1
|
Jiang Y, Ye J, Liu B, Rikisahedew JJ, Tosens T, Niinemets Ü. Acute methyl jasmonate exposure results in major bursts of stress volatiles, but in surprisingly low impact on specialized volatile emissions in the fragrant grass Cymbopogon flexuosus. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153721. [PMID: 35597107 DOI: 10.1016/j.jplph.2022.153721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Methyl jasmonate (MeJA) is an airborne hormonal elicitor that induces a fast rise of emissions of characteristic stress marker compounds methanol and green leaf volatiles (GLV), and a longer-term release of volatile terpenoids, but there is limited information of how terpene emissions respond to MeJA in terpene-storing species. East-Indian lemongrass (Cymbopogon flexuosus), an aromatic herb with a large terpenoid storage pool in idioblasts, was used to investigate the short- (0-1 h) and long-term (1-16 h) responses of leaf net assimilation rate (A), stomatal conductance (Gs) and volatile emissions to MeJA concentrations ranging from moderate to lethal. Both A and Gs were increasingly inhibited with increasing MeJA concentration in both short and long term. MeJA exposure resulted in a rapid elicitation, within 1 h after exposure, of methanol and GLV emissions. Subsequently, a secondary rise of GLV emissions was observed, peaking at 2 h after MeJA exposure for the highest and at 8 h for the lowest application concentration. The total amount and maximum emission rate of methanol and the first and second GLV emission bursts were positively correlated with MeJA concentration. Unexpectedly, no de novo elicitation of terpene emissions was observed through the experiment. Although high MeJA application concentrations led to visible lesions and desiccation in extensive leaf regions, this did not result in breakage of terpene-storing idioblasts. The study highlights an overall insensitivity of lemongrass to MeJA and indicates that differently from mechanical wounding, MeJA-driven cellular death does not break terpene-storing cells. Further studies are needed to characterize the sensitivity of induced defense responses in species with strongly developed constitutive defenses.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Jesamine Jöneva Rikisahedew
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
2
|
Maurya AK, Pazouki L, Frost CJ. Priming Seeds with Indole and (Z)-3-Hexenyl Acetate Enhances Resistance Against Herbivores and Stimulates Growth. J Chem Ecol 2022; 48:441-454. [PMID: 35394556 DOI: 10.1007/s10886-022-01359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
A striking feature of plant ecology is the ability of plants to detect and respond to environmental cues such as herbivore-induced plant volatiles (HIPVs) by priming or directly activating defenses against future herbivores. However, whether seeds also respond to compounds that are common constituents of HIPV blends and initiate future plant resistance is unknown. Considering that seeds depend on other environmental cues to determine basic survival traits such as germination timing, we predicted that seeds exposed to synthetic constituents of HIPV blends would generate well-defended plants. We investigated the effect of seed exposure to common volatiles on growth, reproduction, and resistance characteristics in the model plants Arabidopsis thaliana and Medicago truncatula using herbivores from two feeding guilds. After seed scarification and vernalization, we treated seeds with one of seven different plant-derived volatile compounds for 24 h. Seeds were then germinated and the resulting plants were assayed for growth, herbivore resistance, and expression of inducible defense genes. Of all the synthetic volatiles tested, indole specifically reduced both beet armyworm growth on A. thaliana and pea aphid fecundity on M. truncatula. The induction of defense genes was not affected by seed exposure to indole in either plant species, indicating that activation of direct resistance rather than inducible resistance is the mechanism by which seed priming operates. Moreover, neither plant species showed any negative effect of seed exposure to any synthetic volatile on vegetative and reproductive growth. Rather, M. truncatula plants derived from seeds exposed to (Z)-3-hexanol and (Z)-3-hexenyl acetate grew larger compared to controls. Our results indicate that seeds are sensitive to specific volatiles in ways that enhance resistance profiles with no apparent costs in terms of growth. Seed priming by HIPVs may represent a novel ecological mechanism of plant-to-plant interactions, with broad potential applications in agriculture and seed conservation.
Collapse
Affiliation(s)
- Abhinav K Maurya
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA
| | - Leila Pazouki
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA
| | - Christopher J Frost
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA. .,BIO5 Institute, University of Arizona, 85721, Tucson, AZ, USA.
| |
Collapse
|
3
|
Braun NA, Sim S. Jasminum grandiflorum: Influence of Flower Processing and Geographic Origin on Flower Absolute Composition. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20960998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five Jasminum grandiflorum flower absolutes harvested as flower buds and processed in the “ J. sambac-way” in different locations in the southern Indian state of Tamil Nadu were analyzed using gas chromatography (GC) and GC-mass spectrometry. These absolutes were compared with 5 commercial Indian J. grandiflorum flower absolutes manufactured in the traditional “ J. grandiflorum-way” from open flowers. Focus was placed on 42 key ingredients to investigate the influence of such a flower processing on the absolute composition. Our study established olfactive and composition differences of such absolutes produced via the “ J. sambac-way.” In addition, geographic variations in this species were analyzed by comparing 5 commercial Indian J. grandiflorum flower absolutes with absolutes from Egypt and Morocco, respectively. A composition range of the absolutes was established for the 3 main J. grandiflorum flower grower countries using a total of 14 commercial samples. The 12 main ingredients in the absolutes showed variations between 4.3% and 89.7%.
Collapse
Affiliation(s)
- Norbert A. Braun
- Symrise Asia Pacific Pte. Ltd., Scent & Care - Innovation, Singapore, Singapore
| | - Sherina Sim
- Symrise Asia Pacific Pte. Ltd., Scent & Care - Innovation, Singapore, Singapore
| |
Collapse
|
4
|
Meents AK, Mithöfer A. Plant-Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns? FRONTIERS IN PLANT SCIENCE 2020; 11:583275. [PMID: 33178248 PMCID: PMC7593327 DOI: 10.3389/fpls.2020.583275] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 05/16/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.
Collapse
|
5
|
Ninkovic V, Rensing M, Dahlin I, Markovic D. Who is my neighbor? Volatile cues in plant interactions. PLANT SIGNALING & BEHAVIOR 2019; 14:1634993. [PMID: 31267830 PMCID: PMC6768235 DOI: 10.1080/15592324.2019.1634993] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 05/19/2023]
Abstract
One of the most important challenges for individual plants is coexistence with their neighbors. To compensate for their sessile lifestyle, plants developed complex and sophisticated chemical systems of communication among each other. Site-specific biotic and abiotic factors constantly alter the physiological activity of plants, which causes them to release various secondary metabolites in their environments. Volatile organic compounds (VOCs) are the most common cues that reflect a plant's current physiological status. In this sense, the identity of its immediate neighbors may have the greatest impact for a plant, as they share the same available resources. Plants constantly monitor and respond to these cues with great sensitivity and discrimination, resulting in specific changes in their growth pattern and adjusting their physiology, morphology, and phenotype accordingly. Those typical competition responses in receivers may increase their fitness as they can be elicited even before the competition takes place. Plant-plant interactions are dynamic and complex as they can include many different and important surrounding cues. A major challenge for all individual plants is detecting and actively responding only to "true" cues that point to real upcoming threat. Such selective responses to highly specific cues embedded in volatile bouquets are of great ecological importance in understanding plant-plant interactions. We have reviewed recent research on the role of VOCs in complex plant-plant interactions in plant-cross kingdom and highlighted their influence on organisms at higher trophic levels.
Collapse
Affiliation(s)
- Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- CONTACT Velemir Ninkovic Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Merlin Rensing
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Iris Dahlin
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dimitrije Markovic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
6
|
Cofer TM, Seidl-Adams I, Tumlinson JH. From Acetoin to ( Z)-3-Hexen-1-ol: The Diversity of Volatile Organic Compounds that Induce Plant Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11197-11208. [PMID: 30293420 DOI: 10.1021/acs.jafc.8b03010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence that plants can respond to volatile organic compounds (VOCs) was first presented 35 years ago. Since then, over 40 VOCs have been found to induce plant responses. These include VOCs that are produced not only by plants but also by microbes and insects. Here, we summarize what is known about how these VOCs are produced and how plants detect and respond to them. In doing so, we highlight notable observations we believe are worth greater consideration. For example, the VOCs that induce plant responses appear to have little in common. They are derived from many different biosynthetic pathways and have few distinguishing chemical or structural features. Likewise, plants appear to use several mechanisms to detect VOCs rather than a single dedicated "olfactory" system. Considering these observations, we advocate for more discovery-oriented experiments and propose that future research take a fresh look at the ways plants detect and respond to VOCs.
Collapse
Affiliation(s)
- Tristan M Cofer
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James H Tumlinson
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
7
|
Schuman MC, Valim HA, Joo Y. Temporal Dynamics of Plant Volatiles: Mechanistic Bases and Functional Consequences. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Yan S, McLamore ES, Dong S, Gao H, Taguchi M, Wang N, Zhang T, Su X, Shen Y. The role of plasma membrane H(+) -ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:638-49. [PMID: 26088926 DOI: 10.1111/tpj.12915] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/09/2015] [Indexed: 05/19/2023]
Abstract
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H(+) , Ca(2+) and K(+) in guard cells of wild-type (Col-0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1-1 and the PM H(+) -ATPase mutants aha1-6 and aha1-7, using a non-invasive micro-test technique. We showed that MeJA induced transmembrane H(+) efflux, Ca(2+) influx and K(+) efflux across the PM of Col-0 guard cells. However, this ion transport was abolished in coi1-1 guard cells, suggesting that MeJA-induced transmembrane ion flux requires COI1. Furthermore, the H(+) efflux and Ca(2+) influx in Col-0 guard cells was impaired by vanadate pre-treatment or PM H(+) -ATPase mutation, suggesting that the rapid H(+) efflux mediated by PM H(+) -ATPases could function upstream of the Ca(2+) flux. After the rapid H(+) efflux, the Col-0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H(+) -ATPase was reduced. Finally, the elevation of cytosolic Ca(2+) concentration and the depolarized PM drive the efflux of K(+) from the cell, resulting in loss of turgor and closure of the stomata.
Collapse
Affiliation(s)
- Suli Yan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Eric S McLamore
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, USA
| | - Shanshan Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Haibo Gao
- College of Life Science, Linyi University, Linyi, 276005, China
| | - Masashige Taguchi
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ningning Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Ting Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohua Su
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
9
|
Ðinh ST, Gális I, Baldwin IT. UVB radiation and 17-hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants. PLANT, CELL & ENVIRONMENT 2013; 36:590-606. [PMID: 22897424 DOI: 10.1111/j.1365-3040.2012.02598.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Depending on geographical location, plants are exposed to variable amounts of UVB radiation and herbivore attack. Because the role(s) of UVB in the priming and/or accumulation of plant defence metabolites against herbivores are not well understood, we used field-grown Nicotiana attenuata plants to explore the effects of UVB on herbivore performance. Consistent with previous reports, UVB-exposed plants accumulated higher levels of ultraviolet (UV)-absorbing compounds (rutin, chlorogenic acid, crypto-chlorogenic acid and dicaffeoylspermidine). Furthermore, UVB increased the accumulation of jasmonic acid, jasmonoyl-L-isoleucine and abscisic acid, all phytohormones which regulate plant defence against biotic and abiotic stress. In herbivore bioassays, N. attenuata plants experimentally protected from UVB were more infested by mirids in three consecutive field seasons. Among defence metabolites measured, 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) showed strongly altered accumulation patterns. While constitutive HGL-DTGs levels were higher under UVB, N. attenuata plants exposed to mirid bugs (Tupiocoris notatus) had still more HGL-DTGs under UVB, and mirids preferred to feed on HGL-DTGs-silenced plants when other UVB protecting factors were eliminated by UVB filters. We conclude that UVB exposure not only stimulates UV protective screens but also affects plant defence mechanisms, such as HGL-DTGs accumulation, and modulates ecological interactions of N. attenuata with its herbivores in nature.
Collapse
Affiliation(s)
- So'n Tru'ò'ng Ðinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
10
|
Holopainen JK, Blande JD. Molecular plant volatile communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:17-31. [PMID: 22399393 DOI: 10.1007/978-1-4614-1704-0_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.
Collapse
Affiliation(s)
- Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Campus, Kuopio, Finland.
| | | |
Collapse
|
11
|
You LX, Wang P, Kong CH. The levels of jasmonic acid and salicylic acid in a rice-barnyardgrass coexistence system and their relation to rice allelochemicals. BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Pinto DM, Blande JD, Souza SR, Nerg AM, Holopainen JK. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 2011; 36:22-34. [PMID: 20084432 DOI: 10.1007/s10886-009-9732-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/16/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.
Collapse
Affiliation(s)
- Delia M Pinto
- Plant Production Research/Plant Protection Unit, MTT Agrifood Research Finland, Jokioinen, Finland
| | | | | | | | | |
Collapse
|
13
|
Jassbi AR, Zamanizadehnajari S, Baldwin IT. Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol 2010; 36:1398-407. [PMID: 21086024 DOI: 10.1007/s10886-010-9885-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/02/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
In the vicinity of big sagebrush (Artemisia tridentata), the growth of Nicotiana attenuata is negatively affected, in part due to the alleopathic effect of methyl jasmonate (MeJA) which is produced in large quantities by the aerial parts of sagebrush. Preliminary experiments suggested that growth-inhibiting substances were being emitted from the sagebrush roots. To identify the allelochemical secondary metabolites, we tested different root extracts in seedling growth bioassays with the naturally co-occurring native tobacco, Nicotiana attenuata, in a two-chamber Petri dish assay, optimized for tests of volatiles. Fractions rich in volatile compounds were particularly phytotoxic. We analyzed the volatiles emitted from the roots of intact Artemisia tridentata plants grown in soil, sand, and hydroponic cultures by using dynamic headspace extraction, headspace solvent-microextraction (HSME) and headspace solid-phase microextraction (HSPME), and GC-MS. Camphor, 1,8-cineol, nerol, and neryl isovalerate were phytotoxic and released as the major constituents. In addition to the phytotoxic monoterpenes, himachalenes, longifolene, caryophyllene, and acetylenic spiroethers, were found as characteristic components in the root's volatiles. The allelopathic potential of these root volatiles was compared with that of methyl jasmonate (MeJA), one of the most active compounds emitted from above-ground parts of the plant.
Collapse
Affiliation(s)
- Amir Reza Jassbi
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany.
| | | | | |
Collapse
|
14
|
Karban R, Shiojiri K, Ishizaki S. An air transfer experiment confirms the role of volatile cues in communication between plants. Am Nat 2010; 176:381-4. [PMID: 20635861 DOI: 10.1086/655222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous studies reported that sagebrush plants near experimentally clipped neighbors experienced less herbivory than did plants near unclipped neighbors. Blocking air flow with plastic bags made this effect undetectable. However, some scientists remained skeptical about the possibility of volatile communication between plants since the existence and identity of a cue that operates in nature have never been demonstrated. We conducted an air transfer experiment that collected air from the headspace of an experimentally clipped donor plant and delivered it to the headspace of an unclipped assay plant. We found that assay plants treated with air from clipped donors were less likely to be damaged by naturally occurring herbivores in a field experiment. This simple air transfer experiment fulfills the most critical of Koch's postulates and provides more definitive evidence for volatile communication between plants. It also provides an inexpensive experimental protocol that can be used to screen plants for interplant communication in the field.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology, University of California, Davis, 95616, USA.
| | | | | |
Collapse
|
15
|
Tamogami S, Agrawal GK, Rakwal R. An in planta technique for cis-/trans-stereochemical analysis of jasmonoyl isoleucine. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:933-7. [PMID: 20188439 DOI: 10.1016/j.jplph.2010.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 05/12/2023]
Abstract
A novel technique for determining the cis-/trans-stereochemistry of jasmonoyl-isoleucine by coupling its alcoholic derivatives by sodium borohydride with high performance liquid chromatography-tandem mass spectrometry is described. Resolving cis- and trans-stereochemistry of the jasmonates in Achyranthes plants exposed to airborne (exogenous) trans-d(2)MeJA was demonstrated as an example. This novel application firmly establishes for the first time that trans-d(2)MeJA is converted exclusively into trans-JA-Ile in Achyranthes leaves, whereas the subsequent de novo biosynthesized JA-Ile possesses cis-stereochemistry. The method is simple, reproducible and could be employed for in vivo cis-/trans-stereochemistry analysis of jasmonates in plants.
Collapse
Affiliation(s)
- Shigeru Tamogami
- Department of Biological Production, Laboratory of Biologically Active Compounds, Akita Prefectural University, Akita 010-0195, Japan
| | | | | |
Collapse
|
16
|
Within-Plant Signalling by Volatiles Triggers Systemic Defences. PLANT COMMUNICATION FROM AN ECOLOGICAL PERSPECTIVE 2010. [DOI: 10.1007/978-3-642-12162-3_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Rodriguez-Saona CR, Rodriguez-Saona LE, Frost CJ. Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J Chem Ecol 2009; 35:163-75. [PMID: 19159981 DOI: 10.1007/s10886-008-9579-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/09/2008] [Accepted: 12/11/2008] [Indexed: 01/15/2023]
Abstract
Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or "primed") after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results show that exposure to HIPVs triggered systemic induction of direct defenses against gypsy moth and primed volatile emissions, which can be an indirect defense. Blueberry plants appear to rely on HIPVs as external signals for inter-branch communication.
Collapse
Affiliation(s)
- Cesar R Rodriguez-Saona
- Department of Entomology, PE Marucci Blueberry and Cranberry Center, Rutgers University, Chatsworth, NJ 08019, USA.
| | | | | |
Collapse
|
18
|
Kessler A, Halitschke R, Diezel C, Baldwin IT. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 2006; 148:280-92. [PMID: 16463175 DOI: 10.1007/s00442-006-0365-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
Plants release volatile organic compounds (VOCs) in response to wounding and herbivore attack, some of which trigger responses in neighboring unattacked plants in the laboratory under conditions that are not likely to occur in the real world. Whether plants 'eavesdrop' on the volatile emissions of their neighbors in nature is not known. The best documented field study of between-species signaling via above-ground VOCs involves increases in fitness parameters of native tobacco (Nicotiana attenuata) transplanted adjacent to clipped sagebrush (Artemesia tridentata tridentata). Clipped sagebrush releases many biologically active VOCs, including methyl jasmonate (MeJA), methacrolein and a series of terpenoid and green leaf VOCs, of which MeJA, while active under laboratory conditions, is not released in sufficient quantities to directly elicit induced resistance in the field. Here we demonstrate, with laboratory and field-based experiments, that priming (rather than direct elicitation) of native N. attenuata's induced chemical defenses by a sagebrush-released VOC bouquet can account for earlier findings. With microarrays enriched in N. attenuata herbivore-regulated genes, we found transcriptional responses in tobacco growing adjacent to clipped sagebrush foliage, but failed to detect the direct elicitation of defensive chemicals or proteins. However, we observed an accelerated production of trypsin proteinase inhibitors when Manduca sexta caterpillars fed on plants previously exposed to clipped sagebrush. This readying of a defense response, termed priming, results in lower total herbivore damage to plants exposed to clipped sagebrush and in a higher mortality rate of young Manduca caterpillars. Our study demonstrates priming of plant defense responses as a mechanism of plant-plant signaling in nature, and provides an example for the analysis of between-plant signaling under ecologically realistic conditions. Although we describe priming as a potential mechanism for signaling between plants in nature, we critically discuss the ecological relevance of the particular interaction.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, 445 Corson Hall, Ithaca, NY 14853 , USA
| | | | | | | |
Collapse
|
19
|
Shiojiri K, Karban R. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers. Oecologia 2006; 149:214-20. [PMID: 16736187 DOI: 10.1007/s00442-006-0441-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.
Collapse
Affiliation(s)
- Kaori Shiojiri
- Department of Entomology, University of California, Davis, CA, 95616, USA.
| | | |
Collapse
|
20
|
KOST C, HEIL M. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. JOURNAL OF ECOLOGY 2006; 94:619-628. [PMID: 0 DOI: 10.1111/j.1365-2745.2006.01120.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
21
|
Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. Volatile Signaling in Plant-Plant Interactions: "Talking Trees" in the Genomics Era. Science 2006; 311:812-5. [PMID: 16469918 DOI: 10.1126/science.1118446] [Citation(s) in RCA: 436] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plants may "eavesdrop" on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically "deaf" to particular VOCs or "mute" in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities.
Collapse
Affiliation(s)
- Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany.
| | | | | | | | | |
Collapse
|
22
|
Yan ZG, Wang CZ. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. PHYTOCHEMISTRY 2006; 67:34-42. [PMID: 16310233 DOI: 10.1016/j.phytochem.2005.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 09/26/2005] [Indexed: 05/05/2023]
Abstract
Green leaf volatiles (GLVs), generally occurring C6 alcohols, aldehydes and acetates from plants, play an important role in plant-plant communication. These compounds induce intact plants to produce jasmonic acid, and induce defense-related gene expression and the release of volatile compounds. Here, we address wound-induced GLVs cause the release of acetylated derivatives and a terpenoid, (E)-4,8-dimethylnona-1,3,7-triene (DMNT) in intact maize, which may be a type of plant-plant interaction mediated by airborne GLVs. Upon exposure of intact maize seedlings to wound-induced GLVs, (Z)-3-hexenyl acetate was consistently the most abundant compound released. Exogenous application of individual alcohols and aldehydes mostly resulted in the release of corresponding acetate esters. C6-alcohols with a double bond between the second and third, or the third and fourth carbon atoms, C5- or C6-aldehydes, and (Z)-3-hexenyl acetate triggered the release of DMNT. When (Z)-3-hexenyl acetate and hexyl acetate were used to treat maize seedlings, they were recovered from the plants. These data demonstrated that: (1) apart from direct adsorption and re-release of acetate esters, absorption and conversion of exogenous alcohols and aldehydes into acetate esters occurred, and (2) DMNT was induced by a range of aldehydes and unsaturated alcohols.
Collapse
Affiliation(s)
- Zeng-Guang Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, The Chinese Academy of Sciences, 25 Beisihuanxi Road, Haidian, Beijing 100080, China
| | | |
Collapse
|
23
|
Paschold A, Halitschke R, Baldwin IT. Using 'mute' plants to translate volatile signals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:275-91. [PMID: 16367970 DOI: 10.1111/j.1365-313x.2005.02623.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
When attacked by herbivores, plants release volatile organic compounds (VOCs) that attract natural enemies of the herbivores and function as indirect defenses. Whether or not neighboring plants 'eavesdrop' on these VOCs remains controversial because most studies use unrealistic experimental conditions and VOC exposures. In order to manipulate exposures of wild-type (WT) Nicotiana attenuata'receiver' plants, we elicited transformed 'emitter' plants, whose production of herbivore-induced C6 green leaf volatiles (GLVs) or terpenoid volatiles was genetically silenced, and placed them up-wind of WT 'receiver' plants in open-flow experimental chambers. We compared the transcriptional and secondary metabolite defense responses of WT receiver plants exposed to VOCs from these transgenic emitter plants with those of plants exposed to VOCs from WT emitter plants. No differences in the constitutive accumulation of defense metabolites and the signal molecule jasmonic acid (JA) were found. Additional elicitation of receiver plants revealed that exposure to WT, GLV-deficient and terpenoid-deficient volatile blends did not prime induced defenses, JA accumulation, or the expression of lipoxygenase 3 (NaLOX3), a gene involved in JA biosynthesis. However, exposure to wound- and herbivore-induced VOCs significantly altered the transcriptional patterns in receiver plants. We identified GLV-dependent genes by complementing the GLV-deficient volatile blend with a mixture of synthetic GLVs. Blends deficient in GLVs or cis-alpha-bergamotene regulated numerous genes in receiver plants that did not respond to the complete VOC blends of WT emitters, indicating a suppressive effect of GLVs and terpenoids. Whether these transcriptional responses translate into changes in plant fitness in nature remains to be determined.
Collapse
Affiliation(s)
- Anja Paschold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
24
|
Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z. The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1338-46. [PMID: 16425452 DOI: 10.1016/j.jplph.2005.01.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The effect of heavy metal stress as a potent abiotic elicitor for triggering an accumulation of jasmonic acid (JA) was investigated. Copper and cadmium in in vivo conditions induced accumulation of jasmonates in mature leaves of Arabidopsis thaliana and in young and oldest Phaseolus coccineus plants. The dynamics of jasmonate accumulation showed a biphasic character in both plants. In the first phase, after 7 (A. thaliana) or 14h (P. coccineus) of exposure to Cu or Cd, a rapid increase of JA level occurred, followed by a rapid decrease observed during 7 successive hours. In the next phase, a repeated but slow increase of JA content occurred. The heavy metal stress induced in particular a more stable (3R,7R) form of jasmonates. These results indicate that JA is connected with the mechanism of toxic action of both heavy metals in plants, differentially reacting to exogenous JA and possessing variable dynamics depending on the plants studied as well as their growth stage.
Collapse
Affiliation(s)
- Waldemar Maksymiec
- Department of Plant Physiology, Maria Curie-Skłodowska University, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Von Dahl CC, Baldwin IT. Methyl jasmonate and cis-jasmone do not dispose of the herbivore-induced jasmonate burst in Nicotiana attenuata. PHYSIOLOGIA PLANTARUM 2004; 120:474-481. [PMID: 15032845 DOI: 10.1111/j.0031-9317.2004.00269.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oxylipin pathway mediates wound- and herbivore-induced defense reactions in Nicotiana attenuata as evidenced by a transient jasmonic acid (JA)-burst that precedes these defense responses. The fate of this induced JA-burst remains unknown. Two derivatives of JA, its methylester, methyl jasmonate (MeJA) and cis-jasmone (cisJ), are thought to be a means of disposing of JA through volatilization at the plant surface. In N. attenuata, the headspace quantities of these compounds did not change over 3 days, although levels of MeJA and cisJ increased 100- and 70-fold, respectively, in surface extracts of attacked leaves after feeding of Manduca sexta larvae or application of larval regurgitant to mechanical wounds. Inhibition of the wound-induced increase in JA with indole-3-acetic acid (IAA) revealed an association between the JA accumulation and subsequent increases in MeJA and cisJ. Induced systemic increases of MeJA were not of local origin and therefore do not contribute to the inactivation of the JA-burst in the wounded leaf. The total amount of MeJA and cisJ produced could only account for 9% of the JA-burst elicited by herbivore attack and therefore their production do not represent major disposal pathways of JA in N. attenuata.
Collapse
Affiliation(s)
- Caroline C. Von Dahl
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Beutenberg Campus, Hans-KnIll-Strasse 8, 07745 Jena, Germany
| | | |
Collapse
|
27
|
Lou Y, Baldwin IT. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants. Proc Natl Acad Sci U S A 2003; 100 Suppl 2:14581-6. [PMID: 14530394 PMCID: PMC304122 DOI: 10.1073/pnas.2135348100] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allopolyploid speciation occurs instantly when the genomes of different species combine to produce self-fertile offspring and has played a central role in the evolution of higher plants, but its consequences for adaptive responses are unknown. We compare herbivore-recognition and -resistance responses of the diploid species and putative ancestral parent Nicotiana attenuata with those of the two derived allopolyploid species Nicotiana clevelandii and Nicotiana bigelovii. Manduca sexta larvae attack all three species, and in N. attenuata attack is recognized when larval oral secretions are introduced to wounds during feeding, resulting in a jasmonate burst, a systemic amplification of trypsin inhibitor accumulation, and a release of volatile organic compounds, which function as a coordinated defense response that slows caterpillar growth and increases the probability of their being attacked. Most aspects of this recognition response are retained with modifications in one allotetraploid (N. bigelovii) but lost in the other (N. clevelandii). Differences between diploid and tetraploid species were apparent in delays (maximum 1 and 0.5 h, respectively) in the jasmonate burst, the elicitation of trypsin inhibitors and release of volatile organic compounds, and the constitutive levels of nicotine, trypsin inhibitors, diterpene glycosides, rutin, and caffeoylputrescine in the leaves. Resistance to M. sexta larvae attack was most strongly associated with diterpene glycosides, which were higher in the diploid than in the two allotetraploid species. Because M. sexta elicitors differentially regulate a large proportion of the N. attenuata transcriptome, we propose that these species are suited for the study of the evolution of adaptive responses requiring trans-activation mechanisms.
Collapse
Affiliation(s)
- Yonggen Lou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | |
Collapse
|
28
|
Karban R, Maron J, Felton GW, Ervin G, Eichenseer H. Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. OIKOS 2003. [DOI: 10.1034/j.1600-0706.2003.12075.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
D'Auria JC, Chen F, Pichersky E. Chapter eleven The SABATH family of MTS in Arabidopsis Thaliana and other plant species. RECENT ADVANCES IN PHYTOCHEMISTRY 2003. [DOI: 10.1016/s0079-9920(03)80026-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Gatehouse JA. Plant resistance towards insect herbivores: a dynamic interaction. THE NEW PHYTOLOGIST 2002; 156:145-169. [PMID: 33873279 DOI: 10.1046/j.1469-8137.2002.00519.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plant defences against insect herbivores can be divided into 'static' or constitutive defences, and 'active' or induced defences, although the insecticidal compounds or proteins involved are often the same. Induced defences have aspects common to all plants, whereas the accumulation of constitutive defences is species-specific. Insect herbivores activate induced defences both locally and systemically by signalling pathways involving systemin, jasmonate, oligogalacturonic acid and hydrogen peroxide. Plants also respond to insect attack by producing volatiles, which can be used to deter herbivores, to communicate between parts of the plant, or between plants, to induce defence responses. Plant volatiles are also an important component in indirect defence. Herbivorous insects have adapted to tolerate plant defences, and such adaptations can also be constitutive or induced. Insects whose plant host range is limited are more likely to show constitutive adaptation to the insecticidal compounds they will encounter, whereas insects which feed on a wide range of plant species often use induced adaptations to overcome plant defences. Both plant defence and insect adaptation involve a metabolic cost, and in a natural system most plant-insect interactions involving herbivory reach a 'stand-off' where both host and herbivore survive but develop suboptimally. Contents Summary 145 I. Introduction 146 II. Accumulation of defensive compounds and induced resistance 146 III. Signalling pathways in wound-induced resistance 147 IV. Insect modulation of the wounding response 155 V. Insects which evade the wounding response 156 VI. Insect-induced emission of volatiles and tritrophic interactions 157 VII. Insect adaptation to plant defences 160 Conclusions 163 Acknowlegements 163 References 163.
Collapse
Affiliation(s)
- John A Gatehouse
- Department of Biological Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
31
|
Baldwin IT, Kessler A, Halitschke R. Volatile signaling in plant-plant-herbivore interactions: what is real? CURRENT OPINION IN PLANT BIOLOGY 2002; 5:351-4. [PMID: 12179970 DOI: 10.1016/s1369-5266(02)00263-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants release volatiles after herbivore attack in a highly regulated fashion. These compounds attract natural enemies and function as indirect defenses. Whether neighboring plants 'eavesdrop' on these volatile signals and tailor their defenses accordingly remains controversial. Recent laboratory studies have identified transcriptional changes that occur in plants in response to certain volatiles. These changes occur under conditions that enhance the probability of signal perception and response. Field studies have demonstrated repeatable increases in the herbivore resistance of plants growing downwind of damaged plants.
Collapse
Affiliation(s)
- Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Winzerlaer Strasse 10, Jena 07745, Germany.
| | | | | |
Collapse
|
32
|
Abstract
Plants synthesize many fatty acid derivatives, several of which play important regulatory roles. Jasmonates are the best characterized examples. Jasmonate-insensitive mutants and mutants with a constitutive jasmonate response have given us new insights into jasmonate signalling. The jasmonate biosynthesis mutant opr3 allowed the dissection of cyclopentanone and cyclopentenone signalling, thus defining specific roles for these molecules. Jasmonate signalling is a complex network of individual signals and recent findings on specific activities of methyl jasmonate and (Z)-jasmone add to this picture. In addition, there are keto, hydroxy and hydroperoxy fatty acids that might be involved in cell death and the expression of stress-related genes. Finally, there are bruchins and volicitin, signal molecules from insects that are perceived by plants in the picomole to femtomole range. They highlight the importance of fatty acid-derived molecules in interspecies communication and in plant defence.
Collapse
Affiliation(s)
- Hans Weber
- Gene Expression Laboratory, Ecology Institute, University of Lausanne, Biology Building, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
33
|
|
34
|
|
35
|
Bruin J, Dicke M. Chemical information transfer between wounded and unwounded plants: backing up the future. BIOCHEM SYST ECOL 2001. [DOI: 10.1016/s0305-1978(01)00053-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Chamberlain K, Guerrieri E, Pennacchio F, Pettersson J, Pickett JA, Poppy GM, Powell W, Wadhams LJ, Woodcock CM. Can aphid-induced plant signals be transmitted aerially and through the rhizosphere? BIOCHEM SYST ECOL 2001. [DOI: 10.1016/s0305-1978(01)00050-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|