1
|
Zolezzi DM, Kold S, Brock C, Jensen ABH, Jensen ST, Larsen IM, Olesen SS, Mørch CD, Drewes AM, Graven-Nielsen T. Transcranial Direct Current Stimulation Reduces Pressure Pain Sensitivity in Patients With Noncancer Chronic Pain. Clin J Pain 2024; 40:625-634. [PMID: 39310962 DOI: 10.1097/ajp.0000000000001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/09/2024] [Indexed: 11/10/2024]
Abstract
OBJECTIVES Noncancer chronic pain is a clinical challenge because pharmacological treatment often fails to relieve pain. Transcranial direct current stimulation (tDCS) is a treatment that could have the potential for pain relief and improvement in quality of life. However, there is a lack of clinical trials evaluating the effects of tDCS on the pain system. The aim of the present study was to evaluate the effect of 5 days of anodal tDCS treatment on the pain system in patients with chronic noncancer pain using quantitative sensory testing and quality of life questionnaires: (1) Brief Pain Inventory-short form, (2) European Organization for Research and Treatment of Life Questionnaire-C30, and (3) Hospital Anxiety Depression Scale. METHODS Eleven patients with noncancer chronic pain (51 ± 13.6 y old, 5M) participated in the study. Anodal tDCS was applied for 5 consecutive days, followed by sham stimulation after a washout period of at least 2 weeks. Pressure pain thresholds and pain tolerance thresholds (PTT) were assessed in different body regions on days 1 and 5. RESULTS Anodal tDCS appeared to maintain PTT at C5 (clavicle) on day 5, but sham stimulation decreased PTT ( P = 0.007). In addition, anodal tDCS increased PTT compared with sham at day 5 at Th10 ventral dermatomes ( P = 0.014). Both anodal and sham tDCS decreased the Brief Pain Inventory-short form total and interference scores, and the European Organization for Research and Treatment of Life Questionnaire-C30 fatigue score, but no interaction effect was observed. CONCLUSION This study adds to the evidence in the literature that tDCS may be a potential therapeutic tool for the management of noncancer chronic pain.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Sebastian Kold
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne Birthe Helweg Jensen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sarah Thorius Jensen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Søren Schou Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| |
Collapse
|
2
|
Andrade MF, Fabris-Moraes W, Pacheco-Barrios K, Fregni F. Effect of Neurostimulation on Chronic Pancreatic Pain: A Systematic Review. Neuromodulation 2024:S1094-7159(24)00667-6. [PMID: 39365205 DOI: 10.1016/j.neurom.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Chronic pancreatic pain is one of the most severe causes of visceral pain, and treatment response is often limited. Neurostimulation techniques have been investigated for chronic pain syndromes once there are pathophysiological reasons to believe that these methods activate descending pain inhibitory systems. Considering this, we designed this systematic literature review to investigate the evidence on neuromodulation techniques as a treatment for chronic pancreatic pain. MATERIALS AND METHODS We performed a literature search using the databases MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), and Embase until April 2024. The included studies used neurostimulation techniques in participants with chronic pancreatic pain and reported pain-related outcomes, with a focus on pain scales and opioid intake. Two reviewers screened and extracted data, and a third reviewer resolved discrepancies. We assessed the risk of bias using the Jadad scale. The authors then grouped the findings by the target of the neurostimulation, cortex, spinal cord, or peripheral nerves; described the findings qualitatively in the results section, including qualitative data reported by the articles; and calculated effect sizes of pain-related outcomes. RESULTS A total of 22 studies were included (7 randomized clinical trials [RCTs], 14 case series, and 1 survey), including a total of 257 clinical trial participants. The two outcomes most commonly reported were pain, measured by the visual analogue scale (VAS), numeric rating scale (NRS), and pressure pain threshold scores, and opioid intake. Two RCTs investigated repetitive transcranial magnetic stimulation (rTMS), showing a reduction of 36% (±16) (d = 2.25; 95% CI, 0.66-3.83) and 27.2% (±24.5%) (d = 2.594; 95% CI, 1.303-3.885) in VAS pain scale. In another clinical trial, transcranial direct-current stimulation (tDCS) and transcranial pulsed current stimulation were not observed to effect a significant reduction in VAS pain (χ2 = 5.87; p = 0.12). However, a complete remission was reported in one tDCS case. Spinal cord stimulation (SCS) and dorsal root ganglion stimulation were performed in a survey and 11 case series, showing major pain decrease and diminished opioid use in 90% of participants after successful implantation; most studies had follow-up periods of months to years. Two noninvasive vagal nerve stimulation (VNS) RCTs showed no significant pain reduction in pain thresholds or VAS (d = 0.916; 95% CI, -0.005 to 1.838; and d = 0.17; -0.86 to 1.20; p = 0.72; respectively). Splanchnic nerve stimulation in one case report showed complete pain reduction accompanied by discontinuation of oral morphine and fentanyl lozenges and a 95% decrease in fentanyl patch use. Two RCTs investigated transcutaneous electrical nerve stimulation (TENS). One found a significant pain reduction effect with the NRS (d = 1.481; 95% CI, 1.82-1.143), and decreased opioid use, while the other RCT did not show significant benefit. Additionally, one case report with TENS showed pain improvement that was not quantitatively measured. DISCUSSION The neuromodulation techniques of rTMS and SCS showed the most consistent potential as a treatment method for chronic pancreatic pain. However, the studies have notable limitations, and SCS has had no clinical trials. For VNS, we have two RCTs that showed a non-statistically significant improvement; we believe that both studies had a lack of power issue and suggest a gap in the literature for new RCTs exploring this modality. Additionally, tDCS and TENS showed mixed results. Another important insight was that opioid intake decrease is a common trend among most studies included and that adverse effects were rarely reported. To further elucidate the potential of these neurostimulation techniques, we suggest the development of new clinical trials with larger samples and adequate sham controls.
Collapse
Affiliation(s)
- Maria F Andrade
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Walter Fabris-Moraes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Research Unit for the Generation and Synthesis of Evidence in Health, Vice-Rectorate for Research, San Ignacio de Loyola University, Lima, Peru
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wu Q, Li X, Zhang Y, Chen S, Jin R, Peng W. Analgesia of noninvasive electrical stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. J Psychosom Res 2024; 185:111868. [PMID: 39142194 DOI: 10.1016/j.jpsychores.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) is implicated in pain modulation, suggesting its potential as a therapeutic target for pain relief. However, studies on transcranial electrical stimulation (tES) over the DLPFC yielded diverse results, likely due to differences in stimulation protocols or pain assessment methods. This study aims to evaluate the analgesic effects of DLPFC-tES using a meta-analytical approach. METHODS A meta-analysis of 29 studies involving 785 participants was conducted. The effects of genuine and sham DLPFC-tES on pain perception were examined in healthy individuals and patients with clinical pain. Subgroup analyses explored the impact of stimulation parameters and pain modalities. RESULTS DLPFC-tES did not significantly affect pain outcomes in healthy populations but showed promise in reducing pain-intensity ratings in patients with clinical pain (Hedges' g = -0.78, 95% CI = [-1.33, -0.24], p = 0.005). Electrode placement significantly influenced the analgesic effect, with better results observed when the anode was at F3 and the cathode at F4. CONCLUSIONS DLPFC-tES holds potential as a cost-effective pain management option, particularly for clinical populations. Optimizing electrode placement, especially with an symmetrical configuration, may enhance therapeutic efficacy. These findings underscore the promise of DLPFC-tES for alleviating perceived pain intensity in clinical settings, emphasizing the importance of electrode placement optimization.
Collapse
Affiliation(s)
- Qiqi Wu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yinhua Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China.
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Ho KY, Wallace C, Aquino J, Broadwell B, Whimple M, Liang JN. Exploring the use of bimodal transcranial direct current stimulation to enhance movement in individuals with patellofemoral pain-A sham-controlled double blinded pilot study. Front Hum Neurosci 2024; 18:1427091. [PMID: 39310792 PMCID: PMC11412892 DOI: 10.3389/fnhum.2024.1427091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction In individuals with patellofemoral pain (PFP), addressing increased knee valgus during weight-bearing activities typically involves strengthening weak hip muscles. However, recent literature highlights the role of altered descending central control in abnormal movements associated with PFP. While transcranial direct current stimulation (tDCS) has demonstrated the capacity to enhance neuroplasticity, its application targeting the corticomotor function of gluteal muscles in PFP remains unexplored. This study aimed to investigate the effects of combining bimodal tDCS with exercise on frontal plane kinematics in individuals with PFP. The hypothesis was that bimodal tDCS, specifically targeting the corticomotor function of the gluteal muscles, would augment the effectiveness of exercise interventions in improving frontal plane kinematics compared to sham stimulation. Methods Ten participants with PFP participated in two sessions involving either bimodal tDCS or sham stimulation, concurrently with hip strengthening exercises. Weight-bearing tasks, including single leg squat, single leg landing, single leg hopping, forward step-down, and lateral step-down, were performed and recorded before and after each session. Pain visual analog scale (VAS) scores were also documented. A one-way ANOVA with repeated measures was employed to compare kinematics, while a Friedman test was used to compare VAS across the three conditions (pre-test, post-tDCS, and post-Sham). Results We observed no significant differences in trunk lean angle, hip and knee frontal plane projection angles, or dynamic valgus index among the three conditions during the five weight-bearing tasks. VAS scores did not differ across the three conditions. Discussion and conclusion A single session of tDCS did not demonstrate immediate efficacy in enhancing frontal plane kinematics or relieving pain in individuals with PFP. Considering observed positive outcomes in other neurological and orthopedic populations with multi-session tDCS applications, suggesting potential cumulative effects, further research is essential to explore the effects of multi-session tDCS on weight-bearing movement and underlying neurophysiology in individuals with PFP.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
5
|
Dehghani A, Bango C, Murphy EK, Halter RJ, Wager TD. Independent effects of transcranial direct current stimulation and social influence on pain. Pain 2024:00006396-990000000-00657. [PMID: 39167466 DOI: 10.1097/j.pain.0000000000003338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/28/2024] [Indexed: 08/23/2024]
Abstract
ABSTRACT Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulatory technique with the potential to provide pain relief. However, tDCS effects on pain are variable across existing studies, possibly related to differences in stimulation protocols and expectancy effects. We investigated the independent and joint effects of contralateral motor cortex tDCS (anodal vs cathodal) and socially induced expectations (analgesia vs hyperalgesia) about tDCS on thermal pain. We employed a double-blind, randomized 2 × 2 factorial cross-over design, with 5 sessions per participant on separate days. After calibration in Session 1, Sessions 2 to 5 crossed anodal or cathodal tDCS (20 minutes 2 mA) with socially induced analgesic or hyperalgesic expectations, with 6 to 7 days between the sessions. The social manipulation involved videos of previous "participants" (confederates) describing tDCS as inducing a low-pain state ("analgesic expectancy") or hypersensitivity to sensation ("hyperalgesic expectancy"). Anodal tDCS reduced pain compared with cathodal stimulation (F(1,19.9) = 19.53, P < 0.001, Cohen d = 0.86) and analgesic expectancy reduced pain compared with hyperalgesic expectancy (F(1,19.8) = 5.62, P = 0.027, Cohen d = 0.56). There was no significant interaction between tDCS and social expectations. Effects of social suggestions were related to expectations, whereas tDCS effects were unrelated to expectancies. The observed additive effects provide novel evidence that tDCS and socially induced expectations operate through independent processes. They extend clinical tDCS studies by showing tDCS effects on controlled nociceptive pain independent of expectancy effects. In addition, they show that social suggestions about neurostimulation effects can elicit potent placebo effects.
Collapse
Affiliation(s)
- Amin Dehghani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Carmen Bango
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Ethan K Murphy
- Thayer School of Engineering and Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Ryan J Halter
- Thayer School of Engineering and Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
6
|
Cheng S, Zeng F, Zhou J, Dong X, Yang W, Yin T, Huang K, Liang F, Li Z. Altered static and dynamic functional brain network in knee osteoarthritis: A resting-state functional magnetic resonance imaging study: Static and dynamic FNC in KOA. Neuroimage 2024; 292:120599. [PMID: 38608799 DOI: 10.1016/j.neuroimage.2024.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to investigate altered static and dynamic functional network connectivity (FNC) and its correlation with clinical symptoms in patients with knee osteoarthritis (KOA). One hundred and fifty-nine patients with KOA and 73 age- and gender-matched healthy subjects (HS) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluations. Group independent component analysis (GICA) was applied, and seven resting-state networks were identified. Patients with KOA had decreased static FNC within the default mode network (DM), visual network (VS), and cerebellar network (CB) and increased static FNC between the subcortical network (SC) and VS (p < 0.05, FDR corrected). Four reoccurring FNC states were identified using k-means clustering analysis. Although abnormalities in dynamic FNCs of KOA patients have been found using the common window size (22 TR, 44 s), but the results of the clustering analysis were inconsistent when using different window sizes, suggesting dynamic FNCs might be an unstable method to compare brain function between KOA patients and HS. These recent findings illustrate that patients with KOA have a wide range of abnormalities in the static and dynamic FNCs, which provided a reference for the identification of potential central nervous therapeutic targets for KOA treatment and might shed light on the other musculoskeletal pain neuroimaging studies.
Collapse
Affiliation(s)
- Shirui Cheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Fang Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Jun Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohui Dong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihua Yang
- Dali Bai Autonomous Prefecture Chinese Medicine Hospital, Dali 671000, China
| | - Tao Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| | - Zhengjie Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
7
|
Stephens E, Dhanasekara CS, Montalvan V, Zhang B, Bassett A, Hall R, Rodaniche A, Robohm-Leavitt C, Shen CL, Kahatuduwa CN. Utility of Repetitive Transcranial Magnetic Stimulation for Chronic Daily Headache Prophylaxis: A Systematic Review and Meta-Analysis. Curr Pain Headache Rep 2024; 28:149-167. [PMID: 38277066 DOI: 10.1007/s11916-024-01210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW Management of chronic daily headaches (CDH) remains challenging due to the limited efficacy of standard prophylactic pharmacological measures. Several studies have reported that repetitive transcranial magnetic stimulation (rTMS) can effectively treat chronic headaches. The objective was to determine the utility of rTMS for immediate post-treatment and sustained CDH prophylaxis. RECENT FINDINGS All procedures were conducted per PRISMA guidelines. PubMed, Scopus, Web of Science, and ProQuest databases were searched for controlled clinical trials that have tested the efficacy of rTMS on populations with CDH. DerSimonian-Laird random-effects meta-analyses were performed using the 'meta' package in R to examine the post- vs. pre-rTMS changes in standardized headache intensity and frequency compared to sham-control conditions. Thirteen trials were included with a combined study population of N = 538 patients with CDH (rTMS, N = 284; Sham, N = 254). Patients exposed to rTMS had significantly reduced standardized CDH intensity and frequency in the immediate post-treatment period (Hedges' g = -1.16 [-1.89, -0.43], p = 0.002 and Δ = -5.07 [-10.05, -0.11], p = 0.045 respectively). However, these effects were sustained marginally in the follow-up period (Hedges' g = -0.43 [-0.76, -0.09], p = 0.012 and Δ = -3.33 [-5.52, -1.14], p = 0.003). Significant between-study heterogeneity was observed, at least partially driven by variations in rTMS protocols. Despite the observed clinically meaningful and statistically significant benefits in the immediate post-treatment period, the prophylactic effects of rTMS on CDH do not seem to sustain with discontinuation. Thus, the cost-effectiveness of the routine use of rTMS for CDH prophylaxis remains questionable. REGISTRATION Protocol preregistered in PROSPERO International Prospective Register of Systematic Reviews (CRD42021250100).
Collapse
Affiliation(s)
- Emily Stephens
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chathurika S Dhanasekara
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Victor Montalvan
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
- Department of Neurology, Division of Vascular Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bei Zhang
- Division of Physical Medicine and Rehabilitation, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Bassett
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rebecca Hall
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Alyssa Rodaniche
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Christina Robohm-Leavitt
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chwan-Li Shen
- Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chanaka N Kahatuduwa
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
8
|
Gurdiel-Álvarez F, Navarro-López V, Varela-Rodríguez S, Juárez-Vela R, Cobos-Rincón A, Sánchez-González JL. Transcranial magnetic stimulation therapy for central post-stroke pain: systematic review and meta-analysis. Front Neurosci 2024; 18:1345128. [PMID: 38419662 PMCID: PMC10899389 DOI: 10.3389/fnins.2024.1345128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Although rare, central post-stroke pain remains one of the most refractory forms of neuropathic pain. It has been reported that repetitive transcranial magnetic stimulation (rTMS) may be effective in these cases of pain. Aim The aim of this study was to investigate the efficacy of rTMS in patients with central post-stroke pain (CPSP). Methods We included randomized controlled trials or Controlled Trials published until October 3rd, 2022, which studied the effect of rTMS compared to placebo in CPSP. We included studies of adult patients (>18 years) with a clinical diagnosis of stroke, in which the intervention consisted of the application of rTMS to treat CSP. Results Nine studies were included in the qualitative analysis; 6 studies (4 RCT and 2 non-RCT), with 180 participants, were included in the quantitative analysis. A significant reduction in CPSP was found in favor of rTMS compared with sham, with a large effect size (SMD: -1.45; 95% CI: -1.87; -1.03; p < 0.001; I2: 58%). Conclusion The findings of the present systematic review with meta-analysis suggest that there is low quality evidence for the effectiveness of rTMS in reducing CPSP. Systematic review registration Identifier (CRD42022365655).
Collapse
Affiliation(s)
- Francisco Gurdiel-Álvarez
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Víctor Navarro-López
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Sergio Varela-Rodríguez
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Raúl Juárez-Vela
- Nursing Department, Faculty of Health Sciences, University of La Rioja, Research Group GRUPAC, Logroño, Spain
| | - Ana Cobos-Rincón
- Nursing Department, Faculty of Health Sciences, University of La Rioja, Research Group GRUPAC, Logroño, Spain
| | - Juan Luis Sánchez-González
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
9
|
Caumo W, Lopes Ramos R, Vicuña Serrano P, da Silveira Alves CF, Medeiros L, Ramalho L, Tomeddi R, Bruck S, Boher L, Sanches PRS, Silva DP, Ls Torres I, Fregni F. Efficacy of Home-Based Transcranial Direct Current Stimulation Over the Primary Motor Cortex and Dorsolateral Prefrontal Cortex in the Disability Due to Pain in Fibromyalgia: A Factorial Sham-Randomized Clinical Study. THE JOURNAL OF PAIN 2024; 25:376-392. [PMID: 37689323 DOI: 10.1016/j.jpain.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
This randomized, double-blind, controlled clinical trial compared the effectiveness of home-based-(HB) active transcranial direct current stimulation (a-tDCS) over the left dorsolateral prefrontal cortex (l-DLPFC) or primary motor cortex (M1) with their respective sham-(s)-tDCS to determine whether a-tDCS would be more effective than s-tDCS in reducing pain and improving disability due to pain. The study included 102 patients with fibromyalgia aged 30 to 65 years old randomly assigned to 1 of 4 tDCS groups using a ratio of 2:1:2:1. The groups included l-DLPFC (a-tDCS, n = 34) and (s-tDCS, n = 17), or tDCS on the M1 (a-tDCS, n = 34) or (s-tDCS, n = 17). Patients self-administered 20 sessions of tDCS, with 2 mA for 20 minutes each day under remote supervision after in-person training. The Mixed Model for Repeated Measurements revealed that a-tDCS on DLPFC significantly reduced pain scores by 36.53% compared to 25.79% in s-tDCS. From baseline to the fourth week of treatment, a-tDCS on M1 reduced pain scores by 45.89% compared to 22.92% over s-tDCS. A generalized linear model showed a significant improvement in the disability scale in the groups that received a-tDCS compared to s-tDCS over M1 20.54% versus 2.49% (χ2 = 11.06, df = 1, P < .001]), while on DLPFC the improvement was 14.29% and 5.77%, with a borderline significance (χ2 = 3.19, df = 1, P = .06]), respectively. A higher reduction in serum brain-derived neurotrophic factor from baseline to treatment end was positively correlated with decreased pain scores regardless of the treatment group. The application of a-tDCS over M1 increased the heat pain threshold and the function of the descending pain inhibitory system. PERSPECTIVE: These findings provide important insights: (1) HB-tDCS has effectively reduced pain scores and improved disability due to fibromyalgia. (2) The study provides evidence that HB-a-tDCS is a viable and effective therapeutic approach. (3) HB-a-tDCS over M1 improved the function of the descending pain inhibitory system and increased the heat pain threshold. Finally, our findings also emphasize that brain-derived neurotrophic factor, as an index of neuroplasticity, may serve as a valuable marker associated with changes in clinical pain measures. TRIAL REGISTRATION: Number NCT03843203.
Collapse
Affiliation(s)
- Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Pain and Palliative Care Service at HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Department of Surgery, School of Medicine, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rael Lopes Ramos
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paul Vicuña Serrano
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liciane Medeiros
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Pain Pharmacology and Neuromodulation Laboratory, Preclinical Investigations, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Postgraduate Program in Health and Human Development, La Salle University, Canoas, Rio Grande do Sul, Brazil
| | - Leticia Ramalho
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafalea Tomeddi
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Samara Bruck
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Boher
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Pain and Palliative Care Service at HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Department of Surgery, School of Medicine, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo R S Sanches
- Laboratory of Biomedical Engineer at HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Danton P Silva
- Laboratory of Biomedical Engineer at HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Iraci Ls Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Pain Pharmacology and Neuromodulation Laboratory, Preclinical Investigations, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding Rehabilitation Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Sivanesan E, North RB, Russo MA, Levy RM, Linderoth B, Hayek SM, Eldabe S, Lempka SF. A Definition of Neuromodulation and Classification of Implantable Electrical Modulation for Chronic Pain. Neuromodulation 2024; 27:1-12. [PMID: 37952135 DOI: 10.1016/j.neurom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Neuromodulation therapies use a variety of treatment modalities (eg, electrical stimulation) to treat chronic pain. These therapies have experienced rapid growth that has coincided with escalating confusion regarding the nomenclature surrounding these neuromodulation technologies. Furthermore, studies are often published without a complete description of the effective stimulation dose, making it impossible to replicate the findings. To improve clinical care and facilitate dissemination among the public, payors, research groups, and regulatory bodies, there is a clear need for a standardization of terms. APPROACH We formed an international group of authors comprising basic scientists, anesthesiologists, neurosurgeons, and engineers with expertise in neuromodulation. Because the field of neuromodulation is extensive, we chose to focus on creating a taxonomy and standardized definitions for implantable electrical modulation of chronic pain. RESULTS We first present a consensus definition of neuromodulation. We then describe a classification scheme based on the 1) intended use (the site of modulation and its indications) and 2) physical properties (waveforms and dose) of a neuromodulation therapy. CONCLUSIONS This framework will help guide future high-quality studies of implantable neuromodulatory treatments and improve reporting of their findings. Standardization with this classification scheme and clear definitions will help physicians, researchers, payors, and patients better understand the applications of implantable electrical modulation for pain and guide informed treatment decisions.
Collapse
Affiliation(s)
- Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Richard B North
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Marc A Russo
- Hunter Pain Specialists, Broadmeadow, New South Wales, Australia
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Salim M Hayek
- Division of Pain Medicine, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Chen C, Tassou A, Morales V, Scherrer G. Graph theory analysis reveals an assortative pain network vulnerable to attacks. Sci Rep 2023; 13:21985. [PMID: 38082002 PMCID: PMC10713541 DOI: 10.1038/s41598-023-49458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
The neural substrate of pain experience has been described as a dense network of connected brain regions. However, the connectivity pattern of these brain regions remains elusive, precluding a deeper understanding of how pain emerges from the structural connectivity. Here, we employ graph theory to systematically characterize the architecture of a comprehensive pain network, including both cortical and subcortical brain areas. This structural brain network consists of 49 nodes denoting pain-related brain areas, linked by edges representing their relative incoming and outgoing axonal projection strengths. Within this network, 63% of brain areas share reciprocal connections, reflecting a dense network. The clustering coefficient, a measurement of the probability that adjacent nodes are connected, indicates that brain areas in the pain network tend to cluster together. Community detection, the process of discovering cohesive groups in complex networks, successfully reveals two known subnetworks that specifically mediate the sensory and affective components of pain, respectively. Assortativity analysis, which evaluates the tendency of nodes to connect with other nodes that have similar features, indicates that the pain network is assortative. Finally, robustness, the resistance of a complex network to failures and perturbations, indicates that the pain network displays a high degree of error tolerance (local failure rarely affects the global information carried by the network) but is vulnerable to attacks (selective removal of hub nodes critically changes network connectivity). Taken together, graph theory analysis unveils an assortative structural pain network in the brain that processes nociceptive information. Furthermore, the vulnerability of this network to attack presents the possibility of alleviating pain by targeting the most connected brain areas in the network.
Collapse
Affiliation(s)
- Chong Chen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Valentina Morales
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- New York Stem Cell Foundation ‒ Robertson Investigator, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Martins Pereira RC, Medeiros P, Coimbra NC, Machado HR, de Freitas RL. Cortical Neurostimulation and N-Methyl-D-Aspartate Glutamatergic Receptor Activation in the Dysgranular Layer of the Posterior Insular Cortex Modulate Chronic Neuropathic Pain. Neuromodulation 2023; 26:1622-1636. [PMID: 36057495 DOI: 10.1016/j.neurom.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND AIMS The dysgranula parts of the posterior insular cortex (PIC) stimulation (PICS) has been investigated as a new putative cortical target for nonpharmacologic therapies in patients with chronic and neuropathic pain (NP). This work investigates the neural bases of insula neurostimulation-induced antinociception and glutamatergic neurochemical mechanisms recruited by the PICS in animals with neuropathy. MATERIALS AND METHODS Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham procedure ("false operated"). Either the Cascade Blue 3000 MW lysine-fixable dextran (CBD) or the biotinylated dextran amine 3000 MW (BDA) neural tract tracer was microinjected into the PIC. The electrical PICS was performed at a low frequency (20 μA, 100 Hz) for 15 seconds by a deep brain stimulation device. PIC N-methyl-D-aspartate (NMDA) receptors (NMDAR) blockade with the selective antagonist LY235959 (at 2, 4, and 8 nmol/200 nL) followed by PICS was investigated in rats with CCI. RESULTS PIC sends projections to the caudal pontine reticular nucleus, alpha part of the parvicellular reticular nucleus, dorsomedial tegmental area, and secondary somatosensory cortex (S2). PICS decreased both mechanical and cold allodynia in rats with chronic NP. Blockade of NMDAR in the PIC with LY235959 at 8 nmol attenuated PICS-produced antinociception. CONCLUSION Neuroanatomic projections from the PIC to pontine reticular nuclei and S2 may contribute to chronic NP signaling. PICS attenuates the chronic NP, and the NMDA glutamatergic system in the PIC may be involved in PICS-induced antinociception in rodents with NP conditions.
Collapse
Affiliation(s)
- Renata Cristina Martins Pereira
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Brain Protection Laboratory in Childhood, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Neurosciences and Behavioral Sciences. Department of Pharmacology. Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Federal University of São Carlos Pain Clinic, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Neurosciences and Behavioral Sciences. Department of Pharmacology. Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Behavioural Neurosciences Institute, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Brain Protection Laboratory in Childhood, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Neurosciences and Behavioral Sciences. Department of Pharmacology. Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Behavioural Neurosciences Institute, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
13
|
Cosentino G, Antoniazzi E, Cavigioli C, Tang V, Tammam G, Zaffina C, Tassorelli C, Todisco M. Repetitive Transcranial Magnetic Stimulation of the Human Motor Cortex Modulates Processing of Heat Pain Sensation as Assessed by the Offset Analgesia Paradigm. J Clin Med 2023; 12:7066. [PMID: 38002678 PMCID: PMC10672427 DOI: 10.3390/jcm12227066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Offset analgesia (OA), which is defined as a disproportionately large reduction in pain perception following a small decrease in a heat stimulus, quantifies temporal aspects of endogenous pain modulation. In this study on healthy subjects, we aimed to (i) determine the Heat Pain Threshold (HPT) and the response to constant and dynamic heat stimuli assessing sensitization, adaptation and OA phenomena at the thenar eminence; (ii) evaluate the effects of high-frequency repetitive Transcranial Magnetic Stimulation (rTMS) of the primary motor cortex (M1) on these measures. Twenty-four healthy subjects underwent quantitative sensory testing before and after active or sham 10 Hz rTMS (1200 stimuli) of the left M1, during separate sessions. We did not observe any rTMS-related changes in the HPT or visual analogue scale (VAS) values recorded during the constant trial. Of note, at baseline, we did not find OA at the thenar eminence. Only after active rTMS did we detect significantly reduced VAS values during dynamic heat stimuli, indicating a delayed and attenuated OA phenomenon. rTMS of the left M1 may activate remote brain areas that belong to the descending pain modulatory and reward systems involved in the OA phenomenon. Our findings provide insights into the mechanisms by which rTMS of M1 could exert its analgesic effects.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Elisa Antoniazzi
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Camilla Cavigioli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Vanessa Tang
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Tammam
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Zaffina
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
14
|
Garcia-Larrea L. Non-invasive cortical stimulation for drug-resistant pain. Curr Opin Support Palliat Care 2023; 17:142-149. [PMID: 37339516 DOI: 10.1097/spc.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Centre for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne
- University Hospital Pain Centre (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
15
|
Cuenca-Martínez F, Sempere-Rubio N, Mollà-Casanova S, Muñoz-Gómez E, Fernández-Carnero J, Sánchez-Sabater A, Suso-Martí L. Effects of Repetitive-Transcranial Magnetic Stimulation (rTMS) in Fibromyalgia Syndrome: An Umbrella and Mapping Review. Brain Sci 2023; 13:1059. [PMID: 37508991 PMCID: PMC10377383 DOI: 10.3390/brainsci13071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The main aim of this study was to assess the effects of repetitive-transcranial magnetic stimulation (rTMS) in patients with fibromyalgia (FMS). METHODS We systematically searched PubMed, PEDro, EMBASE, and CINAHL. Methodological quality was analyzed using the AMSTAR and ROBIS scales, and the strength of evidence was established according to the guidelines advisory committee grading criteria. A total of 11 systematic reviews were included. The assessed variables were pain intensity, depressive symptoms, anxiety, and general health. RESULTS Regarding pain intensity, it seems that high-frequency rTMS significantly reduces pain intensity at a 1-month follow-up when the primary motor cortex (M1) is stimulated. However, we cannot robustly conclude the same for low-frequency protocols. When we look at the combination of high and low-frequency rTMS, there seems to be a significant effect on pain intensity up to 1-week post-intervention, but after that point of follow-up, the results are controversial. Regarding depressive symptoms and anxiety, results showed that the effects of rTMS are almost non-existent. Finally, in regard to general health, results showed that rTMS caused significant post-intervention effects in a robust way. However, the results of the follow-ups are contradictory. CONCLUSIONS The results obtained showed that high-frequency rTMS applied on the M1 showed some effect on the variable of pain intensity with a limited quality of evidence. Overall, rTMS was shown to be effective in improving general health with moderate quality of evidence. Finally, rTMS was not shown to be effective in managing depressive symptoms and anxiety with a limited to moderate quality of evidence. PROSPERO number: This review was previously registered in PROSPERO (CRD42023391032).
Collapse
Affiliation(s)
| | | | | | - Elena Muñoz-Gómez
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Josué Fernández-Carnero
- Department of Physical and Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- La Paz Hospital Institute for Health Research, IdiPAZ, 28922 Madrid, Spain
- Grupo de Investigación en Neurociencia Cognitiva, Dolor y Rehabilitación en Ciencias de la Salud (NECODOR), Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | | | - Luis Suso-Martí
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
16
|
Assis DV, Campos ACP, Paschoa AFN, Santos TF, Fonoff ET, Pagano RL. Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24097796. [PMID: 37175503 PMCID: PMC10177944 DOI: 10.3390/ijms24097796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Epidural motor cortex stimulation (MCS) is an effective treatment for refractory neuropathic pain; however, some individuals are unresponsive. In this study, we correlated the effectiveness of MCS and refractoriness with the expression of cytokines, neurotrophins, and nociceptive mediators in the dorsal root ganglion (DRG), sciatic nerve, and plasma of rats with sciatic neuropathy. MCS inhibited hyperalgesia and allodynia in two-thirds of the animals (responsive group), and one-third did not respond (refractory group). Chronic constriction injury (CCI) increased IL-1β in the nerve and DRG, inhibited IL-4, IL-10, and IL-17A in the nerve, decreased β-endorphin, and enhanced substance P in the plasma, compared to the control. Responsive animals showed decreased NGF and increased IL-6 in the nerve, accompanied by restoration of local IL-10 and IL-17A and systemic β-endorphin. Refractory animals showed increased TNF-α and decreased IFNγ in the nerve, along with decreased TNF-α and IL-17A in the DRG, maintaining low levels of systemic β-endorphin. Our findings suggest that the effectiveness of MCS depends on local control of inflammatory and neurotrophic changes, accompanied by recovery of the opioidergic system observed in neuropathic conditions. So, understanding the refractoriness to MCS may guide an improvement in the efficacy of the technique, thus benefiting patients with persistent neuropathic pain.
Collapse
Affiliation(s)
- Danielle V Assis
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | | | - Amanda F N Paschoa
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Talita F Santos
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Erich T Fonoff
- Division of Functional Neurosurgery, Department of Neurology, University of Sao Paulo Medical School, São Paulo 05402-000, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| |
Collapse
|
17
|
Zhang Q, Hu S, Talay R, Xiao Z, Rosenberg D, Liu Y, Sun G, Li A, Caravan B, Singh A, Gould JD, Chen ZS, Wang J. A prototype closed-loop brain-machine interface for the study and treatment of pain. Nat Biomed Eng 2023; 7:533-545. [PMID: 34155354 PMCID: PMC9516430 DOI: 10.1038/s41551-021-00736-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Chronic pain is characterized by discrete pain episodes of unpredictable frequency and duration. This hinders the study of pain mechanisms and contributes to the use of pharmacological treatments associated with side effects, addiction and drug tolerance. Here, we show that a closed-loop brain-machine interface (BMI) can modulate sensory-affective experiences in real time in freely behaving rats by coupling neural codes for nociception directly with therapeutic cortical stimulation. The BMI decodes the onset of nociception via a state-space model on the basis of the analysis of online-sorted spikes recorded from the anterior cingulate cortex (which is critical for pain processing) and couples real-time pain detection with optogenetic activation of the prelimbic prefrontal cortex (which exerts top-down nociceptive regulation). In rats, the BMI effectively inhibited sensory and affective behaviours caused by acute mechanical or thermal pain, and by chronic inflammatory or neuropathic pain. The approach provides a blueprint for demand-based neuromodulation to treat sensory-affective disorders, and could be further leveraged for nociceptive control and to study pain mechanisms.
Collapse
Affiliation(s)
- Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Sile Hu
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Robert Talay
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - David Rosenberg
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Bassir Caravan
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Amrita Singh
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Gould
- College of Arts and Sciences, New York University, New York, NY, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Chen C, Tassou A, Morales V, Scherrer G. Graph theory analysis reveals an assortative pain network vulnerable to attacks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531580. [PMID: 36945626 PMCID: PMC10028857 DOI: 10.1101/2023.03.08.531580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The neural substrate of pain experience has been described as a dense network of connected brain regions. However, the connectivity pattern of these brain regions remains elusive, precluding a deeper understanding of how pain emerges from the structural connectivity. Here, we use graph theory to systematically characterize the architecture of a comprehensive pain network, including both cortical and subcortical brain areas. This structural brain network consists of 49 nodes denoting pain-related brain areas, linked by edges representing their relative incoming and outgoing axonal projection strengths. Sixty-three percent of brain areas in this structural pain network share reciprocal connections, reflecting a dense network. The clustering coefficient, a measurement of the probability that adjacent nodes are connected, indicates that brain areas in the pain network tend to cluster together. Community detection, the process of discovering cohesive groups in complex networks, successfully reveals two known subnetworks that specifically mediate the sensory and affective components of pain, respectively. Assortativity analysis, which evaluates the tendency of nodes to connect with other nodes with similar features, indicates that the pain network is assortative. Finally, robustness, the resistance of a complex network to failures and perturbations, indicates that the pain network displays a high degree of error tolerance (local failure rarely affects the global information carried by the network) but is vulnerable to attacks (selective removal of hub nodes critically changes network connectivity). Taken together, graph theory analysis unveils an assortative structural pain network in the brain processing nociceptive information, and the vulnerability of this network to attack opens up the possibility of alleviating pain by targeting the most connected brain areas in the network.
Collapse
|
19
|
Wandrey JD, Kastelik J, Fritzsche T, Denke C, Schäfer M, Tafelski S. Supplementing transcranial direct current stimulation to local infiltration series for refractory neuropathic craniocephalic pain: A randomized controlled pilot trial. Front Neurol 2023; 14:1069434. [PMID: 36937523 PMCID: PMC10014889 DOI: 10.3389/fneur.2023.1069434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023] Open
Abstract
Background Some patients with neuralgia of cranial nerves with otherwise therapy-refractory pain respond to invasive therapy with local anesthetics. Unfortunately, pain regularly relapses despite multimodal pain management. Transcranial direct current stimulation (tDCS) may prolong pain response due to neuro-modulatory effects. Methods This controlled clinical pilot trial randomized patients to receive anodal, cathodal or sham-tDCS stimulation prior to local anesthetic infiltration. Pain attenuation, quality-of-life and side effects were assessed and compared with historic controls to estimate effects of tDCS stimulation setting. Results Altogether, 17 patients were randomized into three groups with different stimulation protocols. Relative reduction of pain intensity in per protocol treated patients were median 73%, 50% and 69% in anodal, cathodal and sham group, respectively (p = 0.726). Compared with a historic control group, a lower rate of responders with 50% reduction of pain intensity indicates probable placebo effects (OR 3.41 stimulation vs. non-stimulation setting, NNT 3.63). 76.9% (n = 10) of tDCS patients reported mild side-effects. Of all initially included 17 patients, 23.5% (n = 4) withdrew their study participation with highest proportion in the cathodal group (n = 3). A sample size calculation for a confirmatory trial revealed 120 patients using conservative estimations. Discussion This pilot trial does not support series of anodal tDCS as neuro-modulatory treatment to enhance pain alleviation of local anesthetic infiltration series. Notably, results may indicate placebo effects of tDCS settings. Feasibility of studies in this population was limited due to relevant drop-out rates. Anodal tDCS warrants further confirmation as neuro-modulatory pain treatment option.
Collapse
Affiliation(s)
- Jan D. Wandrey
- Department of Anesthesiology and Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Neurochirurgia del dolore. Neurologia 2023. [DOI: 10.1016/s1634-7072(22)47347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
21
|
Application of Repetitive Transcranial Magnetic Stimulation in Neuropathic Pain: A Narrative Review. Life (Basel) 2023; 13:life13020258. [PMID: 36836613 PMCID: PMC9962564 DOI: 10.3390/life13020258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain, affecting 6.9-10% of the general population, has a negative impact on patients' quality of life and potentially leads to functional impairment and disability. Repetitive transcranial magnetic stimulation (rTMS)-a safe, indirect and non-invasive technique-has been increasingly applied for treating neuropathic pain. The mechanism underlying rTMS is not yet well understood, and the analgesic effects of rTMS have been inconsistent with respect to different settings/parameters, causing insufficient evidence to determine its efficacy in patients with neuropathic pain. This narrative review aimed to provide an up-to-date overview of rTMS for treating neuropathic pain as well as to summarize the treatment protocols and related adverse effects from existing clinical trials. Current evidence supports the use of 10 Hz HF-rTMS of the primary motor cortex to reduce neuropathic pain, especially in patients with spinal cord injury, diabetic neuropathy and post-herpetic neuralgia. However, the lack of standardized protocols impedes the universal use of rTMS for neuropathic pain. rTMS was hypothesized to achieve analgesic effects by upregulating the pain threshold, inhibiting pain impulse, modulating the brain cortex, altering imbalanced functional connectivity, regulating neurotrophin and increasing endogenous opioid and anti-inflammatory cytokines. Further studies are warranted to explore the differences in the parameters/settings of rTMS for treating neuropathic pain due to different disease types.
Collapse
|
22
|
Cordani C, Lazzarini SG, Del Furia MJ, Kiekens C, Arienti C, Negrini S. Arthralgia: a map of Cochrane evidence relevant to rehabilitation for people with post COVID-19 condition. Eur J Phys Rehabil Med 2022; 58:870-874. [PMID: 36472559 PMCID: PMC10153548 DOI: 10.23736/s1973-9087.22.07803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rehabilitation focuses on impairments, activity limitations and participation restrictions being informed by the underlying health condition. In the current absence of direct "evidence on" rehabilitation interventions for people with post COVID-19 condition (PCC), we can search and synthesize the indirect "evidence relevant to" coming from interventions effective on the symptoms of PCC in other health conditions. The World Health Organization (WHO) required this information to inform expert teams and provide specific recommendations in its Guidelines. With this overview of reviews with mapping we aimed to synthesize the Cochrane evidence relevant to rehabilitation for arthralgia due to PCC in a map. EVIDENCE ACQUISITION We searched the last five years' Cochrane Systematic Review (CSRs) using the terms "arthralgia," "joint pain," and "rehabilitation" and their synonyms in the Cochrane Library. We extracted and summarized all the available evidence using a map. We grouped the included CSRs for health conditions and interventions, indicating the effect and the quality of evidence. EVIDENCE SYNTHESIS We found 200 CSRs published between 2016 and 2021, and included 11 in this overview. They provided data from 7 health conditions, with osteoarthritis (5 studies) being the most studied. Effective rehabilitation interventions included exercise training, transcranial magnetic stimulation, different types of electrical stimulation and Tai chi. The overall quality of evidence was mainly low to very low, and moderate in a few cases. CONCLUSIONS These results provided the requested information to the WHO and served as the basis for one recommendation on treatments for arthralgia due to PCC in the current Guidelines for clinical practice. These results should be interpreted as a first step of indirect evidence able to generate helpful hypotheses for future research.
Collapse
Affiliation(s)
- Claudio Cordani
- Department of Biomedical, Surgical and Dental Sciences, University "La Statale", Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | | | | | | | - Stefano Negrini
- Department of Biomedical, Surgical and Dental Sciences, University "La Statale", Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
23
|
Moukhaiber N, Summers SJ, Opar D, Imam J, Thomson D, Chang WJ, Andary T, Cavaleri R. The effect of theta burst stimulation over the primary motor cortex on experimental hamstring pain: A randomised, controlled study. THE JOURNAL OF PAIN 2022; 24:593-604. [PMID: 36464137 DOI: 10.1016/j.jpain.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Theta burst stimulation (TBS) over the primary motor cortex (M1) is an emerging technique that may have utility in the treatment of musculoskeletal pain. However, previous work exploring the analgesic effects of noninvasive brain stimulation has been limited largely to the arm or hand, despite 80% of acute musculoskeletal injuries occurring in the lower limb. This is a pertinent point, given the functional and neurophysiological differences between upper and lower limb musculature, as well as evidence suggesting that reorganization of corticomotor pathways is region-specific. This study investigated the effect of excitatory TBS on pain, function, and corticomotor organization during experimentally induced lower limb pain. Twenty-eight healthy participants attended 2 experimental sessions. On Day 0, participants completed 10 sets of 10 maximal eccentric contractions of the right hamstring muscles to induce delayed onset muscle soreness. Four consecutive blocks of either active or sham TBS were delivered on Day 2. Measures of mechanical sensitivity, pain (muscle soreness, pain intensity, pain area) function (single-leg hop distance, maximum voluntary isometric contraction, lower extremity functional scale), and corticomotor organization were recorded before and after TBS on Day 2. Pain and function were also assessed daily from Days 2 to 10. Active TBS reduced mechanical sensitivity compared to sham stimulation (P = .01). Corticomotor organization did not differ between groups, suggesting that improvements in mechanical sensitivity were not mediated by changes in M1. Subjective reports of pain intensity and function did not change following active TBS, contrasting previous reports in studies of the upper limb. PERSPECTIVE: M1 TBS reduces mechanical sensitivity associated with experimentally induced hamstring pain. Though further work is needed, these findings may hold important implications for those seeking to expedite recovery or reduce muscle sensitivity following hamstring injury.
Collapse
Affiliation(s)
- Nadia Moukhaiber
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Simon J Summers
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia; Queensland University of Technology, School of Biomedical Sciences, Queensland, Australia
| | - David Opar
- Australian Catholic University, Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, School of Behavioural and Health Sciences, Victoria, Australia
| | - Jawwad Imam
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Daniel Thomson
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Wei-Ju Chang
- University of Newcastle, College of Health Medicine and Wellbeing, School of Health Sciences, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Centre for Pain IMPACT, New South Wales, Australia
| | - Toni Andary
- South Western Sydney Local Health District, New South Wales, Australia
| | - Rocco Cavaleri
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia.
| |
Collapse
|
24
|
Erdoğan ET, Küçük Z, Eskikurt G, Kurt A, Ermutlu N, Karamürsel S. Single Session Anodal Transcranial Direct Current Stimulation on Different Cortical Areas. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Transcranial direct current stimulation (tDCS) studies in healthy volunteers have shown conflicting results in terms of modulation in pain thresholds. The aim of this study was to investigate how single session anodal tDCS and modulated tDCS (mtDCS) of distinct cortical areas affected pain and perception thresholds in healthy participants. Five different stimulation conditions were applied at different cortical sites to 20 healthy volunteers to investigate the effects of tDCS and mtDCS (20 Hz) on pain and perception thresholds. TDCS over the motor cortex (M1), mtDCS over the motor cortex, tDCS over the dorsolateral prefrontal cortex (DLPFC), mtDCS of the DLPFC, and mtDCS over the occipital cortex were the stimulation conditions. All of the stimulations were anodal. The stimulations were given in a randomized order at 20-minute intervals. For comparison, electrical pain and perception thresholds were obtained from the right middle finger before and during the tDCS. After each measurement, participants were asked to give a score to their pain. In repeated measures analysis of variance (RM-ANOVA) test, the Condition × Time interaction showed no significant influence on changes in pain, perception thresholds, and pain scores ( p = .48, p = .89, and p = .50, respectively). However, regardless of the condition types, there was a significant difference in pain and perceptual thresholds during tDCS ( p = .01, p = .025, respectively). Our findings did not support difference in pain and perception modulation by a single session anodal tDCS over M1 and DLPFC compared to the occipital cortex in healthy volunteers. The increase in all thresholds during tDCS, irrespective of conditions, and peripheral sensations, including an active control group, taken together, suggest a placebo effect of active tDCS. Future studies about pain and perception in healthy subjects should consider the level of experimental pain and a strong placebo effect.
Collapse
Affiliation(s)
- Ezgi Tuna Erdoğan
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Zeynep Küçük
- Department of Psychology, Faculty of Science and Literature, Halic University, Istanbul, Turkey
| | - Gökçer Eskikurt
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Adnan Kurt
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Numan Ermutlu
- Department of Physiology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
25
|
Tomeh A, Yusof Khan AHK, Wan Sulaiman WA. Repetitive transcranial magnetic stimulation of the primary motor cortex in stroke survivors-more than motor rehabilitation: A mini-review. Front Aging Neurosci 2022; 14:897837. [PMID: 36225893 PMCID: PMC9549351 DOI: 10.3389/fnagi.2022.897837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality among elderly populations worldwide. During the early phase of stroke, restoring blood circulation is of utmost importance to protect neurons from further injury. Once the initial condition is stabilized, various rehabilitation techniques can be applied to help stroke survivors gradually regain their affected functions. Among these techniques, transcranial magnetic stimulation (TMS) has emerged as a novel method to assess and modulate cortical excitability non-invasively and aid stroke survivors in the rehabilitation process. Different cortical regions have been targeted using TMS based on the underlying pathology and distorted function. Despite the lack of a standard operational procedure, repetitive TMS (rTMS) of the primary motor cortex (M1) is considered a promising intervention for post-stroke motor rehabilitation. However, apart from the motor response, mounting evidence suggests that M1 stimulation can be employed to treat other symptoms such as dysphagia, speech impairments, central post-stroke pain, depression, and cognitive dysfunction. In this mini-review, we summarize the therapeutic uses of rTMS stimulation over M1 in stroke survivors and discuss the potential mechanistic rationale behind it.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Wan Aliaa Wan Sulaiman,
| |
Collapse
|
26
|
Abstract
Pain is an unpleasant sensory and emotional experience. Understanding the neural mechanisms of acute and chronic pain and the brain changes affecting pain factors is important for finding pain treatment methods. The emergence and progress of non-invasive neuroimaging technology can help us better understand pain at the neural level. Recent developments in identifying brain-based biomarkers of pain through advances in advanced imaging can provide some foundations for predicting and detecting pain. For example, a neurologic pain signature (involving brain regions that receive nociceptive afferents) and a stimulus intensity-independent pain signature (involving brain regions that do not show increased activity in proportion to noxious stimulus intensity) were developed based on multivariate modeling to identify processes related to the pain experience. However, an accurate and comprehensive review of common neuroimaging techniques for evaluating pain is lacking. This paper reviews the mechanism, clinical application, reliability, strengths, and limitations of common neuroimaging techniques for assessing pain to promote our further understanding of pain.
Collapse
Affiliation(s)
- Jing Luo
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui-Qi Zhu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Bo Gou
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China.
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
27
|
Samartin-Veiga N, González-Villar AJ, Pidal-Miranda M, Vázquez-Millán A, Carrillo-de-la-Peña MT. Active and sham transcranial direct current stimulation (tDCS) improved quality of life in female patients with fibromyalgia. Qual Life Res 2022; 31:2519-2534. [PMID: 35229253 PMCID: PMC9250466 DOI: 10.1007/s11136-022-03106-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE Fibromyalgia (FM) is a chronic pain syndrome with a strong impact on quality of life (QoL). Treatment of this condition remains a challenge, due to the scarce evidence for the effectiveness of the therapeutic approaches available. Current attention is focused on transcranial direct current stimulation (tDCS), which has yielded promising results for pain treatment. Rather than focusing only on pain relief, in this study, we aimed to determine how active or sham tDCS (over three cortical targets -the primary motor cortex, the dorsolateral prefrontal cortex and the operculo-insular cortex-) affect QoL in patients with FM. METHODS Using a double-blind, placebo-controlled design, we applied fifteen tDCS sessions of 20' to initial 130 participants (randomized to any of the four treatment groups). We evaluated the QoL (assessed by SF-36) and the symptoms' impact (assessed by FIQ-R) in baseline, after treatment and at 6 months follow-up. RESULTS All groups were comparable as regards age, medication pattern and severity of symptoms before the treatment. We found that QoL and symptoms' impact improved in all treatment groups (including the sham) and this improvement lasted for up to 6 months. However, we did not observe any group effect nor group*treatment interaction. CONCLUSIONS After the intervention, we observed a non-specific effect that may be due to placebo, favoured by the expectations of tDCS efficacy and psychosocial variables inherent to the intervention (daily relationship with therapists and other patients in the clinic). Therefore, active tDCS is not superior to sham stimulation in improving QoL in FM.
Collapse
Affiliation(s)
- N Samartin-Veiga
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Facultade de Psicoloxia, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain.
| | - A J González-Villar
- Psychological Neuroscience Lab, Research Center in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - M Pidal-Miranda
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Facultade de Psicoloxia, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain
| | - A Vázquez-Millán
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Facultade de Psicoloxia, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain
| | - M T Carrillo-de-la-Peña
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Facultade de Psicoloxia, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
28
|
Tomeh A, Yusof Khan AHK, Inche Mat LN, Basri H, Wan Sulaiman WA. Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex beyond Motor Rehabilitation: A Review of the Current Evidence. Brain Sci 2022; 12:brainsci12060761. [PMID: 35741646 PMCID: PMC9221422 DOI: 10.3390/brainsci12060761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction. In this review, we summarize the latest evidence on using M1-rTMS to treat non-motor symptoms of diverse etiologies and discuss the potential mechanistic rationale behind the management of each of these symptoms.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-3-9769-5560
| |
Collapse
|
29
|
Mori N, Hosomi K, Nishi A, Oshino S, Kishima H, Saitoh Y. Analgesic Effects of Repetitive Transcranial Magnetic Stimulation at Different Stimulus Parameters for Neuropathic Pain: A Randomized Study. Neuromodulation 2022; 25:520-527. [PMID: 35670062 DOI: 10.1111/ner.13328] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the analgesic effects of repetitive transcranial magnetic stimulation over the primary motor cortex (M1-rTMS) using different stimulation parameters to explore the optimal stimulus condition for treating neuropathic pain. MATERIALS AND METHODS We conducted a randomized, blinded, crossover exploratory study. Four single sessions of M1-rTMS at different parameters were administered in random order. The tested stimulation conditions were as follows: 5-Hz with 500 pulses per session, 10-Hz with 500 pulses per session, 10-Hz with 2000 pulses per session, and sham stimulation. Analgesic effects were assessed by determining the visual analog scale (VAS) pain intensity score and Short-Form McGill Pain Questionnaire 2 (SF-MPQ2) score immediately before and immediately after intervention. RESULTS We enrolled 22 adults (age: 59.8 ± 12.1 years) with intractable neuropathic pain. Linear-effects models showed significant effects of the stimulation condition on changes in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.01). Tukey multiple comparison tests revealed that 10-Hz rTMS with 2000 pulses provided better pain relief than sham stimulation, with greater decreases in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.02). CONCLUSIONS The results of this study suggest that high-dose stimulation (specifically, 10-Hz rTMS at 2000 pulses) is more effective than lower-dose stimulation for treating neuropathic pain.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| |
Collapse
|
30
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
31
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Clinical Effects of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Are Associated With Changes in Resting-State Functional Connectivity in Patients With Fibromyalgia Syndrome. THE JOURNAL OF PAIN 2022; 23:595-615. [PMID: 34785365 DOI: 10.1016/j.jpain.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
In this double-blinded, sham-controlled, counterbalanced, and crossover study, we investigated the potential neuroplasticity underlying pain relief and daily function improvements following repetitive transcranial magnetic stimulation of the motor cortex (M1-rTMS) in fibromyalgia syndrome (FMS) patients. Specifically, we used magnetic resonance imaging (MRI) to examine changes in brain structural and resting-state functional connectivity (rsFC) that correlated with improvements in FMS symptomology following M1-rTMS. Twenty-seven women with FMS underwent real and sham treatment series, each consisting of 10 daily treatments of 10Hz M1-rTMS over 2 weeks, with a washout period in between. Before and after each series, participants underwent anatomical and resting-state functional MRI scans and questionnaire assessments of FMS-related clinical pain and functional and psychological burdens. The expected reductions in FMS-related symptomology following M1-rTMS occurred with the real treatment only and correlated with rsFC changes in brain areas associated with pain processing and modulation. Specifically, between the ventromedial prefrontal cortex and the M1 (t = -5.54, corrected P = .002), the amygdala and the posterior insula (t = 5.81, corrected P = .044), and the anterior and posterior insula (t = 6.01, corrected P = .029). Neither treatment significantly changed brain structure. Therefore, we provide the first evidence of an association between the acute clinical effects of M1-rTMS in FMS and functional alterations of brain areas that have a significant role in the experience of chronic pain. Structural changes could potentially occur over a more extended treatment period. PERSPECTIVE: We show that the neurophysiological mechanism of the improvement in fibromyalgia symptoms following active, but not sham, rTMS applied to M1 involves changes in resting-state functional connectivity in sensory, affective and cognitive pain processing brain areas, thus substantiating the essence of fibromyalgia syndrome as a treatable brain-based disorder.
Collapse
Affiliation(s)
- Yuval Argaman
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
32
|
Li X, Lin X, Yao J, Chen S, Hu Y, Liu J, Jin R. Effects of High-Definition Transcranial Direct Current Stimulation Over the Primary Motor Cortex on Cold Pain Sensitivity Among Healthy Adults. Front Mol Neurosci 2022; 15:853509. [PMID: 35370540 PMCID: PMC8971908 DOI: 10.3389/fnmol.2022.853509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Some clinical studies have shown promising effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on pain relief. Nevertheless, a few studies reported no significant analgesic effects of tDCS, likely due to the complexity of clinical pain conditions. Human experimental pain models that utilize indices of pain in response to well-controlled noxious stimuli can avoid many confounds that are present in the clinical data. This study aimed to investigate the effects of high-definition tDCS (HD-tDCS) stimulation over M1 on sensitivity to experimental pain and assess whether these effects could be influenced by the pain-related cognitions and emotions. A randomized, double-blinded, crossover, and sham-controlled design was adopted. A total of 28 healthy participants received anodal, cathodal, or sham HD-tDCS over M1 (1 mA for 20 min) in different sessions, in which montage has the advantage of producing more focal stimulation. Using a cold pressor test, several indices reflecting the sensitivity to cold pain were measured immediately after HD-tDCS stimulation, such as cold pain threshold and tolerance and cold pain intensity and unpleasantness ratings. Results showed that only anodal HD-tDCS significantly increased cold pain threshold when compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain tolerance, pain intensity, and unpleasantness ratings. Correlation analysis revealed that individuals that a had lower level of attentional bias to negative information benefited more from attenuating pain intensity rating induced by anodal HD-tDCS. Therefore, single-session anodal HD-tDCS modulates the sensory-discriminative aspect of pain perception as indexed by the increased pain threshold. In addition, the modulating effects of HD-tDCS on attenuating pain intensity to suprathreshold pain could be influenced by the participant’s negative attentional bias, which deserves to be taken into consideration in the clinical applications.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xinxin Lin
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Junjie Yao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yu Hu
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Richu Jin
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Richu Jin,
| |
Collapse
|
33
|
Deblieck C, Smeijers S, Morlion B, Datta A, Thomas C, Theys T. Case Report: Initial Evidence of Safety and Efficacy of High Definition-Transcranial Direct Current Stimulation in a Patient With Neuropathic Pain and Implanted Spinal Cord Stimulator. FRONTIERS IN PAIN RESEARCH 2022; 2:753464. [PMID: 35295503 PMCID: PMC8915614 DOI: 10.3389/fpain.2021.753464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP), often treatment-refractory, is one of the most debilitating conditions contributing to suffering and disability worldwide. Recently, non-invasive neuromodulation techniques, particularly repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) have emerged as potential therapeutic alternatives due to their ability to alter cortical excitability of neural circuits. However, the magnetic field induced in rTMS may be unsafe for patients with an implanted electrode in the head or neck area while tDCS poses no theoretical risk of injury to these patients. High definition (HD)-tDCS is a novel, more focal technique of tDCS and may be safer to the patient compared to the more diffuse stimulation of conventional tDCS. To our knowledge, no study has ever demonstrated the safety and/or feasibility of HD-tDCS in patients with spinal cord stimulation (SCS) devices using computational modeling of induced electrical fields. Furthermore, this study highlights the potential use of (HD-)tDCS as predictive tool for a positive response in chronic epidural motor cortex stimulation (MCS), especially in patients with an implanted device not suitable for rTMS. In a 54-year-old woman with an implanted spinal cord stimulation (SCS) system for another pain syndrome, HD-tDCS was initiated for refractory post-surgical inferior alveolar nerve neuropathy. She was submitted to 7 days of anodal HD-tDCS over the left motor cortex at 1.5 mA for 30 min. A notable decrease in pain perception was observed, lasting for approximately 5-6 h (Numeric Rating Score decreased from 8 to 4.34). No adverse events were reported. The stimulation parameters and clinical efficacy of the SCS system remained unchanged. Additionally, computational analysis indicated no meaningful alteration of current flow when considering a model with a SCS implant with respect to a model without implant. Regarding the positive therapeutic effect of HD-tDCS, the patient was selected for an epidural MCS trial and subsequent implantation, which showed short-term pain relief of 50-75%. Although one case does not demonstrate efficacy, tolerability, or safety to the novel intervention, it paves the way for better diagnosis and treatment for patients who are otherwise excluded from other non-invasive neuromodulation techniques, such as rTMS. A positive tDCS effect could be a potential biomarker for positive epidural MCS response in patients with an implanted stimulation device non-compatible with rTMS.
Collapse
Affiliation(s)
- Choi Deblieck
- Academic Center for Electroconvulsive Therapy (ECT) and Neuromodulation, University Psychiatric Center, KU Leuven, Leuven, Belgium
| | - Steven Smeijers
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Morlion
- Department of Cardiovascular Sciences, Section Anaesthesiology & Algology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Abhishek Datta
- Research and Development, Soterix Medical Inc., Woodbridge, NJ, United States.,Department of Neurosurgery, UZ Leuven, Leuven, Belgium.,Biomedical Engineering, City College of New York, New York, NY, United States
| | - Chris Thomas
- Research and Development, Soterix Medical Inc., Woodbridge, NJ, United States
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Cheng YC, Zeng BY, Hung CM, Su KP, Wu YC, Tu YK, Lin PY, Stubbs B, Carvalho AF, Liang CS, Chen TY, Hsu CW, Brunoni AR, Suen MW, Shiue YL, Tseng PT, Wu MK, Li CT. Effectiveness and acceptability of noninvasive brain and nerve stimulation techniques for migraine prophylaxis: a network meta-analysis of randomized controlled trials. J Headache Pain 2022; 23:28. [PMID: 35184742 PMCID: PMC8903676 DOI: 10.1186/s10194-022-01401-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Current pharmacologic prophylactic strategies for migraine have exhibited limited efficacy, with response rates as low as 40%-50%. In addition to the limited efficacy, the acceptability of those pharmacologic prophylactic strategies were unacceptable. Although noninvasive brain/nerve stimulation strategies may be effective, the evidence has been inconsistent. The aim of this network meta-analysis (NMA) was to compare strategies of noninvasive brain/nerve stimulation for migraine prophylaxis with respect to their effectiveness and acceptability. METHODS The PubMed, Embase, ScienceDirect, ProQuest, ClinicalTrials.gov , ClinicalKey, Cochrane CENTRAL, Web of Science, and ClinicalTrials.gov databases were systematically searched to date of June 4th, 2021 for randomized controlled trials (RCTs). Patients with diagnosis of migraine, either episodic migraine or chronic migraine, were included. All NMA procedures were conducted under the frequentist model. RESULTS Nineteen RCTs were included (N = 1493; mean age = 38.2 years; 82.0% women). We determined that the high frequency repetitive transcranial magnetic stimulation (rTMS) over C3 yielded the most decreased monthly migraine days among all the interventions [mean difference = - 8.70 days, 95% confidence intervals (95%CIs): - 14.45 to - 2.95 compared to sham/control groups]. Only alternating frequency (2/100 Hz) transcutaneous occipital nerve stimulation (tONS) over the Oz (RR = 0.36, 95%CIs: 0.16 to 0.82) yielded a significantly lower drop-out rate than the sham/control groups did. CONCLUSIONS The current study provided a new direction for the design of more methodologically robust and larger RCTs based on the findings of the potentially beneficial effect on migraine prophylaxis in participants with migraine by different noninvasive brain/nerve stimulation, especially the application of rTMS and tONS. TRIAL REGISTRATION CRD42021252638. The current study had been approval by the Institutional Review Board of the Tri-Service General Hospital, National Defense Medical Center (TSGHIRB No. B-109-29).
Collapse
Affiliation(s)
- Yu-Chen Cheng
- Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-DA Dachang Hospital, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Dapi Rd., Niaosong Dist, Kaohsiung City, 833, Taiwan
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Positive Ageing Research Institute (PARI), Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Dapi Rd., Niaosong Dist, Kaohsiung City, 833, Taiwan
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da USP, São Paulo, Brazil
- Departamento de Ciências Médicas, Faculdade de Medicina da USP, São Paulo, Brazil
| | - Mein-Woei Suen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Gender Equality Education and Research Center, Asia University, Taichung, Taiwan
- Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ping-Tao Tseng
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Prospect Clinic for Otorhinolaryngology & Neurology, No. 252, Nanzixin Road, Nanzi District, Kaohsiung City, 81166, Taiwan.
| | - Ming-Kung Wu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Dapi Rd., Niaosong Dist, Kaohsiung City, 833, Taiwan.
| | - Cheng-Ta Li
- Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267, Taiwan.
- Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Functional Neuroimaging and Brain Stimulation Lab, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267, Taiwan.
| |
Collapse
|
35
|
Wu B, Zhou L, Chen C, Wang J, Hu LI, Wang X. Effects of Exercise-induced Hypoalgesia and Its Neural Mechanisms. Med Sci Sports Exerc 2022; 54:220-231. [PMID: 34468414 DOI: 10.1249/mss.0000000000002781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Exercise-induced hypoalgesia is frequently documented in the literature. However, the underlying neural mechanism of this phenomenon remains unclear. Here, we explored the effects of different intensities of isometric exercise on pain perception with a randomized controlled design and investigated its neural mechanisms through tracing the dynamic changes of heat-evoked brain responses. METHODS Forty-eight participants were randomly assigned to one of the three groups with different exercise intensities (i.e., high, low, and control). Their subjective pain reports and brain responses elicited by heat stimuli before and after exercise were assessed. RESULTS We observed 1) the increased pressure pain thresholds and heat pain thresholds on the dorsal surface of the hand and the biceps brachii muscle of the exercised limb (closed to the contracting muscle), and the decreased pressure pain ratings at the indexed finger of the unexercised limb; 2) more reduction of pain sensitivity on both the biceps brachii muscle and the dorsal surface of the hand induced by the high-intensity isometric exercise than the low-intensity isometric exercise; and 3) both the high-intensity and the low-intensity isometric exercise induced the reduction of N2 amplitudes and N2-P2 peak-to-peak amplitudes, as well as the reduction of event-related potential magnitudes elicited by the heat stimuli on the exercised limb. CONCLUSIONS The hypoalgesic effects induced by the isometric exercise were not only localized to the moving part of the body but also can be extended to the distal part of the body. The exercise intensities play a vital role in modulating these effects. Exercise-induced hypoalgesia could be related to the modulation of nociceptive information transmission via a spinal gating mechanism and also rely on a top-down descending pain inhibitory mechanism.
Collapse
Affiliation(s)
| | - Lili Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, CHINA
| | - Changcheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, CHINA
| | - Juan Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, CHINA
| | | | | |
Collapse
|
36
|
Ramos-Fresnedo A, Perez-Vega C, Domingo RA, Cheshire WP, Middlebrooks EH, Grewal SS. Motor Cortex Stimulation for Pain: A Narrative Review of Indications, Techniques, and Outcomes. Neuromodulation 2022; 25:211-221. [DOI: 10.1016/j.neurom.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
|
37
|
Jiang X, Wang Y, Wan R, Feng B, Zhang Z, Lin Y, Wang Y. The effect of high-definition transcranial direct current stimulation on pain processing in a healthy population: A single-blinded crossover controlled study. Neurosci Lett 2022; 767:136304. [PMID: 34695451 DOI: 10.1016/j.neulet.2021.136304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) is increasingly used in pain treatment. tDCS targeting both primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) may modulate the descending pain inhibitory system, however, it remains controversial regarding the optimal stimulation region for pain modulation. Therefore, this study aimed to explore the effects of high-definition anodic stimulation of M1 and DLPFC on conditioned pain modulation (CPM) and pain thresholds and establish a preferred stimulation setting. Twenty-six healthy adults were randomly assigned to M1-tDCS, DLPFC-tDCS, or sham-tDCS groups. During the three sessions, each participant received an active or sham stimulation of 2 mA for 20 min, with at least 3 days' interval between sessions. Quantitative sensory tests were performed to obtain pressure pain threshold (PPT), cold pain threshold (CPT), and CPM before and after the tDCS intervention. Only M1-tDCS significantly increased CPM in healthy individuals compared with sham control (P = 0.004). No statistically significant difference was found in PPT and CPT between tDCS vs. sham control (P > 0.05). Our findings further support the important role of M1 as a target in pain regulation. Further large-scale, multicenter studies in chronic pain populations are needed to validate the alterations of distinct target brain regions related to pain and thus for an optimal target stimulation strategy in pain management.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yafei Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruihan Wan
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Beibei Feng
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Orthopedics & Traumatology, The University of Hong Kong, HKSAR, China
| | - Ziping Zhang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
38
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
39
|
Huynh V, Lütolf R, Rosner J, Luechinger R, Curt A, Kollias S, Michels L, Hubli M. Descending pain modulatory efficiency in healthy subjects is related to structure and resting connectivity of brain regions. Neuroimage 2021; 247:118742. [PMID: 34863962 DOI: 10.1016/j.neuroimage.2021.118742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
The descending pain modulatory system in humans is commonly investigated using conditioned pain modulation (CPM). Whilst variability in CPM efficiency, i.e., inhibition and facilitation, is normal in healthy subjects, exploring the inter-relationship between brain structure, resting-state functional connectivity (rsFC) and CPM readouts will provide greater insight into the underlying CPM efficiency seen in healthy individuals. Thus, this study combined CPM testing, voxel-based morphometry (VBM) and rsFC to identify the neural correlates of CPM in a cohort of healthy subjects (n =40), displaying pain inhibition (n = 29), facilitation (n = 10) and no CPM effect (n = 1). Clusters identified in the VBM analysis were implemented in the rsFC analysis alongside key constituents of the endogenous pain modulatory system. Greater pain inhibition was related to higher volume of left frontal cortices and stronger rsFC between the motor cortex and periaqueductal grey. Conversely, weaker pain inhibition was related to higher volume of the right frontal cortex - coupled with stronger rsFC to the primary somatosensory cortex, and rsFC between the amygdala and posterior insula. Overall, healthy subjects showed higher volume and stronger rsFC of brain regions involved with descending modulation, while the lateral and medial pain systems were related to greater pain inhibition and facilitation during CPM, respectively. These findings reveal structural alignments and functional interactions between supraspinal areas involved in CPM efficiency. Ultimately understanding these underlying variations and how they may become affected in chronic pain conditions, will advance a more targeted subgrouping in pain patients for future cross-sectional studies investigating endogenous pain modulation.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland.
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| |
Collapse
|
40
|
Jiang X, Yan W, Wan R, Lin Y, Zhu X, Song G, Zheng K, Wang Y, Wang X. Effects of repetitive transcranial magnetic stimulation on neuropathic pain: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 132:130-141. [PMID: 34826512 DOI: 10.1016/j.neubiorev.2021.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Neuropathic pain (NP) is a chronic pain condition caused by lesion or disease of the somatosensory nervous system. Repetitive transcranial magnetic stimulation (rTMS) is a neuroregulatory tool that uses pulsed magnetic fields to modulate the cerebral cortex. This review aimed to ascertain the therapeutic effect of rTMS on NP and potential factors regulating the therapeutic effect of rTMS. Database search included Web of Science, Embase, Pubmed, and Cochrane Library from inception to July 2021. Eligible studies included randomized controlled studies of the analgesic effects of rTMS in patients with NP. Thirty-eight studies were included. Random effect analysis showed effect sizes of -0.66 (95 % CI, -0.87 to -0.46), indicating that real rTMS was better than sham condition in reducing pain (P < 0.001). This comprehensive review indicated that stimulation frequency, intervention site, and location of lesion were important factors affecting the therapeutic effect. The findings of this study may guide clinical decisions and future research.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wangwang Yan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruihan Wan
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China.
| |
Collapse
|
41
|
Effect of transcranial direct current stimulation on in-vivo assessed neuro-metabolites through magnetic resonance spectroscopy: a systematic review. Acta Neuropsychiatr 2021; 33:242-253. [PMID: 33926587 DOI: 10.1017/neu.2021.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Previous studies have examined the effect of transcranial direct current stimulation (tDCS) on the in-vivo concentrations of neuro-metabolites assessed through magnetic resonance spectroscopy (MRS) in neurological and psychiatry disorders. This review aims to systematically evaluate the data on the effect of tDCS on MRS findings and thereby attempt to understand the potential mechanism of tDCS on neuro-metabolites. METHODS The relevant literature was obtained through PubMed and cross-reference (search till June 2020). Thirty-four studies were reviewed, of which 22 reported results from healthy controls and 12 were from patients with neurological and psychiatric disorders. RESULTS The evidence converges to highlight that tDCS modulates the neuro-metabolite levels at the site of stimulation, which, in turn, translates into alterations in the behavioural outcome. It also shows that the baseline level of these neuro-metabolites can, to a certain extent, predict the outcome after tDCS. However, even though tDCS has shown promising effects in alleviating symptoms of various psychiatric disorders, there are limited studies that have reported the effect of tDCS on neuro-metabolite levels. CONCLUSIONS There is a compelling need for more systematic studies examining patients with psychiatric/neurological disorders with larger samples and harmonised tDCS protocols. More studies will potentially help us to understand the tDCS mechanism of action pertinent to neuro-metabolite levels modulation. Further, studies should be conducted in psychiatric patients to understand the neurological changes in this population and potentially unravel the neuro-metabolite × tDCS interaction effect that can be translated into individualised treatment.
Collapse
|
42
|
Vo L, Ilich N, Fujiyama H, Drummond PD. Anodal Transcranial Direct Current Stimulation Reduces Secondary Hyperalgesia Induced by low Frequency Electrical Stimulation in Healthy Volunteers. THE JOURNAL OF PAIN 2021; 23:305-317. [PMID: 34500109 DOI: 10.1016/j.jpain.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
The aim of the study was to determine whether transcranial direct current stimulation (tDCS) reduced pain and signs of central sensitization induced by low frequency electrical stimulation in healthy volunteers. Thirty-nine participants received tDCS stimulation under 4 different conditions: anodal tDCS of the primary motor cortex (M1), anodal tDCS of the dorsolateral prefrontal cortex (DLPFC), anodal tDCS over M1 and DLPFC concurrently, and sham tDCS. Participants were blind to the tDCS condition. The order of the conditions was randomized among participants. Pain ratings to pinpricks, the current level that evoked moderate pain, and pain induced by low frequency electrical stimulation were assessed in the forearm by an experimenter who was blind to the tDCS conditions. Anodal tDCS at M1 increased the current level that evoked moderate pain compared to sham and other conditions. Anodal tDCS of DLPFC completely abolished secondary hyperalgesia. Unexpectedly, however, concurrent anodal tDCS over M1 and DLPFC did not reduce pain or hyperalgesia more than M1 alone or DLPFC alone. Overall, these findings suggest that anodal tDCS over M1 suppresses pain, and that anodal tDCS over DLPFC modulates secondary hyperalgesia (a sign of central sensitization) in healthy participants. PERSPECTIVE: Anodal transcranial current stimulation (atDCS) at the left motor cortex and the dorsolateral prefrontal cortex increased the electrically-evoked pain threshold and reduced secondary hyperalgesia in healthy participants. Replication of this study in chronic pain populations may open more avenues for chronic pain treatment.
Collapse
Affiliation(s)
- Lechi Vo
- College of Science, Health, Engineering and Education, Discipline of Psychology Murdoch University, Perth, Australia.
| | - Nicole Ilich
- College of Science, Health, Engineering and Education, Discipline of Psychology Murdoch University, Perth, Australia
| | - Hakuei Fujiyama
- College of Science, Health, Engineering and Education, Discipline of Psychology Murdoch University, Perth, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Discipline of Psychology Murdoch University, Perth, Australia
| |
Collapse
|
43
|
Liu Y, Xu H, Sun G, Vemulapalli B, Jee HJ, Zhang Q, Wang J. Frequency Dependent Electrical Stimulation of PFC and ACC for Acute Pain Treatment in Rats. FRONTIERS IN PAIN RESEARCH 2021; 2:728045. [PMID: 35295497 PMCID: PMC8915567 DOI: 10.3389/fpain.2021.728045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
As pain consists of both sensory and affective components, its management by pharmaceutical agents remains difficult. Alternative forms of neuromodulation, such as electrical stimulation, have been studied in recent years as potential pain treatment options. Although electrical stimulation of the brain has shown promise, more research into stimulation frequency and targets is required to support its clinical applications. Here, we studied the effect that stimulation frequency has on pain modulation in the prefrontal cortex (PFC) and the anterior cingulate cortex (ACC) in acute pain models in rats. We found that low-frequency stimulation in the prelimbic region of the PFC (PL-PFC) provides reduction of sensory and affective pain components. Meanwhile, high-frequency stimulation of the ACC, a region involved in processing pain affect, reduces pain aversive behaviors. Our results demonstrate that frequency-dependent neuromodulation of the PFC or ACC has the potential for pain modulation.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Bharat Vemulapalli
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, United States
- *Correspondence: Qiaosheng Zhang
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, United States
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University School of Medicine, New York, NY, United States
- Jing Wang
| |
Collapse
|
44
|
Yao J, Li X, Zhang W, Lin X, Lyu X, Lou W, Peng W. Analgesia induced by anodal tDCS and high-frequency tRNS over the motor cortex: Immediate and sustained effects on pain perception. Brain Stimul 2021; 14:1174-1183. [PMID: 34371209 DOI: 10.1016/j.brs.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Many studies have shown effects of anodal transcranial direct current stimulation (a-tDCS) and high-frequency transcranial random noise stimulation (tRNS) on elevating cortical excitability. Moreover, tRNS with a direct current (DC)-offset is more likely to lead to increases in cortical excitability than solely tRNS. While a-tDCS over primary motor cortex (M1) has been shown to attenuate pain perception, tRNS + DC-offset may prove as an effective means for pain relief. OBJECTIVE This study aimed to examine effects of a-tDCS and high-frequency tRNS + DC-offset over M1 on pain expectation and perception, and assess whether these effects could be influenced by the certainty of pain expectation. METHODS Using a double-blinded and sham-controlled design, 150 healthy participants were recruited to receive a single-session a-tDCS, high-frequency tRNS + DC-offset, or sham stimulation over M1. The expectation and perception of electrical stimulation in certain and uncertain contexts were assessed at baseline, immediately after, and 30 min after stimulation. RESULTS Compared with sham stimulation, a-tDCS induced immediate analgesic effects that were greater when the stimulation outcome was expected with uncertainty; tRNS induced immediate and sustained analgesic effects that were mediated by decreasing pain expectation. Nevertheless, we found no strong evidence for tRNS being more effective for attenuating pain than a-tDCS. CONCLUSIONS The analgesic effects of a-tDCS and tRNS showed different temporal courses, which could be related to the more sustained effectiveness of high-frequency tRNS + DC-offset in elevating cortical excitability. Moreover, expectations of pain intensity should be taken into consideration to maximize the benefits of neuromodulation.
Collapse
Affiliation(s)
- Junjie Yao
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenyun Zhang
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xinxin Lin
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaohan Lyu
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
45
|
Theta-burst versus 20 Hz repetitive transcranial magnetic stimulation in neuropathic pain: A head-to-head comparison. Clin Neurophysiol 2021; 132:2702-2710. [PMID: 34217600 DOI: 10.1016/j.clinph.2021.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE High-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce neuropathic pain, but intermittent "theta-burst" stimulation (iTBS) could be a better alternative because of shorter duration and greater ability to induce cortical plasticity. Here we compared head-to-head the pain-relieving efficacy of the two modalities when applied daily for 5 days to patients with neuropathic pain. METHODS Forty-six patients received 20 Hz-rTMS and/or iTBS protocols and 39 of them underwent the full two procedures in a random cross-over design. They rated pain intensity, sleep quality, fatigue and general health status daily during 5 consecutive weeks. RESULTS Pain relief during the month following stimulation was superior after 20 Hz-rTMS relative to iTBS (F(1,38) = 4.645; p = 0.037). Correlation between respective levels of maximal relief showed a significant deviation toward the 20 Hz-rTMS effect. A greater proportion of individuals responded to 20 Hz-rTMS (52% vs 32%, 95 %CI[0.095-3.27]; p = 0.06), and reports of fatigue significantly improved after 20 Hz-rTMS relative to iTBS (p = 0.01). General health and sleep quality scores did not differentiate both techniques. CONCLUSIONS High-frequency rTMS appeared superior to iTBS for neuropathic pain relief. SIGNIFICANCE Adequate matching between the oscillatory activity of motor cortex and that of rTMS may increase synaptic efficacy, thus enhancing functional connectivity of motor cortex with distant structures involved in pain regulation.
Collapse
|
46
|
Lavrov I, Latypov T, Mukhametova E, Lundstrom BN, Sandroni P, Lee K, Klassen B, Stead M. Pre-motor versus motor cerebral cortex neuromodulation for chronic neuropathic pain. Sci Rep 2021; 11:12688. [PMID: 34135363 PMCID: PMC8209192 DOI: 10.1038/s41598-021-91872-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Electrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.
Collapse
Affiliation(s)
- Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Timur Latypov
- Division of Brain, Imaging, and Behaviour Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elvira Mukhametova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Paola Sandroni
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kendall Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bryan Klassen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Matt Stead
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
47
|
Li X, Yao J, Zhang W, Chen S, Peng W. Effects of transcranial direct current stimulation on experimental pain perception: A systematic review and meta-analysis. Clin Neurophysiol 2021; 132:2163-2175. [PMID: 34284252 DOI: 10.1016/j.clinph.2021.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Many studies have examined the effectiveness of transcranial direct current stimulation (tDCS) on human pain perception in both healthy populations and pain patients. Nevertheless, studies have yielded conflicting results, likely due to differences in stimulation parameters, experimental paradigms, and outcome measures. Human experimental pain models that utilize indices of pain in response to well-controlled noxious stimuli can avoid many confounds present in clinical data. This study aimed to assess the robustness of tDCS effects on experimental pain perception among healthy populations. METHODS We conducted three meta-analyses that analyzed tDCS effects on ratings of perceived pain intensity to suprathreshold noxious stimuli, pain threshold and tolerance. RESULTS The meta-analyses showed a statically significant tDCS effect on attenuating pain-intensity ratings to suprathreshold noxious stimuli. In contrast, tDCS effects on pain threshold and pain tolerance were statistically non-significant. Moderator analysis further suggested that stimulation parameters (active electrode size and current density) and experimental pain modality moderated the effectiveness of tDCS in attenuating pain-intensity ratings. CONCLUSION The effectiveness of tDCS on attenuating experimental pain perception depends on both stimulation parameters of tDCS and the modality of experimental pain. SIGNIFICANCE This study provides some theoretical basis for the application of tDCS in pain management.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Junjie Yao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Wenyun Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
48
|
Noninvasive motor cortex stimulation effects on quantitative sensory testing in healthy and chronic pain subjects: a systematic review and meta-analysis. Pain 2021; 161:1955-1975. [PMID: 32453135 DOI: 10.1097/j.pain.0000000000001893] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = -0.39, 95% CI = -0.64 to -0.14, I2 = 17%) and pain populations (ES = -0.35, 95% CI = -0.60 to -0.11, I2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS.
Collapse
|
49
|
Patricio P, Roy JS, Macedo L, Roy M, Léonard G, Hodges P, Massé-Alarie H. Repetitive transcranial magnetic stimulation alone and in combination with motor control exercise for the treatment of individuals with chronic non-specific low back pain (ExTraStim trial): study protocol for a randomised controlled trial. BMJ Open 2021; 11:e045504. [PMID: 33762244 PMCID: PMC7993312 DOI: 10.1136/bmjopen-2020-045504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION While multiple pharmacological and non-pharmacological interventions treating chronic non-specific low back pain (CLBP) are available, they have been shown to produce at best modest effects. Interventions such as repetitive transcranial magnetic stimulation (rTMS), a form of non-invasive brain stimulation, have exhibited promising results to alleviate chronic pain. However, evidence on the effectiveness of rTMS for CLBP is scarce due to limited rigorous clinical trials. Combining rTMS with motor control exercises (MCE) may help to address both central and nociceptive factors contributing to the persistence of LBP. The primary aim of this randomised controlled trial is to compare the effectiveness of a combination of rTMS and MCE to repeated rTMS sessions alone, sham rTMS and a combination of sham rTMS and MCE on pain intensity. METHODS AND ANALYSIS One hundred and forty participants (35/group) with CLBP will be randomised into four groups (active rTMS+MCE, sham rTMS+MCE, active rTMS and sham rTMS) to receive 10 sessions of their allocated intervention. The primary outcome will be the pain intensity, assessed at baseline, 4, 8, 12 and 24 weeks. Secondary outcomes will include disability, fear of movement, quality of life and patient global rating of change. ETHICS AND DISSEMINATION Ethics approval was obtained from the Comité d'éthique de la recherche sectoriel en réadaptation et intégration sociale, CIUSS de la Capitale Nationale in June 2019 (#2020-1844 - CER CIUSSS-CN). The results of the study will be submitted to a peer-reviewed journal and scientific meetings. TRIAL REGISTRATION NUMBER NCT04555278.
Collapse
Affiliation(s)
- Philippe Patricio
- Faculté de médecine, Université Laval, Quebec, Quebec, Canada
- CIRRIS, Quebec, Quebec, Canada
| | - Jean-Sébastien Roy
- CIRRIS, Quebec, Quebec, Canada
- Département de réadaptation, Faculté de médecine, Université Laval, Quebec, Quebec, Canada
| | - Luciana Macedo
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | - Paul Hodges
- The University of Queensland, Brisbane, Queensland, Australia
| | - Hugo Massé-Alarie
- Faculté de médecine, Université Laval, Quebec, Quebec, Canada
- CIRRIS, Quebec, Quebec, Canada
| |
Collapse
|
50
|
Moreira A, Machado DGDS, Moscaleski L, Bikson M, Unal G, Bradley PS, Baptista AF, Morya E, Cevada T, Marques L, Zanetti V, Okano AH. Effect of tDCS on well-being and autonomic function in professional male players after official soccer matches. Physiol Behav 2021; 233:113351. [PMID: 33556409 DOI: 10.1016/j.physbeh.2021.113351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/02/2021] [Accepted: 02/04/2021] [Indexed: 01/15/2023]
Abstract
This study aimed to examine the effect of transcranial direct current stimulation (tDCS) used as a recovery strategy, on heart rate (HR) measures and perceived well-being in 12 male professional soccer players. tDCS was applied in the days after official matches targeting the left dorsolateral prefrontal cortex (DLPFC) with 2 mA for 20 min (F3-F4 montage). Participants were randomly assigned to anodal tDCS (a-tDCS) or sham tDCS sessions. Players completed the Well-Being Questionnaire (WBQ) and performed the Submaximal Running Test (SRT) before and after tDCS. HR during exercise (HRex) was determined during the last 30 s of SRT. HR recovery (HRR) was recorded at 60 s after SRT. The HRR index was calculated from the absolute difference between HRex and HRR. A significant increase was observed for WBQ (effect of time; p<0.001; ηp2=0.417) with no effect for condition or interaction. A decrease in HRR (p = 0.014; ηp2=0.241), and an increase in HRR index were observed (p = 0.045; ηp2=0.168), with no effect for condition or interaction. No change for HRex was evident (p>0.05). These results suggest that a-tDCS over the DLPFC may have a positive effect on enhancing well-being and parasympathetic autonomic markers, which opens up a possibility for testing tDCS as a promising recovery-enhancing strategy targeting the brain in soccer players. The findings suggest that brain areas related to emotional and autonomic control might be involved in these changes with a possible interaction effect of tDCS by placebo-related effects, but more research is needed to verify this effect.
Collapse
Affiliation(s)
- Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil.
| | - Daniel Gomes da Silva Machado
- Graduate Program in Collective Health, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luciane Moscaleski
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Paul S Bradley
- Research Institute of Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Abrahão F Baptista
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
| | - Edgard Morya
- Santos Dumont Institute (Instituto Internacional de Neurociências Edmond e Lily Safra), Natal, Rio Grande do Norte, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
| | - Thais Cevada
- Sport Science Program (PPGCEE), State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Alexandre Hideki Okano
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
| |
Collapse
|