in EO rats and their implications for a role of 5-HT(1B) receptors in the response to a mild stress.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology, Texas Woman's University, Denton, TX 76204, United States.
| | | | | |
Collapse
|
37
|
Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test. J Neurosci 2010; 30:10472-83. [PMID: 20685990 DOI: 10.1523/jneurosci.0257-10.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPalpha that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPalpha in the brain of wild-type mice through activation of Src family kinases. The SIRPalpha ligand CD47 was important for such SIRPalpha phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvbeta2 was regulated by SIRPalpha. Thus, tyrosine phosphorylation of SIRPalpha is important for regulation of depression-like behavior in the response of the brain to stress.
Collapse
|
38
|
Hall IC, Rebec GV, Hurley LM. Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. ACTA ACUST UNITED AC 2010; 213:1009-17. [PMID: 20228336 DOI: 10.1242/jeb.035956] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuromodulation by serotonin (5-HT) could link behavioral state and environmental events with sensory processing. Within the auditory system, the presence of 5-HT alters the activity of neurons in the inferior colliculus (IC), but the conditions that influence 5-HT neurotransmission in this region of the brain are unknown. We used in vivo voltammetry to measure extracellular 5-HT in the IC of behaving mice to address this issue. Extracellular 5-HT increased with the recovery from anesthesia, suggesting that the neuromodulation of auditory processing is correlated with the level of behavioral arousal. Awake mice were further exposed to auditory (broadband noise), visual (light) or olfactory (2,5-dihydro-2,4,5-trimethylthiazoline, TMT) stimuli, presented with food or confined in a small arena. Only the auditory stimulus or restricted movement increased the concentration of extracellular 5-HT in the IC. Changes occurred within minutes of stimulus onset, with the auditory stimulus increasing extracellular 5-HT by an average of 5% and restricted movement increasing it by an average of 14%. These findings suggest that the neuromodulation of auditory processing by 5-HT is a dynamic process that is dependent on internal state and behavioral conditions.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biology, 1001 E. Third Street, 342 Jordan Hall, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
39
|
Fumoto M, Oshima T, Kamiya K, Kikuchi H, Seki Y, Nakatani Y, Yu X, Sekiyama T, Sato-Suzuki I, Arita H. Ventral prefrontal cortex and serotonergic system activation during pedaling exercise induces negative mood improvement and increased alpha band in EEG. Behav Brain Res 2010; 213:1-9. [PMID: 20412817 DOI: 10.1016/j.bbr.2010.04.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
This study evaluates a possible involvement of the prefrontal cortex (PFC) and serotonergic (5-HT) system in psychiatric and electroencephalography (EEG) changes during and after pedaling exercise (PE). The subjects performed PE for 15 min using a cycle ergometer. PE rate was kept at 60 rpm, and the work load (93+/-5.4 W) was decided for each subject before the experiment based on a Rating of Perceived Exertion of 12-13 for self-selected exercise intensity. Cerebral oxygenation in the PFC was assessed by concentration changes in oxygenated hemoglobin (oxyHb) using 24-channel near-infrared spectroscopy. We found that PE evoked a significant increase in oxyHb levels in the ventral PFC during PE as compared with that in the dorsal PFC. Subjects had a feeling of reduced negative mood accompanied by a tendency of increased vigor-activity after PE, as assessed by the Profile of Mood States (POMS) questionnaire. Because the ventral PFC is associated with mood state, we hypothesized that the observed mood changes may have been induced by the activation of the ventral PFC. As for EEG changes during and after PE, we found a significant increase in the relative powers of high-frequency alpha bands (10-13 Hz) during and after PE. A significant increase in whole blood 5-HT level was obtained after PE. Because cortical attenuation would be caused by the 5-HT-induced inhibition of the basal forebrain, we hypothesized that the observed EEG changes are linked with the increased blood 5-HT level or an augmentation of the 5-HT system in the brainstem.
Collapse
Affiliation(s)
- Masaki Fumoto
- Department of Physiology, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cunningham JI, Raudensky J, Tonkiss J, Yamamoto BK. MDMA pretreatment leads to mild chronic unpredictable stress-induced impairments in spatial learning. Behav Neurosci 2009; 123:1076-84. [PMID: 19824774 DOI: 10.1037/a0016716] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a drug of abuse worldwide and a selective serotonin (5-HT) neurotoxin. An important factor in the risk of drug abuse and relapse is stress. Although multiple parallels exist between MDMA abuse and stress, including effects on 5-HTergic neurotransmission, few studies have investigated the consequences of combined exposure to MDMA and chronic stress. Therefore, rats were pretreated with MDMA and exposed 7 days later to 10 days of mild chronic unpredictable stress (CUS). MDMA pretreatment was hypothesized to enhance the effects of CUS leading to enhanced 5-HT transporter (SERT) depletion in the hippocampus and increased anxiety and cognitive impairment. Whereas MDMA alone increased anxiety-like behavior on the elevated plus maze, CUS alone or in combination with MDMA pretreatment did not increase anxiety-like behavior. In contrast, MDMA pretreatment led to CUS-induced learning impairment in the Morris water maze but not an enhanced depletion of hippocampal SERT protein. These results show that prior exposure to MDMA leads to stress-induced impairments in learning behavior that is not otherwise observed with stress alone and appear unrelated to an enhanced depletion of SERT.
Collapse
Affiliation(s)
- Jacobi I Cunningham
- Laboratory of Neurochemistry, Department of Pharmacology, Boston University School of Medicine, Boston, USA
| | | | | | | |
Collapse
|
41
|
Simultaneous determination of 5-hydroxyindoles and catechols from urine using polymer monolith microextraction coupled to high-performance liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1847-55. [DOI: 10.1016/j.jchromb.2009.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 04/30/2009] [Accepted: 05/07/2009] [Indexed: 11/24/2022]
|
42
|
Uphouse L, Hiegel C, Guptarak J, Maswood N. Progesterone reduces the effect of the serotonin 1B/1D receptor antagonist, GR 127935, on lordosis behavior. Horm Behav 2009; 55:169-74. [PMID: 18952090 PMCID: PMC2665997 DOI: 10.1016/j.yhbeh.2008.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 11/24/2022]
Abstract
Ovariectomized rats were hormonally primed with 10 microg estradiol benzoate or with estradiol benzoate plus 500 microg progesterone. Rats received a bilateral infusion with 200 ng of the 5-HT(1B/1D) receptor antagonist, N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-1-1'-biphenyl-4-carboxamide hydrochloride (GR 127935), into the ventromedial nucleus of the hypothalamus (VMN), followed by a 5 min restraint or home cage experience. In estrogen-primed females that had experienced minimal handling between ovariectomy and use in the experiment, infusion with the water vehicle transiently inhibited lordosis behavior, and the 5-HT(1B/1D) receptor antagonist amplified this inhibition. There were no effects in rats hormonally primed with estrogen and progesterone. Handling for two days before the experiment reduced the effects of the infusions in estrogen-primed rats. However, when a 5 min restraint experience followed infusion with GR 127935, there was a significant decline in lordosis behavior that persisted for 10 to 15 min after the experience. Regardless of the prior experience or type of infusion, the addition of progesterone to the hormonal priming completely prevented the lordosis inhibition. These findings are consistent with prior evidence that progesterone protects against the inhibitory effects of a 5 min restraint experience on lordosis behavior. Moreover, these are the first experiments to demonstrate an inhibitory effect of a selective 5-HT(1B/1D) receptor antagonist in the VMN on lordosis behavior of estrogen primed, but not estrogen and progesterone primed, ovariectomized rats.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology, Texas Woman's University, Denton, TX 76204, USA.
| | | | | | | |
Collapse
|
43
|
Linthorst AC, Reul JM. Stress and the brain: Solving the puzzle using microdialysis. Pharmacol Biochem Behav 2008; 90:163-73. [DOI: 10.1016/j.pbb.2007.09.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/13/2007] [Accepted: 09/27/2007] [Indexed: 11/28/2022]
|
44
|
Tsolakidou A, Trümbach D, Panhuysen M, Pütz B, Deussing J, Wurst W, Sillaber I, Holsboer F, Rein T. Acute stress regulation of neuroplasticity genes in mouse hippocampus CA3 area--possible novel signalling pathways. Mol Cell Neurosci 2008; 38:444-52. [PMID: 18524625 DOI: 10.1016/j.mcn.2008.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/13/2008] [Accepted: 04/11/2008] [Indexed: 11/30/2022] Open
Abstract
Stress exposure can lead to the precipitation of psychiatric disorders in susceptible individuals, but the molecular underpinnings are incompletely understood. We used forced swimming in mice to reveal stress-regulated genes in the CA3 area of the hippocampus. To determine changes in the transcriptional profile 4 h and 8 h after stress exposure microarrays were used in the two mouse strains C57BL/6J and DBA/2J, which are known for their differential stress response. We discovered a surprisingly distinct set of regulated genes for each strain and followed selected ones by in situ hybridisation. Our results support the concept of a phased transcriptional reaction to stress. Moreover, we suggest novel stress-elicited pathways, which comprise a number of genes involved in the regulation of neuronal plasticity. Furthermore, we focused in particular on dihydropyrimidinase like 2, to which we provide evidence for its regulation by NeuroD, an important factor for neuronal activity-dependent dendritic morphogenesis.
Collapse
Affiliation(s)
- A Tsolakidou
- Max-Planck Institute of Psychiatry, Kraepelinstr 2-10, 80804, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Geldof M, Freijer JI, Peletier LA, van Beijsterveldt L, Danhof M. Mechanistic model for the acute effect of fluvoxamine on 5-HT and 5-HIAA concentrations in rat frontal cortex. Eur J Pharm Sci 2007; 33:217-29. [PMID: 18207708 DOI: 10.1016/j.ejps.2007.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/05/2007] [Accepted: 12/01/2007] [Indexed: 11/25/2022]
Abstract
A mechanistic model is proposed to predict the time course of the concentrations of 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) in rat frontal cortex following acute administration of SSRIs. In the model, SSRIs increase synaptic 5-HT concentrations by reversible blockade of the SERT in a direct concentration-dependent manner, while the 5-HT response is attenuated by negative feedback via 5-HT autoreceptors. In principle, the model allows for the description of oscillatory patterns in the time course of 5-HT and 5-HIAA concentrations in brain extracellular fluid. The model was applied in a pharmacokinetic-pharmacodynamic (PK/PD) investigation on the time course of the microdialysate 5-HT and 5-HIAA response in rat frontal cortex following a 30-min intravenous infusion of 3.7 and 7.3mg/kg fluvoxamine. Directly after administration of fluvoxamine, concentrations of 5-HT were increased to approximately 450-600% of baseline values while 5-HIAA concentrations were decreased. Thereafter 5-HT and 5-HIAA concentrations gradually returned to baseline values in 6-10h, respectively. The PK/PD analysis revealed that inhibition of 5-HT reuptake was directly related to the fluvoxamine concentration in plasma, with 50% inhibition of 5-HT reuptake occurring at a plasma concentration of 1.1ng/ml (EC50). The levels of 5-HT at which 50% of the inhibition of the 5-HT response was reached (IC50) amounted to 272% of baseline. The model was unable to capture the oscillatory patterns in the individual concentration time curves, which appeared to occur randomly. The proposed mechanistic model is the first step in modeling of complex neurotransmission processes. The model constitutes a useful basis for prediction of the time course of median 5-HT and 5-HIAA concentrations in the frontal cortex in behavioral pharmacology studies in vivo.
Collapse
Affiliation(s)
- Marian Geldof
- Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Smolin B, Klein E, Levy Y, Ben-Shachar D. Major depression as a disorder of serotonin resistance: inference from diabetes mellitus type II. Int J Neuropsychopharmacol 2007; 10:839-50. [PMID: 17250776 DOI: 10.1017/s1461145707007559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The multifactorial nature of depression resembles that of other complex disorders such as diabetes mellitus or coronary artery disease. However, while for the latter disorders predisposing and risk factors have been identified, such knowledge is still scarce in depression. In this review we propose to use diabetes mellitus, for which characteristic milestones have been condensed to obesity-hyperinsulinaemia-insulin resistance-diabetes mellitus, as a conceptual analogical model. Based on this model we hypothesize that depression develops according to a similar pattern: prolonged psychological stress-hyperserotonism-serotonin resistance-major depression. We review extensive supporting evidence from human studies and animal models of depression, including stress involvement in the aetiology of depression, evidence for increased synaptic serotonin and decreased 5-HT1A receptor activity. Conceptualizing the pathogenesis of depression as a multi-step process may inspire new concepts, which will eventually lead to delineation of additional preventive and therapeutic interventions similar to those currently practised in diabetes.
Collapse
Affiliation(s)
- Bella Smolin
- Department of Internal Medicine Rambam Medical Center, B. Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
47
|
Sheikh N, Ahmad A, Siripurapu KB, Kuchibhotla VK, Singh S, Palit G. Effect of Bacopa monniera on stress induced changes in plasma corticosterone and brain monoamines in rats. JOURNAL OF ETHNOPHARMACOLOGY 2007; 111:671-6. [PMID: 17321089 DOI: 10.1016/j.jep.2007.01.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 05/14/2023]
Abstract
Bacopa monniera (BM) is well known for its neuropharmacological effects. Our previous studies indicated the adaptogenic effect of standardized extract of BM in various stress models. In the present study, effect of BM was evaluated on acute stress (AS) and chronic unpredictable stress (CUS) induced changes in plasma corticosterone and monoamines-noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in cortex and hippocampus regions of brain in rats. Panax root powder (Panax quinquefolium) was taken as standard. Subjecting animals to AS (immobilization for 150 min once only) and CUS (different stressors for 7 days) resulted in significant elevation in plasma corticosterone levels, which was significantly countered by treatment with BM at a dose of 40 and 80 mg/kg p.o. similar to the effects of Panax quinquefolium (PQ) at 100 mg/kg p.o. AS exposure significantly increased the levels of 5-HT and decreased NA content in both the brain regions while DA content was significantly increased in cortex and decreased in hippocampus regions. In CUS regimen, levels of NA, DA and 5-HT were significantly depleted in cortex and hippocampus regions of brain. Treatment with BM (40 and 80 mg/kg) attenuated the stress induced changes in levels of 5-HT and DA in cortex and hippocampus regions but was ineffective in normalizing the NA levels in AS model, whereas PQ treatment significantly reverted back the effects of stress. In CUS model, pretreatment with BM and PQ significantly elevated the levels of NA, DA and 5-HT levels in cortex and levels of NA and 5-HT in hippocampus regions. Hence, our study indicates that the adaptogenic activity of BM might be due to the normalization of stress induced alteration in plasma corticosterone and levels of monoamines like NA, 5-HT and DA in cortex and hippocampus regions of the brain, which are more vulnerable to stressful conditions analogous to the effects of PQ.
Collapse
Affiliation(s)
- Naila Sheikh
- Division of Pharmacology, Central Drug Research Institute, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
48
|
Parthimos T, Tsopanakis C, Angelogianni P, Schulpis KH, Parthimos N, Tsakiris S. L-Cysteine supplementation prevents exercise-induced alterations in human erythrocyte membrane acetylcholinesterase and Na+,K+-ATPase activities. Clin Chem Lab Med 2007; 45:67-72. [PMID: 17243918 DOI: 10.1515/cclm.2007.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND L-Cysteine (L-Cys) is implicated in the reduction of free radical production. The aim of this study was to investigate whether L-Cys supplementation prevents modulation of the activities of erythrocyte membrane acetylcholinesterase (AChE), Na(+),K(+)-ATPase and Mg(2+)-ATPase induced by free radicals in basketball players during training. METHODS Blood was obtained from 10 basketball male players before (group A) and after a game (group B) and after 1 week of L-Cys (0.5 g/24 h orally) supplementation before (group C) and after training (group D). Lactate, pyruvate and total antioxidant status (TAS) were measured using commercial kits and the enzyme activities were determined spectrophotometrically. RESULTS Both lactate and pyruvate levels remarkably increased after exercise. In contrast, TAS levels significantly decreased in group B, increased in group C and then declined (group D), reaching those of group A. AChE activity was statistically increased post-exercise (3.98+/-0.04 Delta OD/min x mg protein) compared with pre-training (2.90+/-0.05 Delta OD/min x mg protein, p<0.01). Na(+),K(+)-ATPase activity was also higher post-exercise (1.27+/-0.05 micromol Pi/h x mg protein) than that pre-exercise (0.58+/-0.04 micromol Pi/h x mg protein, p<0.001). When the players were supplemented with L-Cys, both AChE and Na(+),K(+)-ATPase activities remained unaltered post-exercise. Mg(2+)-ATPase activities were unchanged in all groups studied. CONCLUSIONS L-Cys supplementation may protect the enzyme activities studied against stimulation induced by free radical production during training in athletes by ameliorating their total antioxidant capacity.
Collapse
Affiliation(s)
- Theodore Parthimos
- Department of Experimental Physiology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
49
|
Becker A, Grecksch G, Schröder H. Pain sensitivity is altered in animals after subchronic ketamine treatment. Psychopharmacology (Berl) 2006; 189:237-47. [PMID: 17016710 DOI: 10.1007/s00213-006-0557-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 08/08/2006] [Indexed: 12/20/2022]
Abstract
RATIONALE Clinical observations have shown that pain sensitivity is altered in some schizophrenic patients. OBJECTIVES To study alterations in pain sensitivity, the ketamine model in schizophrenia research was employed. MATERIALS AND METHODS Rats were subchronically injected with the dissociative anaesthetic ketamine (Ket, ten injections of 30 mg/kg, one injection per day over a period of 10 days). Two weeks after treatment completion, the animals' pain sensitivity was assayed in the hot plate test and they were subjected to electrical stimulation of the tail root. In addition, the effect of morphine was studied. RESULTS In group-housed animals, there was no difference between Ket-injected animals and control rats as measured in both nociceptive tests. In singly housed Ket-injected rats, pain threshold was increased in the electrical stimulation test. This suggests that stress due to single housing might be essential for modifications of pain sensitivity. Moreover, the antinociceptive effect of morphine was modified after single housing. Interestingly, the effect of morphine on locomotor activity was similar in both groups. In group-housed rats, mu receptor binding was unchanged in the frontal cortex, whereas Ket-injected animals had decreased levels in the hippocampus. In singly housed animals, mu receptor binding in Ket-injected rats increased in the frontal cortex and decreased in the hippocampus. (35)S-GTPgamma-S binding increased in the frontal cortex in both singly housed groups, but remained unchanged in the hippocampus. CONCLUSIONS The data suggest that the ketamine model might be useful for studying altered pain sensitivity in schizophrenia. Moreover, the data suggest that modifications in mu opioid receptor binding contribute to this phenomenon.
Collapse
Affiliation(s)
- Axel Becker
- Faculty of Medicine, Institute of Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
| | | | | |
Collapse
|
50
|
Centeno ML, Henderson JA, Pau KYF, Bethea CL. Estradiol increases alpha7 nicotinic receptor in serotonergic dorsal raphe and noradrenergic locus coeruleus neurons of macaques. J Comp Neurol 2006; 497:489-501. [PMID: 16736471 PMCID: PMC2601699 DOI: 10.1002/cne.21026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acetylcholine, acting on presynaptic nicotinic receptors (nAChRs), modulates the release of neurotransmitters in the brain. The rat dorsal raphe nucleus (DR) and the locus coeruleus (LC) receive cholinergic input and express the alpha7nAChR. In previous reports, we demonstrated that estradiol (E) administration stimulates DR serotonergic and LC noradrenergic function in the macaque. In addition, it has been reported that E induces the expression of the alpha7nAChR in rats. We questioned whether E increased the expression of the alpha7nAChR in the macaque DR and LC. We utilized double immunostaining to study the effect of a simulated preovulatory surge of E on the expression of the alpha7nAChR in the DR and the LC and to determine whether alpha7nAChR colocalizes with serotonin and tyrosine hydroxylase (TH) in macaques. There was no difference in the number of alpha7nAChR-positive neurons between ovariectomized (OVX) controls and OVX animals treated with a silastic capsule containing E (Ecap). However, supplemental infusion of E for 5-30 hours to Ecap animals (Ecap + inf) significantly increased the number of alpha7nAChR-positive neurons in DR and LC. In addition, supplemental E infusion significantly increased the number of neurons in which alpha7nAChR colocalized with serotonin and TH. These results constitute an important antecedent for study of the effects of nicotine and ovarian steroid hormones in the physiological functions regulated by the DR and the LC in women.
Collapse
Affiliation(s)
- Maria Luisa Centeno
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA.
| | | | | | | |
Collapse
|