1
|
Blandin KJ, Narvaiz DA, Sullens DG, Womble PD, Hodges SL, Binder MS, Faust A, Nguyen PH, Pranske ZJ, Lugo JN. A Two-Hit Approach Inducing Flurothyl Seizures in Fmr1 Knockout Mice Impacts Anxiety and Repetitive Behaviors. Brain Sci 2024; 14:892. [PMID: 39335388 PMCID: PMC11429635 DOI: 10.3390/brainsci14090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) is the leading monogenetic cause of autism spectrum disorder (ASD) and is associated with seizures. We examined the impact of repeated seizures on the behavioral and molecular changes in male Fmr1 knockout (KO) mice and wild-type (WT) mice. METHODS Seizures were induced by administering three flurothyl seizures per day across postnatal days (PD) 7-11, for a total of 15 seizures. In adulthood, mice were tested in a battery of behavioral tasks to assess long-term behavioral deficits. RESULTS The two-hit impact of a Fmr1 knockout and seizures resulted in decreased anxiety-like behavior in the elevated plus maze test and a longer latency to their first nose poke (repetitive behavior). Seizures resulted in decreased activity, decreased repetitive behavior (grooming and rearings), and decreased social behavior, while they also increased habituation to auditory stimuli and increased freezing in delayed fear conditioning in both KO and control mice. KO mice displayed increased repetitive behavior in the open field task (clockwise revolutions) and repeated nose pokes, and decreased anxiety in the open field test. No differences in mTOR signaling were found. CONCLUSIONS These findings further illuminate the long-term effects of synergistic impact of two hits on the developing brain.
Collapse
Affiliation(s)
- Katherine J Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - David A Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Samantha L Hodges
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew S Binder
- Department of Neurosurgery, Yale University School of Medicine, East Haven, CT 06520, USA
| | - Amanda Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Phuoc H Nguyen
- Department of Neuroscience, University of Maryland, Baltimore, MD 20742, USA
| | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
2
|
Volianskis R, Lundbye CJ, Petroff GN, Jane DE, Georgiou J, Collingridge GL. Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230484. [PMID: 38853552 PMCID: PMC11343313 DOI: 10.1098/rstb.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Camilla J. Lundbye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gillian N. Petroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - David. E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, BristolBS11 0QL, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
3
|
Abstract
The fragile X-related disorders are an important group of hereditary disorders that are caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene or by mutations in the coding sequence of this gene. Two categories of pathological CGG repeats are associated with these disorders, full mutation alleles and shorter premutation alleles. Individuals with full mutation alleles develop fragile X syndrome, which causes autism and intellectual disability, whereas those with premutation alleles, which have shorter CGG expansions, can develop fragile X-associated tremor/ataxia syndrome, a progressive neurodegenerative disease. Thus, fragile X-related disorders can manifest as neurodegenerative or neurodevelopmental disorders, depending on the size of the repeat expansion. Here, we review mouse models of fragile X-related disorders and discuss how they have informed our understanding of neurodegenerative and neurodevelopmental disorders. We also assess the translational value of these models for developing rational targeted therapies for intellectual disability and autism disorders.
Collapse
Affiliation(s)
- Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| | - R. Frank Kooy
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
4
|
Fernandes G, Mishra PK, Nawaz MS, Donlin-Asp PG, Rahman MM, Hazra A, Kedia S, Kayenaat A, Songara D, Wyllie DJA, Schuman EM, Kind PC, Chattarji S. Correction of amygdalar dysfunction in a rat model of fragile X syndrome. Cell Rep 2021; 37:109805. [PMID: 34644573 DOI: 10.1016/j.celrep.2021.109805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
Fragile X syndrome (FXS), a commonly inherited form of autism and intellectual disability, is associated with emotional symptoms that implicate dysfunction of the amygdala. However, current understanding of the pathogenesis of the disease is based primarily on studies in the hippocampus and neocortex, where FXS defects have been corrected by inhibiting group I metabotropic glutamate receptors (mGluRs). Here, we observe that activation, rather than inhibition, of mGluRs in the basolateral amygdala reverses impairments in a rat model of FXS. FXS rats exhibit deficient recall of auditory conditioned fear, which is accompanied by a range of in vitro and in vivo deficits in synaptic transmission and plasticity. We find presynaptic mGluR5 in the amygdala, activation of which reverses deficient synaptic transmission and plasticity, thereby restoring normal fear learning in FXS rats. This highlights the importance of modifying the prevailing mGluR-based framework for therapeutic strategies to include circuit-specific differences in FXS pathophysiology.
Collapse
Affiliation(s)
- Giselle Fernandes
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Pradeep K Mishra
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Mohammad Sarfaraz Nawaz
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | | | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anupam Hazra
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Sonal Kedia
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Aiman Kayenaat
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; University of Transdisciplinary Health Sciences and Technology, Bangalore 560064, India
| | - Dheeraj Songara
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - David J A Wyllie
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Peter C Kind
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sumantra Chattarji
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
5
|
Fyke W, Alarcon JM, Velinov M, Chadman KK. Pharmacological inhibition of the primary endocannabinoid producing enzyme, DGL-α, induces autism spectrum disorder-like and co-morbid phenotypes in adult C57BL/J mice. Autism Res 2021; 14:1375-1389. [PMID: 33886158 DOI: 10.1002/aur.2520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Accumulating evidence links dysfunction in the endocannabinoid system (ECS) with the pathology of neurodevelopmental disorders, particularly autism spectrum disorder (ASD). Variants in ECS genes CNR1 and DAGLA are associated with neurological phenotypes in humans. The endocannabinoids (eCBs), 2-AG and AEA, which act at the primary cannabinoid receptor (CB1), mediate behaviors relevant to neurodevelopmental disorders. The overlap between these eCBs is poorly understood. Most ECS studies have focused on stress responses, anxiety, and epilepsy, however, its role in social behavior and communication has only recently come under investigation. This represents a critical gap in our understanding of the ECS and its relationship to ASD. Furthermore, the increasing prevalence of ASD and a lack of therapeutics emphasize a crucial need for novel therapeutic targets. To this aim, we used an inhibitor of the eCB producing enzyme DGL-α, DO34, and the CB1 inverse agonist, rimonabant, to evaluate the role of the primary eCB, 2-AG, in ASD. Adult male C57BL/6J mice were used in a series of behavioral paradigms which assessed social behavior, social communication, repetitive behaviors, anxiety and locomotor activity. DO34 and rimonabant increased anxiety-like behavior, while only DO34 induced hyperactivity, social deficits, and repetitive self-grooming behavior. These data indicate that reduced 2-AG bioavailability, or CB1 inhibition, each induce unique respective behavioral phenotypes relevant to neurodevelopmental disorders, particularly ASD. This suggests fundamental differences in CB1 signaling via 2-AG and the CB1 receptor itself, particularly for social behaviors, and that 2-AG signaling may represent a target for the development of novel therapeutics. LAY SUMMARY: Endocannabinoids play a critical role in the developing nervous system. Alterations in the endocannabinoid system are linked to neurodevelopmental disorders. Studies suggest these variants may play a critical role in the core symptoms of autism spectrum disorder. In this study, pharmacological inhibition of the primary endocannabinoid producing enzyme, DGL-α, induced a constellation of deficits in behavioral domains associated with autism.
Collapse
Affiliation(s)
- William Fyke
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, USA.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA.,George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, USA
| | - Juan Marcos Alarcon
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA.,Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Milen Velinov
- George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, USA
| | - Kathryn K Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, USA
| |
Collapse
|
6
|
Feuge J, Scharkowski F, Michaelsen-Preusse K, Korte M. FMRP Modulates Activity-Dependent Spine Plasticity by Binding Cofilin1 mRNA and Regulating Localization and Local Translation. Cereb Cortex 2020; 29:5204-5216. [PMID: 30953439 DOI: 10.1093/cercor/bhz059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Multiple variants of intellectual disability, e.g., the Fragile X Syndrome are associated with alterations in dendritic spine morphology, thereby pointing to dysregulated actin dynamics during development and processes of synaptic plasticity. Surprisingly, although the necessity of spine actin remodeling was demonstrated repeatedly, the importance and precise role of actin regulators is often undervalued. Here, we provide evidence that structural and functional plasticity are severely impaired after NMDAR-dependent LTP in the hippocampus of Fmr1 KO mice. We can link these defects to an aberrant activity-dependent regulation of Cofilin 1 (cof1) as activity-dependent modulations of local cof1 mRNA availability, local cof1 translation as well as total cof1 expression are impaired in the absence of FMRP. Finally, we can rescue activity-dependent structural plasticity in KO neurons by mimicking the regulation of cof1 observed in WT cells, thereby illustrating the potential of actin modulators to provide novel treatment strategies for the Fragile X Syndrome.
Collapse
Affiliation(s)
- Jonas Feuge
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany
| | | | | | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany.,Helmholtz Center for Infection Research, Research group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| |
Collapse
|
7
|
Kennedy T, Rinker D, Broadie K. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model. BMC Biol 2020; 18:94. [PMID: 32731855 PMCID: PMC7392683 DOI: 10.1186/s12915-020-00817-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neural circuits are initially assembled during development when neurons synapse with potential partners and later refined as appropriate connections stabilize into mature synapses while inappropriate contacts are eliminated. Disruptions to this synaptogenic process impair connectivity optimization and can cause neurodevelopmental disorders. Intellectual disability (ID) and autism spectrum disorder (ASD) are often characterized by synaptic overgrowth, with the maintenance of immature or inappropriate synapses. Such synaptogenic defects can occur through mutation of a single gene, such as fragile X mental retardation protein (FMRP) loss causing the neurodevelopmental disorder fragile X syndrome (FXS). FXS represents the leading heritable cause of ID and ASD, but many other genes that play roles in ID and ASD have yet to be identified. RESULTS In a Drosophila FXS disease model, one dfmr150M null mutant stock exhibits previously unreported axonal overgrowths at developmental and mature stages in the giant fiber (GF) escape circuit. These excess axon projections contain both chemical and electrical synapse markers, indicating mixed synaptic connections. Extensive analyses show these supernumerary synapses connect known GF circuit neurons, rather than new, inappropriate partners, indicating hyperconnectivity within the circuit. Despite the striking similarities to well-characterized FXS synaptic defects, this new GF circuit hyperconnectivity phenotype is driven by genetic background mutations in this dfmr150M stock. Similar GF circuit synaptic overgrowth is not observed in independent dfmr1 null alleles. Bulked segregant analysis (BSA) was combined with whole genome sequencing (WGS) to identify the quantitative trait loci (QTL) linked to neural circuit hyperconnectivity. The results reveal 8 QTL associated with inappropriate synapse formation and maintenance in the dfmr150M mutant background. CONCLUSIONS Synaptogenesis is a complex, precisely orchestrated neurodevelopmental process with a large cohort of gene products coordinating the connectivity, synaptic strength, and excitatory/inhibitory balance between neuronal partners. This work identifies a number of genetic regions that contain mutations disrupting proper synaptogenesis within a particularly well-mapped neural circuit. These QTL regions contain potential new genes involved in synapse formation and refinement. Given the similarity of the synaptic overgrowth phenotype to known ID and ASD inherited conditions, identifying these genes should increase our understanding of these devastating neurodevelopmental disease states.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
8
|
Bülow P, Murphy TJ, Bassell GJ, Wenner P. Homeostatic Intrinsic Plasticity Is Functionally Altered in Fmr1 KO Cortical Neurons. Cell Rep 2020; 26:1378-1388.e3. [PMID: 30726724 PMCID: PMC6443253 DOI: 10.1016/j.celrep.2019.01.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/20/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
Cortical hyperexcitability is a hallmark of fragile X syndrome (FXS). In the Fmr1 knockout (KO) mouse model of FXS,
cortical hyperexcitability is linked to sensory hypersensitivity and seizure susceptibility. It remains unclear why homeostatic
mechanisms fail to prevent such activity. Homeostatic intrinsic plasticity (HIP) adjusts membrane excitability through regulation
of ion channels to maintain activity levels following activity perturbation. Despite the critical role of HIP in the maturation of
excitability, it has not been examined in FXS. Here, we demonstrate that HIP does not operate normally in a disease model, FXS.
HIP was either lost or exaggerated in two distinct neuronal populations from Fmr1 KO cortical cultures. In addition, we have
identified a mechanism for homeostatic intrinsic plasticity. Compromising HIP function during development could leave cortical
neurons in the FXS nervous system vulnerable to hyperexcitability. Fragile X syndrome (FXS) is characterized by cortical hyperexcitability, but the mechanisms driving hyperexcitability are
poorly understood. Homeostatic intrinsic plasticity (HIP) regulates ion channel function to maintain appropriate activity levels.
Bülow et al. show that HIP is functionally altered in FXS neurons, which may leave cortical neurons vulnerable to
hyperexcitability.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - T J Murphy
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Peter Wenner
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Westmark PR, Gutierrez A, Gholston AK, Wilmer TM, Westmark CJ. Preclinical testing of the ketogenic diet in fragile X mice. Neurochem Int 2020; 134:104687. [PMID: 31958482 DOI: 10.1016/j.neuint.2020.104687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The ketogenic diet is highly effective at attenuating seizures in refractory epilepsy, and accumulating evidence in the literature suggests that it may be beneficial in autism. To our knowledge, no one has studied the ketogenic diet in any fragile X syndrome (FXS) model. FXS is the leading known genetic cause of autism. Herein, we tested the effects of chronic ketogenic diet treatment on seizures, body weight, ketone and glucose levels, diurnal activity levels, learning and memory, and anxiety behaviors in Fmr1KO and littermate control mice as a function of age. The ketogenic diet selectively attenuates seizures in male but not female Fmr1KO mice and differentially affects weight gain and diurnal activity levels dependent on Fmr1 genotype, sex and age.
Collapse
Affiliation(s)
- Pamela R Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alejandra Gutierrez
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA; Molecular Environmental Toxicology Center, Summer Research Opportunities Program, University of Wisconsin, Madison, WI, USA
| | - Aaron K Gholston
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA; Molecular Environmental Toxicology Center, Summer Research Opportunities Program, University of Wisconsin, Madison, WI, USA
| | - Taralyn M Wilmer
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Sawicka K, Hale CR, Park CY, Fak JJ, Gresack JE, Van Driesche SJ, Kang JJ, Darnell JC, Darnell RB. FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autism-related transcripts and circadian memory. eLife 2019; 8:e46919. [PMID: 31860442 PMCID: PMC6924960 DOI: 10.7554/elife.46919] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Loss of the RNA binding protein FMRP causes Fragile X Syndrome (FXS), the most common cause of inherited intellectual disability, yet it is unknown how FMRP function varies across brain regions and cell types and how this contributes to disease pathophysiology. Here we use conditional tagging of FMRP and CLIP (FMRP cTag CLIP) to examine FMRP mRNA targets in hippocampal CA1 pyramidal neurons, a critical cell type for learning and memory relevant to FXS phenotypes. Integrating these data with analysis of ribosome-bound transcripts in these neurons revealed CA1-enriched binding of autism-relevant mRNAs, and CA1-specific regulation of transcripts encoding circadian proteins. This contrasted with different targets in cerebellar granule neurons, and was consistent with circadian defects in hippocampus-dependent memory in Fmr1 knockout mice. These findings demonstrate differential FMRP-dependent regulation of mRNAs across neuronal cell types that may contribute to phenotypes such as memory defects and sleep disturbance associated with FXS.
Collapse
Affiliation(s)
- Kirsty Sawicka
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Caryn R Hale
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Christopher Y Park
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jodi E Gresack
- Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkUnited States
| | - Sarah J Van Driesche
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jennifer C Darnell
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
11
|
Impaired Reliability and Precision of Spiking in Adults But Not Juveniles in a Mouse Model of Fragile X Syndrome. eNeuro 2019; 6:ENEURO.0217-19.2019. [PMID: 31685673 PMCID: PMC6917895 DOI: 10.1523/eneuro.0217-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common source of intellectual disability and autism. Extensive studies have been performed on the network and behavioral correlates of the syndrome, but our knowledge about intrinsic conductance changes is still limited. In this study, we show a differential effect of FMRP knockout in different subsections of hippocampus using whole-cell patch clamp in mouse hippocampal slices. We observed no significant change in spike numbers in the CA1 region of hippocampus, but a significant increase in CA3, in juvenile mice. However, in adult mice we see a reduction in spike number in the CA1 with no significant difference in CA3. In addition, we see increased variability in spike numbers in CA1 cells following a variety of steady and modulated current step protocols. This effect emerges in adult mice (8 weeks) but not juvenile mice (4 weeks). This increased spiking variability was correlated with reduced spike number and with elevated AHP. The increased AHP arose from elevated SK currents (small conductance calcium-activated potassium channels), but other currents involved in medium AHP, such as Ih and M, were not significantly different. We obtained a partial rescue of the cellular variability phenotype when we blocked SK current using the specific blocker apamin. Our observations provide a single-cell correlate of the network observations of response variability and loss of synchronization, and suggest that the elevation of SK currents in FXS may provide a partial mechanistic explanation for this difference.
Collapse
|
12
|
Evidence for a Contribution of the Nlgn3/Cyfip1/Fmr1 Pathway in the Pathophysiology of Autism Spectrum Disorders. Neuroscience 2019; 445:31-41. [PMID: 31705895 DOI: 10.1016/j.neuroscience.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are characterized by heterogeneity both in their presentation and their genetic aetiology. In order to discover points of convergence common to different cases of ASD, attempts were made to identify the biological pathways genes associated with ASD contribute to. Many of these genes were found to play a role in neuronal and synaptic development and function. Among these genes are FMR1, CYFIP1 and NLGN3, all present at the synapse and reliably linked to ASD. In this review, we evaluate the evidence for the contribution of these genes to the same biological pathway responsible for the regulation of structural and physiological plasticity. Alterations in dendritic spine density and turnover, as well as long-term depression (LTD), were found in mouse models of mutations of all three genes. This overlap in the phenotypes associated with these mouse models likely arises from the molecular interaction between the protein products of FMR1, CYFIP1, and NLG3. A number of other proteins linked to ASD are also likely to participate in these pathways, resulting in further downstream effects. Overall, a synaptic pathway centered around FMR1, CYFIP1, and NLG3 is likely to contribute to the phenotypes associated with structural and physiological plasticity characteristic of ASD.
Collapse
|
13
|
Nolan SO, Hodges SL, Lugo JN. High-throughput analysis of vocalizations reveals sex-specific changes in Fmr1 mutant pups. GENES BRAIN AND BEHAVIOR 2019; 19:e12611. [PMID: 31587487 DOI: 10.1111/gbb.12611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
There have been several reports that individuals with Fragile X syndrome (FXS) and animal models of FXS have communication deficits. The present study utilized two different call classification taxonomies to examine the sex-specificity of ultrasonic vocalization (USV) production on postnatal day (PD8) in the FVB strain of Fmr1 knockout (KO) mice. One classification protocol requires the investigator to score each call by hand, while the other protocol uses an automated algorithm. Results using the hand-scoring protocol indicated that male Fmr1 KO mice exhibited longer calls (P = .03) than wild types on PD8. Male KOs also produced fewer complex, composite, downward, short and two-syllable call-types, as well as more frequency steps and chevron call-types. Female heterozygotes exhibited no significant changes in acoustic or temporal aspects of calls, yet showed significant changes in call-type production proportions across two different classification taxonomies (P < .001). They exhibited increased production of harmonic and frequency steps calls, as well as fewer chevron, downward and short calls. According to the second high-throughput analysis, female heterozygotes produced significantly fewer single-type and more multiple-type syllables, unlike male KOs that showed no changes in these aspects of syllable production. Finally, we correlated both scoring methods and found a high level of correlation between the two methods. These results contribute further knowledge of sex differences in USV calling behavior for Fmr1 heterozygote and KO mice and provide a foundation for the use of high-throughput analysis of neonatal USVs.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas
| | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas.,Institute of Biomedical Studies, Baylor University, Waco, Texas
| |
Collapse
|
14
|
Reinhard SM, Rais M, Afroz S, Hanania Y, Pendi K, Espinoza K, Rosenthal R, Binder DK, Ethell IM, Razak KA. Reduced perineuronal net expression in Fmr1 KO mice auditory cortex and amygdala is linked to impaired fear-associated memory. Neurobiol Learn Mem 2019; 164:107042. [PMID: 31326533 PMCID: PMC7519848 DOI: 10.1016/j.nlm.2019.107042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Fragile X Syndrome (FXS) is a leading cause of heritable intellectual disability and autism. Humans with FXS show anxiety, sensory hypersensitivity and impaired learning. The mechanisms of learning impairments can be studied in the mouse model of FXS, the Fmr1 KO mouse, using tone-associated fear memory paradigms. Our previous study reported impaired development of parvalbumin (PV) positive interneurons and perineuronal nets (PNN) in the auditory cortex of Fmr1 KO mice. A recent study suggested PNN dynamics in the auditory cortex following tone-shock association is necessary for fear expression. Together these data suggest that abnormal PNN regulation may underlie tone-fear association learning deficits in Fmr1 KO mice. We tested this hypothesis by quantifying PV and PNN expression in the amygdala, hippocampus and auditory cortex of Fmr1 KO mice following fear conditioning. We found impaired tone-associated memory formation in Fmr1 KO mice. This was paralleled by impaired learning-associated regulation of PNNs in the superficial layers of auditory cortex in Fmr1 KO mice. PV cell density decreased in the auditory cortex in response to fear conditioning in both WT and Fmr1 KO mice. Learning-induced increase of PV expression in the CA3 hippocampus was only observed in WT mice. We also found reduced PNN density in the amygdala and auditory cortex of Fmr1 KO mice in all conditions, as well as reduced PNN intensity in CA2 hippocampus. There was a positive correlation between tone-associated memory and PNN density in the amygdala and auditory cortex, consistent with a tone-association deficit. Altogether our studies suggest a link between impaired PV and PNN regulation within specific regions of the fear conditioning circuit and impaired tone memory formation in Fmr1 KO mice.
Collapse
Affiliation(s)
- Sarah M Reinhard
- Psychology Department and Psychology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sonia Afroz
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Yasmien Hanania
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Kasim Pendi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Katherine Espinoza
- Psychology Department and Psychology Graduate Program, University of California, Riverside, CA 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Robert Rosenthal
- Psychology Department and Psychology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| | - Khaleel A Razak
- Psychology Department and Psychology Graduate Program, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019; 9:180265. [PMID: 31185809 PMCID: PMC6597757 DOI: 10.1098/rsob.180265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Anjali Amrapali Vishwanath
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Bhupesh Vaidya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| |
Collapse
|
16
|
Moffat JJ, Jung EM, Ka M, Smith AL, Jeon BT, Santen GWE, Kim WY. The role of ARID1B, a BAF chromatin remodeling complex subunit, in neural development and behavior. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:30-38. [PMID: 30149092 PMCID: PMC6249083 DOI: 10.1016/j.pnpbp.2018.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
Haploinsufficiency of the chromatin remodeling factor ARID1B leads to autism spectrum disorder and intellectual disability. Several independent research groups, including our own, recently examined the effects of heterozygous deletion of Arid1b in mice and reported severe behavioral abnormalities reminiscent of autism spectrum disorders and intellectual disability as well as marked changes in gene expression and decreased body size. Arid1b heterozygous mice also display significant cortical excitatory/inhibitory imbalance due to altered GABAergic neuron numbers and impaired inhibitory synaptic transmission. Abnormal epigenetic modifications, including histone acetylation and methylation, are additionally associated with Arid1b haploinsufficiency in the brain. Treating adult Arid1b mutant mice with a positive GABA allosteric modulator, however, rescues multiple behavioral abnormalities, such as cognitive and social impairments, as well as elevated anxiety. While treating Arid1b haploinsufficient mice with recombinant mouse growth hormone successfully increases body size, it has no effect on aberrant behavior. Here we summarize the recent findings regarding the role of ARID1B in brain development and behavior and discuss the utility of the Arid1b heterozygous mouse model in neurodevelopmental and psychiatric research. We also discuss some of the opportunities and potential challenges in developing translational applications for humans and possible avenues for further research into the mechanisms of ARID1B pathology in the brain.
Collapse
Affiliation(s)
| | - Eui-Man Jung
- University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Minhan Ka
- Research Center for Substance Abuse Pharmacology, Korea Institute of Toxicology, Daejeon, Republic of
Korea
| | | | - Byeong Tak Jeon
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Gijs W. E. Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
17
|
Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome. Neuroscience 2018; 398:126-143. [PMID: 30528856 DOI: 10.1016/j.neuroscience.2018.11.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/29/2023]
Abstract
Fragile X Syndrome (FXS) is a leading genetic cause of autism and intellectual disabilities. Sensory-processing deficits are common in humans with FXS and an animal model, the Fmr1 knockout (KO) mouse, manifesting in the auditory system as debilitating hypersensitivity and abnormal electroencephalographic (EEG) and event-related potential (ERP) phenotypes. FXS is a neurodevelopmental disorder, but how EEG/ERP phenotypes change during development is unclear. Therefore, we characterized baseline and stimulus-evoked EEG in auditory and frontal cortex of developing (postnatal day (P) 21 and P30) and adult (P60) wildtype (WT) and Fmr1 KO mice with the FVB genetic background. We found that baseline gamma-band power and N1 amplitude of auditory ERP were increased in frontal cortex of Fmr1 KO mice during development and in adults. Baseline gamma power was increased in auditory cortex at P30. Genotype differences in stimulus-evoked gamma power were present in both cortical regions, but the direction and strength of the changes were age-dependent. These findings suggest that cortical deficits are present during early development and may contribute to sensory-processing deficits in FXS, which in turn may lead to anxiety and delayed language. Developmental changes in EEG measures indicate that observations at a single time-point during development are not reflective of FXS disease progression and highlight the need to identify developmental trajectories and optimal windows for treatment.
Collapse
Affiliation(s)
- Teresa H Wen
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Psychology Department and Psychology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Devin K Binder
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Psychology Department and Psychology Graduate Program, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
18
|
Hulbert SW, Bey AL, Jiang YH. Environmental enrichment has minimal effects on behavior in the Shank3 complete knockout model of autism spectrum disorder. Brain Behav 2018; 8:e01107. [PMID: 30317697 PMCID: PMC6236244 DOI: 10.1002/brb3.1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Several studies have supported the use of enriched environments to prevent the manifestation of ASD-like phenotypes in laboratory rodents. While the translational value of such experiments is unknown, the findings have been relatively consistent across many different models. METHODS In the current study, we tested the effects of early environmental enrichment on a mouse model of ASD with high construct validity, the Shank3 ∆e4-22 mice our laboratory previously generated and characterized. RESULTS Contrary to previous reports, we found no benefits of enriched rearing, including no change in repetitive self-grooming or hole-board exploration. Instead, we found that early environmental enrichment increased anxiety-like behavior in all mice regardless of genotype and decreased motor performance specifically in wild-type mice. CONCLUSIONS Although using a different enrichment protocol may have rescued the phenotypes in our mouse model, these results suggest that a "one-size fits all" approach may not be the best when it comes to behavioral intervention for ASD and underscores the need for effective pharmaceutical development in certain genetic syndromes with severe symptom presentation.
Collapse
Affiliation(s)
- Samuel W Hulbert
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Alexandra L Bey
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Yong-Hui Jiang
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina.,Duke Institute of Brain Science, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
19
|
Bausch AE, Ehinger R, Straubinger J, Zerfass P, Nann Y, Lukowski R. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice. Neuroscience 2018; 384:361-374. [DOI: 10.1016/j.neuroscience.2018.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
|
20
|
Nolan SO, Lugo JN. Reversal learning paradigm reveals deficits in cognitive flexibility in the Fmr1 knockout male mouse. F1000Res 2018; 7:711. [PMID: 30057755 PMCID: PMC6051189 DOI: 10.12688/f1000research.14969.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Loss of FMR1 is associated with Fragile X syndrome, amongst the most prevalent inherited intellectual disability. Despite extensive research in this area, previous studies have failed to detect consistent evidence of cognitive impairments in the Morris water maze (MWM) task in the Fmr1 knockout (KO) mouse. However, few studies have examined cognitive flexibility in a reversal form of the MWM task, which may illuminate subtle learning deficits. Methods: Adult male Fmr1 wildtype (WT) and KO mice were bred and tested in the MWM reversal paradigm. The testing paradigm consisted of two blocks per day, with 4 trials per block to locate a hidden platform. After the last trials on the fourth day of testing, the animals were given a probe trial with the platform removed. The following week, the location of the platform was switched to the opposite quadrant and the animals received 2 more days of testing, with 4 blocks in total. Results: As expected, Fmr1 KO mice did not display a learning deficit during the acquisition phase, F genotype (1, 24) = 0.034, p = 0.854, and performed similarly on the probe trial, F genotype (1, 23) = 0.024, p = 0.877. However, during the reversal phase of learning, Fmr1 KO mice showed deficits in their ability to learn the new location of the platform, F genotype (1, 23) = 3.93, p = 0.059. Further independent samples t-testing revealed that KO animals displayed significantly higher latency to reach the hidden platform during the third trial, t(23) = -2.96, p < 0.01. Conclusions: While previous studies have not demonstrated deficits in spatial memory in the Fmr1 KO model, it is possible that the acquisition phase of the task is less sensitive to deficits in learning. Future studies using this model to evaluate therapeutic interventions should consider utilizing the MWM reversal paradigm.
Collapse
Affiliation(s)
- Suzanne O. Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
- Department of Biology, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
21
|
Boutet I, Collin CA, MacLeod LS, Messier C, Holahan MR, Berry-Kravis E, Gandhi RM, Kogan CS. Utility of the Hebb-Williams Maze Paradigm for Translational Research in Fragile X Syndrome: A Direct Comparison of Mice and Humans. Front Mol Neurosci 2018; 11:99. [PMID: 29643767 PMCID: PMC5882825 DOI: 10.3389/fnmol.2018.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/13/2018] [Indexed: 11/26/2022] Open
Abstract
To generate meaningful information, translational research must employ paradigms that allow extrapolation from animal models to humans. However, few studies have evaluated translational paradigms on the basis of defined validation criteria. We outline three criteria for validating translational paradigms. We then evaluate the Hebb–Williams maze paradigm (Hebb and Williams, 1946; Rabinovitch and Rosvold, 1951) on the basis of these criteria using Fragile X syndrome (FXS) as model disease. We focused on this paradigm because it allows direct comparison of humans and animals on tasks that are behaviorally equivalent (criterion #1) and because it measures spatial information processing, a cognitive domain for which FXS individuals and mice show impairments as compared to controls (criterion #2). We directly compared the performance of affected humans and mice across different experimental conditions and measures of behavior to identify which conditions produce comparable patterns of results in both species. Species differences were negligible for Mazes 2, 4, and 5 irrespective of the presence of visual cues, suggesting that these mazes could be used to measure spatial learning in both species. With regards to performance on the first trial, which reflects visuo-spatial problem solving, Mazes 5 and 9 without visual cues produced the most consistent results. We conclude that the Hebb–Williams mazes paradigm has the potential to be utilized in translational research to measure comparable cognitive functions in FXS humans and animals (criterion #3).
Collapse
Affiliation(s)
- Isabelle Boutet
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Claude Messier
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | - Elizabeth Berry-Kravis
- Pediatrics, Biochemistry, and Neurology, Rush University Medical Center, Chicago, IL, United States
| | - Reno M Gandhi
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Cary S Kogan
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
McGraw CM, Ward CS, Samaco RC. Genetic rodent models of brain disorders: Perspectives on experimental approaches and therapeutic strategies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 175:368-379. [PMID: 28910526 PMCID: PMC5659732 DOI: 10.1002/ajmg.c.31570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022]
Abstract
Neurobehavioral disorders comprised of neurodegenerative, neurodevelopmental, and psychiatric disorders together represent leading causes of morbidity and mortality. Despite significant academic research and industry efforts to elucidate the disease mechanisms operative in these disorders and to develop mechanism‐based therapies, our understanding remains incomplete and our access to tractable therapeutic interventions severely limited. The magnitude of these short‐comings can be measured by the growing list of disappointing clinical trials based on initially promising compounds identified in genetic animal models. This review and commentary will explore why this may be so, focusing on the central role that genetic models of neurobehavioral disorders have come to occupy in current efforts to identify disease mechanisms and therapies. In particular, we will highlight the unique pitfalls and challenges that have hampered success in these models as compared to genetic models of non‐neurological diseases as well as to symptom‐based models of the early 20th century that led to the discovery of all major classes of psychoactive pharmaceutical compounds still used today. Using examples from specific genetic rodent models of human neurobehavioral disorders, we will highlight issues of reproducibility, construct validity, and translational relevance in the hopes that these examples will be instructive toward greater success in future endeavors. Lastly, we will champion a two‐pronged approach toward identifying novel therapies for neurobehavioral disorders that makes greater use of the historically more successful symptom‐based approaches in addition to more mechanism‐based approaches.
Collapse
Affiliation(s)
- Christopher M McGraw
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Christopher S Ward
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Rodney C Samaco
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
23
|
Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat Commun 2017; 8:1103. [PMID: 29062097 PMCID: PMC5653653 DOI: 10.1038/s41467-017-01191-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/24/2017] [Indexed: 12/20/2022] Open
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-activated long-term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics. Dysfunction of mGluR5 has been implicated in Fragile X syndrome. Here, using a single-molecule tracking technique, the authors found an increased lateral mobility of mGluR5 at the synaptic site in Fmr1 KO hippocampal neurons, leading to abnormal NMDAR-mediated synaptic plasticity and cognitive deficits.
Collapse
|
24
|
Vershkov D, Benvenisty N. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome. Regen Med 2017; 12:53-68. [DOI: 10.2217/rme-2016-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.
Collapse
Affiliation(s)
- Dan Vershkov
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
25
|
Bostrom C, Yau SY, Majaess N, Vetrici M, Gil-Mohapel J, Christie BR. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome. Neurosci Biobehav Rev 2016; 68:563-574. [DOI: 10.1016/j.neubiorev.2016.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
|
26
|
Normal Performance of Fmr1 Mice on a Touchscreen Delayed Nonmatching to Position Working Memory Task. eNeuro 2016; 3:eN-CFN-0143-15. [PMID: 27022628 PMCID: PMC4800045 DOI: 10.1523/eneuro.0143-15.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder characterized by mild-to-severe cognitive deficits. The complete absence of Fmr1 and its protein product in the mouse model of fragile X (Fmr1 KO) provides construct validity. A major conundrum in the field is the remarkably normal performance of Fmr1 mice on cognitive tests in most reports. One explanation may be insufficiently challenging cognitive testing procedures. Here we developed a delayed nonmatching to position touchscreen task to test the hypothesis that paradigms placing demands on working memory would reveal robust and replicable cognitive deficits in the Fmr1 KO mouse. We first tested Fmr1 KO mice (Fmr1) and their wild-type (WT) littermates in a simple visual discrimination task, followed by assessment of reversal learning. We then tested Fmr1 and WT mice in a new touchscreen nonmatch to position task and subsequently challenged their working memory abilities by adding delays, representing a higher cognitive load. The performance by Fmr1 KO mice was equal to WTs on both touchscreen tasks. Last, we replicated previous reports of normal performance by Fmr1 mice on Morris water maze spatial navigation and reversal. These results indicate that, while the Fmr1 mouse model effectively recapitulates many molecular and cellular aspects of fragile X syndrome, the cognitive profile of Fmr1 mice generally does not recapitulate the primary cognitive deficits in the human syndrome, even when diverse and challenging tasks are imposed.
Collapse
|
27
|
Regional brain volumes changes in adult male FMR1-KO mouse on the FVB strain. Neuroscience 2016; 318:12-21. [DOI: 10.1016/j.neuroscience.2016.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 11/17/2022]
|
28
|
Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit. Transl Psychiatry 2016; 6:e763. [PMID: 27003189 PMCID: PMC4872441 DOI: 10.1038/tp.2016.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/06/2015] [Accepted: 01/19/2016] [Indexed: 01/19/2023] Open
Abstract
Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.
Collapse
|
29
|
Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep 2016; 6:20833. [PMID: 26888634 PMCID: PMC4757872 DOI: 10.1038/srep20833] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 01/26/2023] Open
Abstract
The hyperphosphorylated microtubule-associated protein tau is present in several neurodegenerative diseases, although the causal relationship remains elusive. Few mouse models used to study Alzheimer-like dementia target tau phosphorylation. We created an inducible pseudophosphorylated tau (Pathological Human Tau, PH-Tau) mouse model to study the effect of conformationally modified tau in vivo. Leaky expression resulted in two levels of PH-Tau: low basal level and higher upon induction (4% and 14% of the endogenous tau, respectively). Unexpectedly, low PH-Tau resulted in significant cognitive deficits, decrease in the number of synapses (seen by EM in the CA1 region), reduction of synaptic proteins, and localization to the nucleus. Induction of PH-Tau triggered neuronal death (60% in CA3), astrocytosis, and loss of the processes in CA1. These findings suggest, that phosphorylated tau is sufficient to induce neurodegeneration and that two different mechanisms can induce cognitive impairment depending on the levels of PH-Tau expression.
Collapse
|
30
|
Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. GENES, BRAIN, AND BEHAVIOR 2016; 15:7-26. [PMID: 26403076 PMCID: PMC4775274 DOI: 10.1111/gbb.12256] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.
Collapse
Affiliation(s)
- T. M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - P. T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - J. N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
31
|
Huynh TN, Shah M, Koo SY, Faraud KS, Santini E, Klann E. eIF4E/Fmr1 double mutant mice display cognitive impairment in addition to ASD-like behaviors. Neurobiol Dis 2015; 83:67-74. [PMID: 26306459 DOI: 10.1016/j.nbd.2015.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of heritable disorders with complex and unclear etiology. Classic ASD symptoms include social interaction and communication deficits as well as restricted, repetitive behaviors. In addition, ASD is often comorbid with intellectual disability. Fragile X syndrome (FXS) is the leading genetic cause of ASD, and is the most commonly inherited form of intellectual disability. Several mouse models of ASD and FXS exist, however the intellectual disability observed in ASD patients is not well modeled in mice. Using the Fmr1 knockout mouse and the eIF4E transgenic mouse, two previously characterized mouse models of fragile X syndrome and ASD, respectively, we generated the eIF4E/Fmr1 double mutant mouse. Our study shows that the eIF4E/Fmr1 double mutant mice display classic ASD behaviors, as well as cognitive dysfunction. Importantly, the learning impairments displayed by the double mutant mice spanned multiple cognitive tasks. Moreover, the eIF4E/Fmr1 double mutant mice display increased levels of basal protein synthesis. The results of our study suggest that the eIF4E/Fmr1 double mutant mouse may be a reliable model to study cognitive dysfunction in the context of ASD.
Collapse
Affiliation(s)
- Thu N Huynh
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Manan Shah
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - So Yeon Koo
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Kirsten S Faraud
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, United States
| |
Collapse
|
32
|
Scremin OU, Roch M, Norman KM, Djazayeri S, Liu YY. Brain acetylcholine and choline concentrations and dynamics in a murine model of the Fragile X syndrome: age, sex and region-specific changes. Neuroscience 2015; 301:520-8. [PMID: 26117713 DOI: 10.1016/j.neuroscience.2015.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/20/2015] [Accepted: 06/21/2015] [Indexed: 11/25/2022]
Abstract
Fragile X syndrome is a learning disability caused by excess of CGG repeats in the 5' untranslated region of the Fragile X gene (FMR1) silencing its transcription and translation. We used a murine model of this condition, Fmr1 knock-out mice (KO) to study acetylcholine (ACh) metabolism and compared it to that of wild-type control mice (WT). Brain endogenous ACh (D0ACh), free choline (D0Ch), their deuterated variants D4ACh and D4Ch and mole ratios (AChMR and ChMR) were measured by gas chromatography-mass spectrometry in the cerebral hemisphere, cerebral cortex, hippocampus and cerebellum, following D4Ch administration. Regression analysis indicated a significant decrease with age (negative slope) of D4ACh, AChMR, D4Ch and ChMR in WT mice. Age dependence was only present for D4ACh and AChMR in KO mice. Analysis of variance with age as covariate indicated a significant greater D4Ch in the cerebral cortex of KO females when compared to WT females. Contrasts between sexes within genotypes indicated lower D0Ch in cortex and cerebellum of female KO mice but not in WT and lower D4Ch in hippocampus of female KO and WT mice. In conclusion, after adjusting for age, D0ACh concentrations and synthesis from deuterium-labeled Ch were similar in KO and control WT mice in all brain regions. In contrast, significant changes in Ch dynamics were found in hippocampus and cerebral cortex of KO mice that might contribute to the pathogenesis of FXS.
Collapse
Affiliation(s)
- O U Scremin
- Greater Los Angeles VA Healthcare System, United States; David Geffen School of Medicine at UCLA, Department of Physiology, United States.
| | - M Roch
- Greater Los Angeles VA Healthcare System, United States
| | - K M Norman
- Greater Los Angeles VA Healthcare System, United States
| | - S Djazayeri
- Greater Los Angeles VA Healthcare System, United States
| | - Y-Y Liu
- Greater Los Angeles VA Healthcare System, United States; David Geffen School of Medicine at UCLA, Department of Medicine, United States
| |
Collapse
|
33
|
Bausch AE, Dieter R, Nann Y, Hausmann M, Meyerdierks N, Kaczmarek LK, Ruth P, Lukowski R. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice. ACTA ACUST UNITED AC 2015; 22:323-35. [PMID: 26077685 PMCID: PMC4478330 DOI: 10.1101/lm.037820.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/05/2015] [Indexed: 01/14/2023]
Abstract
Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels.
Collapse
Affiliation(s)
- Anne E Bausch
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Rebekka Dieter
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Yvette Nann
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Mario Hausmann
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Nora Meyerdierks
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Peter Ruth
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Robert Lukowski
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| |
Collapse
|
34
|
de Esch C, van den Berg W, Buijsen R, Jaafar I, Nieuwenhuizen-Bakker I, Gasparini F, Kushner S, Willemsen R. Fragile X mice have robust mGluR5-dependent alterations of social behaviour in the Automated Tube Test. Neurobiol Dis 2015; 75:31-9. [DOI: 10.1016/j.nbd.2014.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
|
35
|
Banks G, Heise I, Starbuck B, Osborne T, Wisby L, Potter P, Jackson IJ, Foster RG, Peirson SN, Nolan PM. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep. Neurobiol Aging 2015; 36:380-93. [PMID: 25179226 PMCID: PMC4270439 DOI: 10.1016/j.neurobiolaging.2014.07.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 12/28/2022]
Abstract
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep.
Collapse
Affiliation(s)
- Gareth Banks
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Ines Heise
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Becky Starbuck
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Tamzin Osborne
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Laura Wisby
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Paul Potter
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Ian J Jackson
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Russell G Foster
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Patrick M Nolan
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, UK.
| |
Collapse
|
36
|
Kazdoba TM, Leach PT, Silverman JL, Crawley JN. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 2014; 3:118-33. [PMID: 25606362 PMCID: PMC4298642 DOI: 10.5582/irdr.2014.01024] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 11/05/2022] Open
Abstract
Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS.
Collapse
Affiliation(s)
- Tatiana M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
- Address correspondence to: Dr. Tatiana M. Kazdoba, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, Research II Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA. E-mail:
| | - Prescott T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jacqueline N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
37
|
Alaimo JT, Hahn NH, Mullegama SV, Elsea SH. Dietary regimens modify early onset of obesity in mice haploinsufficient for Rai1. PLoS One 2014; 9:e105077. [PMID: 25127133 PMCID: PMC4134272 DOI: 10.1371/journal.pone.0105077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023] Open
Abstract
Smith-Magenis syndrome is a complex genomic disorder in which a majority of individuals are obese by adolescence. While an interstitial deletion of chromosome 17p11.2 is the leading cause, mutation or deletion of the RAI1 gene alone results in most features of the disorder. Previous studies have shown that heterozygous knockout of Rai1 results in an obese phenotype in mice and that Smith-Magenis syndrome mouse models have a significantly reduced fecundity and an altered transmission pattern of the mutant Rai1 allele, complicating large, extended studies in these models. In this study, we show that breeding C57Bl/6J Rai1+/− mice with FVB/NJ to create F1 Rai1+/− offspring in a mixed genetic background ameliorates both fecundity and Rai1 allele transmission phenotypes. These findings suggest that the mixed background provides a more robust platform for breeding and larger phenotypic studies. We also characterized the effect of dietary intake on Rai1+/− mouse growth during adolescent and early adulthood developmental stages. Animals fed a high carbohydrate or a high fat diet gained weight at a significantly faster rate than their wild type littermates. Both high fat and high carbohydrate fed Rai1+/− mice also had an increase in body fat and altered fat distribution patterns. Interestingly, Rai1+/− mice fed different diets did not display altered fasting blood glucose levels. These results suggest that dietary regimens are extremely important for individuals with Smith- Magenis syndrome and that food high in fat and carbohydrates may exacerbate obesity outcomes.
Collapse
Affiliation(s)
- Joseph T. Alaimo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Natalie H. Hahn
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sureni V. Mullegama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ding Q, Sethna F, Wang H. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav Brain Res 2014; 271:72-8. [PMID: 24886775 DOI: 10.1016/j.bbr.2014.05.046] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 11/17/2022]
Abstract
Fragile X syndrome (FXS) is a monogenic disease caused by mutations in the FMR1 gene. The Fmr1 knockout (KO) mice show many aspects of FXS-related phenotypes, and have been used as a major pre-clinical model for FXS. Although FXS occurs in both male and female patients, most studies on the mouse model use male animals. Few studies test whether gender affects the face validity of the mouse model. Here, we examined multiple behavioral phenotypes with male hemizygous and female homozygous Fmr1 KO mice on C57BL/6 background. For each behavioral paradigm, we examined multiple cohorts from different litters. We found that both male and female Fmr1 KO mice displayed significant audiogenic seizures, hyperactivity in the open field test, deficits in passive avoidance and contextual fear memory, and significant enhancement of PPI at low stimulus intensity. Male and female Fmr1 KO mice also showed more transitional movement between the lit and dark chambers in the light-dark tests. The lack of gender effects suggests that the Fmr1 KO mouse is a reasonable tool to test the efficacy of potential FXS therapies.
Collapse
Affiliation(s)
- Qi Ding
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
39
|
New insights into the molecular pathophysiology of fragile X syndrome and therapeutic perspectives from the animal model. Int J Biochem Cell Biol 2014; 53:121-6. [PMID: 24831882 DOI: 10.1016/j.biocel.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/26/2014] [Accepted: 05/02/2014] [Indexed: 12/16/2022]
Abstract
Fragile X syndrome is the most common monogenetic form of intellectual disability and is a leading cause of autism. This syndrome is produced by the reduced transcription of the fragile X mental retardation (FMR1) gene, and it is characterized by a range of symptoms heterogeneously expressed in patients such as cognitive impairment, seizure susceptibility, altered pain sensitivity and anxiety. The recent advances in the understanding of the pathophysiological mechanisms involved have opened novel potential therapeutic approaches identified in preclinical rodent models as a necessary preliminary step for the subsequent evaluation in patients. Among those possible therapeutic approaches, the modulation of the metabotropic glutamate receptor signaling or the GABA receptor signaling have focused most of the attention. New findings in the animal models open other possible therapeutic approaches such as the mammalian target of rapamycin signaling pathway or the endocannabinoid system. This review summarizes the emerging data recently obtained in preclinical models of fragile X syndrome supporting these new therapeutic perspectives.
Collapse
|
40
|
Smith LN, Jedynak JP, Fontenot MR, Hale CF, Dietz KC, Taniguchi M, Thomas FS, Zirlin BC, Birnbaum SG, Huber KM, Thomas MJ, Cowan CW. Fragile X mental retardation protein regulates synaptic and behavioral plasticity to repeated cocaine administration. Neuron 2014; 82:645-58. [PMID: 24811383 PMCID: PMC4052976 DOI: 10.1016/j.neuron.2014.03.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 12/31/2022]
Abstract
Repeated cocaine exposure causes persistent, maladaptive alterations in brain and behavior, and hope for effective therapeutics lies in understanding these processes. We describe here an essential role for fragile X mental retardation protein (FMRP), an RNA-binding protein and regulator of dendritic protein synthesis, in cocaine conditioned place preference, behavioral sensitization, and motor stereotypy. Cocaine reward deficits in FMRP-deficient mice stem from elevated mGluR5 (or GRM5) function, similar to a subset of fragile X symptoms, and do not extend to natural reward. We find that FMRP functions in the adult nucleus accumbens (NAc), a critical addiction-related brain region, to mediate behavioral sensitization but not cocaine reward. FMRP-deficient mice also exhibit several abnormalities in NAc medium spiny neurons, including reduced presynaptic function and premature changes in dendritic morphology and glutamatergic neurotransmission following repeated cocaine treatment. Together, our findings reveal FMRP as a critical mediator of cocaine-induced behavioral and synaptic plasticity.
Collapse
Affiliation(s)
- Laura N. Smith
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Jakub P. Jedynak
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Departments of Neuroscience and Psychology, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Miles R. Fontenot
- Medical Science Training Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Carly F. Hale
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Karen C. Dietz
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Makoto Taniguchi
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Feba S. Thomas
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Benjamin C. Zirlin
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Shari G. Birnbaum
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Kimberly M. Huber
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Mark J. Thomas
- Departments of Neuroscience and Psychology, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building, 2101 Sixth Street SE, Minneapolis, MN 55455, USA
| | - Christopher W. Cowan
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| |
Collapse
|
41
|
Sawin EA, Murali SG, Ney DM. Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57Bl/6-Pah(enu2) mice. Mol Genet Metab 2014; 111:452-61. [PMID: 24560888 PMCID: PMC3995025 DOI: 10.1016/j.ymgme.2014.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022]
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase, which metabolizes phenylalanine (phe) to tyrosine. A low-phe diet plus amino acid (AA) formula is necessary to prevent cognitive impairment; glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to the AA formula. Our objective was to assess neurotransmitter concentrations in the brain and the behavioral phenotype of PKU mice (Pah(enu2) on the C57Bl/6 background) and how this is affected by low-phe protein sources. Wild type (WT) and PKU mice, both male and female, were fed high-phe casein, low-phe AA, or low-phe GMP diets between 3 and 18 weeks of age. Behavioral phenotype was assessed using the open field and marble burying tests, and brain neurotransmitter concentrations were measured using HPLC with electrochemical detection system. Data were analyzed by 3-way ANOVA with genotype, sex, and diet as the main treatment effects. Brain mass and the concentrations of catecholamines and serotonin were reduced in PKU mice compared to WT mice; the low-phe AA and GMP diets improved these parameters in PKU mice. Relative brain mass was increased in female PKU mice fed the GMP diet compared to the AA diet. PKU mice exhibited hyperactivity and impaired vertical exploration compared to their WT littermates during the open field test. Regardless of genotype or diet, female mice demonstrated increased vertical activity time and increased total ambulatory and horizontal activity counts compared with male mice. PKU mice fed the high-phe casein diet buried significantly fewer marbles than WT control mice fed casein; this was normalized in PKU mice fed the low-phe AA and GMP diets. In summary, C57Bl/6-Pah(enu2) mice showed an impaired behavioral phenotype and reduced brain neurotransmitter concentrations that were improved by the low-phe AA or GMP diets. These data support lifelong adherence to a low-phe diet for PKU.
Collapse
Affiliation(s)
- Emily A Sawin
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | - Sangita G Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | - Denise M Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| |
Collapse
|
42
|
Lim CS, Hoang ET, Viar KE, Stornetta RL, Scott MM, Zhu JJ. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model. Genes Dev 2014; 28:273-89. [PMID: 24493647 PMCID: PMC3923969 DOI: 10.1101/gad.232470.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation. Lim et al. find that compounds activating serotonin (5HT) subtype 2B receptors or dopamine (DA) subtype 1-like receptors and those inhibiting 5HT2A-Rs or D2-Rs enhance Ras signaling, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Combining 5HT and DA compounds at low doses synergistically restored normal learning. This suggests that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome. Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation, with no effective treatment. Using a tractable animal model, we investigated mechanisms of action of a few FDA-approved psychoactive drugs that modestly benefit the cognitive performance in fragile X patients. Here we report that compounds activating serotonin (5HT) subtype 2B receptors (5HT2B-Rs) or dopamine (DA) subtype 1-like receptors (D1-Rs) and/or those inhibiting 5HT2A-Rs or D2-Rs moderately enhance Ras–PI3K/PKB signaling input, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Unexpectedly, combinations of these 5HT and DA compounds at low doses synergistically stimulate Ras–PI3K/PKB signal transduction and GluA1-dependent synaptic plasticity and remarkably restore normal learning in Fmr1 knockout mice without causing anxiety-related side effects. These findings suggest that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome.
Collapse
|
43
|
Drapeau E, Dorr NP, Elder GA, Buxbaum JD. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice. Dis Model Mech 2014; 7:667-81. [PMID: 24652766 PMCID: PMC4036474 DOI: 10.1242/dmm.013821] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent.
Collapse
Affiliation(s)
- Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nate P Dorr
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA. Neurology Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Altered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome. J Neurosci 2014; 33:19715-23. [PMID: 24336735 DOI: 10.1523/jneurosci.2514-13.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited intellectual disability. FXS results from a mutation that causes silencing of the FMR1 gene, which encodes the fragile X mental retardation protein. Patients with FXS exhibit a range of neurological deficits, including motor skill deficits. Here, we have investigated motor skill learning and its synaptic correlates in the fmr1 knock-out (KO) mouse. We find that fmr1 KO mice have impaired motor skill learning of a forelimb-reaching task, compared with their wild-type (WT) littermate controls. Electrophysiological recordings from the forelimb region of the primary motor cortex demonstrated reduced, training-induced synaptic strengthening in the trained hemisphere. Moreover, long-term potentiation (LTP) is impaired in the fmr1 KO mouse, and motor skill training does not occlude LTP as it does in the WT mice. Whereas motor skill training induces an increase of synaptic AMPA-type glutamate receptor subunit 1 (GluA1), there is a delay in GluA1 increase in the trained hemisphere of the fmr1 KO mice. Using transcranial in vivo multiphoton microscopy, we find that fmr1 KO mice have similar spine density but increased dendritic spine turnover compared with WT mice. Finally, we report that motor skill training-induced formation of dendritic spines is impaired in fmr1 KO mice. We conclude that FMRP plays a role in motor skill learning and that reduced functional and structural synaptic plasticity might underlie the behavioral deficit in the fmr1 KO mouse.
Collapse
|
45
|
Gandhi RM, Kogan CS, Messier C. 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice. Front Cell Neurosci 2014; 8:70. [PMID: 24701200 PMCID: PMC3965849 DOI: 10.3389/fncel.2014.00070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/17/2014] [Indexed: 11/22/2022] Open
Abstract
Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectrum disorder and can therefore provide insight into its pathophysiology. Lack of FMRP results in altered group I metabotropic glutamate receptor (mGluR) signaling, which is a target for putative treatments. The Hebb-Williams (H-W) mazes are a set of increasingly complex spatial navigation problems that depend on intact hippocampal and thus mGluR-5 functioning. In the present investigation, we examined whether an antagonist of mGluR-5 would reverse previously described behavioral deficits in fragile X mental retardation 1 knock-out (Fmr1 KO) mice. Mice were trained on a subset of the H-W mazes and then treated with either 20 mg/kg of an mGluR-5 antagonist, 2-Methyl-6-(phenylethynyl) pyridine (MPEP; n = 11) or an equivalent dose of saline (n = 11) prior to running test mazes. Latency and errors were dependent variables recorded during the test phase. Immediately after completing each test, marble-burying behavior was assessed, which confirmed that the drug treatment was pharmacologically active during maze learning. Although latency was not statistically different between the groups, MPEP treated Fmr1 KO mice made significantly fewer errors on mazes deemed more difficult suggesting a reversal of the behavioral deficit. MPEP treated mice were also less perseverative and impulsive when navigating mazes. Furthermore, MPEP treatment reversed post-synaptic density-95 (PSD-95) protein deficits in Fmr1 KO treated mice, whereas levels of a control protein (β-tubulin) remained unchanged. These data further validate MPEP as a potentially beneficial treatment for FXS. Our findings also suggest that adapted H-W mazes may be a useful tool to document alterations in behavioral functioning following pharmacological intervention in FXS.
Collapse
Affiliation(s)
- Réno M Gandhi
- School of Psychology, University of Ottawa Ottawa, ON, Canada
| | - Cary S Kogan
- School of Psychology, University of Ottawa Ottawa, ON, Canada
| | - Claude Messier
- School of Psychology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
46
|
Franklin AV, King MK, Palomo V, Martinez A, McMahon LL, Jope RS. Glycogen synthase kinase-3 inhibitors reverse deficits in long-term potentiation and cognition in fragile X mice. Biol Psychiatry 2014; 75:198-206. [PMID: 24041505 PMCID: PMC3874248 DOI: 10.1016/j.biopsych.2013.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Identifying feasible therapeutic interventions is crucial for ameliorating the intellectual disability and other afflictions of fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism. Hippocampal glycogen synthase kinase-3 (GSK3) is hyperactive in the mouse model of FXS (FX mice), and hyperactive GSK3 promotes locomotor hyperactivity and audiogenic seizure susceptibility in FX mice, raising the possibility that specific GSK3 inhibitors may improve cognitive processes. METHODS We tested if specific GSK3 inhibitors improve deficits in N-methyl-D-aspartate receptor-dependent long-term potentiation at medial perforant path synapses onto dentate granule cells and dentate gyrus-dependent cognitive behavioral tasks. RESULTS GSK3 inhibitors completely rescued deficits in long-term potentiation at medial perforant path-dentate granule cells synapses in FX mice. Furthermore, synaptosomes from the dentate gyrus of FX mice displayed decreased inhibitory serine-phosphorylation of GSK3β compared with wild-type littermates. The potential therapeutic utility of GSK3 inhibitors was further tested on dentate gyrus-dependent cognitive behaviors. In vivo administration of GSK3 inhibitors completely reversed impairments in several cognitive tasks in FX mice, including novel object detection, coordinate and categorical spatial processing, and temporal ordering for visual objects. CONCLUSIONS These findings establish that synaptic plasticity and cognitive deficits in FX mice can be improved by intervention with inhibitors of GSK3, which may prove therapeutically beneficial in FXS.
Collapse
Affiliation(s)
- Aimee V. Franklin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Margaret K. King
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Valle Palomo
- Instituto Quimica Medica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Martinez
- Instituto Quimica Medica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Richard S. Jope
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136,Corresponding author: Richard S. Jope, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Gautier Building room 416, Miami, Florida 33136, phone: 305-243-0262,
| |
Collapse
|
47
|
Amiri A, Sanchez-Ortiz E, Cho W, Birnbaum SG, Xu J, McKay RM, Parada LF. Analysis ofFmr1Deletion in a Subpopulation of Post-Mitotic Neurons in Mouse Cortex and Hippocampus. Autism Res 2014; 7:60-71. [DOI: 10.1002/aur.1342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/08/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Anahita Amiri
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Efrain Sanchez-Ortiz
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Woosung Cho
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Shari G. Birnbaum
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Jing Xu
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Renée M. McKay
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Luis F. Parada
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| |
Collapse
|
48
|
Sethna F, Moon C, Wang H. From FMRP function to potential therapies for fragile X syndrome. Neurochem Res 2013; 39:1016-31. [PMID: 24346713 DOI: 10.1007/s11064-013-1229-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is caused by mutations in the fragile X mental retardation 1 (FMR1) gene. Most FXS cases occur due to the expansion of the CGG trinucleotide repeats in the 5' un-translated region of FMR1, which leads to hypermethylation and in turn silences the expression of FMRP (fragile X mental retardation protein). Numerous studies have demonstrated that FMRP interacts with both coding and non-coding RNAs and represses protein synthesis at dendritic and synaptic locations. In the absence of FMRP, the basal protein translation is enhanced and not responsive to neuronal stimulation. The altered protein translation may contribute to functional abnormalities in certain aspects of synaptic plasticity and intracellular signaling triggered by Gq-coupled receptors. This review focuses on the current understanding of FMRP function and potential therapeutic strategies that are mainly based on the manipulation of FMRP targets and knowledge gained from FXS pathophysiology.
Collapse
Affiliation(s)
- Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
49
|
Fish EW, Krouse MC, Stringfield SJ, DiBerto JF, Robinson JE, Malanga CJ. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome. PLoS One 2013; 8:e77896. [PMID: 24205018 PMCID: PMC3799757 DOI: 10.1371/journal.pone.0077896] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome (FXS) is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y)) mice with intracranial self-stimulation (ICSS) and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y) mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y) mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynyl)pyridine (MPEP), was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y) than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y) mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y) mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y) mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.
Collapse
Affiliation(s)
- Eric W. Fish
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael C. Krouse
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sierra J. Stringfield
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey F. DiBerto
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Elliott Robinson
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - C. J. Malanga
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
El Idrissi A, Shen CH, L'amoreaux WJ. Neuroprotective role of taurine during aging. Amino Acids 2013; 45:735-50. [PMID: 23963537 DOI: 10.1007/s00726-013-1544-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
Abstract
Aging of the brain is characterized by several neurochemical modifications involving structural proteins, neurotransmitters, neuropeptides and related receptors. Alterations of neurochemical indices of synaptic function are indicators of age-related impairment of central functions, such as locomotion, memory and sensory performances. Several studies demonstrate that ionotropic GABA receptors, glutamate decarboxylase (GAD), and somatostatinergic subpopulations of GABAergic neurons are markedly decreased in experimental animal brains during aging. Additionally, levels of several neuropeptides co-expressed with GAD decrease during aging. Thus, the age-related decline in cognitive functions could be attributable, at least in part, to decrements in GABA inhibitory neurotransmission. In this study, we showed that chronic supplementation of taurine to aged mice significantly ameliorated the age-dependent decline in spatial memory acquisition and retention. We also demonstrated that concomitant with the amelioration in cognitive function, taurine caused significant alterations in the GABAergic and somatostatinergic system. These changes included (1) increased levels of the neurotransmitters GABA and glutamate, (2) increased expression of both isoforms of GAD (65 and 67) and the neuropeptide somatostatin, (3) decreased hippocampal expression of the β3 subunits of the GABAA receptor, (4) increased expression in the number of somatostatin-positive neurons, (5) increased amplitude and duration of population spikes recorded from CA1 in response to Schaefer collateral stimulation and (6) enhanced paired pulse facilitation in the hippocampus. These specific alterations of the inhibitory system caused by taurine treatment oppose those naturally occurring in the aging brain, suggesting a protective role of taurine in this process. An increased understanding of age-related neurochemical changes in the GABAergic system will be important in elucidating the underpinnings of the functional changes of aging. Taurine supplementation might help forestall the age-related decline in cognitive functions through interaction with the GABAergic system.
Collapse
Affiliation(s)
- Abdeslem El Idrissi
- Department of Biology, Center for Developmental Neuroscience, City University of New York Graduate School, Staten Island, NY, 10314, USA,
| | | | | |
Collapse
|