1
|
Yang Y, Xu L, Atkins C, Kuhlman L, Zhao J, Jeong JM, Wen Y, Moreno N, Kim KH, An YA, Wang F, Bynon S, Villani V, Gao B, Brombacher F, Harris R, Eltzschig HK, Jacobsen E, Ju C. Novel IL-4/HB-EGF-dependent crosstalk between eosinophils and macrophages controls liver regeneration after ischaemia and reperfusion injury. Gut 2024; 73:1543-1553. [PMID: 38724220 PMCID: PMC11347249 DOI: 10.1136/gutjnl-2024-332033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Long Xu
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constance Atkins
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lily Kuhlman
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jie Zhao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yankai Wen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicolas Moreno
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fenfen Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vincenzo Villani
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bin Gao
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Frank Brombacher
- University of Cape Town Faculty of Health Sciences, Observatory, Western Cape, South Africa
| | - Raymond Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elizabeth Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Naemi AA, Salmanian AH, Noormohammadi Z, Amani J. A novel EGFR-specific recombinant ricin-panitumumab (scFv) immunotoxin against breast and colorectal cancer cell lines; in silico and in vitro analyses. Eur J Pharmacol 2023; 955:175894. [PMID: 37429519 DOI: 10.1016/j.ejphar.2023.175894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
The Epidermal Growth Factor Receptor (EGFR) has been of high importance as it is over expressed in a wide diversity of epithelial cancers, promoting cell proliferation and survival pathways. Recombinant immunotoxins (ITs) have emerged as a promising targeted therapy for cancer treatment. In this study, we aimed to investigate the antitumor activity of a novel recombinant immunotoxin designed against EGFR. Using an in silico approach, we confirmed the stability of the RTA-scFv fusion protein. The immunotoxin was successfully cloned and expressed in the pET32a vector, and the purified protein was analyzed by electrophoresis and western blotting. In vitro evaluations were conducted to assess the biological activities of the recombinant proteins (RTA-scFv, RTA, scFv). The novel immunotoxin demonstrated significant anti-proliferative and pro-apoptotic effects against cancer cell lines. The MTT cytotoxicity assay revealed a decrease in cell viability in the treated cancer cell lines. Additionally, Annexin V/Propidium iodide staining followed by flow cytometry analysis showed a significant induction of apoptosis in the cancer cell lines, with half maximal inhibitory concentration (IC50) values of 81.71 nM for MDA-MB-468 and 145.2 nM for HCT116 cells (P < 0.05). Furthermore, the EGFR-specific immunotoxin exhibited non-allergenic properties. The recombinant protein demonstrated high affinity binding to EGFR. Overall, this study presents a promising strategy for the development of recombinant immunotoxins as potential candidates for the treatment of EGFR-expressing cancers.
Collapse
Affiliation(s)
- Azam Almolok Naemi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Jafar Amani
- Department of Molecular Biology, Green Gene Company, Tehran, Iran.
| |
Collapse
|
3
|
Kim YS, Yuan J, Dewar A, Borg JP, Threadgill DW, Sun X, Dey SK. An unanticipated discourse of HB-EGF with VANGL2 signaling during embryo implantation. Proc Natl Acad Sci U S A 2023; 120:e2302937120. [PMID: 37155852 PMCID: PMC10193979 DOI: 10.1073/pnas.2302937120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Implantation is the first direct encounter between the embryo and uterus during pregnancy, and Hbegf is the earliest known molecular signaling for embryo-uterine crosstalk during implantation. The downstream effectors of heparin-binding EGF (HB-EGF) in implantation remain elusive due to the complexity of EGF receptor family. This study shows that the formation of implantation chamber (crypt) triggered by HB-EGF is disrupted by uterine deletion of Vangl2, a key planar cell polarity component (PCP). We found that HB-EGF binds to ERBB2 and ERBB3 to recruit VANGL2 for tyrosine phosphorylation. Using in vivo models, we show that uterine VAGL2 tyrosine phosphorylation is suppressed in Erbb2/Erbb3 double conditional knockout mice. In this context, severe implantation defects in these mice lend support to the critical role of HB-EGF-ERBB2/3-VANGL2 in establishing a two-way dialogue between the blastocyst and uterus. In addition, the result addresses an outstanding question how VANGL2 is activated during implantation. Taken together, these observations reveal that HB-EGF regulates the implantation process by influencing uterine epithelial cell polarity comprising VANGL2.
Collapse
Affiliation(s)
- Yeon Sun Kim
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Jia Yuan
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Amanda Dewar
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer - Equipe labellisée Ligue Contre le Cancer, 13009Marseille, France
- Institut Universitaire de France, 73231Paris, France
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A & M University, College Station, TX77843
| | - Xiaofei Sun
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Sudhansu K. Dey
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| |
Collapse
|
4
|
Abstract
Immunity with SARS-CoV-2 infection during the acute phase is not sufficiently well understood to differentiate mild from severe cases and identify prognostic markers. We evaluated the immune response profile using a total of 71 biomarkers in sera from patients with SARS-CoV-2 infection, confirmed by RT-PCR and controls. We correlated biological marker levels with negative control (C) asymptomatic (A), nonhospitalized (mild cases-M), and hospitalized (severe cases-S) groups. Among angiogenesis markers, we identified biomarkers that were more frequently elevated in severe cases when compared to the other groups (C, A, and M). Among cardiovascular diseases, there were biomarkers with differences between the groups, with D-dimer, GDF-15, and sICAM-1 higher in the S group. The levels of the biomarkers Myoglobin and P-Selectin were lower among patients in group M compared to those in groups S and A. Important differences in cytokines and chemokines according to the clinical course were identified. Severe cases presented altered levels when compared to group C. This study helps to characterize biological markers related to angiogenesis, growth factors, heart disease, and cytokine/chemokine production in individuals infected with SARS-CoV-2, offering prognostic signatures and a basis for understanding the biological factors in disease severity.
Collapse
|
5
|
Itoh Y. Proteolytic modulation of tumor microenvironment signals during cancer progression. Front Oncol 2022; 12:935231. [PMID: 36132127 PMCID: PMC9483212 DOI: 10.3389/fonc.2022.935231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, the cellular microenvironment is optimized for the proper functioning of the tissues and organs. Cells recognize and communicate with the surrounding cells and extracellular matrix to maintain homeostasis. When cancer arises, the cellular microenvironment is modified to optimize its malignant growth, evading the host immune system and finding ways to invade and metastasize to other organs. One means is a proteolytic modification of the microenvironment and the signaling molecules. It is now well accepted that cancer progression relies on not only the performance of cancer cells but also the surrounding microenvironment. This mini-review discusses the current understanding of the proteolytic modification of the microenvironment signals during cancer progression.
Collapse
|
6
|
Wen X, Xi Y, Zhang Y, Jiao L, Shi S, Bai S, Sun F, Chang G, Wu R, Hao J, Li H. DR1 activation promotes vascular smooth muscle cell apoptosis via up-regulation of CSE/H 2 S pathway in diabetic mice. FASEB J 2021; 36:e22070. [PMID: 34859931 DOI: 10.1096/fj.202101455r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
The important role of hydrogen sulfide (H2 S) as a novel gasotransmitter in inhibiting proliferation and promoting apoptosis of vascular smooth muscle cells (VSMCs) has been widely recognized. The dopamine D1 receptor (DR1), a G protein coupled receptor, inhibits atherosclerosis by suppressing VSMC proliferation. However, whether DR1 contributes to VSMC apoptosis via the induction of endogenous H2 S in diabetic mice is unclear. Here, we found that hyperglycemia decreased the expressions of DR1 and cystathionine-γ-lyase (CSE, a key enzyme for endogenous H2 S production) and reduced endogenous H2 S generation in mouse arteries and cultured VSMCs. DR1 agonist SKF38393 increased DR1 and CSE expressions and stimulated endogenous H2 S generation. Sodium hydrosulfide (NaHS, a H2 S donor) increased CSE expressions and H2 S generation but had no effect on DR1 expression. In addition, high glucose (HG) increased VSMC apoptosis, up-regulated IGF-1-IGF-1R and HB-EGF-EGFR, and stimulated ERK1/2 and PI3K-Akt pathways. Overexpression of DR1, the addition of SKF38393 or supply of NaHS further promoted VSMC apoptosis and down-regulated the above pathways. Knock out of CSE or the addition of the CSE inhibitor poly propylene glycol diminished the effect of SKF38393. Moreover, calmodulin (CaM) interacted with CSE in VSMCs; HG increased intracellular Ca2+ concentration and induced CaM expression, further strengthened the interaction of CaM with CSE in VSMCs, which were further enhanced by SKF38393. CaM inhibitor W-7, inositol 1,4,5-trisphosphate (IP3 ) inhibitor 2-APB, or ryanodine receptor inhibitor tetracaine abolished the stimulatory effect of SKF38393 on CaM expression and intracellular Ca2+ concentration. Taken together, these results suggest that DR1 up-regulates CSE/H2 S signaling by inducing the Ca2+ -CaM pathway followed by down-regulations of IGF-1-IGF-1R and HB-EGF-EGFR and their downstream ERK1/2 and PI3K-Akt, finally promoting the apoptosis of VSMCs in diabetic mice.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, China
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
HB-EGF-induced IL-8 secretion from airway epithelium leads to lung fibroblast proliferation and migration. BMC Pulm Med 2021; 21:347. [PMID: 34742261 PMCID: PMC8572483 DOI: 10.1186/s12890-021-01726-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have reported that heparin-binding epidermal growth factor (HB-EGF) is increased in patients with chronic obstructive pulmonary disease (COPD) and associated with collagen deposition, but the mechanisms remain unclear. In the present study, we aimed to investigated the inflammatory cytokines secreted by bronchial epithelial cells following exposure to HB-EGF that promoted proliferation and migration of human lung fibroblast. METHODS HB-EGF-induced inflammatory cytokines were assayed in two airway epithelial cells (primary human bronchial epithelial cells [HBECs] and BEAS-2B cells). Moreover, the culture supernatants derived from HB-EGF-treated HBECs and BEAS-2B cells were added to human primary lung fibroblasts. The effect of culture supernatants on proliferation and migration of fibroblasts was assessed. RESULTS IL-8 expression was significantly increased in bronchial epithelial cells treated with HB-EGF, which was at least partially dependent on NF-kB pathways activation. HB-EGF-induced IL-8 was found to further promote lung fibroblasts proliferation and migration, and the effects were attenuated after neutralizing IL-8. CONCLUSIONS These findings suggest that HB-EGF may be involved in the pathology of airway fibrosis by induction of IL-8 from airway epithelium, subsequently causing lung fibroblasts proliferation and migration. Thus, inhibition of HBEGF and/or IL-8 production could prevent the development of airway fibrosis by modulating fibroblast activation.
Collapse
|
8
|
Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Sci Rep 2021; 11:16478. [PMID: 34389738 PMCID: PMC8363742 DOI: 10.1038/s41598-021-94769-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Here we present a microengineered soft-robotic in vitro platform developed by integrating a pneumatically regulated novel elastomeric actuator with primary culture of human cells. This system is capable of generating dynamic bending motion akin to the constriction of tubular organs that can exert controlled compressive forces on cultured living cells. Using this platform, we demonstrate cyclic compression of primary human endothelial cells, fibroblasts, and smooth muscle cells to show physiological changes in their morphology due to applied forces. Moreover, we present mechanically actuatable organotypic models to examine the effects of compressive forces on three-dimensional multicellular constructs designed to emulate complex tissues such as solid tumors and vascular networks. Our work provides a preliminary demonstration of how soft-robotics technology can be leveraged for in vitro modeling of complex physiological tissue microenvironment, and may enable the development of new research tools for mechanobiology and related areas.
Collapse
|
9
|
da Rocha JF, Bastos L, Domingues SC, Bento AR, Konietzko U, da Cruz E Silva OAB, Vieira SI. APP Binds to the EGFR Ligands HB-EGF and EGF, Acting Synergistically with EGF to Promote ERK Signaling and Neuritogenesis. Mol Neurobiol 2021; 58:668-688. [PMID: 33009641 DOI: 10.1007/s12035-020-02139-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.
Collapse
Affiliation(s)
- Joana F da Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Luísa Bastos
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
- Roche Sistemas de Diagnósticos, Lda, 2720-413, Amadora, Portugal
| | - Sara C Domingues
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Ana R Bento
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Uwe Konietzko
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Liu Z, Skafar DF, Kilburn B, Das SK, Armant DR. Extraembryonic heparin-binding epidermal growth factor-like growth factor deficiency compromises placentation in mice. Biol Reprod 2020; 100:217-226. [PMID: 30084919 DOI: 10.1093/biolre/ioy174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/27/2018] [Indexed: 01/04/2023] Open
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is expressed in the embryo and uterus at the implantation site, stimulating trophoblast invasive activity essential for placentation. The effect of extraembryonic HBEGF deficiency on placental development was investigated by breeding mice heterozygous for the Hbegf null mutation. On gestation day 13.5, the average placental weights of the wild-type (Hbegf+/+) and heterozygous (Hbegf+/-) mice were approximately 76 and 77 mg, respectively, as opposed to reduced average placental weights of approximately 61 mg in homozygous null (Hbgef-/-) females. In contrast, fetal weights were not significantly affected by genotype. HBEGF immunostaining in placental sections was Hbegf gene dosage-dependent, while expression of other EGF family members was comparable in Hbegf+/+ and Hbegf-/- placentas. Histological analysis revealed no apparent differences in trophoblast giant cells, but the spongiotrophoblast region was reduced compared to labyrinth (P < 0.05) in Hbegf null placentas. While no differences in cell apoptosis were noted, proliferation as assessed by nuclear Ki67 staining was elevated in the labyrinth and decreased in the spongiotrophoblast region of Hbegf-/- placentas. Labyrinth morphology appeared disrupted in Hbegf -/- placentas stained with laminin, a marker for capillary basement membrane, and the capillary density was reduced. Immunohistochemical staining revealed reduced vascular endothelial growth factor (VEGF) levels in both spongiotrophoblast and labyrinth (P < 0.01) regions of Hbegf-/- placentas. In vitro, HBEGF supplementation increases the expression of VEGF in a human trophoblast cell line. These findings suggest that trophoblast HBEGF promotes placental capillary formation by inducing VEGF in the developing placenta of mice.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,New Hope Fertility Center, New York City, New York, USA
| | - Debra F Skafar
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Brian Kilburn
- Departments of Obstetrics & Gynecology and Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, USA
| | - Sanjoy K Das
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - D Randall Armant
- Departments of Obstetrics & Gynecology and Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
12
|
Badenes M, Amin A, González-García I, Félix I, Burbridge E, Cavadas M, Ortega FJ, de Carvalho É, Faísca P, Carobbio S, Seixas E, Pedroso D, Neves-Costa A, Moita LF, Fernández-Real JM, Vidal-Puig A, Domingos A, López M, Adrain C. Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. Mol Metab 2019; 31:67-84. [PMID: 31918923 PMCID: PMC6909339 DOI: 10.1016/j.molmet.2019.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022] Open
Abstract
Objective Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome. Methods We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration. Results Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak. Conclusion Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease. Deletion of iRhom2 protects mice from metabolic syndrome. In obesity, iRhom2 deletion increases energy expenditure, thermogenesis and white adipose tissue beiging. iRhom2 deletion enhances thermogenesis in naïve brown adipocytes.
Collapse
Affiliation(s)
| | - Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Ismael González-García
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Inês Félix
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland; Turku Bioscience Centre, University of Turku, Åbo Akademi University, FI-20520 Turku, Finland
| | | | | | | | | | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | | | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - António Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Ana Domingos
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Obesity Lab, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK.
| |
Collapse
|
13
|
Nandagopal N, Santat LA, Elowitz MB. Cis-activation in the Notch signaling pathway. eLife 2019; 8:37880. [PMID: 30628888 PMCID: PMC6345567 DOI: 10.7554/elife.37880] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Notch signaling pathway consists of transmembrane ligands and receptors that can interact both within the same cell (cis) and across cell boundaries (trans). Previous work has shown that cis-interactions act to inhibit productive signaling. Here, by analyzing Notch activation in single cells while controlling cell density and ligand expression level, we show that cis-ligands can also activate Notch receptors. This cis-activation process resembles trans-activation in its ligand level dependence, susceptibility to cis-inhibition, and sensitivity to Fringe modification. Cis-activation occurred for multiple ligand-receptor pairs, in diverse cell types, and affected survival in neural stem cells. Finally, mathematical modeling shows how cis-activation could potentially expand the capabilities of Notch signaling, for example enabling ‘negative’ (repressive) signaling. These results establish cis-activation as an additional mode of signaling in the Notch pathway, and should contribute to a more complete understanding of how Notch signaling functions in developmental, physiological, and biomedical contexts.
Collapse
Affiliation(s)
- Nagarajan Nandagopal
- Division of Biology and Biological Engineering, California Institute of Technology, Howard Hughes Medical Institute, Pasadena, United States
| | - Leah A Santat
- Division of Biology and Biological Engineering, California Institute of Technology, Howard Hughes Medical Institute, Pasadena, United States
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Howard Hughes Medical Institute, Pasadena, United States
| |
Collapse
|
14
|
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801362. [PMID: 30066406 DOI: 10.1002/adma.201801362] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2018] [Indexed: 05/24/2023]
Abstract
Therapies directed toward the central nervous system remain difficult to translate into improved clinical outcomes. This is largely due to the blood-brain barrier (BBB), arguably the most tightly regulated interface in the human body, which routinely excludes most therapeutics. Advances in the engineering of nanomaterials and their application in biomedicine (i.e., nanomedicine) are enabling new strategies that have the potential to help improve our understanding and treatment of neurological diseases. Herein, the various mechanisms by which therapeutics can be delivered to the brain are examined and key challenges facing translation of this research from benchtop to bedside are highlighted. Following a contextual overview of the BBB anatomy and physiology in both healthy and diseased states, relevant therapeutic strategies for bypassing and crossing the BBB are discussed. The focus here is especially on nanomaterial-based drug delivery systems and the potential of these to overcome the biological challenges imposed by the BBB. Finally, disease-targeting strategies and clearance mechanisms are explored. The objective is to provide the diverse range of researchers active in the field (e.g., material scientists, chemists, engineers, neuroscientists, and clinicians) with an easily accessible guide to the key opportunities and challenges currently facing the nanomaterial-mediated treatment of neurological diseases.
Collapse
Affiliation(s)
- Denzil Furtado
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Materials, Department of Bioengineering, and the Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Cooperative Research Center for Mental Health, Parkville, Victoria, 3052, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
15
|
Changes in proHB-EGF expression after functional activation of the immune system cells. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Salter B, Pray C, Radford K, Martin JG, Nair P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir Res 2017; 18:156. [PMID: 28814293 PMCID: PMC5559796 DOI: 10.1186/s12931-017-0640-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023] Open
Abstract
Airway remodelling is an important feature of asthma pathogenesis. A key structural change inherent in airway remodelling is increased airway smooth muscle mass. There is emerging evidence to suggest that the migration of airway smooth muscle cells may contribute to cellular hyperplasia, and thus increased airway smooth muscle mass. The precise source of these cells remains unknown. Increased airway smooth muscle mass may be collectively due to airway infiltration of myofibroblasts, neighbouring airway smooth muscle cells in the bundle, or circulating hemopoietic progenitor cells. However, the relative contribution of each cell type is not well understood. In addition, although many studies have identified pro and anti-migratory agents of airway smooth muscle cells, whether these agents can impact airway remodelling in the context of human asthma, remains to be elucidated. As such, further research is required to determine the exact mechanism behind airway smooth muscle cell migration within the airways, how much this contributes to airway smooth muscle mass in asthma, and whether attenuating this migration may provide a therapeutic avenue for asthma. In this review article, we will discuss the current evidence with respect to the regulation of airway smooth muscle cell migration in asthma.
Collapse
Affiliation(s)
- Brittany Salter
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Cara Pray
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Katherine Radford
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - James G. Martin
- Meakins Christie Laboratories, McGill University, Montreal, QC Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
17
|
Lee MY, Ha SE, Park C, Park PJ, Fuchs R, Wei L, Jorgensen BG, Redelman D, Ward SM, Sanders KM, Ro S. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures. PLoS One 2017; 12:e0176031. [PMID: 28426719 PMCID: PMC5398589 DOI: 10.1371/journal.pone.0176031] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/04/2017] [Indexed: 01/18/2023] Open
Abstract
Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.
Collapse
Affiliation(s)
- Moon Young Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- Department of Physiology, Wonkwang Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do, Korea
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Chanjae Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Paul J. Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Robert Fuchs
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Doug Redelman
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kim E, Na S, An B, Yang SR, Kim WJ, Ha KS, Han ET, Park WS, Lee CM, Lee JY, Lee SJ, Hong SH. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:161-168. [PMID: 28280409 PMCID: PMC5343049 DOI: 10.4196/kjpp.2017.21.2.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.
Collapse
Affiliation(s)
- Eunbi Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Sunghun Na
- Department of Obstetrics & Gynecology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Borim An
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island 02912, US
| | - Ji Yoon Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Sanji University, Wonju 26339, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
19
|
Gaviglio AL, Knelson EH, Blobe GC. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. FASEB J 2017; 31:1903-1915. [PMID: 28174207 DOI: 10.1096/fj.201600828r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022]
Abstract
High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.
Collapse
Affiliation(s)
- Angela L Gaviglio
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Erik H Knelson
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; and
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Miyamoto S, Yotsumoto F, Ueda T, Fukami T, Sanui A, Miyata K, Nam SO, Fukagawa S, Katsuta T, Maehara M, Kondo H, Miyahara D, Shirota K, Yoshizato T, Kuroki M, Nishikawa H, Saku K, Tsuboi Y, Ishitsuka K, Takamatsu Y, Tamura K, Matsunaga A, Hachisuga T, Nishino S, Odawara T, Maeda K, Manabe S, Ishikawa T, Okuno Y, Ohishi M, Hikita T, Mizushima H, Iwamoto R, Mekada E. BK-UM in patients with recurrent ovarian cancer or peritoneal cancer: a first-in-human phase-I study. BMC Cancer 2017; 17:89. [PMID: 28143428 PMCID: PMC5286856 DOI: 10.1186/s12885-017-3071-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/18/2017] [Indexed: 01/20/2023] Open
Abstract
Background BK-UM (CRM197) is a mutant form of diphtheria toxin and a specific inhibitor of heparin-binding epidermal growth factor-like growth factor (HB-EGF). We assessed the safety, pharmacokinetics, recommended dose, and efficacy of BK-UM in patients with recurrent ovarian cancer (OC) or peritoneal cancer (PC), and measured HB-EGF levels in serum and abdominal fluid after BK-UM administration. Methods Eleven patients with advanced or recurrent OC or PC were enrolled and treated with BK-UM via the intraperitoneal route. The dose was escalated (1.0, 2.0, 3.3, and 5.0 mg/m2) using a 3 + 3 design. Results Eight of 11 patients completed treatment. No dose-limiting toxicity (DLT) was experienced at dose levels 1 (1.0 mg/m2) and 2 (2.0 mg/m2). Grade 3 transient hypotension as an adverse event (defined as a DLT in the present study) was observed in two of four patients at dose level 3 (3.3 mg/m2). Treatment with BK-UM was associated with decreases in HB-EGF levels in serum and abdominal fluid in seven of 11 patients and five of eight patients, respectively. Clinical outcomes included a partial response in one patient, stable disease in five patients, and progressive disease in five patients. Conclusions BK-UM was well tolerated at doses of 1.0 and 2.0 mg/m2, with evidence for clinical efficacy in patients with recurrent OC or PC. A dose of 2.0 mg/m2 BK-UM is recommended for subsequent clinical trials. Trial registration This trial was prospectively performed as an investigator-initiated clinical trial. The trial numbers are UMIN000001002 and UMIN000001001, with registration dates of 1/30/2008 and 2/4/2008, respectively. UMIN000001001 was registered as a trial for the continuous administration of BK-UM after UMIN000001002. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3071-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan. .,Center for Advanced Molecular Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Fusanori Yotsumoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.,Center for Advanced Molecular Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Taeko Ueda
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tatsuya Fukami
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Ayako Sanui
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kohei Miyata
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.,Center for Advanced Molecular Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Sung Ouk Nam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Satoshi Fukagawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.,Center for Advanced Molecular Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Takahiro Katsuta
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Miyako Maehara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Haruhiko Kondo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Daisuke Miyahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kyoko Shirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Toshiyuki Yoshizato
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Masahide Kuroki
- Center for Advanced Molecular Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.,Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Hiroaki Nishikawa
- Department of Cardiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Immunology, Kagoshima University Medical and Dental Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yasushi Takamatsu
- Department of Internal Medicine, Division of Medical Oncology, Hematology and Infectious Disease, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kazuo Tamura
- Department of Internal Medicine, Division of Medical Oncology, Hematology and Infectious Disease, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Akira Matsunaga
- Department of Laboratory Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Toru Hachisuga
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Shinsuke Nishino
- Kanonji Institute, Research Foundation for Microbial Diseases of Osaka University, 2-9-41 Yahata-Cho, Kanonji, Kagawa, 768-0061, Japan
| | - Takashi Odawara
- Kanonji Institute, Research Foundation for Microbial Diseases of Osaka University, 2-9-41 Yahata-Cho, Kanonji, Kagawa, 768-0061, Japan
| | - Kazuhiro Maeda
- Kanonji Institute, Research Foundation for Microbial Diseases of Osaka University, 2-9-41 Yahata-Cho, Kanonji, Kagawa, 768-0061, Japan
| | - Sadao Manabe
- Kanonji Institute, Research Foundation for Microbial Diseases of Osaka University, 2-9-41 Yahata-Cho, Kanonji, Kagawa, 768-0061, Japan
| | - Toyokazu Ishikawa
- Kanonji Institute, Research Foundation for Microbial Diseases of Osaka University, 2-9-41 Yahata-Cho, Kanonji, Kagawa, 768-0061, Japan
| | - Yoshinobu Okuno
- Kanonji Institute, Research Foundation for Microbial Diseases of Osaka University, 2-9-41 Yahata-Cho, Kanonji, Kagawa, 768-0061, Japan
| | - Minako Ohishi
- Department of Cell Biology, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoya Hikita
- Department of Cell Biology, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroto Mizushima
- Department of Cell Biology, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Iwamoto
- Department of Cell Biology, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eisuke Mekada
- Department of Cell Biology, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
21
|
Iwamoto R, Mine N, Mizushima H, Mekada E. ErbB1 and ErbB4 generate opposing signals regulating mesenchymal cell proliferation during valvulogenesis. J Cell Sci 2017. [DOI: 10.1242/jcs.196618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
HB-EGF plays an indispensable role in suppression of cell proliferation during mouse valvulogenesis. However, ligands of the EGF receptor (EGFR/ErbB1), including HB-EGF, are generally considered as growth-promoting factors as shown in cancers. HB-EGF binds to and activates ErbB1 and ErbB4. We investigated the role of ErbB receptors in valvulogenesis in vivo using ErbB1- and ErbB4-deficient mice, and an ex vivo model of endocardial cushion explants. We show that HB-EGF suppresses valve mesenchymal cell proliferation through a heterodimer of ErbB1 and ErbB4, and an ErbB1 ligand(s) promotes cell proliferation through a homodimer of ErbB1. Moreover, a rescue experiment with cleavable or uncleavable isoforms of ErbB4 in ERBB4 null cells indicates that the cleavable JM-a-type, but not the uncleavable JM-b-type, of ErbB4 rescues the defect of the null cells. These data suggest that the cytoplasmic intracellular domain of ErbB4, rather than the membrane-anchored tyrosine kinase, achieves this suppression. Our study demonstrates that opposing signals generated by different ErbB dimer combinations function in the same cardiac cushion mesenchymal cells for proper cardiac valve formation.
Collapse
Affiliation(s)
- Ryo Iwamoto
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Naoki Mine
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Present address: CanBas Co., Ltd. 2-2-1 Ohtemachi, Numazu, Shizuoka 410-0801, Japan
| | - Hiroto Mizushima
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Eisuke Mekada
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Zhu Y, Yu J, Yin L, Zhou Y, Sun Z, Jia H, Tao Y, Liu W, Zhang B, Zhang J, Wang M, Zhang X, Yan Y, Xue J, Gu H, Mao F, Xu W, Qian H. MicroRNA-146b, a Sensitive Indicator of Mesenchymal Stem Cell Repair of Acute Renal Injury. Stem Cells Transl Med 2016; 5:1406-1415. [PMID: 27400799 PMCID: PMC5031179 DOI: 10.5966/sctm.2015-0355] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/07/2016] [Indexed: 01/19/2023] Open
Abstract
: The role of mesenchymal stem cells (MSCs) in kidney injury repair has been studied widely. However, the underlying molecular mechanism remains unclear. We profiled the altered microRNAs in renal tissues from cisplatin-induced acute kidney injury (AKI) rats treated with or without rat bone marrow MSCs (rMSCs). We observed that microRNA-146b (miR-146b) expression was considerably upregulated in renal tissues from AKI rats compared with that in healthy rats, and the expression decreased following MSC treatment after cisplatin administration. At the early stage of AKI, serum miR-146b levels exhibited a rapid increase that was even faster than that of two conventional renal function indexes: serum creatinine and blood urea nitrogen levels. Furthermore, the serum miR-146b levels in AKI patients were higher than those in healthy people. In vitro exposure to cisplatin also increased miR-146b expression in renal tubular epithelial cells (TECs). miR-146b knockdown protected renal TECs from cisplatin-induced apoptosis and promoted their proliferation. Moreover, ErbB4 was identified as a direct target of miR-146b, and miR-146b inhibition induced ErbB4 expression, resulting in enhanced proliferation of injured renal TECs. In addition, restoration by rMSCs could be controlled through ErbB4 downregulation. In conclusion, elevated miR-146b expression contributes to cisplatin-induced AKI, partly through ErbB4 downregulation. miR-146b might be an early biomarker for AKI, and miR-146b inhibition could be a novel strategy for AKI treatment. SIGNIFICANCE The present study found that microRNA-146b (miR-146b) might be a novel biomarker for acute kidney injury and an indicator for its recovery after treatment with mesenchymal stem cells (MSCs). The results showed that in acute kidney injury induced by cisplatin, miR-146b in serum increased more quickly than did the usual indexes of kidney injury and decreased with restoration of MSCs. In addition, inhibition of miR-146b could ameliorate the apoptosis induced by cisplatin and potentially improve the proliferation by freeing ErbB4 and its downstream proteins.
Collapse
Affiliation(s)
- Yuan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lei Yin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ying Zhou
- Department of Central Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Haoyuan Jia
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yang Tao
- Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wanzhu Liu
- Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiao Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Mei Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yongmin Yan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jianguo Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hongbin Gu
- Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Shim JW, Sandlund J, Hameed MQ, Blazer-Yost B, Zhou FC, Klagsbrun M, Madsen JR. Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus. Sci Rep 2016; 6:26794. [PMID: 27243144 PMCID: PMC4886677 DOI: 10.1038/srep26794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023] Open
Abstract
Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.
Collapse
Affiliation(s)
- Joon W Shim
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Johanna Sandlund
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive L235, Stanford, CA 94305, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, 3375 Hillview Avenue Palo, Alto, CA 94304, USA
| | - Mustafa Q Hameed
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Surgery and Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Iwamoto R, Takagi M, Akatsuka JI, Ono KI, Kishi Y, Mekada E. Characterization of a Novel Anti-Human HB-EGF Monoclonal Antibody Applicable for Paraffin-Embedded Tissues and Diagnosis of HB-EGF-Related Cancers. Monoclon Antib Immunodiagn Immunother 2016; 35:73-82. [PMID: 26974561 PMCID: PMC4845685 DOI: 10.1089/mab.2015.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that bind to and activate the EGF receptor (EGFR/ErbB1) and ErbB4. HB-EGF plays pivotal roles in pathophysiological processes, including cancer. Thus, monoclonal antibodies (mAbs) for HB-EGF detection could be an important tool in the therapeutic diagnosis of HB-EGF-related cancers and other diseases. However, few mAbs, especially those applicable for immunohistochemistry (IHC), have been established to date. In this study, we generated a clone of hybridoma-derived mAb 2-108 by immunizing mice with recombinant human HB-EGF protein expressed by human cells. The mAb 2-108 specifically bound to human HB-EGF but not to mouse HB-EGF and was successful in immunoblotting, even under reducing conditions, immunoprecipitation, and immunofluorescence for unfixed as well as paraformaldehyde-fixed cells. Notably, this mAb was effective in IHC of paraffin-embedded tumor specimens. Epitope mapping analysis showed that mAb 2-108 recognized the N-terminal prodomain in HB-EGF. These results indicate that this new anti-HB-EGF mAb 2-108 would be useful in the diagnosis of HB-EGF-related cancers and would be a strong tool in both basic and clinical research on HB-EGF.
Collapse
Affiliation(s)
- Ryo Iwamoto
- 1 Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University , Osaka, Japan
| | - Mika Takagi
- 1 Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University , Osaka, Japan
| | | | - Ken-Ichiro Ono
- 2 Medical & Biological Laboratories Co., Ltd , Nagoya, Japan
| | - Yoshiro Kishi
- 2 Medical & Biological Laboratories Co., Ltd , Nagoya, Japan
| | - Eisuke Mekada
- 1 Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University , Osaka, Japan
| |
Collapse
|
25
|
Arisaka Y, Kobayashi J, Ohashi K, Tatsumi K, Kim K, Akiyama Y, Yamato M, Okano T. A heparin-modified thermoresponsive surface with heparin-binding epidermal growth factor-like growth factor for maintaining hepatic functions in vitro and harvesting hepatocyte sheets. Regen Ther 2016; 3:97-106. [PMID: 31245479 PMCID: PMC6581876 DOI: 10.1016/j.reth.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/21/2023] Open
Abstract
A heparin-modified thermoresponsive surface bound with heparin-binding epidermal growth factor-like growth factor (HB-EGF) was designed to allow creation of transferrable and functional hepatocyte sheets. A heparin-modified thermoresponsive surface was prepared by covalently tethering heparin onto poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide)-grafted tissue culture polystyrene surfaces (Heparin-IC). HB-EGFs were able to stably bind to heparin-IC via affinity interaction. The survival of primary rat hepatocytes was maintained through HB-EGF-bound heparin-IC (HB-EGF/heparin-IC). Moreover, cultured rat primary hepatocytes on HB-EGF/heparin-IC exhibited higher albumin-secretion than hepatocytes cultured on PIPAAm-grafted and collagen-coated surfaces with soluble HB-EGF in the culture medium, regardless of whether soluble EGF was added. These results suggested that HB-EGF/heparin-IC is able to effectively maintain hepatic function via continuous signaling of HB-EGF. After a 4-day cultivation, the cultured hepatocytes on HB-EGF/heparin-IC detached as a cell sheet with fibronectin and HB-EGF only after the temperature was lowered to 20 °C. In addition, higher expression of hepatocyte-specific genes (albumin, hepatocyte nuclear factor 4 alpha, coagulation factor VII, and coagulation factor IX) in hepatocyte sheets was detected on HB-EGF/heparin-IC than on a PIPAAm surface with soluble HB-EGF, indicating that HB-EGF/heparin-IC suppressed the dedifferentiation of cultured hepatocytes. Hence, heparin-modified thermoresponsive surfaces bound with HB-EGF facilitate the fabrication of transferrable hepatocyte sheets with intact hepatic functions and have the potential to provide an in vitro culture system using functional hepatocyte sheet tissues, which may serve as an effective hepatocyte-based tissue engineering platform for liver disease treatments.
Collapse
Key Words
- Alb, albumin
- CIPAAm, 2-carboxyisopropylacrylamide
- DMEM, Dulbecco's modified Eagle's medium
- ECM, extracellular matrix
- EDC, 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide hydrochloride
- EDTA, trypsin/ethylenediaminetetraacetic acid
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- F7, coagulation factor VII
- F9, coagulation factor IX
- FBS, fetal bovine serum
- HB-EGF, heparin-binding EGF-like growth factor
- HB-EGFX/heparin-IC, HB-EGF-bound heparin-IC
- Heparin
- Heparin-binding EGF-like growth factor
- Hepatocyte sheet
- Hnf4α, hepatocyte nuclear factor 4 alpha
- IC, poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) on TCPS
- IPAAm, N-isopropylacrylamide
- MES, morpholinoethanesulfonic acid monohydrate
- NHS, N-hydroxysuccinimide
- PBS, Dulbecco's phosphate buffered saline
- PIPAAm, poly(N-isopropylacrylamide) on TCPS
- PIPAAm + HB-EGFY, PIPAAm with soluble HB-EGF
- Poly(N-isopropylacrylamide)
- RT-PCR, reverse transcription polymerase chain reaction
- TCPS, tissue culture polystyrene dishe
- Thermoresponsive cell culture surface
- bFGF, basic fibroblast growth factor
- heparin-IC, heparin-modified IC
Collapse
Affiliation(s)
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science and Global Center of Excellence (COE) Program, Tokyo Women's Medical University (TWIns), 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science and Global Center of Excellence (COE) Program, Tokyo Women's Medical University (TWIns), 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
26
|
Li R, Uttarwar L, Gao B, Charbonneau M, Shi Y, Chan JSD, Dubois CM, Krepinsky JC. High Glucose Up-regulates ADAM17 through HIF-1α in Mesangial Cells. J Biol Chem 2015; 290:21603-14. [PMID: 26175156 DOI: 10.1074/jbc.m115.651604] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/26/2022] Open
Abstract
We previously showed that ADAM17 mediates high glucose-induced matrix production by kidney mesangial cells. ADAM17 expression is increased in diabetic kidneys, suggesting that its up-regulation may augment high glucose profibrotic responses. We thus studied the effects of high glucose on ADAM17 gene regulation. Primary rat mesangial cells were treated with high glucose (30 mm) or mannitol as osmotic control. High glucose dose-dependently increased ADAM17 promoter activity, transcript, and protein levels. This correlated with augmented ADAM17 activity after 24 h versus 1 h of high glucose. We tested involvement of transcription factors shown in other settings to regulate ADAM17 transcription. Promoter activation was not affected by NF-κB or Sp1 inhibitors, but was blocked by hypoxia-inducible factor-1α (HIF-1α) inhibition or down-regulation. This also prevented ADAM17 transcript and protein increases. HIF-1α activation by high glucose was shown by its increased nuclear translocation and activation of the HIF-responsive hypoxia-response element (HRE)-luciferase reporter construct. Assessment of ADAM17 promoter deletion constructs coupled with mutation analysis and ChIP studies identified HIF-1α binding to its consensus element at -607 as critical for the high glucose response. Finally, inhibitors of epidermal growth factor receptor (EGFR) and downstream PI3K/Akt, or ADAM17 itself, prevented high glucose-induced HIF-1α activation and ADAM17 up-regulation. Thus, high glucose induces ADAM17 transcriptional up-regulation in mesangial cells, which is associated with augmentation of its activity. This is mediated by HIF-1α and requires EGFR/ADAM17 signaling, demonstrating the potentiation by ADAM17 of its own up-regulation. ADAM17 inhibition thus provides a potential novel therapeutic strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Renzhong Li
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Lalita Uttarwar
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Bo Gao
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Martine Charbonneau
- the Division of Immunology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, and
| | - Yixuan Shi
- the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - John S D Chan
- the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Claire M Dubois
- the Division of Immunology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, and
| | - Joan C Krepinsky
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6,
| |
Collapse
|
27
|
Pulicherla KK, Verma MK. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements. AAPS PharmSciTech 2015; 16:223-33. [PMID: 25613561 PMCID: PMC4370956 DOI: 10.1208/s12249-015-0287-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/22/2014] [Indexed: 01/23/2023] Open
Abstract
Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.
Collapse
Affiliation(s)
- K K Pulicherla
- Center for Bioseparation Technology, VIT University, Vellore, Tamilnadu, India,
| | | |
Collapse
|
28
|
Khalili M, Soleyman MR, Baazm M, Beyer C. High-level expression and purification of soluble bioactive recombinant human heparin-binding epidermal growth factor in Escherichia coli. Cell Biol Int 2015; 39:858-64. [PMID: 25712700 DOI: 10.1002/cbin.10454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/13/2015] [Indexed: 11/08/2022]
Abstract
Heparin-binding epidermal growth factor (HB-EGF) is a member of highly conserved superfamily of proteins that has potential mitogenic activity and stimulates differentiation and migration of various cell types. Since HB-EGF has three intra-molecular disulfide bonds, a high expression pattern of active HB-EGF in an E. coli expression system was not successfully established. The aim of this study was to increase production of soluble bioactive recombinant human HB-EGF in E. coli by modifying growth conditions and codon optimization. The open reading frame codons of human HB-EGF were optimized to achieve high level expression in E. coli. The optimized codon was amplified, cloned into plasmid pET-32a, and transformed into E. coli BL21 for further expression. The cultivation parameters (temperature and inducer) were optimized to produce a high yield of soluble HB-EGF. The fusion protein was purified by Nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. Amethylthiazole tetrazolium assay was used to evaluate the bioactivity of the produced recombinant protein. After codon optimization, the codon adaptation index (CAI) was increased from 0.255 in native gene to 0.829 using the optimized sequence. By lowering the temperature to 22°C and the inducer to 0.4 μM, we obtained 35% soluble expression of recombinant and biologically active human HB-EGF. Our data demonstrate that codon optimization increases the yield of HB-EGF in an E. coli expression system. Furthermore, the chosen modifications in cell culturing increase the solubility of recombinant human HB-EGF.
Collapse
Affiliation(s)
- Mostafa Khalili
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Reza Soleyman
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
29
|
Jiang H, Liu W, Liu Y, Cao F. High levels of HB-EGF and interleukin-18 are associated with a high risk of in-stent restenosis. Anatol J Cardiol 2015; 15:907-12. [PMID: 25868040 PMCID: PMC5336941 DOI: 10.5152/akd.2015.5798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Objective: To explore the clinical significance of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-18 (IL-18), and interleukin-10 (IL-10) in restenosis after percutaneous coronary intervention (PCI). Methods: A total of 198 patients with acute coronary syndrome underwent coronary drug-eluting stent implantation and were divided into the restenosis group and non-restenosis group on the basis of second coronary angiography. Biological parameters and HB-EGF, IL-18, and IL-10 levels were measured. Patients in the restenosis group were further divided into 3 subgroups according to Gensini score: group A (Gensini score of <20), group B (Gensini score of >20 but <40), and group C (Gensini score of >40). Results: Compared with the non-restenosis group, HB-EGF and IL-18 levels were significantly higher but serum IL-10 levels were significantly lower in the restenosis group. Furthermore, HB-EGF levels increased with the Gensini score among the 3 subgroups. Spearman’s correlation analysis showed that HB-EGF levels were associated with IL-18 levels and the number of diseased vessels. Multivariate logistic regression analysis showed that diabetes, HB-EGF, and IL-18 were risk factors for restenosis [odds ratio with 95% confidence interval: 3.902 (1.188-4.415), 2.185 (1.103-4.014), and 2.079 (1.208-4.027), respectively]. Conclusion: The present study has demonstrated that HB-EGF may be used to evaluate the severity of restenosis and coronary artery lesion and that inflammatory responses may be involved in the process of restenosis.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Clinical Laboratory, Hospital Affiliated to Hubei University of Arts and Science; Xiangyang-P.R. China.
| | | | | | | |
Collapse
|
30
|
Quaranta M, Erez O, Mastrolia SA, Koifman A, Leron E, Eshkoli T, Mazor M, Holcberg G. The physiologic and therapeutic role of heparin in implantation and placentation. PeerJ 2015; 3:e691. [PMID: 25653897 PMCID: PMC4304855 DOI: 10.7717/peerj.691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/19/2014] [Indexed: 01/19/2023] Open
Abstract
Implantation, trophoblast development and placentation are crucial processes in the establishment and development of normal pregnancy. Abnormalities of these processes can lead to pregnancy complications known as the great obstetrical syndromes: preeclampsia, intrauterine growth restriction, fetal demise, premature prelabor rupture of membranes, preterm labor, and recurrent pregnancy loss. There is mounting evidence regarding the physiological and therapeutic role of heparins in the establishment of normal gestation and as a modality for treatment and prevention of pregnancy complications. In this review, we will summarize the properties and the physiological contributions of heparins to the success of implantation, placentation and normal pregnancy.
Collapse
Affiliation(s)
- Michela Quaranta
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Universitaria Integrata, Università degli Studi di Verona , Verona , Italy
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Azienda Ospedaliera-Universitaria Policlinico di Bari, School of Medicine, University of Bari "Aldo Moro" , Bari , Italy
| | - Arie Koifman
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Elad Leron
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Tamar Eshkoli
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Moshe Mazor
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Gershon Holcberg
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| |
Collapse
|
31
|
Kasai N, Yoshikawa Y, Enokizono J. Effect of antigen-dependent clearance on pharmacokinetics of anti-heparin-binding EGF-like growth factor (HB-EGF) monoclonal antibody. MAbs 2014; 6:1220-8. [PMID: 25517307 DOI: 10.4161/mabs.29792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family and is an important therapeutic target in some types of human cancers. KM3566 is a mouse anti-HB-EGF monoclonal antibody that neutralizes HB-EGF activity by inhibiting the binding of HB-EGF to its receptors. Based on the results of our pharmacokinetics study, a humanized derivative antibody, KHK2866, is rapidly cleared from serum and shows nonlinear pharmacokinetics in cynomolgus monkeys. In this study, we examined the antigen-dependent clearance of an anti-HB-EGF monoclonal antibody in vivo and in vitro in order to pharmacokinetically explain the rapid elimination of KHK2866. We revealed tumor size-dependent clearance of KM3566 in in vivo studies and obtained good fits between the observed and simulated concentrations of KM3566 based on the two-compartment with a saturable route of clearance model. Furthermore, in vivo imaging analyses demonstrated tumor-specific distribution of KM3566. We then confirmed rapid internalization and distribution to lysosome of KM3566 at a cellular level. Moreover, we revealed that the amounts of HB-EGF on cell surface membrane were maintained even while HB-EGF was internalized with KM3566. Recycled or newly synthesized HB-EGF, therefore, may contribute to a consecutive clearance of KM3566, which could explain a rapid clearance from serum. These data suggested that the rapid elimination in pharmacokinetics of KM3566 is due to antigen-dependent clearance. Given that its antigen is expressed in a wide range of normal tissue, it is estimated that the rapid elimination of KHK2866 from cynomolgus monkey serum is caused by antigen-dependent clearance.
Collapse
Affiliation(s)
- Noriyuki Kasai
- a R&D Division, Kyowa Hakko Kirin Co. Ltd., Shimotogari, Nagaizumi-cho , Sunto-gun , Shizuoka , Japan
| | | | | |
Collapse
|
32
|
Meng Q, Mongan M, Wang J, Tang X, Zhang J, Kao W, Xia Y. Epithelial sheet movement requires the cooperation of c-Jun and MAP3K1. Dev Biol 2014; 395:29-37. [PMID: 25224220 DOI: 10.1016/j.ydbio.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
Epithelial sheet movement is an essential morphogenetic process during mouse embryonic eyelid closure in which Mitogen-Activated Protein 3 Kinase 1 (MAP3K1) and c-Jun play a critical role. Here we show that MAP3K1 associates with the cytoskeleton, activates Jun N-terminal kinase (JNK) and actin polymerization, and promotes the eyelid inferior epithelial cell elongation and epithelium protrusion. Following epithelium protrusion, c-Jun begins to express and acts to promote ERK phosphorylation and migration of the protruding epithelial cells. Homozygous deletion of either gene causes defective eyelid closure, but non-allelic non-complementation does not occur between Map3k1 and c-Jun and the double heterozygotes have normal eyelid closure. Results from this study suggest that MAP3K1 and c-Jun signal through distinct temporal-spatial pathways and that productive epithelium movement for eyelid closure requires the consecutive action of MAP3K1-dependent cytoskeleton reorganization followed by c-Jun-mediated migration.
Collapse
Affiliation(s)
- Qinghang Meng
- Department of Environmental Health, University of Cincinnati, College of Medicine
| | - Maureen Mongan
- Department of Environmental Health, University of Cincinnati, College of Medicine
| | - Jingjing Wang
- Department of Environmental Health, University of Cincinnati, College of Medicine
| | - Xiaofang Tang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center
| | - Jinling Zhang
- Department of Environmental Health, University of Cincinnati, College of Medicine
| | - Winston Kao
- Department of Ophthalmology, University of Cincinnati, College of Medicine
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati, College of Medicine.,Department of Ophthalmology, University of Cincinnati, College of Medicine
| |
Collapse
|
33
|
Suzukawa K, Tomlin J, Pak K, Chavez E, Kurabi A, Baird A, Wasserman SI, Ryan AF. A mouse model of otitis media identifies HB-EGF as a mediator of inflammation-induced mucosal proliferation. PLoS One 2014; 9:e102739. [PMID: 25033458 PMCID: PMC4102546 DOI: 10.1371/journal.pone.0102739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/21/2014] [Indexed: 11/19/2022] Open
Abstract
Objective Otitis media is one of the most common pediatric infections. While it is usually treated without difficulty, up to 20% of children may progress to long-term complications that include hearing loss, impaired speech and language development, academic underachievement, and irreversible disease. Hyperplasia of middle ear mucosa contributes to the sequelae of acute otitis media and is of important clinical significance. Understanding the role of growth factors in the mediation of mucosal hyperplasia could lead to the development of new therapeutic interventions for this disease and its sequelae. Methods From a whole genome gene array analysis of mRNA expression during acute otitis media, we identified growth factors with expression kinetics temporally related to hyperplasia. We then tested these factors for their ability to stimulate mucosal epithelial growth in vitro, and determined protein levels and histological distribution in vivo for active factors. Results From the gene array, we identified seven candidate growth factors with upregulation of mRNA expression kinetics related to mucosal hyperplasia. Of the seven, only HB-EGF (heparin-binding-epidermal growth factor) induced significant mucosal epithelial hyperplasia in vitro. Subsequent quantification of HB-EGF protein expression in vivo via Western blot analysis confirmed that the protein is highly expressed from 6 hours to 24 hours after bacterial inoculation, while immunohistochemistry revealed production by middle ear epithelial cells and infiltrating lymphocytes. Conclusion Our data suggest an active role for HB-EGF in the hyperplasia of the middle ear mucosal epithelium during otitis media. These results imply that therapies targeting HB-EGF could ameliorate mucosal growth during otitis media, and thereby reduce detrimental sequelae of this childhood disease.
Collapse
Affiliation(s)
- Keigo Suzukawa
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Julia Tomlin
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Kwang Pak
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Eduardo Chavez
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Arwa Kurabi
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Andrew Baird
- Division of Trauma, Department of Surgery, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Stephen I. Wasserman
- Division of Allergy-Immunology, Department of Medicine, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Allen F. Ryan
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. ACTA ACUST UNITED AC 2014; 96:325-33. [PMID: 24203921 DOI: 10.1002/bdrc.21024] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022]
Abstract
The adverse physiological and psychological effects of scars formation after healing of wounds are broad and a major medical problem for patients. In utero, fetal wounds heal in a regenerative manner, though the mechanisms are unknown. Differences in fetal scarless regeneration and adult repair can provide key insight into reduction of scarring therapy. Understanding the cellular and extracellular matrix alterations in excessive adult scarring in comparison to fetal scarless healing may have important implications. Herein, we propose that matrix can be controlled via cellular therapy to resemble a fetal-like matrix that will result in reduced scarring.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
35
|
Antimisiaris S, Mourtas S, Markoutsa E, Skouras A, Papadia K. Nanoparticles for Diagnosis and/or Treatment of Alzheimer's Disease. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Ogawa S, Tsukahara T, Nishibayashi R, Nakatani M, Okutani M, Nakanishi N, Ushida K, Inoue R. Shotgun proteomic analysis of porcine colostrum and mature milk. Anim Sci J 2014; 85:440-8. [PMID: 24450292 DOI: 10.1111/asj.12165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/19/2013] [Indexed: 01/27/2023]
Abstract
The epitheliochorial nature of the porcine placenta prevents the transfer of maternal immunity. Therefore, ingestion of the colostrum immediately after birth is crucial for neonatal piglets to acquire passive immunity from the sow. We performed a shotgun proteomic analysis of porcine milk to reveal in detail the protein composition of porcine milk. On the basis of the Swiss-Prot database, 113 and 118 proteins were identified in the porcine colostrum and mature milk, respectively, and 50 of these proteins were common to both samples. Some immune-related proteins, including interleukin-18 (IL-18), were unique to the colostrum. The IL-18 concentration in the colostrum and mature milk of four sows was measured to validate the proteomic analysis, and IL-18 was only detected in the colostrum (191.0 ± 53.9 pg/mL) and not in mature milk. In addition, some proteins involved in primary defense, such as azurocidin, which has never been detected in any other mammal's milk, were also identified in the colostrum.
Collapse
Affiliation(s)
- Shohei Ogawa
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Ujitawara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel) 2013; 5:1180-1201. [PMID: 23888518 PMCID: PMC3717776 DOI: 10.3390/toxins5061180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) belongs to the EGF family of growth factors. It is biologically active either as a molecule anchored to the membrane or as a soluble form released by proteolytic cleavage of the extracellular domain. HB-EGF is involved in relevant physiological and pathological processes spanning from proliferation and apoptosis to morphogenesis. We outline here the main activities of HB-EGF in connection with normal or neoplastic differentiative or proliferative events taking place primitively in the hematopoietic microenvironment.
Collapse
|
38
|
Singh B, Coffey RJ. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu Rev Physiol 2013; 76:275-300. [PMID: 24215440 DOI: 10.1146/annurev-physiol-021113-170406] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; ,
| | | |
Collapse
|
39
|
Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol 2013; 34:30-42. [PMID: 24164895 DOI: 10.1128/mcb.01169-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) plays a key role in the cellular adaptation to hypoxia. Although HIF-1 is usually strongly suppressed by posttranslational mechanisms during normoxia, HIF-1 is active and enhances tumorigenicity in malignant tumor cells that express the membrane protease MT1-MMP. The cytoplasmic tail of MT1-MMP, which can bind a HIF-1 suppressor protein called factor inhibiting HIF-1 (FIH-1), promotes inhibition of FIH-1 by Mint3 during normoxia. To explore possible links between HIF-1 activation by MT1-MMP/Mint3 and tumor growth signals, we surveyed a panel of 252 signaling inhibitors. The mTOR inhibitor rapamycin was identified as a possible modulator, and it inhibited the mTOR-dependent phosphorylation of Mint3 that is required for FIH-1 inhibition. A mutant Mint3 protein that cannot be phosphorylated exhibited a reduced ability to inhibit FIH-1 and promoted tumor formation in mice. These data suggest a novel molecular link between the important hub proteins MT1-MMP and mTOR that contributes to tumor malignancy.
Collapse
|
40
|
Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 2013; 34:8690-707. [PMID: 23953842 DOI: 10.1016/j.biomaterials.2013.07.100] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/28/2013] [Indexed: 01/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface receptor belonging to ErbB family of tyrosine kinase and it plays a vital role in the regulation of cell proliferation, survival and differentiation. However; EGFR is aberrantly activated by various mechanisms like receptor overexpression, mutation, ligand-dependent receptor dimerization, ligand-independent activation and is associated with development of variety of tumors. Therefore, specific EGFR inhibition is one of the key targets for cancer therapy. Two major approaches have been developed and demonstrated benefits in clinical trials for targeting EGFR; monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). EGFR inhibitors like, cetuximab, panitumumab, etc. (mAbs) and gefitinib, erlotinib, lapatinib, etc. (TKIs) are now commercially available for treatment of variety of cancers. Recently, many other agents like peptides, nanobodies, affibodies and antisense oligonucleotide have also shown better efficacy in targeting and inhibiting EGFR. Now a days, efforts are being focused to identify molecular markers that can predict patients more likely to respond to anti-EGFR therapy; to find out combinatorial approaches with EGFR inhibitors and to bring new therapeutic agents with clinical efficacy. In this review we have outlined the role of EGFR in cancer, different types of EGFR inhibitors, preclinical and clinical status of EGFR inhibitors as well as summarized the recent efforts made in the field of molecular EGFR targeting.
Collapse
Affiliation(s)
- Chetan Yewale
- Pharmacy Department, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390 001, Gujarat, India
| | | | | | | | | |
Collapse
|
41
|
Low nitric oxide bioavailability upregulates renal heparin binding EGF-like growth factor expression. Kidney Int 2013; 84:1176-88. [PMID: 23760291 PMCID: PMC3796048 DOI: 10.1038/ki.2013.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 12/20/2022]
Abstract
Decreased nitric oxide bioavailability plays an important role in the initiation and progression of diabetic nephropathy, but the underlying mechanisms remain unclear. Here, we found that heparin binding epidermal growth factor-like growth factor (HB-EGF) expression levels increased in the kidneys of both endothelial nitric oxide synthase (eNOS) knockout and eNOS knockout diabetic (Lepr db/db) mice as early as 8 weeks of age. Further increases in expression were only seen in eNOS knockout diabetic mice and paralleled the progression of glomerulopathy. HB-EGF expression increased in endothelium, podocytes, and tubular epithelial cells. In cultured glomerular endothelial cells, the nitric oxide synthase inhibitors NG-nitro-L-arginine methyl ester (L-NAME) or L-N5-(1-Iminoethyl) ornithine increased HB-EGF protein expression. Administration of L-NAME dramatically increased renal HB-EGF expression and urinary HB-EGF excretion in diabetic mice. On the other hand, replenishing nitric oxide with sodium nitrate in eNOS knockout diabetic mice reduced urinary HB-EGF excretion and inhibited the progression of diabetic nephropathy. Furthermore, specific deletion of HB-EGF expression in endothelium attenuated renal injury in diabetic eNOS knockout mice. Thus, our results suggest that decreased nitric oxide bioavailability leads to increased HB-EGF expression, which may be an important mediator of the resulting progressive diabetic nephropathy in eNOS knockout diabetic mice.
Collapse
|
42
|
Oyagi A, Hara H. Essential roles of heparin-binding epidermal growth factor-like growth factor in the brain. CNS Neurosci Ther 2013; 18:803-10. [PMID: 23006514 DOI: 10.1111/j.1755-5949.2012.00371.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family of growth factors, which interacts with the EGF receptor to exert mitogenic activity for various types of cells. Through its interactions with various molecules, it is involved in diverse biological processes, including wound healing, blast implantation, and tumor formation. At the same time, HB-EGF is widely expressed in the central nervous system, including the hippocampus and cerebral cortex, and is considered to play pivotal roles in the developing and adult nervous system. Because HB-EGF protein levels in the brain are much higher than those of TGF-α and EGF, it is possible that HB-EGF serves as a major physiologic ligand for the EGF receptor (ErbB1) within the central nervous system. Recent studies indicate that HB-EGF contributes to the neuronal survival and proliferation of glial/stem cells. HB-EGF also promotes the survival of dopaminergic neurons, an action mediated by mitogen-activated protein kinase (MAPK) as well as by the Akt signaling pathway. In this review, we discuss recent findings on the implications of HB-EGF in higher brain functions of the central nervous system.
Collapse
Affiliation(s)
- Atsushi Oyagi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | |
Collapse
|
43
|
Oxytocin promotes long-term potentiation by enhancing epidermal growth factor receptor-mediated local translation of protein kinase Mζ. J Neurosci 2013; 32:15476-88. [PMID: 23115185 DOI: 10.1523/jneurosci.2429-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In addition to triggering the birthing process and milk release, the hypothalamic neuropeptide oxytocin (OXT) plays an important role in the regulation of complex social cognition and behavior. Previous work has shown that OXT can regulate hippocampal synaptic plasticity and improve hippocampus-dependent cognitive functions in the female mice, but the underlying mechanisms remain largely unclear. Here, we demonstrate that OXT promotes the maintenance of long-term potentiation (LTP) induced by one train of tetanic stimulation (TS) in the CA1 region of hippocampal slices from both nulliparous female and male rats through a previously unknown mechanism involving OXT receptor (OXTR)-dependent and epidermal growth factor receptor (EGFR)-mediated local translation of an atypical protein kinase C isoform, protein kinase Mζ (PKMζ), in dendrites. Using pharmacological and biochemical approaches, we show that both the conventional OXTR-associated signaling pathway (G(q/11)-coupled phospholipase C) and the transactivated EGFR downstream signaling pathways (phosphatidylinositol 3 kinase and extracellular signal-regulated kinase 1/2) are involved in the regulation of OXT. In addition, OXT stimulates local dendritic PKMζ mRNA translation via activation of a mammalian target of rapamycin-regulated mechanism. Furthermore, blockade of OXTR results in a modest decrease in the ability to maintain late-phase LTP induced by three trains of TS. These results reveal a novel OXTR-to-EGFR communication to regulate the new synthesis of PKMζ, which functions to promote the maintenance of LTP at hippocampal CA1 synapses.
Collapse
|
44
|
Versteyhe S, Klaproth B, Borup R, Palsgaard J, Jensen M, Gray SG, De Meyts P. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor. Front Endocrinol (Lausanne) 2013; 4:98. [PMID: 23950756 PMCID: PMC3738877 DOI: 10.3389/fendo.2013.00098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023] Open
Abstract
Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts that was not regulated by the other two ligands. Many of the functions and pathways these regulated genes were involved in, were consistent with the known biological effects of these ligands. The differences in gene expression might therefore account for some of the different biological effects of insulin, IGF-I, and IGF-II. This work adds to the evidence that not only the affinity of a ligand determines its biological response, but also its nature, even through the same receptor.
Collapse
Affiliation(s)
- Soetkin Versteyhe
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
- *Correspondence: Soetkin Versteyhe, Faculty of Health Sciences, The Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Physiology, University of Copenhagen, Blegdamsvej 3B, 2200 København N, Denmark e-mail:
| | - Birgit Klaproth
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Rehannah Borup
- Genomic Medicine, Microarray Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane Palsgaard
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Maja Jensen
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Steven G. Gray
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
- Thoracic Oncology Research Group, Trinity Centre for Health Sciences, Institute of Molecular Medicine, St. James’s Hospital, Dublin, Ireland
| | - Pierre De Meyts
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| |
Collapse
|
45
|
Lee CC, Ho HC, Hsiao SH, Huang TT, Lin HY, Li SC, Chou P, Su YC. Infectious complications in head and neck cancer patients treated with cetuximab: propensity score and instrumental variable analysis. PLoS One 2012; 7:e50163. [PMID: 23209663 PMCID: PMC3509146 DOI: 10.1371/journal.pone.0050163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/17/2012] [Indexed: 01/23/2023] Open
Abstract
Background To compare the infection rates between cetuximab-treated patients with head and neck cancers (HNC) and untreated patients. Methodology A national cohort of 1083 HNC patients identified in 2010 from the Taiwan National Health Insurance Research Database was established. After patients were followed for one year, propensity score analysis and instrumental variable analysis were performed to assess the association between cetuximab therapy and the infection rates. Results HNC patients receiving cetuximab (n = 158) were older, had lower SES, and resided more frequently in rural areas as compared to those without cetuximab therapy. 125 patients, 32 (20.3%) in the group using cetuximab and 93 (10.1%) in the group not using it presented infections. The propensity score analysis revealed a 2.3-fold (adjusted odds ratio [OR] = 2.27; 95% CI, 1.46–3.54; P = 0.001) increased risk for infection in HNC patients treated with cetuximab. However, using IVA, the average treatment effect of cetuximab was not statistically associated with increased risk of infection (OR, 0.87; 95% CI, 0.61–1.14). Conclusions Cetuximab therapy was not statistically associated with infection rate in HNC patients. However, older HNC patients using cetuximab may incur up to 33% infection rate during one year. Particular attention should be given to older HNC patients treated with cetuximab.
Collapse
Affiliation(s)
- Ching-Chih Lee
- Department of Otolaryngology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- Community Medicine Research Center and Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
- Cancer Center, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsu-Chueh Ho
- Department of Otolaryngology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- Cancer Center, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Hsuan Hsiao
- Department of Otolaryngology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- Cancer Center, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tza-Ta Huang
- Department of Oral and Maxillofacial Surgery, Changhua Chritian Hospital, You-Lin Branch, You-Lin, Taiwan
| | - Hon-Yi Lin
- Cancer Center, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Szu-Chin Li
- Cancer Center, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pesus Chou
- Community Medicine Research Center and Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chieh Su
- Cancer Center, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
46
|
TRIM11 is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. Oncogene 2012. [PMID: 23178488 DOI: 10.1038/onc.2012.531] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRIM11 (tripartite motif-containing protein 11), an E3 ubiquitin ligase, is known to be involved in the development of the central nervous system. However, very little is known regarding the role of TRIM11 in cancer biology. Here, we examined the expression profile of TRIM11, along with two stem cell markers CD133 and nestin, in multiple glioma patient specimens, glioma primary cultures derived from tumors taken at surgery and normal neural stem/progenitor cells (NSCs). The oncogenic function of TRIM11 in glioma biology was investigated by knockdown and/or overexpression in vitro and in vivo experiments. Our results showed that TRIM11 expression levels were upregulated in malignant glioma specimens and in high-grade glioma-derived primary cultures, whereas remaining low in glioblastoma multiforme (GBM) stable cell lines, low-grade glioma-derived primary cultures and NSCs. The expression pattern of TRIM11 strongly correlated with that of CD133 and nestin and differentiation status of malignant glioma cells. Knock down of TRIM11 inhibited proliferation, migration and invasion of GBM cells, significantly decreased epidermal growth factor receptor (EGFR) levels and mitogen-activated protein kinase activity, and downregulated HB-EGF (heparin-binding EGF-like growth factor) mRNA levels. Meanwhile, TRIM11 overexpression promoted a stem-like phenotype in vitro (tumorsphere formation) and enhanced glial tumor growth in immunocompromised mice. These findings suggest that TRIM11 might be an indicator of glioma malignancy and has an oncogenic function mediated through the EGFR signaling pathway. TRIM11 overexpression potentially leads to a more aggressive glioma phenotype, along with increased malignant tumor growth and poor survival. Taken together, clarification of the biological function of TRIM11 and pathways it affects may provide novel therapeutic strategies for treating malignant glioma patients.
Collapse
|
47
|
Hieda M, Koizumi M, Higashi C, Tachibana T, Taguchi T, Higashiyama S. The cytoplasmic tail of heparin-binding EGF-like growth factor regulates bidirectional intracellular trafficking between the plasma membrane and ER. FEBS Open Bio 2012; 2:339-44. [PMID: 23650612 PMCID: PMC3642169 DOI: 10.1016/j.fob.2012.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/27/2012] [Accepted: 09/18/2012] [Indexed: 11/25/2022] Open
Abstract
Heparin-binding epidermal growth factor (EGF)- like growth factor (HB-EGF) is synthesized in the ER, transported along the exocytic pathway, and expressed on the plasma membrane as a type I transmembrane protein. Upon extracellular stimulation, HB-EGF, either proHB-EGF or the shed form HB-EGF-CTF, undergoes endocytosis and is then transported retrogradely to the ER. In this study, we showed the essential contribution of the short cytoplasmic tail of HB-EGF (HB-EGF-cyto) to the bidirectional intracellular trafficking between the ER and plasma membrane and revealed several critical amino acids residues that are responsible for internalization from the plasma membrane and ER targeting. We suggest that these anterograde and retrograde sorting signals within HB-EGF-cyto are strictly regulated by protein modification and conformation.
Collapse
Affiliation(s)
- Miki Hieda
- Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Lian H, Ma Y, Feng J, Dong W, Yang Q, Lu D, Zhang L. Heparin-binding EGF-like growth factor induces heart interstitial fibrosis via an Akt/mTor/p70s6k pathway. PLoS One 2012. [PMID: 22984591 DOI: 10.1371/jour] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is essential for maintaining normal function of the adult heart and is known to play an important role in myocardial remodeling. In the present study, we observed that heart-specific HB-EGF transgenic (TG) mice had systolic dysfunction with decreased fractional shortening (FS%), increased end-systolic diameter (LVIDs) at 5 months of age, increased heart fibrosis, and increased mRNA expression of Col1α1 and Col3α1 at 1, 3, 5 and 7 months of age compared to nontransgenic (NTG) littermates. However, the left ventricular anterior wall thickness at end-systole (LVAWs) of the TG mice was not different than the NTG mice. Phosphorylation levels of Akt, mTor and p70s6k were increased due to HB-EGF expression in TG mice compared with the NTG mice at 3 and 7 months of age. Additionally, activated Akt, mTor and p70s6k were co-localized with vimentin to cardiac fibroblasts isolated from TG mice. Furthermore, HB-EGF significantly increased phosphorylation levels of Akt, mTor and p70s6k and increased expression of type I collagen in cultured primary cardiac fibroblasts. Rapamycin (Rapa) and CRM197, inhibitors of mTor and HB-EGF respectively, could inhibit the expression of type I collagen in the cultured primary cardiac fibroblasts and Rapa suppressed interstitial fibrosis of the heart tissues in vivo. In addition, a BrdU assay showed that HB-EGF increased proliferation of cardiac fibroblasts by 30% compared with cells without HB-EGF treatment. HB-EGF-induced proliferation was completely diminished in the presence of Rapa. These results suggest that HB-EGF induced heart fibrosis and proliferation of cardiac fibroblasts occurs through activation of the Akt/mTor/p70s6k pathway.
Collapse
Affiliation(s)
- Hong Lian
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Lian H, Ma Y, Feng J, Dong W, Yang Q, Lu D, Zhang L. Heparin-binding EGF-like growth factor induces heart interstitial fibrosis via an Akt/mTor/p70s6k pathway. PLoS One 2012; 7:e44946. [PMID: 22984591 PMCID: PMC3440333 DOI: 10.1371/journal.pone.0044946] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 08/14/2012] [Indexed: 01/18/2023] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is essential for maintaining normal function of the adult heart and is known to play an important role in myocardial remodeling. In the present study, we observed that heart-specific HB-EGF transgenic (TG) mice had systolic dysfunction with decreased fractional shortening (FS%), increased end-systolic diameter (LVIDs) at 5 months of age, increased heart fibrosis, and increased mRNA expression of Col1α1 and Col3α1 at 1, 3, 5 and 7 months of age compared to nontransgenic (NTG) littermates. However, the left ventricular anterior wall thickness at end-systole (LVAWs) of the TG mice was not different than the NTG mice. Phosphorylation levels of Akt, mTor and p70s6k were increased due to HB-EGF expression in TG mice compared with the NTG mice at 3 and 7 months of age. Additionally, activated Akt, mTor and p70s6k were co-localized with vimentin to cardiac fibroblasts isolated from TG mice. Furthermore, HB-EGF significantly increased phosphorylation levels of Akt, mTor and p70s6k and increased expression of type I collagen in cultured primary cardiac fibroblasts. Rapamycin (Rapa) and CRM197, inhibitors of mTor and HB-EGF respectively, could inhibit the expression of type I collagen in the cultured primary cardiac fibroblasts and Rapa suppressed interstitial fibrosis of the heart tissues in vivo. In addition, a BrdU assay showed that HB-EGF increased proliferation of cardiac fibroblasts by 30% compared with cells without HB-EGF treatment. HB-EGF-induced proliferation was completely diminished in the presence of Rapa. These results suggest that HB-EGF induced heart fibrosis and proliferation of cardiac fibroblasts occurs through activation of the Akt/mTor/p70s6k pathway.
Collapse
Affiliation(s)
- Hong Lian
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Feng
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Yang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
50
|
Wang L, Chen YZ, Shi D, Shi XY, Zou Z, Zhao JH. Incidence and risk of severe neutropenia in advanced cancer patients treated with cetuximab: a meta-analysis. Drugs R D 2012; 11:317-26. [PMID: 22133387 PMCID: PMC3586098 DOI: 10.2165/11598190-000000000-00000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background and Aim: Neutropenia is a serious adverse event for patients who are treated with cetuximab, an inhibitor of endothelial growth factor receptor. However, there is no consistent result of the relationship between cetuximab and neutropenia in randomized controlled trials (RCTs). We did a systematic review and meta-analysis of published RCTs to assess the overall risk of neutropenia associated with cetuximab. Methods: PubMed, Cochrane Central Register of Controlled Trials, EMBASE, and American Society of Clinical Oncology conferences were searched for relevant RCTs. Quantitative and qualitative analyses were carried out to evaluate the association between neutropenia and cetuximab. Both the fixed-effect model and random-effects model were used. Results: A total of 7186 patients with a variety of advanced cancers from 14 trials were included in our analysis. The overall incidence of neutropenia in patients receiving cetuximab was 33% (95% CI 26, 43). Patients treated with cetuximab had a significantly increased risk of neutropenia compared with patients treated with control medication, with a relative risk (RR) of 1.12 (95% CI 1.05, 1.19; fixed-effect model). Risk varied with tumor type. Higher risks were observed in patients with colorectal carcinoma (RR 1.17; 95% CI 1.04, 1.32; fixed-effect model) and non-small cell lung cancer (RR 1.07; 95% CI 0.99, 1.16; fixed-effect model). Conclusion: Cetuximab is associated with a significant risk of neutropenia in patients with advanced cancer receiving concurrent chemotherapy.
Collapse
Affiliation(s)
- Long Wang
- Company of Anesthesiology, Second Military Medical University, Shanghai, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|