1
|
Fabianová K, Raček A, Popovičová A, Martončíková M, Račeková E. The number and distribution of proliferating cells in the rat's rostral migratory stream as identified by means of two different proliferation markers. Biotech Histochem 2024:1-9. [PMID: 39485378 DOI: 10.1080/10520295.2024.2424252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
In the brains of adult rodents, the cells arising in the subventricular zone of the lateral ventricles maintain the ability to divide when migrating to the olfactory bulb along the rostral migratory stream (RMS). Dividing cells in the RMS are most frequently revealed through immunohistochemical detection of an exogenous marker of proliferation, 5-Bromo-2-deoxyuridine (BrdU), which incorporates into DNA during the S-phase of mitosis. The more recently recognized antigen Ki-67 (also known as Kiel-67 and MKI67), an endogenous protein expressed in nuclei at all stages of mitosis, is also used for proliferation detection. BrdU and Ki-67 are often used as alternative methods, but they have not previously been compared in the RMS. We analyzed the numbers and distribution of cells labeled either with BrdU or Ki-67 within the RMS of adult rats. The first group of animals received a single i.p. dose of BrdU. In the second group, dividing cells were visualized by Ki-67 immunohistochemistry. Some sections from brains of BrdU-treated rats were also immunostained for Ki-67. Labeled cells were counted in the three anatomical parts of the RMS (vertical arm, elbow and horizontal arm) using a method for unbiased estimation of cell density. The distribution of proliferating cells was similar for both markers. Most BrdU and Ki-67 positive cells were located in the vertical arm and in the elbow, but a caudo-rostral reduction in cell divisions was more evident with Ki-67 labeling. The number of Ki-67 positive cells significantly exceeded the number of BrdU positive cells in all parts of the RMS. Our results indicate that BrdU and Ki-67 are not interchangeable markers for evaluation of proliferative activity in the RMS.
Collapse
Affiliation(s)
- Kamila Fabianová
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Adam Raček
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Alexandra Popovičová
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Marcela Martončíková
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Enikő Račeková
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| |
Collapse
|
2
|
Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med 2024; 30:105. [PMID: 39030525 PMCID: PMC11264922 DOI: 10.1186/s10020-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China.
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China.
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China.
| | - Fengxiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jinwang Guo
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Gros A, Furlan FM, Rouglan V, Favereaux A, Bontempi B, Morel JL. Physical exercise restores adult neurogenesis deficits induced by simulated microgravity. NPJ Microgravity 2024; 10:69. [PMID: 38906877 PMCID: PMC11192769 DOI: 10.1038/s41526-024-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Cognitive impairments have been reported in astronauts during spaceflights and documented in ground-based models of simulated microgravity (SMG) in animals. However, the neuronal causes of these behavioral effects remain largely unknown. We explored whether adult neurogenesis, known to be a crucial plasticity mechanism supporting memory processes, is altered by SMG. Adult male Long-Evans rats were submitted to the hindlimb unloading model of SMG. We studied the proliferation, survival and maturation of newborn cells in the following neurogenic niches: the subventricular zone (SVZ)/olfactory bulb (OB) and the dentate gyrus (DG) of the hippocampus, at different delays following various periods of SMG. SMG exposure for 7 days, but not shorter periods of 6 or 24 h, resulted in a decrease of newborn cell proliferation restricted to the DG. SMG also induced a decrease in short-term (7 days), but not long-term (21 days), survival of newborn cells in the SVZ/OB and DG. Physical exercise, used as a countermeasure, was able to reverse the decrease in newborn cell survival observed in the SVZ and DG. In addition, depending on the duration of SMG periods, transcriptomic analysis revealed modifications in gene expression involved in neurogenesis. These findings highlight the sensitivity of adult neurogenesis to gravitational environmental factors during a transient period, suggesting that there is a period of adaptation of physiological systems to this new environment.
Collapse
Affiliation(s)
- Alexandra Gros
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Centre National d'Etudes Spatiales, F-75001, Paris, France
| | - Fandilla Marie Furlan
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Department of Genetics & Evolution, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Vanessa Rouglan
- CNRS, IINS, UMR 5297, University Bordeaux, F-33000, Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
| | - Jean-Luc Morel
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France.
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
4
|
Ma J, Cao H, Hou D, Wang W, Liu T. Investigation of high-dose radiotherapy's effect on brain structure aggravated cognitive impairment and deteriorated patient psychological status in brain tumor treatment. Sci Rep 2024; 14:10149. [PMID: 38698048 PMCID: PMC11066031 DOI: 10.1038/s41598-024-59694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
This study aims to investigate the potential impact of high-dose radiotherapy (RT) on brain structure, cognitive impairment, and the psychological status of patients undergoing brain tumor treatment. We recruited and grouped 144 RT-treated patients with brain tumors into the Low dose group (N = 72) and the High dose group (N = 72) according to the RT dose applied. Patient data were collected by using the HADS and QLQ-BN20 system for subsequent analysis and comparison. Our analysis showed no significant correlation between the RT doses and the clinicopathological characteristics. We found that a high dose of RT could aggravate cognitive impairment and deteriorate patient role functioning, indicated by a higher MMSE and worsened role functioning in the High dose group. However, the depression status, social functioning, and global health status were comparable between the High dose group and the Low dose group at Month 0 and Month 1, while being worsened in the High dose group at Month 3, indicating the potential long-term deterioration of depression status in brain tumor patients induced by high-dose RT. By comparing patient data at Month 0, Month 1, Month 3, Month 6, and Month 9 after RT, we found that during RT treatment, RT at a high dose could aggravate cognitive impairment in the short term and lead to worsened patient role functioning, and even deteriorate the overall psychological health status of patients in the long term.
Collapse
Affiliation(s)
- Jianpeng Ma
- Department of Magnetic Resonance Imaging, Dingbian County People's Hospital, Dingbian, Yulin, 718600, Shaanxi, China
| | - Hetao Cao
- Department of Medical Imaging, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Dongmei Hou
- Department of Medical Imaging, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, 226019, Jiangsu, China
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Peternel M, Jenko A, Peterlin P, Petrovič L, Strojan P, Plavc G. Comparison of conventional and hippocampus-sparing radiotherapy in nasopharyngeal carcinoma: In silico study and systematic review. Clin Transl Radiat Oncol 2024; 46:100751. [PMID: 38425692 PMCID: PMC10900111 DOI: 10.1016/j.ctro.2024.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
Background and purpose Radiation-induced damage to the hippocampi can cause cognitive decline. International recommendations for nasopharyngeal cancer (NPC) radiotherapy (RT) lack specific guidelines for protecting the hippocampi. Our study evaluates if hippocampi-sparing (HS) RT in NPC ensures target coverage and meets recommended dose limits for other at-risk organs. Materials and methods In a systematic literature review, we compared hippocampal D40% in conventional and HS RT plans. In an in silico dosimetric study, conventional and HS-VMAT plans were created for each patient, following international recommendations for OAR delineation, dose prioritization and acceptance criteria. We assessed the impact on neurocognitive function using a previously published normal tissue complication probability (NTCP) model. Results In four previous studies (n = 79), researchers reduced D40% hippocampal radiation doses in HS plans compared to conventional RT on average from 24.9 Gy to 12.6 Gy.Among 12 NPC patients included in this in silico study, statistically significant differences between HS and conventional VMAT plans were observed in hippocampal EQD2 Dmax (23.8 vs. 46.4 Gy), Dmin (3.8 vs. 4.6 Gy), Dmean (8.1 vs. 15.1 Gy), and D40% (8.3 vs. 15.8 Gy). PTV coverage and OAR doses were similar, with less homogeneous PTV coverage in HS plans (p = 0.038). This translated to a lower probability of memory decline in HS plans (interquartile range 15.8-29.6 %) compared to conventional plans (33.8-81.1 %) based on the NTCP model (p = 0.002). Conclusion Sparing the hippocampus in NPC RT is safe and feasible. Given the life expectancy of many NPC patients, their cognitive well-being must be paramount in radiotherapy planning.
Collapse
Affiliation(s)
- Monika Peternel
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
| | - Aljaša Jenko
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
| | - Primož Peterlin
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
| | - Larisa Petrovič
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
| | - Primož Strojan
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Gaber Plavc
- Institute of Oncology, Department of Radiotherapy, Zaloška cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| |
Collapse
|
6
|
Yang W, Chen C, Jiang X, Zhao Y, Wang J, Zhang Q, Zhang J, Feng Y, Cui S. CACNA1B protects naked mole-rat hippocampal neuron from apoptosis via altering the subcellular localization of Nrf2 after 60Co irradiation. Cell Biol Int 2024; 48:695-711. [PMID: 38389270 DOI: 10.1002/cbin.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Although radiotherapy is the most effective treatment modality for brain tumors, it always injures the central nervous system, leading to potential sequelae such as cognitive dysfunction. Radiation induces molecular, cellular, and functional changes in neuronal and glial cells. The hippocampus plays a critical role in learning and memory; therefore, concerns about radiation-induced injury are widespread. Multiple studies have focused on this complex problem, but the results have not been fully elucidated. Naked mole rat brains were irradiated with 60Co at a dose of 10 Gy. On 7 days, 14 days, and 28 days after irradiation, hippocampi in the control groups were obtained for next-generation sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. Venn diagrams revealed 580 differentially expressed genes (DEGs) that were common at different times after irradiation. GO and KEGG analyses revealed that the 580 common DEGs were enriched in molecular transducer activity. In particular, CACNA1B mediated regulatory effects after irradiation. CACNA1B expression increased significantly after irradiation. Downregulation of CACNA1B led to a reduction in apoptosis and reactive oxygen species levels in hippocampal neurons. This was due to the interaction between CACNA1B and Nrf2, which disturbed the normal nuclear localization of Nrf2. In addition, CACNA1B downregulation led to a decrease in the cognitive functions of naked mole rats. These findings reveal the pivotal role of CACNA1B in regulating radiation-induced brain injury and will lead to the development of a novel strategy to prevent brain injury after irradiation.
Collapse
Affiliation(s)
- Wenjing Yang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Chao Chen
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Xiaolong Jiang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yining Zhao
- Clinical Laboratory, Shanghai Yangpu district mental health center, Shanghai University of Medicine and Health Sciences Teaching Hospital, Shanghai, China
| | - Junyang Wang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Qianqian Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Jingyuan Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yan Feng
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Kopaeva MY, Cherepov AB, Zaraiskaya IY. Lactoferrin Has a Protective Effect on Mouse Brain Cells after Acute Gamma Irradiation of the Head. Bull Exp Biol Med 2023; 176:246-252. [PMID: 38194066 DOI: 10.1007/s10517-024-06004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 01/10/2024]
Abstract
We studied the effect of human lactoferrin on cells of the hippocampal dentate gyrus of 2-2.5-month-old male C57BL/6 mice after acute gamma irradiation of the head in a dose of 8 Gy from a 60Co source. Immediately after irradiation some animals received an intraperitoneal injection of human lactoferrin (4 mg/mouse). The appearance of TUNEL+ cells in the subgranular zone 6 h after irradiation was accompanied by a corresponding decrease in the number of Ki-67- and DCX-immunoreactive cells. Administration of lactoferrin had a protective effect on mouse brain cells, which manifested in a decrease in the number of TUNEL+ cells (by 77% relative to the irradiation alone) and an increase in the number of proliferating cells (from 16 to 61% relative to control animals) and immature neurons (from 14 to 22% relative to control animals) in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
- M Yu Kopaeva
- National Research Centre "Kurchatov Institute", Moscow, Russia.
| | - A B Cherepov
- National Research Centre "Kurchatov Institute", Moscow, Russia
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I Yu Zaraiskaya
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
8
|
Venkidesh BS, Narasimhamurthy RK, Jnana A, Reghunathan D, Sharan K, Chandraguthi SG, Saigal M, Murali TS, Mumbrekar KD. Pelvic irradiation induces behavioural and neuronal damage through gut dysbiosis in a rat model. Chem Biol Interact 2023; 386:110775. [PMID: 37866488 DOI: 10.1016/j.cbi.2023.110775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Radiation exposure can cause gut dysbiosis and there is a positive correlation between gut microbial imbalance and radiation-induced side effects in cancer patients. However, the influence of radiation on the gut-brain axis (GBA) and its neurological consequences are not well understood. Therefore, this study aimed to investigate the impact of pelvic irradiation on gut microbiota and the brain. Sprague Dawley rats were irradiated with a single dose of 6 Gy, and faecal samples were collected at different time points (7 and 12-days post-irradiation) for microbial analysis. Behavioural, histological, and gene expression analysis were performed to assess the effect of microbial dysbiosis on the brain. The findings indicated alterations in microbial diversity, disrupted intestinal morphology and integrity, neuronal death-related brain changes, neuroinflammation and reduced locomotor activity. Hippocampal gene expression analysis also showed a reduced expression of neural plasticity-related genes. Overall, this study demonstrated that pelvic irradiation affects gut microbiota, intestinal morphology, integrity, brain neuronal maturation, neural plasticity gene expression, and behaviour.
Collapse
Affiliation(s)
- Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Apoorva Jnana
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Reghunathan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinidhi G Chandraguthi
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehreen Saigal
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Thokur S Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
9
|
Venkidesh BS, Shankar SR, Narasimhamurthy RK, Rao SBS, Mumbrekar KD. Radioprotective potential of probiotics against gastrointestinal and neuronal toxicity: a preclinical study. Clin Transl Oncol 2023; 25:3165-3173. [PMID: 37071338 PMCID: PMC10514165 DOI: 10.1007/s12094-023-03184-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/01/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Radiotherapy is a critical component of cancer treatment, along with surgery and chemotherapy. Approximately, 90% of cancer patients undergoing pelvic radiotherapy show gastrointestinal (GI) toxicity, including bloody diarrhea, and gastritis, most of which are associated with gut dysbiosis. In addition to the direct effect of radiation on the brain, pelvic irradiation can alter the gut microbiome, leading to inflammation and breakdown of the gut-blood barrier. This allows toxins and bacteria to enter the bloodstream and reach the brain. Probiotics have been proven to prevent GI toxicity by producing short-chain fatty acids and exopolysaccharides beneficial for protecting mucosal integrity and oxidative stress reduction in the intestine and also shown to be beneficial in brain health. Microbiota plays a significant role in maintaining gut and brain health, so it is important to study whether bacterial supplementation will help in maintaining the gut and brain structure after radiation exposure. METHODS In the present study, male C57BL/6 mice were divided into control, radiation, probiotics, and probiotics + radiation groups. On the 7th day, animals in the radiation and probiotics + radiation groups received a single dose of 4 Gy to whole-body. Posttreatment, mice were sacrificed, and the intestine and brain tissues were excised for histological analysis to assess GI and neuronal damage. RESULTS Radiation-induced damage to the villi height and mucosal thickness was mitigated by the probiotic treatment significantly (p < 0.01). Further, radiation-induced pyknotic cell numbers in the DG, CA2, and CA3 areas were substantially reduced with bacterial supplementation (p < 0.001). Similarly, probiotics reduced neuronal inflammation induced by radiation in the cortex, CA2, and DG region (p < 0.01). Altogether, the probiotics treatment helps mitigate radiation-induced intestinal and neuronal damage. CONCLUSION In conclusion, the probiotic formulation could attenuate the number of pyknotic cells in the hippocampal brain region and decrease neuroinflammation by reducing the number of microglial cells.
Collapse
Affiliation(s)
- Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Saligrama R Shankar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satish Bola Sadashiva Rao
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
10
|
Amelchenko EM, Bezriadnov DV, Chekhov OA, Ivanova AA, Kedrov AV, Anokhin KV, Lazutkin AA, Enikolopov G. Cognitive Flexibility Is Selectively Impaired by Radiation and Is Associated with Differential Recruitment of Adult-Born Neurons. J Neurosci 2023; 43:6061-6083. [PMID: 37532464 PMCID: PMC10451007 DOI: 10.1523/jneurosci.0161-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Exposure to elevated doses of ionizing radiation, such as those in therapeutic procedures, catastrophic accidents, or space exploration, increases the risk of cognitive dysfunction. The full range of radiation-induced cognitive deficits is unknown, partly because commonly used tests may be insufficiently sensitive or may not be adequately tuned for assessing the fine behavioral features affected by radiation. Here, we asked whether γ-radiation might affect learning, memory, and the overall ability to adapt behavior to cope with a challenging environment (cognitive/behavioral flexibility). We developed a new behavioral assay, the context discrimination Morris water maze (cdMWM) task, which is hippocampus-dependent and requires the integration of various contextual cues and the adjustment of search strategies. We exposed male mice to 1 or 5 Gy of γ rays and, at different time points after irradiation, trained them consecutively in spatial MWM, reversal MWM, and cdMWM tasks, and assessed their learning, navigational search strategies, and memory. Mice exposed to 5 Gy performed successfully in the spatial and reversal MWM tasks; however, in the cdMWM task 6 or 8 weeks (but not 3 weeks) after irradiation, they demonstrated transient learning deficit, decreased use of efficient spatially precise search strategies during learning, and, 6 weeks after irradiation, memory deficit. We also observed impaired neurogenesis after irradiation and selective activation of 12-week-old newborn neurons by specific components of cdMWM training paradigm. Thus, our new behavioral paradigm reveals the effects of γ-radiation on cognitive flexibility and indicates an extended timeframe for the functional maturation of new hippocampal neurons.SIGNIFICANCE STATEMENT Exposure to radiation can affect cognitive performance and cognitive flexibility - the ability to adapt to changed circumstances and demands. The full range of consequences of irradiation on cognitive flexibility is unknown, partly because of a lack of suitable models. Here, we developed a new behavioral task requiring mice to combine various types of cues and strategies to find a correct solution. We show that animals exposed to γ-radiation, despite being able to successfully solve standard problems, show delayed learning, deficient memory, and diminished use of efficient navigation patterns in circumstances requiring adjustments of previously used search strategies. This new task could be applied in other settings for assessing the cognitive changes induced by aging, trauma, or disease.
Collapse
Affiliation(s)
- Evgeny M Amelchenko
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| | - Dmitri V Bezriadnov
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
| | - Olga A Chekhov
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| | - Anna A Ivanova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, 117485, Russian Federation
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Alexander V Kedrov
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
| | - Konstantin V Anokhin
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Alexander A Lazutkin
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, 117485, Russian Federation
| | - Grigori Enikolopov
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
11
|
Oyefeso FA, Goldberg G, Opoku NYPS, Vazquez M, Bertucci A, Chen Z, Wang C, Muotri AR, Pecaut MJ. Effects of acute low-moderate dose ionizing radiation to human brain organoids. PLoS One 2023; 18:e0282958. [PMID: 37256873 PMCID: PMC10231836 DOI: 10.1371/journal.pone.0282958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/27/2023] [Indexed: 06/02/2023] Open
Abstract
Human exposure to low-to-moderate dose ionizing radiation (LMD-IR) is increasing via environmental, medical, occupational sources. Acute exposure to LMD-IR can cause subclinical damage to cells, resulting in altered gene expression and cellular function within the human brain. It has been difficult to identify diagnostic and predictive biomarkers of exposure using traditional research models due to factors including lack of 3D structure in monolayer cell cultures, limited ability of animal models to accurately predict human responses, and technical limitations of studying functional human brain tissue. To address this gap, we generated brain/cerebral organoids from human induced pluripotent stem cells to study the radiosensitivity of human brain cells, including neurons, astrocytes, and oligodendrocytes. While organoids have become popular models for studying brain physiology and pathology, there is little evidence to confirm that exposing brain organoids to LMD-IR will recapitulate previous in vitro and in vivo observations. We hypothesized that exposing brain organoids to proton radiation would (1) cause a time- and dose-dependent increase in DNA damage, (2) induce cell type-specific differences in radiosensitivity, and (3) increase expression of oxidative stress and DNA damage response genes. Organoids were exposed to 0.5 or 2 Gy of 250 MeV protons and samples were collected at 30 minute, 24 hour, and 48 hour timepoints. Using immunofluorescence and RNA sequencing, we found time- and dose-dependent increases in DNA damage in irradiated organoids; no changes in cell populations for neurons, oligodendrocytes, and astrocytes by 24 hours; decreased expression of genes related to oligodendrocyte lineage, astrocyte lineage, mitochondrial function, and cell cycle progression by 48 hours; increased expression of genes related to neuron lineage, oxidative stress, and DNA damage checkpoint regulation by 48 hours. Our findings demonstrate the possibility of using organoids to characterize cell-specific radiosensitivity and early radiation-induced gene expression changes within the human brain, providing new avenues for further study of the mechanisms underlying acute neural cell responses to IR exposure at low-to-moderate doses.
Collapse
Affiliation(s)
- Foluwasomi A. Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Gabriela Goldberg
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nana Yaa P. S. Opoku
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Marcelo Vazquez
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Antonella Bertucci
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Zhong Chen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Charles Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Alysson R. Muotri
- Department of Radiation Medicine, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
12
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
13
|
Goel H, Goyal K, Pandey AK, Benjamin M, Khan F, Pandey P, Mittan S, Iqbal D, Alsaweed M, Alturaiki W, Madkhali Y, Kamal MA, Tanwar P, Upadhyay TK. Elucidations of Molecular Mechanism and Mechanistic Effects of Environmental Toxicants in Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:84-97. [PMID: 35352654 DOI: 10.2174/1871527321666220329103610] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
Abstract
Due to rising environmental and global public health concerns associated with environmental contamination, human populations are continually being exposed to environmental toxicants, including physical chemical mutagens widespread in our environment causing adverse consequences and inducing a variety of neurological disorders in humans. Physical mutagens comprise ionizing and non-ionizing radiation, such as UV rays, IR rays, X-rays, which produces a broad spectrum of neuronal destruction, including neuroinflammation, genetic instability, enhanced oxidative stress driving mitochondrial damage in the human neuronal antecedent cells, cognitive impairment due to alterations in neuronal function, especially in synaptic plasticity, neurogenesis repression, modifications in mature neuronal networks drives to enhanced neurodegenerative risk. Chemical Mutagens including alkylating agents (EMS, NM, MMS, and NTG), Hydroxylamine, nitrous acid, sodium azide, halouracils are the major toxic mutagen in our environment and have been associated with neurological disorders. These chemical mutagens create dimers of pyrimidine that cause DNA damage that leads to ROS generation producing mutations, chromosomal abnormalities, genotoxicity which leads to increased neurodegenerative risk. The toxicity of four heavy metal including Cd, As, Pb, Hg is mostly responsible for complicated neurological disorders in humans. Cadmium exposure can enhance the permeability of the BBB and penetrate the brain, driving brain intracellular accumulation, cellular dysfunction, and cerebral edema. Arsenic exerts its toxic effect by induction of ROS production in neuronal cells. In this review, we summarize the molecular mechanism and mechanistic effects of mutagens in the environment and their role in multiple neurological disorders.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Keshav Goyal
- Division of Molecular and Cellular Biology, Faculty of Biology, Ludwig Maximilians Universitat, Munchen, Germany
| | - Avanish Kumar Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, India
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, One Gustave L. Levy Place, New York, USA
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham NSW 2770, Novel Global Community Educational Foundation, Australia
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat 391760, India
| |
Collapse
|
14
|
Desai RI, Limoli CL, Stark CEL, Stark SM. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138:104676. [PMID: 35461987 DOI: 10.1016/j.neubiorev.2022.104676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The response of the human body to multiple spaceflight stressors is complex, but mounting evidence implicate risks to CNS functionality as significant, able to threaten metrics of mission success and longer-term behavioral and neurocognitive health. Prolonged exposure to microgravity, sleep disruption, social isolation, fluid shifts, and ionizing radiation have been shown to disrupt mechanisms of homeostasis and neurobiological well-being. The overarching goal of this review is to document the existing evidence of how the major spaceflight stressors, including radiation, microgravity, isolation/confinement, and sleep deprivation, alone or in combination alter molecular, neurochemical, neurobiological, and plasma metabolite/lipid signatures that may be linked to operationally-relevant behavioral and cognitive performance. While certain brain region-specific and/or systemic alterations titrated in part with neurobiological outcome, variations across model systems, study design, and the conspicuous absence of targeted studies implementing combinations of spaceflight stressors, confounded the identification of specific signatures having direct relevance to human activities in space. Summaries are provided for formulating new research directives and more predictive readouts of portending change in neurobiological function.
Collapse
Affiliation(s)
- Rajeev I Desai
- Harvard Medical School, McLean Hospital, Behavioral Biology Program, Belmont, MA 02478, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, B146B, Irvine, CA 92697, USA
| | - Craig E L Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| | - Shauna M Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Matsuo Y, Tanaka H, Morishita T, Enatsu R, Inoue T. Vagus nerve stimulation for bilateral temporal lobe epilepsy caused by fractionated radiation therapy: A case report. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Wan L, Huang RJ, Yang C, Ai JQ, Zhou Q, Gong JE, Li J, Zhang Y, Luo ZH, Tu E, Pan A, Xiao B, Yan XX. Extracranial 125I Seed Implantation Allows Non-invasive Stereotactic Radioablation of Hippocampal Adult Neurogenesis in Guinea Pigs. Front Neurosci 2021; 15:756658. [PMID: 34916901 PMCID: PMC8670234 DOI: 10.3389/fnins.2021.756658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) is important for multiple cognitive functions. We sort to establish a minimal or non-invasive radiation approach to ablate AHN using guinea pigs as an animal model. 125I seeds with different radiation dosages (1.0, 0.8, 0.6, 0.3 mCi) were implanted unilaterally between the scalp and skull above the temporal lobe for 30 and 60 days, with the radiation effect on proliferating cells, immature neurons, and mature neurons in the hippocampal formation determined by assessment of immunolabeled (+) cells for Ki67, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), as well as Nissl stain cells. Spatially, the ablation effect of radiation occurred across the entire rostrocaudal and largely the dorsoventral dimensions of the hippocampus, evidenced by a loss of DCX+ cells in the subgranular zone (SGZ) of dentate gyrus (DG) in the ipsilateral relative to contralateral hemispheres in reference to the 125I seed implant. Quantitatively, Ki67+ and DCX+ cells at the SGZ in the dorsal hippocampus were reduced in all dosage groups at the two surviving time points, more significant in the ipsilateral than contralateral sides, relative to sham controls. NeuN+ neurons and Nissl-stained cells were reduced in the granule cell layer of DG and the stratum pyramidale of CA1 in the groups with 0.6-mCi radiation for 60 days and 1.0 mCi for 30 and 60 days. Minimal cranial trauma was observed in the groups with 0.3– 1.0-mCi radiation at 60 days. These results suggest that extracranial radiation with 125I seed implantation can be used to deplete HAN in a radioactivity-, duration-, and space-controllable manner, with a “non-invasive” stereotactic ablation achievable by using 125I seeds with relatively low radioactivity dosages.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qian Zhou
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiao-E Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Zhang
- Department of Anesthesiology, The 2nd Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
17
|
Abstract
As novel systemic therapies yield improved survival in metastatic cancer patients, the frequency of brain metastases continues to increase. Over the years, management strategies have continued to evolve. Historically, stereotactic radiosurgery has been used as a boost to whole-brain radiotherapy (WBRT) but is increasingly being used as a replacement for WBRT. Given its capacity to treat both macro- and micro-metastases in the brain, WBRT has been an important management strategy for years, and recent research has identified technologic and pharmacologic approaches to delivering WBRT more safely. In this review, we outline the current landscape of radiotherapeutic treatment options and discuss approaches to integrating radiotherapy advances in the contemporary management of brain metastases.
Collapse
Affiliation(s)
- Vinai Gondi
- Northwestern Medicine Cancer Center Warrenville and Proton Center, Warrenville, Illinois, USA
| | | | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Wei M, Feng S, Zhang L, Wang C, Chu S, Shi T, Zhou W, Zhang Y. Active Fraction Combination From Liuwei Dihuang Decoction Improves Adult Hippocampal Neurogenesis and Neurogenic Microenvironment in Cranially Irradiated Mice. Front Pharmacol 2021; 12:717719. [PMID: 34630096 PMCID: PMC8495126 DOI: 10.3389/fphar.2021.717719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Cranial radiotherapy is clinically used in the treatment of brain tumours; however, the consequent cognitive and emotional dysfunctions seriously impair the life quality of patients. LW-AFC, an active fraction combination extracted from classical traditional Chinese medicine prescription Liuwei Dihuang decoction, can improve cognitive and emotional dysfunctions in many animal models; however, the protective effect of LW-AFC on cranial irradiation–induced cognitive and emotional dysfunctions has not been reported. Recent studies indicate that impairment of adult hippocampal neurogenesis (AHN) and alterations of the neurogenic microenvironment in the hippocampus constitute critical factors in cognitive and emotional dysfunctions following cranial irradiation. Here, our research further investigated the potential protective effects and mechanisms of LW-AFC on cranial irradiation–induced cognitive and emotional dysfunctions in mice. Methods: LW-AFC (1.6 g/kg) was intragastrically administered to mice for 14 days before cranial irradiation (7 Gy γ-ray). AHN was examined by quantifying the number of proliferative neural stem cells and immature neurons in the dorsal and ventral hippocampus. The contextual fear conditioning test, open field test, and tail suspension test were used to assess cognitive and emotional functions in mice. To detect the change of the neurogenic microenvironment, colorimetry and multiplex bead analysis were performed to measure the level of oxidative stress, neurotrophic and growth factors, and inflammation in the hippocampus. Results: LW-AFC exerted beneficial effects on the contextual fear memory, anxiety behaviour, and depression behaviour in irradiated mice. Moreover, LW-AFC increased the number of proliferative neural stem cells and immature neurons in the dorsal hippocampus, displaying a regional specificity of neurogenic response. For the neurogenic microenvironment, LW-AFC significantly increased the contents of superoxide dismutase, glutathione peroxidase, glutathione, and catalase and decreased the content of malondialdehyde in the hippocampus of irradiated mice, accompanied by the increase in brain-derived neurotrophic factor, insulin-like growth factor-1, and interleukin-4 content. Together, LW-AFC improved cognitive and emotional dysfunctions, promoted AHN preferentially in the dorsal hippocampus, and ameliorated disturbance in the neurogenic microenvironment in irradiated mice. Conclusion: LW-AFC ameliorates cranial irradiation–induced cognitive and emotional dysfunctions, and the underlying mechanisms are mediated by promoting AHN in the dorsal hippocampus and improving the neurogenic microenvironment. LW-AFC might be a promising therapeutic agent to treat cognitive and emotional dysfunctions in patients receiving cranial radiotherapy.
Collapse
Affiliation(s)
- Mingxiao Wei
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shufang Feng
- Department of Poisoning and the Treatment, Affiliated Hospital to Academy of Military Medical Sciences (the 307 Hospital), Beijing, China
| | - Lin Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shasha Chu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tianyao Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongxiang Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
19
|
Bekal M, Sun L, Ueno S, Moritake T. Neurobehavioral effects of acute low-dose whole-body irradiation. JOURNAL OF RADIATION RESEARCH 2021; 62:804-811. [PMID: 33982114 PMCID: PMC8438260 DOI: 10.1093/jrr/rrab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Radiation exposure has multiple effects on the brain, behavior and cognitive functions. It has been reported that high-dose (>20 Gy) radiation-induced behavior and cognitive aberration partly associated with severe tissue destruction. Low-dose (<3 Gy) exposure can occur in radiological disasters and cerebral endovascular treatment. However, only a few reports analyzed behavior and cognitive functions after low-dose irradiation. This study was undertaken to assess the relationship between brain neurochemistry and behavioral disruption in irradiated mice. The irradiated mice (0.5 Gy, 1 Gy and 3 Gy) were tested for alteration in their normal behavior over 10 days. A serotonin (5-HT), Dopamine, gamma-Aminobutyric acid (GABA) and cortisol analysis was carried out in blood, hippocampus, amygdala and whole brain tissue. There was a significant decline in the exploratory activity of mice exposed to 3 Gy and 1 Gy radiation in an open field test. We observed a significant short-term memory loss in 3 Gy and 1 Gy irradiated mice in Y-Maze. Mice exposed to 1 Gy and 3 Gy radiation exhibited increased anxiety in an elevated plus maze (EPM). The increased anxiety and memory loss patterns were also seen in 0.5 Gy irradiated mice, but the results were not statistically significant. In this study we observed that neurotransmitters are significantly altered after irradiation, but the neuronal cells in the hippocampus were not significantly affected. This study suggests that the low-dose radiation-induced cognitive impairment may be associated with the neurochemical in low-dose irradiation and unlike the high-dose scenario might not be directly related to the morphological changes in the brain.
Collapse
Affiliation(s)
- Mahesh Bekal
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Susumu Ueno
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takashi Moritake
- Corresponding author. Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan, E-mail:
| |
Collapse
|
20
|
Mouton L, Etienne O, Feat-Vetel J, Barrière DA, Pérès EA, Boumezbeur F, Boussin FD, Le Bihan D. Noninvasive Assessment of Neurodevelopmental Disorders after In Utero Irradiation in Mice: An In Vivo Anatomical and Diffusion MRI Study. Radiat Res 2021; 195:568-583. [PMID: 33826744 DOI: 10.1667/rade-20-00136.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/04/2021] [Indexed: 11/03/2022]
Abstract
In utero exposure to ionizing radiation can lead to cerebral alterations during adulthood. Using anatomical magnetic resonance imaging (MRI), it is possible to assess radiation-induced structural brain damage noninvasively. However, little is currently known about microstructure alterations in brain tissue. Therefore, the goal of this study was to establish, based on an original and robust pipeline of MRI image analysis, whether the long-term effects of in utero radiation exposure on brain tissue microstructure could be detected noninvasively. Pregnant C57BL/6N mice received a single dose of 1 Gy on gestation day 14.5, which led to behavioral impairments in adults. At 3 months old, in vivo MRI data were acquired from in utero irradiated and nonirradiated male mice. An MRI protocol was designed to assess the effects of radiation on the parameters of brain volume, non-Gaussian diffusion (ADC0, kurtosis and signature index) and anisotropic diffusion (fractional anisotropy and mean, axial, radial diffusivities and anisotropic signature index) in 10 key cerebral structures defined using an in-house atlas of the mouse brain. Based on the relative amplitude of these anatomical and microstructural changes, maps of the radiosensitivity of the brain to in utero irradiation were created. We observed microcephaly in irradiated mice with noticeably larger volume changes in the cortex and the corpus callosum. We also observed significantly lower ADC0, anisotropy fraction (sFA), radial diffusivity (sRD), as well as signature index (S-index and SI3) values, which are original markers sensitive to tissue microstructure alterations. All these changes together are in favor of a decreased cellular "imprint" and in some regions a reduced density in myelinated axons. A reduction in the number and complexity of myelinated axons was further revealed by myelin basic protein immunostaining. Combining anatomical and diffusion MRI is a promising approach to noninvasively investigate the radiosensitivity of local brain areas in adult mice after in utero irradiation in terms of microstructure.
Collapse
Affiliation(s)
- L Mouton
- NeuroSpin, Frederic Joliot Institute, Commissariat à l'Energie Atomique, Université Paris- Saclay, Gif-sur-Yvette, France.,Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - O Etienne
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - J Feat-Vetel
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - D A Barrière
- NeuroSpin, Frederic Joliot Institute, Commissariat à l'Energie Atomique, Université Paris- Saclay, Gif-sur-Yvette, France
| | - E A Pérès
- Normandie Université, UNICAEN, CEA, CNRS, UMR6030-ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - F Boumezbeur
- NeuroSpin, Frederic Joliot Institute, Commissariat à l'Energie Atomique, Université Paris- Saclay, Gif-sur-Yvette, France
| | - F D Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - D Le Bihan
- NeuroSpin, Frederic Joliot Institute, Commissariat à l'Energie Atomique, Université Paris- Saclay, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Liu X, Chu W, Shang S, Ma L, Jiang C, Ding Y, Wang J, Zhang S, Shao B. Preliminary study on the anti-apoptotic mechanism of Astragaloside IV on radiation-induced brain cells. Int J Immunopathol Pharmacol 2021; 34:2058738420954594. [PMID: 32902354 PMCID: PMC7485151 DOI: 10.1177/2058738420954594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With multiple targets and low cytotoxicity, natural medicines can be used as potential neuroprotective agents. The increase in oxidative stress levels and inflammatory responses in the brain caused by radiation affects cognitive function and neuronal structure, and ultimately leads to abnormal changes in neurogenesis, differentiation, and apoptosis. Astragaloside Ⅳ (AS-Ⅳ), one of the main active constituents of astragalus, is known for its antioxidant, antihypertensive, antidiabetic, anti-infarction, anti-inflammatory, anti-apoptotic and wound healing, angiogenesis, and other protective effects. In this study, the mechanism of AS-IV against radiation-induced apoptosis of brain cells in vitro and in vivo was explored by radiation modeling, which provided a theoretical basis for the development of anti-radiation Chinese herbal active molecules and brain health products. In order to study the protective mechanism of AS-IV on radiation-induced brain cell apoptosis in mice, the paper constructed a radiation-induced brain cell apoptosis model, using TUNEL staining, flow cytometry, Western blotting to analyze AS-IV resistance mechanism to radiation-induced brain cell apoptosis. The results of TUNEL staining and flow cytometry showed that the apoptosis rate of radiation group was significantly increased. The results of Western blotting indicated that the expression levels of p-JNK, p-p38, p53, Caspase-9 and Caspase-3 protein, and the ratio of Bax to Bcl-2 in radiation group were significantly increased. There was no significant difference in the expression levels of JNK and p38. After AS-IV treatment, the apoptosis was reduced and the expression of apoptosis related proteins was changed. These data suggested that AS-IV can effectively reduce radiation-induced apoptosis of brain cells, and its mechanism may be related to the phosphorylation regulation of JNK-p38.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Weiwei Chu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shuying Shang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Liang Ma
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yanping Ding
- School wof Life Sciences, Northwest Normal University, Lanzhou, Gansu Province, China
| | - Jianlin Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
22
|
Chu C, Gao Y, Lan X, Lin J, Thomas AM, Li S. Stem-Cell Therapy as a Potential Strategy for Radiation-Induced Brain Injury. Stem Cell Rev Rep 2021; 16:639-649. [PMID: 32418118 DOI: 10.1007/s12015-020-09984-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiation therapy is a standard and effective non-surgical treatment for primary brain tumors and metastases. However, this strategy inevitably results in damage of normal brain tissue, causing severe complications, especially the late-delayed cognitive impairment. Due to the multifactorial and complex pathological effects of radiation, there is a lack of effective preventative and restorative treatments for the irradiated brain. Stem-cell therapy has held considerable promise for decades in the treatment of central nervous system (CNS) disorders because of its unique capacity for tissue repair and functional integrity. Currently, there is growing interest in using stem cells as a novel option to attenuate the adverse effects of irradiation. In the present review, we discuss recent studies evaluating stem-cell therapies for the irradiated brain and their therapeutic effects on ameliorating radiation-related brain injury as well as their potential challenges in clinical applications. We discuss these works in context of the pathogenesis of radiation-induced injury to CNS tissue in an attempt to elucidate the potential mechanisms of engrafted stem cells to reverse radiation-induced degenerative processes.
Collapse
Affiliation(s)
- Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated with Dalian Medical University, No. 826 Xinan Road, Shahekou District Dalian, Dalian, Liaoning, 116033, China
| | - Yue Gao
- Department of Neurology, Dalian Municipal Central Hospital Affiliated with Dalian Medical University, No. 826 Xinan Road, Shahekou District Dalian, Dalian, Liaoning, 116033, China
| | - Xiaoyan Lan
- Department of Neurology, Dalian Municipal Central Hospital Affiliated with Dalian Medical University, No. 826 Xinan Road, Shahekou District Dalian, Dalian, Liaoning, 116033, China
| | - Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital Affiliated with Dalian Medical University, No. 826 Xinan Road, Shahekou District Dalian, Dalian, Liaoning, 116033, China
| | - Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated with Dalian Medical University, No. 826 Xinan Road, Shahekou District Dalian, Dalian, Liaoning, 116033, China.
| |
Collapse
|
23
|
Anderson JE, Trujillo M, McElroy T, Groves T, Alexander T, Kiffer F, Allen AR. Early Effects of Cyclophosphamide, Methotrexate, and 5-Fluorouracil on Neuronal Morphology and Hippocampal-Dependent Behavior in a Murine Model. Toxicol Sci 2021; 173:156-170. [PMID: 31651976 DOI: 10.1093/toxsci/kfz213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women. Fortunately, BC survival rates have increased because the implementation of adjuvant chemotherapy leading to a growing population of survivors. However, chemotherapy-induced cognitive impairments (CICIs) affect up to 75% of BC survivors and may be driven by inflammation and oxidative stress. Chemotherapy-induced cognitive impairments can persist 20 years and hinder survivors' quality of life. To identify early effects of CMF administration in mice, we chose to evaluate adult female mice at 2-week postchemotherapy. Mice received weekly IP administration of CMF (or saline) for 4 weeks, completed behavioral testing, and were sacrificed 2 weeks following their final CMF injection. Behavioral results indicated long-term memory (LTM) impairments postchemotherapy, but did not reveal short-term memory deficits. Dendritic morphology and spine data found increases in overall spine density within CA1 basal and CA3 basal dendrites, but no changes in DG, CA1 apical, or CA3 apical dendrites. Further analysis revealed decreases in arborization across the hippocampus (DG, CA1 apical and basal, CA3 apical and basal). These physiological changes within the hippocampus correlate with our behavioral data indicating LTM impairments following CMF administration in female mice 2-week postchemotherapy. Hippocampal cytokine analysis identified decreases in IL-1α, IL-1β, IL-3, IL-10, and TNF-α levels.
Collapse
Affiliation(s)
- Julie E Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Tyler Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
24
|
Is There an Indication for First Line Radiotherapy in Primary CNS Lymphoma? Cancers (Basel) 2021; 13:cancers13112580. [PMID: 34070309 PMCID: PMC8197540 DOI: 10.3390/cancers13112580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Primary CNS Lymphoma is a rare and severe but potentially curable disease. In the last thirty years treatment has changed significantly. Survival times increased due to high-dose methotrexate-based chemotherapy. With intensive regimens involving autologous stem cell transplantation (ASCT), 4-year survival rates of more than 80% can be reached. However, this treatment regimen is not feasible in all patients, and is associated with some mortality. Methods: In this review, current evidence regarding the efficacy and toxicity of radiotherapy in PCNSL shall be summarized and discussed mainly based on data of controlled trials. Results: Being the first feasible treatment whole brain radiotherapy (WBRT) was initially used alone, and later as a consolidating treatment after high-dose methotrexate-based chemotherapy. More recently, concerns regarding activity and neurotoxicity of standard dose WBRT limited its use. On the contrary, latest evidence of some phase II trials suggests efficacy of consolidating WBRT is comparable to ASCT. After complete remission reduced dose WBRT appears as a feasible concept with decreased neurotoxicity. Evidence for use of local stereotactic radiotherapy is very limited. Conclusion: Radiotherapy has a role in the treatment of PCNSL patients not suitable to ASCT, e.g., as consolidating reduced dose WBRT after complete response. Local stereotactic radiotherapy for residual disease should be examined in future trials.
Collapse
|
25
|
Wilson GD, Wilson TG, Hanna A, Fontanesi G, Kulchycki J, Buelow K, Pruetz BL, Michael DB, Chinnaiyan P, Maddens ME, Martinez AA, Fontanesi J. Low Dose Brain Irradiation Reduces Amyloid-β and Tau in 3xTg-AD Mice. J Alzheimers Dis 2021; 75:15-21. [PMID: 32280098 DOI: 10.3233/jad-200030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously reported that low doses of external beam ionizing irradiation reduced amyloid-β (Aβ) plaques and improved cognition in APP/PS1 mice. In this study we investigated the effects of radiation in an age-matched series of 3xTg-AD mice. Mice were hemibrain-irradiated with 5 fractions of 2 Gy and sacrificed 8 weeks after the end of treatment. Aβ and tau were assessed using immunohistochemistry and quantified using image analysis with Definiens Tissue Studio. We observed a significant reduction in Aβ plaque burden and tau staining; these two parameters were significantly correlated. This preliminary data is further support that low doses of radiation may be beneficial in Alzheimer's disease.
Collapse
Affiliation(s)
- George D Wilson
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | - Thomas G Wilson
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | - Alaa Hanna
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | | | - Justin Kulchycki
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | - Katie Buelow
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | | | - Daniel B Michael
- Michigan Head and Spine Institute, Southfield, MI, USA.,Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | | | - Michael E Maddens
- Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Alvaro A Martinez
- Radiation Oncology Institute, Division of Michigan Healthcare Professionals, Farmington Hills, MI, USA
| | - James Fontanesi
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA.,Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
26
|
Abraham AG, Roa W. Hippocampal avoidance in prophylactic cranial irradiation for small cell lung cancer: benefits and pitfalls. J Thorac Dis 2021; 13:3235-3245. [PMID: 34164216 PMCID: PMC8182537 DOI: 10.21037/jtd-2019-rbmlc-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
Small cell lung cancers (SCLC) are a group of cancers that are clinically and pathologically different from other lung cancers. They are associated with high recurrence rates and mortality, and many patients present with metastatic disease. Approximately ten percent of SCLC patients have brain metastases at time of diagnosis, and the cumulative incidence of brain metastases increases to more than fifty percent at two years, even with optimal treatment. Hence, in patients without brain metastases at presentation, prophylactic cranial irradiation (PCI) is an important component of treatment along with systemic chemotherapy and radiotherapy. The goal of PCI is to decrease the incidence of subsequent symptomatic brain metastases in patients who show an initial response to the systemic treatment. Various clinical trials have evaluated the utility of PCI and found substantial benefit. Unfortunately, the long-term toxicity associated with PCI, namely the neuro-cognitive impairment that may develop in patients as a result of the radiation toxicity to the hippocampal areas of the brain, has raised concern both for patients and their treating physicians. Various techniques have been tried to ameliorate the neuro-cognitive impairment associated with PCI, including pharmacological agents and highly conformal hippocampal avoidance radiation. All of these have shown promise, but there is a lack of clarity about the optimal way forward. Hippocampal avoidance PCI appears to be an excellent option and a number of groups are currently evaluating this technique. Although there is clear benefit with this specialized radiation treatment, there are also concerns about the risk of disease recurrence in the undertreated hippocampal areas. This review attempts to compile the available data regarding the benefits and pitfalls associated with hippocampal avoidance PCI in the setting of SCLC.
Collapse
Affiliation(s)
| | - Wilson Roa
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Canada
| |
Collapse
|
27
|
Out-of-Field Hippocampus from Partial-Body Irradiated Mice Displays Changes in Multi-Omics Profile and Defects in Neurogenesis. Int J Mol Sci 2021; 22:ijms22084290. [PMID: 33924260 PMCID: PMC8074756 DOI: 10.3390/ijms22084290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
The brain undergoes ionizing radiation exposure in many clinical situations, particularly during radiotherapy for brain tumors. The critical role of the hippocampus in the pathogenesis of radiation-induced neurocognitive dysfunction is well recognized. The goal of this study is to test the potential contribution of non-targeted effects in the detrimental response of the hippocampus to irradiation and to elucidate the mechanisms involved. C57Bl/6 mice were whole body (WBI) or partial body (PBI) irradiated with 0.1 or 2.0 Gy of X-rays or sham irradiated. PBI consisted of the exposure of the lower third of the mouse body, whilst the upper two thirds were shielded. Hippocampi were collected 15 days or 6 months post-irradiation and a multi-omics approach was adopted to assess the molecular changes in non-coding RNAs, proteins and metabolic levels, as well as histological changes in the rate of hippocampal neurogenesis. Notably, at 2.0 Gy the pattern of early molecular and histopathological changes induced in the hippocampus at 15 days following PBI were similar in quality and quantity to the effects induced by WBI, thus providing a proof of principle of the existence of out-of-target radiation response in the hippocampus of conventional mice. We detected major alterations in DAG/IP3 and TGF-β signaling pathways as well as in the expression of proteins involved in the regulation of long-term neuronal synaptic plasticity and synapse organization, coupled with defects in neural stem cells self-renewal in the hippocampal dentate gyrus. However, compared to the persistence of the WBI effects, most of the PBI effects were only transient and tended to decrease at 6 months post-irradiation, indicating important mechanistic difference. On the contrary, at low dose we identified a progressive accumulation of molecular defects that tended to manifest at later post-irradiation times. These data, indicating that both targeted and non-targeted radiation effects might contribute to the pathogenesis of hippocampal radiation-damage, have general implications for human health.
Collapse
|
28
|
Redmond KJ, Milano MT, Kim MM, Trifiletti DM, Soltys SG, Hattangadi-Gluth JA. Reducing Radiation-Induced Cognitive Toxicity: Sparing the Hippocampus and Beyond. Int J Radiat Oncol Biol Phys 2021; 109:1131-1136. [PMID: 33714520 DOI: 10.1016/j.ijrobp.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
29
|
Sorokina SS, Malkov AE, Shubina LV, Zaichkina SI, Pikalov VA. Low dose of carbon ion irradiation induces early delayed cognitive impairments in mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:61-71. [PMID: 33392787 DOI: 10.1007/s00411-020-00889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
People often encounter various sources of ionizing radiation, both in modern medicine and under various environmental conditions, such as space travel, nuclear power plants or in conditions of man-made disasters that may lead to long-term cognitive impairment. Whilst the effect of exposure to low and high doses of gamma and X-radiation on the central nervous system (CNS) has been well investigated, the consequences of protons and heavy ions irradiation are quite different and poorly understood. As for the assessment of long-term effects of carbon ions on cognitive abilities and neurodegeneration, very few data appeared in the literature. The main object of the research is to investigate the effects of accelerated carbon ions on the cognitive function. Experiments were performed on male SHK mice at an age of two months. Mice were irradiated with a dose of 0.7 Gy of accelerated carbon ions with an energy of 450 meV/n in spread-out Bragg peak (SOBP) on a U-70 particle accelerator (Protvino, Russia). Two months after the irradiation, mice were tested for total activity, spatial learning, as well as long- and short-term hippocampus-dependent memory. One month after the evaluation of cognitive activity, histological analysis of dorsal hippocampus was carried out to assess its morphological state and to reveal late neuronal degeneration. It was found that the mice irradiated with accelerated carbon ions develop an altered behavioral pattern characterized by anxiety and a shortage in hippocampal-dependent memory retention, but not in episodic memory. Nissl staining revealed a reduction in the number of cells in the dorsal hippocampus of irradiated mice, with the most pronounced reduction in cell density observed in the dentate gyrus (DG) hilus. Also, the length of the CA3 field of the dorsal hippocampus was significantly reduced, and the number of cells in it was moderately decreased. Experiments with the use of Fluoro-Jade B (FJB) staining revealed no FJB-positive regions in the dorsal hippocampus of irradiated and control animals 3 months after the irradiation. Thus, no morbid cells were detected in irradiated and control groups. The results obtained indicate that total irradiation with a low dose of carbon ions can produce a cognitive deficit in adult mice without evidence of neurodegenerative pathologic changes.
Collapse
Affiliation(s)
- S S Sorokina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia.
| | - A E Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - L V Shubina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - S I Zaichkina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - V A Pikalov
- Institute of High Energy Physics Named by A.A. Logunov of National Research Centre "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
30
|
Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells 2021; 10:cells10020427. [PMID: 33670501 PMCID: PMC7922519 DOI: 10.3390/cells10020427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ionising radiation-induced normal tissue damage is a major concern in clinic and public health. It is the most limiting factor in radiotherapy treatment of malignant diseases. It can also cause a serious harm to populations exposed to accidental radiation exposure or nuclear warfare. With regard to the clinical use of radiation, there has been a number of modalities used in the field of radiotherapy. These includes physical modalities such modified collimators or fractionation schedules in radiotherapy. In addition, there are a number of pharmacological agents such as essential fatty acids, vasoactive drugs, enzyme inhibitors, antioxidants, and growth factors for the prevention or treatment of radiation lesions in general. However, at present, there is no standard procedure for the treatment of radiation-induced normal tissue lesions. Stem cells and their role in tissue regeneration have been known to biologists, in particular to radiobiologists, for many years. It was only recently that the potential of stem cells was studied in the treatment of radiation lesions. Stem cells, immediately after their successful isolation from a variety of animal and human tissues, demonstrated their likely application in the treatment of various diseases. This paper describes the types and origin of stem cells, their characteristics, current research, and reviews their potential in the treatment and regeneration of radiation induced normal tissue lesions. Adult stem cells, among those mesenchymal stem cells (MSCs), are the most extensively studied of stem cells. This review focuses on the effects of MSCs in the treatment of radiation lesions.
Collapse
|
31
|
Cortez I, Rodgers SP, Kosten TA, Leasure JL. Sex and Age Effects on Neurobehavioral Toxicity Induced by Binge Alcohol. Brain Plast 2020; 6:5-25. [PMID: 33680843 PMCID: PMC7902983 DOI: 10.3233/bpl-190094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Historically, most alcohol neurotoxicity studies were conducted in young adult males and focused on chronic intake. There has been a shift towards studying the effects of alcohol on the adolescent brain, due to alcohol consumption during this formative period disrupting the brain's developmental trajectory. Because the most typical pattern of adolescent alcohol intake is heavy episodic (binge) drinking, there has also been a shift towards the study of binge alcohol-induced neurobehavioral toxicity. It has thus become apparent that binge alcohol damages the adolescent brain and there is increasing attention to sex-dependent effects. Significant knowledge gaps remain in our understanding of the effects of binge alcohol on the female brain, however. Moreover, it is unsettling that population-level studies indicate that the prevalence of binge drinking is increasing among American women, particularly those in older age groups. Although study of adolescents has made it apparent that binge alcohol disrupts ongoing brain maturational processes, we know almost nothing about how it impacts the aging brain, as studies of its effects on the aged brain are relatively scarce, and the study of sex-dependent effects is just beginning. Given the rapidly increasing population of older Americans, it is crucial that studies address age-dependent effects of binge alcohol, and given the increase in binge drinking in older women who are at higher risk for cognitive decline relative to men, studies must encompass both sexes. Because adolescence and older age are both characterized by age-typical brain changes, and because binge drinking is the most common pattern of alcohol intake in both age groups, the knowledge that we have amassed on binge alcohol effects on the adolescent brain can inform our study of its effects on the aging brain. In this review, we therefore cover the current state of knowledge of sex and age-dependent effects of binge alcohol, as well as statistical and methodological considerations for studies aimed at addressing them.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | | | - J. Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, USA
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
32
|
Bálentová S, Adamkov M. Pathological changes in the central nervous system following exposure to ionizing radiation. Physiol Res 2020; 69:389-404. [PMID: 32469226 PMCID: PMC8648310 DOI: 10.33549/physiolres.934309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Experimental studies in animals provide relevant knowledge about pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced injury can alter neuronal, glial cell population, brain vasculature and may lead to molecular, cellular and functional consequences. Regarding to its fundamental role in the formation of new memories, spatial navigation and adult neurogenesis, the majority of studies have focused on the hippocampus. Most recent findings in cranial radiotherapy revealed that hippocampal avoidance prevents radiation-induced cognitive impairment of patients with brain primary tumors and metastases. However, numerous preclinical studies have shown that this problem is more complex. Regarding the fact, that the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is highly important to investigate molecular, cellular and functional changes in different brain regions and their integration at clinically relevant doses and schedules. Here, we provide a literature review in order support the translation of preclinical findings to clinical practice and improve the physical and mental status of patients with brain tumors.
Collapse
Affiliation(s)
- S Bálentová
- Institute of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | |
Collapse
|
33
|
Abdullaev S, Gubina N, Bulanova T, Gaziev A. Assessment of Nuclear and Mitochondrial DNA, Expression of Mitochondria-Related Genes in Different Brain Regions in Rats after Whole-Body X-ray Irradiation. Int J Mol Sci 2020; 21:ijms21041196. [PMID: 32054039 PMCID: PMC7072726 DOI: 10.3390/ijms21041196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 01/02/2023] Open
Abstract
Studies of molecular changes occurred in various brain regions after whole-body irradiation showed a significant increase in terms of the importance in gaining insight into how to slow down or prevent the development of long-term side effects such as carcinogenesis, cognitive impairment and other pathologies. We have analyzed nDNA damage and repair, changes in mitochondrial DNA (mtDNA) copy number and in the level of mtDNA heteroplasmy, and also examined changes in the expression of genes involved in the regulation of mitochondrial biogenesis and dynamics in three areas of the rat brain (hippocampus, cortex and cerebellum) after whole-body X-ray irradiation. Long amplicon quantitative polymerase chain reaction (LA-QPCR) was used to detect nDNA and mtDNA damage. The level of mtDNA heteroplasmy was estimated using Surveyor nuclease technology. The mtDNA copy numbers and expression levels of a number of genes were determined by real-time PCR. The results showed that the repair of nDNA damage in the rat brain regions occurs slowly within 24 h; in the hippocampus, this process runs much slower. The number of mtDNA copies in three regions of the rat brain increases with a simultaneous increase in mtDNA heteroplasmy. However, in the hippocampus, the copy number of mutant mtDNAs increases significantly by the time point of 24 h after radiation exposure. Our analysis shows that in the brain regions of irradiated rats, there is a decrease in the expression of genes (ND2, CytB, ATP5O) involved in ATP synthesis, although by the same time point after irradiation, an increase in transcripts of genes regulating mitochondrial biogenesis is observed. On the other hand, analysis of genes that control the dynamics of mitochondria (Mfn1, Fis1) revealed that sharp decrease in gene expression level occurred, only in the hippocampus. Consequently, the structural and functional characteristics of the hippocampus of rats exposed to whole-body radiation can be different, most significantly from those of the other brain regions.
Collapse
Affiliation(s)
- Serazhutdin Abdullaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
- Correspondence: ; Tel.: +7-(4967)-739364; Fax: +7-(4967)-330553
| | - Nina Gubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
| | - Tatiana Bulanova
- Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| | - Azhub Gaziev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
- Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| |
Collapse
|
34
|
Yokota Y, Wada Y, Funayama T. Distinct modes of death in human neural stem and glioblastoma cells irradiated with carbon-ion radiation and gamma-rays. Int J Radiat Biol 2019; 96:172-178. [PMID: 31633435 DOI: 10.1080/09553002.2020.1683639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Accumulated damage in neural stem cells (NSCs) during brain tumor radiotherapy causes cognitive dysfunction to the patients. Carbon-ion radiotherapy can reduce undesired irradiation of normal tissues more efficiently than conventional photon radiotherapy. This study elucidates the responses of NSCs to carbon-ion radiation.Methods: Human NSCs and glioblastoma A-172 cells were irradiated with carbon-ion radiation and γ-rays, which have different linear-energy-transfer (LET) values of 108 and 0.2 keV/μm, respectively. After irradiation, growth rates were measured, apoptotic cells were detected by flow cytometry, and DNA synthesizing cells were immunocytochemically visualized.Results: Growth rates of NSCs and A-172 cells were decreased after irradiation. The percentages of apoptotic cells were remarkably increased in NSCs but not in A-172 cells. In contrast, the fractions of DNA synthesizing A-172 cells were decreased in a dose-dependent manner. These results indicate that apoptosis induction and DNA synthesis inhibition contribute to the growth inhibition of NSCs and glioblastoma cells, respectively. In addition, high-LET carbon ions induced more profound effects than low-LET γ-rays.Conclusions: Apoptosis is an important clinical target to protect NSCs during brain tumor radiotherapy using carbon-ion radiation as well as conventional X-rays.
Collapse
Affiliation(s)
- Yuichiro Yokota
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Japan
| | - Yutaka Wada
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Japan
| | - Tomoo Funayama
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Japan
| |
Collapse
|
35
|
Michaelidesová A, Konířová J, Bartůněk P, Zíková M. Effects of Radiation Therapy on Neural Stem Cells. Genes (Basel) 2019; 10:E640. [PMID: 31450566 PMCID: PMC6770913 DOI: 10.3390/genes10090640] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Brain and nervous system cancers in children represent the second most common neoplasia after leukemia. Radiotherapy plays a significant role in cancer treatment; however, the use of such therapy is not without devastating side effects. The impact of radiation-induced damage to the brain is multifactorial, but the damage to neural stem cell populations seems to play a key role. The brain contains pools of regenerative neural stem cells that reside in specialized neurogenic niches and can generate new neurons. In this review, we describe the advances in radiotherapy techniques that protect neural stem cell compartments, and subsequently limit and prevent the occurrence and development of side effects. We also summarize the current knowledge about neural stem cells and the molecular mechanisms underlying changes in neural stem cell niches after brain radiotherapy. Strategies used to minimize radiation-related damages, as well as new challenges in the treatment of brain tumors are also discussed.
Collapse
Affiliation(s)
- Anna Michaelidesová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Radiation Dosimentry, Nuclear Physics Institute of the Czech Academy of Sciences, v. v. i., Na Truhlářce 39/64, 180 00 Prague 8, Czech Republic
| | - Jana Konířová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Radiation Dosimentry, Nuclear Physics Institute of the Czech Academy of Sciences, v. v. i., Na Truhlářce 39/64, 180 00 Prague 8, Czech Republic
| | - Petr Bartůněk
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Martina Zíková
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
36
|
Cucinotta FA, Cacao E. Risks of cognitive detriments after low dose heavy ion and proton exposures. Int J Radiat Biol 2019; 95:985-998. [PMID: 31120359 PMCID: PMC6606350 DOI: 10.1080/09553002.2019.1623427] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Purpose: Heavy ion and proton brain irradiations occur during space travel and in Hadron therapy for cancer. Heavy ions produce distinct patterns of energy deposition in neuron cells and brain tissues compared to X-rays leading to large uncertainties in risk estimates. We make a critical review of findings from research studies over the last 25 years for understanding risks at low dose. Conclusions: A large number of mouse and rat cognitive testing measures have been reported for a variety of particle species and energies for acute doses. However, tissue reactions occur above dose thresholds and very few studies were performed at the heavy ion doses to be encountered on space missions (<0.04 Gy/y) or considered dose-rate effects, such that threshold doses are not known in rodent models. Investigations of possible mechanisms for cognitive changes have been limited by experimental design with largely group specific and not subject specific findings reported. Persistent oxidative stress and activated microglia cells are common mechanisms studied, while impairment of neurogenesis, detriments in neuron morphology, and changes to gene and protein expression were each found to be important in specific studies. Future research should focus on estimating threshold doses carried out with experimental designs aimed at understating causative mechanisms, which will be essential for extrapolating rodent findings to humans and chronic radiation scenarios, while establishing if mitigation are needed.
Collapse
|
37
|
Molinos C, Sasser T, Salmon P, Gsell W, Viertl D, Massey JC, Mińczuk K, Li J, Kundu BK, Berr S, Correcher C, Bahadur A, Attarwala AA, Stark S, Junge S, Himmelreich U, Prior JO, Laperre K, Van Wyk S, Heidenreich M. Low-Dose Imaging in a New Preclinical Total-Body PET/CT Scanner. Front Med (Lausanne) 2019; 6:88. [PMID: 31131277 PMCID: PMC6509903 DOI: 10.3389/fmed.2019.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation constitutes a health risk to imaging scientists and study animals. Both PET and CT produce ionizing radiation. CT doses in pre-clinical in vivo imaging typically range from 50 to 1,000 mGy and biological effects in mice at this dose range have been previously described. [18F]FDG body doses in mice have been estimated to be in the range of 100 mGy for [18F]FDG. Yearly, the average whole body doses due to handling of activity by PET technologists are reported to be 3–8 mSv. A preclinical PET/CT system is presented with design features which make it suitable for small animal low-dose imaging. The CT subsystem uses a X-source power that is optimized for small animal imaging. The system design incorporates a spatial beam shaper coupled with a highly sensitive flat-panel detector and very fast acquisition (<10 s) which allows for whole body scans with doses as low as 3 mGy. The mouse total-body PET subsystem uses a detector architecture based on continuous crystals, coupled to SiPM arrays and a readout based in rows and columns. The PET field of view is 150 mm axial and 80 mm transaxial. The high solid-angle coverage of the sample and the use of continuous crystals achieve a sensitivity of 9% (NEMA) that can be leveraged for use of low tracer doses and/or performing rapid scans. The low-dose imaging capabilities of the total-body PET subsystem were tested with NEMA phantoms, in tumor models, a mouse bone metabolism scan and a rat heart dynamic scan. The CT imaging capabilities were tested in mice and in a low contrast phantom. The PET low-dose phantom and animal experiments provide evidence that image quality suitable for preclinical PET studies is achieved. Furthermore, CT image contrast using low dose scan settings was suitable as a reference for PET scans. Total-body mouse PET/CT studies could be completed with total doses of <10 mGy.
Collapse
Affiliation(s)
- Cesar Molinos
- Bruker BioSpin, Preclinical Imaging, Ettlingen, Germany
| | - Todd Sasser
- Bruker BioSpin, Preclinical Imaging, Ettlingen, Germany
| | - Phil Salmon
- Bruker BioSpin, Preclinical Imaging, Ettlingen, Germany
| | | | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - James C Massey
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Krzysztof Mińczuk
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Jie Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Bijoy K Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Stuart Berr
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | | | - Ali Bahadur
- Bruker BioSpin, Preclinical Imaging, Ettlingen, Germany
| | | | - Simon Stark
- Bruker BioSpin, Preclinical Imaging, Ettlingen, Germany
| | - Sven Junge
- Bruker BioSpin, Preclinical Imaging, Ettlingen, Germany
| | | | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Kjell Laperre
- Bruker BioSpin, Preclinical Imaging, Ettlingen, Germany
| | | | | |
Collapse
|
38
|
Prado A, Milanés AI, Cabello E, Díaz R, Ferrando A, Pozo G, Leonor M, Manzano M. Dosimetric Comparison of Four Volumetric-Modulated Arc Therapy Beam Arrangements Utilized for Hippocampal-Sparing Whole-Brain Radiation Therapy. J Med Phys 2019; 44:1-8. [PMID: 30983764 PMCID: PMC6438050 DOI: 10.4103/jmp.jmp_56_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 11/28/2022] Open
Abstract
PURPOSE In the present study, the performance of four VMAT beam arrangements used for hippocampal-sparing whole-brain radiation therapy is addressed. MATERIAL AND METHODS Data corresponding to 20 patients were utilized so as to generate plans for every beam configuration. A preliminary study was conducted to assess the optimal distance between optimization structures (PTVx) and hippocampi. V25, V30, D50%, D2%, D98%, homogeneity index (HI) and Paddick conformity factor (CF) were evaluated for PTV. D100% and Dmax were considered for hippocampi. All plans were required to perform at least as recommended in RTOG 0933 trial regarding organs at risk (OAR) sparing and PTV objectives. RESULTS Considerable hippocampi sparing alongside with a reasonably low decrease in PTV coverage was achieved using a 7 mm distance between hippocampi and PTV optimization structure. Beam setup 3 (comprised of two full arcs with 0° couch angle and two half arcs with 90° couch angle) achieved the best PTV coverage, HI and CF, while it performed the second-best sparing in hippocampi and lenses. Moreover, beam setup 3 was the second-fastest treatment, although it resulted in the highest number of delivered MU among all beam setups. Beam setup 1 (comprised of two full arcs with no couch angles) was the fastest and it delivered a significantly less amount of monitor units compared with the other beam setups evaluated. Furthermore, a higher robustness was obtained by using no couch angles. Although beam setup 1 was the least optimal considering OAR sparing, it still performed better than required in the RTOG 0933 trial. CONCLUSIONS Overall, beam setup 3 was considered to be the best. It is worth mentioning that, apart from our results, the election of one of these beam arrangements might be dependent on the amount of patient workload at a specific institution.
Collapse
Affiliation(s)
- Alejandro Prado
- Department of Medical Physics and Radiation Protection, University Hospital 12 de Octubre, Madrid, Spain
| | - Ana Isabel Milanés
- Department of Medical Physics and Radiation Protection, University Hospital 12 de Octubre, Madrid, Spain
| | - Eduardo Cabello
- Department of Medical Physics and Radiation Protection, University Hospital 12 de Octubre, Madrid, Spain
| | - Raúl Díaz
- Department of Medical Physics and Radiation Protection, University Hospital 12 de Octubre, Madrid, Spain
| | - Alejandro Ferrando
- Department of Medical Physics and Radiation Protection, University Hospital 12 de Octubre, Madrid, Spain
| | - Gustavo Pozo
- Department of Medical Physics and Radiation Protection, University Hospital 12 de Octubre, Madrid, Spain
| | - Mario Leonor
- Department of Medical Physics and Radiation Protection, University Hospital 12 de Octubre, Madrid, Spain
| | - Marta Manzano
- Department of Medical Physics and Radiation Protection, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
39
|
Cacao E, Kapukotuwa S, Cucinotta FA. Modeling Reveals the Dependence of Hippocampal Neurogenesis Radiosensitivity on Age and Strain of Rats. Front Neurosci 2018; 12:980. [PMID: 30618596 PMCID: PMC6306485 DOI: 10.3389/fnins.2018.00980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction following radiation treatment for brain cancers in both children and adults have been correlated to impairment of neurogenesis in the hippocampal dentate gyrus. Various species and strains of rodent models have been used to study radiation-induced changes in neurogenesis and these investigations have utilized only a limited number of doses, dose-fractions, age and time after exposures conditions. In this paper, we have extended our previous mathematical model of radiation-induced hippocampal neurogenesis impairment of C57BL/6 mice to delineate the time, age, and dose dependent alterations in neurogenesis of a diverse strain of rats. To the best of our knowledge, this is the first predictive mathematical model to be published about hippocampal neurogenesis impairment for a variety of rat strains after acute or fractionated exposures to low linear energy transfer (low LET) radiation, such as X-rays and γ-rays, which are conventionally used in cancer radiation therapy. We considered four compartments to model hippocampal neurogenesis and its impairment following radiation exposures. Compartments include: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN), and (4) glioblasts (GB). Additional consideration of dose and time after irradiation dependence of microglial activation and a possible shift of NSC proliferation from neurogenesis to gliogenesis at higher doses is established. Using a system of non-linear ordinary differential equations (ODEs), characterization of rat strain and age-related dynamics of hippocampal neurogenesis for unirradiated and irradiated conditions is developed. The model is augmented with the description of feedback regulation on early and late neuronal proliferation following radiation exposure. Predictions for dose-fraction regimes compared to acute radiation exposures, along with the dependence of neurogenesis sensitivity to radiation on age and strain of rats are discussed. A major result of this work is predictions of the rat strain and age dependent differences in radiation sensitivity and sub-lethal damage repair that can be used for predictions for arbitrary dose and dose-fractionation schedules.
Collapse
Affiliation(s)
| | | | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
40
|
Grosshans DR, Duman JG, Gaber MW, Sawakuchi G. Particle Radiation Induced Neurotoxicity in the Central Nervous System. Int J Part Ther 2018; 5:74-83. [PMID: 31773021 DOI: 10.14338/ijpt-18-00026.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/16/2018] [Indexed: 11/21/2022] Open
Abstract
For patients with primary or metastatic brain tumors, radiation therapy plays a central role in treatment. However, despite its efficacy, cranial radiation is associated with a range of side effects ranging from mild cognitive impairment to overt brain necrosis. Given the negative effects on patient quality of life, radiation-induced neurotoxicities have been the subject of intense study for decades. Photon-based therapy has been and largely remains the standard of care for the treatment of brain tumors. This is particularly true for patients with metastatic tumors who may need treatment to the whole brain or those with very aggressive tumors and a limited life expectancy. Particle therapy is now becoming more widely available for clinical use with the two most common particles used being protons and carbon ions. For patients with favorable prognoses, particularly childhood brain tumors, proton therapy is increasingly used for treatment. This is, in part, driven by the desire to reduce the potential for radiation-induced side effects, including lasting cognitive impairment, which may potentially be achieved by reducing dose to normal tissues using the unique physical properties of particle therapy. There is also interest in using carbon ion therapy for the treatment of aggressive brain tumors, as this form of particle therapy not only spares normal tissues but may also improve tumor control. The biological effects of particle therapy, both proton and carbon, may differ substantially from those of photon radiation. In this review, we briefly describe the unique physical properties of particle therapy that produce differential biological effects. Focusing on the effects of various radiation types on brain parenchyma, we then describe biological effects and potential mechanisms underlying these, comparing to photon studies and highlighting potential clinical implications.
Collapse
Affiliation(s)
- David R Grosshans
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - M Waleed Gaber
- Department of Pediatrics, Texas Children's Cancer Center, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Osato K, Sato Y, Osato A, Sato M, Zhu C, Leist M, Kuhn HG, Blomgren K. Carbamylated Erythropoietin Decreased Proliferation and Neurogenesis in the Subventricular Zone, but Not the Dentate Gyrus, After Irradiation to the Developing Rat Brain. Front Neurol 2018; 9:738. [PMID: 30258396 PMCID: PMC6143677 DOI: 10.3389/fneur.2018.00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Cranial radiotherapy for pediatric brain tumors causes progressive, debilitating late effects, including cognitive decline. Erythropoietin (EPO) has been shown to be neuroprotective and to promote neuroregeneration. Carbamylated erythropoietin (CEPO) retains the protective properties of EPO but is not erythrogenic. To study the effects of CEPO on the developing brain exposed to radiotherapy, a single irradiation (IR) dose of 6 Gy was administered to the brains of postnatal day 9 (P9) rats, and CEPO (40 μg/kg s.c.) was injected on P8, P9, P11, P13, and P15. To examine proliferation, 5-Bromo-2-deoxyuridine (BrdU) was injected on P15, P16, and P17. CEPO administration did not affect BrdU incorporation in the granule cell layer (GCL) of the hippocampus or in the subventricular zone (SVZ) as quantified 7 days after the last BrdU injection, whereas IR decreased BrdU incorporation in the GCL and SVZ by 63% and 18%, respectively. CEPO did not affect BrdU incorporation in the GCL of irradiated brains, although it was reduced even further (to 31%) in the SVZ. To evaluate the effect of CEPO on neurogenesis, BrdU/doublecortin double-positive cells were quantified. CEPO did not affect neurogenesis in non-irradiated brains, whereas IR decreased neurogenesis by 58% in the dentate gyrus (DG) but did not affect it in the SVZ. In the DG, CEPO did not affect the rate of neurogenesis following IR, whereas in the SVZ, the rate decreased by 30% following IR compared with the rate in vehicle-treated rats. Neither CEPO nor IR changed the number of microglia. In summary, CEPO did not promote neurogenesis in non-irradiated or irradiated rat brains and even aggravated the decreased neurogenesis in the SVZ. This raises concerns regarding the use of EPO-related compounds following radiotherapy.
Collapse
Affiliation(s)
- Kazuhiro Osato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Yoshiaki Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akari Osato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Machiko Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Narita Hospital, Nagoya, Japan
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcel Leist
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hans G. Kuhn
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Tong J, Li J, Zhang QS, Yang JK, Zhang L, Liu HY, Liu YZ, Yuan JW, Su XM, Zhang XX, Jiao BH. Delayed cognitive deficits can be alleviated by calcium antagonist nimodipine by downregulation of apoptosis following whole brain radiotherapy. Oncol Lett 2018; 16:2525-2532. [PMID: 30013647 PMCID: PMC6036595 DOI: 10.3892/ol.2018.8968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/29/2018] [Indexed: 01/30/2023] Open
Abstract
Radiation therapy is important for the comprehensive treatment of intracranial tumors. However, the molecular mechanisms underlying the pathogenesis of delayed cognitive dysfunction are not well-defined and effective treatments or prevention measures remain insufficient. In the present study, 60 adult male Wistar rats were randomly divided into three groups, which included a control, whole brain radiotherapy (WBRT) (single dose of 30 Gy of WBRT) and nimodipine (single dose of 30 Gy of WBRT followed by nimodipine injection intraperitoneally) groups. The rats were sacrificed 7 days or 3 months following irradiation. At 3 months, the Morris water maze test was used to assess spatial learning and memory function in rats. The results demonstrated that the WBRT group demonstrated a significantly impaired cognitive performance, decreased numbers of hippocampal Cornu Ammonis (CA)1 neurons and upregulated expression of caspase-3 in the dentate gyrus compared with those in the control and nimodipine groups. Reverse transcription-quantitative polymerase chain reaction analysis demonstrated that the WBRT group exhibited increased ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 compared with that in control and nimodipine groups on day 7 following irradiation. However, the WBRT group exhibited decreased levels of brain-derived neurotrophic factor (BDNF) compared with that in control and nimodipine groups at 3 months following brain irradiation. The levels of growth-associated protein 43 and amyloid precursor protein between the nimodipine group and WBRT group were not statistically significant. The present study demonstrated that neuron apoptosis may lead to delayed cognitive deficits in the hippocampus, in response to radiotherapy. The cognitive impairment may be alleviated in response to a calcium antagonist nimodipine. The molecular mechanisms involved in nimodipine-mediated protection against cognitive decline may involve the regulation of Bax/Bcl-2 and BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jing Tong
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Juan Li
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Qiu-Shi Zhang
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lei Zhang
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hai-Ying Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ying-Zi Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jiang-Wei Yuan
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xu-Ming Su
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xue-Xin Zhang
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Bao-Hua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
43
|
Padovani L, Chapon F, André N, Boucekine M, Geoffray A, Bourdeau F, Masliah-Planchon J, Claude L, Huchet A, Laprie A, Supiot S, Coche-Dequéant B, Kerr C, Alapetite C, Leseur J, Nguyen T, Chapet S, Bernier V, Bondiau PY, Noel G, Habrand JL, Bolle S, Doz F, Dufour C, Muracciole X, Carrie C. Hippocampal Sparing During Craniospinal Irradiation: What Did We Learn About the Incidence of Perihippocampus Metastases? Int J Radiat Oncol Biol Phys 2018; 100:980-986. [DOI: 10.1016/j.ijrobp.2017.12.265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023]
|
44
|
Galinato MH, Takashima Y, Fannon MJ, Quach LW, Morales Silva RJ, Mysore KK, Terranova MJ, Dutta RR, Ostrom RW, Somkuwar SS, Mandyam CD. Neurogenesis during Abstinence Is Necessary for Context-Driven Methamphetamine-Related Memory. J Neurosci 2018; 38:2029-2042. [PMID: 29363584 PMCID: PMC5824740 DOI: 10.1523/jneurosci.2011-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Abstinence from methamphetamine addiction enhances proliferation and differentiation of neural progenitors and increases adult neurogenesis in the dentate gyrus (DG). We hypothesized that neurogenesis during abstinence contributes to context-driven drug-seeking behaviors. To test this hypothesis, the pharmacogenetic rat model (GFAP-TK rats) was used to conditionally and specifically ablate neurogenesis in the DG. Male GFAP-TK rats were trained to self-administer methamphetamine or sucrose and were administered the antiviral drug valganciclovir (Valcyte) to produce apoptosis of actively dividing GFAP type 1 stem-like cells to inhibit neurogenesis during abstinence. Hippocampus tissue was stained for Ki-67, NeuroD, and DCX to measure levels of neural progenitors and immature neurons, and was stained for synaptoporin to determine alterations in mossy fiber tracts. DG-enriched tissue punches were probed for CaMKII to measure alterations in plasticity-related proteins. Whole-cell patch-clamp recordings were performed in acute brain slices from methamphetamine naive (controls) and methamphetamine experienced animals (+/-Valcyte). Spontaneous EPSCs and intrinsic excitability were recorded from granule cell neurons (GCNs). Reinstatement of methamphetamine seeking enhanced autophosphorylation of CaMKII, reduced mossy fiber density, and induced hyperexcitability of GCNs. Inhibition of neurogenesis during abstinence prevented context-driven methamphetamine seeking, and these effects correlated with reduced autophosphorylation of CaMKII, increased mossy fiber density, and reduced the excitability of GCNs. Context-driven sucrose seeking was unaffected. Together, the loss-of-neurogenesis data demonstrate that neurogenesis during abstinence assists with methamphetamine context-driven memory in rats, and that neurogenesis during abstinence is essential for the expression of synaptic proteins and plasticity promoting context-driven drug memory.SIGNIFICANCE STATEMENT Our work uncovers a mechanistic relationship between neurogenesis in the dentate gyrus and drug seeking. We report that the suppression of excessive neurogenesis during abstinence from methamphetamine addiction by a confirmed phamacogenetic approach blocked context-driven methamphetamine reinstatement and prevented maladaptive changes in expression and activation of synaptic proteins and basal synaptic function associated with learning and memory in the dentate gyrus. Our study is the first to demonstrate an interesting and dysfunctional role of adult hippocampal neurogenesis during abstinence to drug-seeking behavior in animals self-administering escalating amounts of methamphetamine. Together, these results support a direct role for the importance of adult neurogenesis during abstinence in compulsive-like drug reinstatement.
Collapse
Affiliation(s)
- Melissa H Galinato
- Departments of Neuroscience
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| | - Yoshio Takashima
- Anesthesiology, University of California San Diego, San Diego, California 92093
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - McKenzie J Fannon
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Leon W Quach
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | | | - Karthik K Mysore
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Michael J Terranova
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Rahul R Dutta
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| | - Ryan W Ostrom
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Sucharita S Somkuwar
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Chitra D Mandyam
- Departments of Neuroscience,
- Anesthesiology, University of California San Diego, San Diego, California 92093
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
45
|
The effect of well-characterized, very low-dose x-ray radiation on fibroblasts. PLoS One 2018; 13:e0190330. [PMID: 29300773 PMCID: PMC5754078 DOI: 10.1371/journal.pone.0190330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial “pause” in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.
Collapse
|
46
|
The inhibitory effect of minocycline on radiation-induced neuronal apoptosis via AMPKα1 signaling-mediated autophagy. Sci Rep 2017; 7:16373. [PMID: 29180765 PMCID: PMC5703722 DOI: 10.1038/s41598-017-16693-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Due to an increasing concern about radiation-induced cognitive deficits for brain tumor patients receiving radiation therapy, developing and evaluating countermeasures has become inevitable. Our previous study has found that minocycline, a clinical available antibiotics that can easily cross the blood brain barrier, mitigates radiation-induced long-term memory loss in rats, accompanied by decreased hippocampal neuron apoptosis. Thus, in the present study, we report an unknown mechanism underlying the neuroprotective effect of minocycline. We demonstrated that minocycline prevented primary neurons from radiation-induced apoptosis and promoted radiation-induced autophagy in vitro. Moreover, using an immortalized mouse hippocampal neuronal cell line, HT22 cells, we found that the protective effect of minocycline on irradiated HT22 cells was not related to DNA damage repair since minocycline did not facilitate DNA DSB repair in irradiated HT22 cells. Further investigation showed that minocycline significantly enhanced X-irradiation-induced AMPKα1 activation and autophagy, thus resulting in decreased apoptosis. Additionally, although the antioxidant potential of minocycline might contribute to its apoptosis-inhibitory effect, it was not involved in its enhancive effect on radiation-induced AMPKα1-mediated autophagy. Taken together, we have revealed a novel mechanism for the protective effect of minocycline on irradiated neurons, e.g. minocycline protects neurons from radiation-induced apoptosis via enhancing radiation-induced AMPKα1-mediated autophagy.
Collapse
|
47
|
Kalm M, Andreasson U, Björk-Eriksson T, Zetterberg H, Pekny M, Blennow K, Pekna M, Blomgren K. C3 deficiency ameliorates the negative effects of irradiation of the young brain on hippocampal development and learning. Oncotarget 2017; 7:19382-94. [PMID: 27029069 PMCID: PMC4991390 DOI: 10.18632/oncotarget.8400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3−/−) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3−/− and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3−/− mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3−/− mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3−/− mice after IR. Notably, months after IR C3−/− and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.
Collapse
Affiliation(s)
- Marie Kalm
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Affiliation(s)
- Philippe Taupin
- National Neuroscience Institute, Singapore
- National University of Singapore
- Nanyang Technological University, Singapore
| |
Collapse
|
49
|
Xu M, Fan Q, Zhang J, Chen Y, Xu R, Chen L, Zhao P, Tian Y. NFAT3/c4-mediated excitotoxicity in hippocampal apoptosis during radiation-induced brain injury. JOURNAL OF RADIATION RESEARCH 2017; 58:827-833. [PMID: 28992110 PMCID: PMC5710526 DOI: 10.1093/jrr/rrx041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 05/09/2023]
Abstract
Whole brain irradiation (WBI) has become an indispensible tool in the treatment of head and neck cancer, and it has greatly improved patient survival rate and total survival time. In addition, prophylactic cranial irradiation (PCI) has dramatically decreased the incidence of brain metastatic carcinoma. However, WBI may induce temporary functional deficits or even progressive, irreversible cognitive dysfunction that compromises the quality of life for survivors. Unfortunately, the exact molecular mechanisms for cognitive damage remain elusive, and no treatment or preventative measures are available for use in the clinic. In the present study, the nuclear factor of activated T cells isoform 4 (NFAT3/c4) was found to play a vital role in excitotoxic hippocampus cell apoptosis induced by radiation. Sprague-Dawley (SD) rats received 20 Gy WBI, after which we detected NFAT3/c4-mediated excitotoxicity. We found that radiation caused hippocampus excitotoxicity, resulting from overactivation of the N-methyl-D-aspartate receptor (NMDAR) and always accompanied by subsequent elevation of the intracellular calcium level and activation of calcineurin (CaN). P-NFAT3/c4 was the principal downstream target of CaN, including regulation of its nuclear translocation as well as transcriptional activities. Radiation recruited NMDAR/NFAT3/c4 activation and subsequent Bax induction in hippocampus cells. Once treated with the NFAT3/c4 inhibitor 11R-VIVIT peptide pre-irradiation, hippocampal proliferation and neuron survival (dentate gyrus cells in particular) were protected from radiation-induced injury, resulting in inhibition of the apoptosis marker Bax. Our principal aim was to illuminate the role of NFAT3/c4-mediated excitotoxicity in hippocampal apoptosis during radiation-induced brain injury. This study is the first time that radiation-induced activation of NFAT3/c4 has been recorded, and our results suggest that NFAT3/c4 may be a novel target for prevention and treatment of radiation-induced brain injury.
Collapse
Affiliation(s)
- Meiling Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
| | - Qiuhong Fan
- Institute of Radiotherapy & Oncology, Soochow University
| | - Junjun Zhang
- Suzhou Key Laboratory for Radiation Oncology, San Xiang Road No. 1055, Suzhou 215004, China
| | - Yanfang Chen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
| | - Ruizhe Xu
- Institute of Radiotherapy & Oncology, Soochow University
| | - Liesong Chen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
| | - Peifeng Zhao
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
- Corresponding author. Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China. Tel.: +86-512-6778-3430; Fax: +86-512-6828-4303; E-mail:
| |
Collapse
|
50
|
Menzel F, Kaiser N, Haehnel S, Rapp F, Patties I, Schöneberg N, Haimon Z, Immig K, Bechmann I. Impact of X-irradiation on microglia. Glia 2017; 66:15-33. [DOI: 10.1002/glia.23239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nicole Kaiser
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Susann Haehnel
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Felicitas Rapp
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ina Patties
- Department of Radiation Therapy; Leipzig University; Leipzig Germany
| | | | - Zhana Haimon
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Kerstin Immig
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University; Leipzig Germany
| |
Collapse
|