1
|
Rahmouni K. Neural Circuits Underlying Reciprocal Cardiometabolic Crosstalk: 2023 Arthur C. Corcoran Memorial Lecture. Hypertension 2024; 81:1233-1243. [PMID: 38533662 PMCID: PMC11096079 DOI: 10.1161/hypertensionaha.124.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The interplay of various body systems, encompassing those that govern cardiovascular and metabolic functions, has evolved alongside the development of multicellular organisms. This evolutionary process is essential for the coordination and maintenance of homeostasis and overall health by facilitating the adaptation of the organism to internal and external cues. Disruption of these complex interactions contributes to the development and progression of pathologies that involve multiple organs. Obesity-associated cardiovascular risks, such as hypertension, highlight the significant influence that metabolic processes exert on the cardiovascular system. This cardiometabolic communication is reciprocal, as indicated by substantial evidence pointing to the ability of the cardiovascular system to affect metabolic processes, with pathophysiological implications in disease conditions. In this review, I outline the bidirectional nature of the cardiometabolic interaction, with special emphasis on the impact that metabolic organs have on the cardiovascular system. I also discuss the contribution of the neural circuits and autonomic nervous system in mediating the crosstalk between cardiovascular and metabolic functions in health and disease, along with the molecular mechanisms involved.
Collapse
Affiliation(s)
- Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
2
|
Reich N, Hölscher C. Cholecystokinin (CCK): a neuromodulator with therapeutic potential in Alzheimer's and Parkinson's disease. Front Neuroendocrinol 2024; 73:101122. [PMID: 38346453 DOI: 10.1016/j.yfrne.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Cholecystokinin (CCK) is a neuropeptide modulating digestion, glucose levels, neurotransmitters and memory. Recent studies suggest that CCK exhibits neuroprotective effects in Alzheimer's disease (AD) and Parkinson's disease (PD). Thus, we review the physiological function and therapeutic potential of CCK. The neuropeptide facilitates hippocampal glutamate release and gates GABAergic basket cell activity, which improves declarative memory acquisition, but inhibits consolidation. Cortical CCK alters recognition memory and enhances audio-visual processing. By stimulating CCK-1 receptors (CCK-1Rs), sulphated CCK-8 elicits dopamine release in the substantia nigra and striatum. In the mesolimbic pathway, CCK release is triggered by dopamine and terminates reward responses via CCK-2Rs. Importantly, activation of hippocampal and nigral CCK-2Rs is neuroprotective by evoking AMPK activation, expression of mitochondrial fusion modulators and autophagy. Other benefits include vagus nerve/CCK-1R-mediated expression of brain-derived neurotrophic factor, intestinal protection and suppression of inflammation. We also discuss caveats and the therapeutic combination of CCK with other peptide hormones.
Collapse
Affiliation(s)
- Niklas Reich
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK; Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Christian Hölscher
- Second associated Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, China; Henan Academy of Innovations in Medical Science, Neurodegeneration research group, Xinzhen, Henan province, China
| |
Collapse
|
3
|
Lai TT, Liou CW, Tsai YH, Lin YY, Wu WL. Butterflies in the gut: the interplay between intestinal microbiota and stress. J Biomed Sci 2023; 30:92. [PMID: 38012609 PMCID: PMC10683179 DOI: 10.1186/s12929-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may regulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous system. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabolism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain circuits and ultimately impact the host's complex behavior.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yuan-Yuan Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Wei-Li Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
4
|
Czerwińska M, Czarzasta K, Cudnoch-Jędrzejewska A. New Peptides as Potential Players in the Crosstalk Between the Brain and Obesity, Metabolic and Cardiovascular Diseases. Front Physiol 2021; 12:692642. [PMID: 34497533 PMCID: PMC8419452 DOI: 10.3389/fphys.2021.692642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
According to the World Health Organization report published in 2016, 650 million people worldwide suffer from obesity, almost three times more than in 1975. Obesity is defined as excessive fat accumulation which may impair health with non-communicable diseases such as diabetes, cardiovascular diseases (hypertension, coronary artery disease, stroke), and some cancers. Despite medical advances, cardiovascular complications are still the leading causes of death arising from obesity. Excessive fat accumulation is caused by the imbalance between energy intake and expenditure. The pathogenesis of this process is complex and not fully understood, but current research is focused on the role of the complex crosstalk between the central nervous system (CNS), neuroendocrine and immune system including the autonomic nervous system, adipose tissue, digestive and cardiovascular systems. Additionally, special attention has been paid to newly discovered substances: neuropeptide 26RFa, preptin, and adropin. It was shown that the above peptides are synthesized both in numerous structures of the CNS and in many peripheral organs and tissues, such as the heart, adipose tissue, and the gastrointestinal tract. Recently, particular attention has been paid to the role of the presented peptides in the pathogenesis of obesity, metabolic and cardiovascular system diseases. This review summarizes the role of newly investigated peptides in the crosstalk between brain and peripheral organs in the pathogenesis of obesity, metabolic, and cardiovascular diseases.
Collapse
|
5
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
6
|
Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021; 12:903. [PMID: 33568676 PMCID: PMC7876101 DOI: 10.1038/s41467-021-21235-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes. The gastrointestinal tract participates in maintaining metabolic homeostasis in part through nutrient-sensing and subsequent gut-brain signalling. Here the authors review the role of small intestinal nutrient-sensing in regulation of energy intake and systemic glucose metabolism, and link high-fat diet, obesity and diabetes with perturbations in these pathways.
Collapse
Affiliation(s)
- Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Willem T Peppler
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Cawthon CR, Kirkland RA, Pandya S, Brinson NA, de La Serre CB. Non-neuronal crosstalk promotes an inflammatory response in nodose ganglia cultures after exposure to byproducts from gram positive, high-fat-diet-associated gut bacteria. Physiol Behav 2020; 226:113124. [PMID: 32763334 PMCID: PMC7530053 DOI: 10.1016/j.physbeh.2020.113124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Vagal afferent neurons (VAN) projecting to the lamina propria of the digestive tract are the primary source of gut-originating signals to the central nervous system (CNS). VAN cell bodies are found in the nodose ganglia (NG). Responsiveness of VAN to gut-originating signals is altered by feeding status with sensitivity to satiety signals such as cholecystokinin (CCK) increasing in the fed state. Chronic high-fat (HF) feeding results in inflammation at the level of the NG associated with a loss of VAN ability to switch phenotype from the fasted to the fed state. HF feeding also leads to compositional changes in the gut microbiota. HF diet consumption notably drives increased Firmicutes to Bacteroidetes phyla ratio and increased members of the Actinobacteria phylum. Firmicutes and Actinobacteria are largely gram positive (GP). In this study, we aimed to determine if byproducts from GP bacteria can induce an inflammatory response in cultured NG and to characterize the mechanism and cell types involved in the response. NG were collected from male Wistar rats and cultured for a total of 72 hours. At 48-68 hours after plating, cultures were treated with neuronal culture media in which Serinicoccus chungangensis had been grown and removed (SUP), lipoteichoic acid (LTA), or meso-diaminopimelic acid (meso-DAP). Some treatments included the glial inhibitors minocycline (MINO) and/or fluorocitrate (FC). The responses were evaluated using immunocytochemistry, qPCR, and electrochemiluminescence. We found that SUP induced an inflammatory response characterized by increased interleukin (IL)-6 staining and increased expression of genes for IL-6, interferon (IFN)γ, and tumor necrosis factor (TNF)α along with genes associated with cell-to-cell communication such as C-C motif chemokine ligand-2 (CCL2). Inclusion of inhibitors attenuated some responses but failed to completely normalize all indications of response, highlighting the role of immunocompetent cellular crosstalk in regulating the inflammatory response. LTA and meso-DAP produced responses that shared characteristics with SUP but were not identical. Our results support a role for HF associated GP bacterial byproducts' ability to contribute to vagal inflammation and to engage signaling from nonneuronal cells.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Rebecca A Kirkland
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Shreya Pandya
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Nigel A Brinson
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Claire B de La Serre
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States.
| |
Collapse
|
8
|
Huang KP, Goodson ML, Vang W, Li H, Page AJ, Raybould HE. Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet. Int J Obes (Lond) 2020; 45:348-357. [PMID: 32917985 PMCID: PMC7854885 DOI: 10.1038/s41366-020-00678-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
Objective: Activation of vagal afferent neurons (VAN) by postprandial gastrointestinal signals terminates feeding and facilitates nutrient digestion and absorption. Leptin modulates responsiveness of VAN to meal-related gastrointestinal signals. Rodents with high-fat diet (HF) feeding develop leptin resistance that impairs responsiveness of VAN. We hypothesized that lack of leptin signaling in VAN reduces responses to meal-related signals, which in turn decreases absorption of nutrients and energy storage from high-fat, calorically dense food. Methods: Mice with conditional deletion of the leptin receptor from VAN (Nav1.8-Cre/LepRfl/fl; KO) were used in this study. Six-week-old male mice were fed a 45% HF for 4 weeks; metabolic phenotype, food intake, and energy expenditure were measured. Absorption and storage of nutrients were investigated in the refed state. Results: After 4 weeks of HF feeding, KO mice gained less body weight and fat mass that WT controls, but this was not due to differences in food intake or energy expenditure. KO mice had reduced expression of carbohydrate transporters and absorption of carbohydrate in the jejunum. KO mice had fewer hepatic lipid droplets and decreased expression of de novo lipogenesis-associated enzymes and lipoproteins for endogenous lipoprotein pathway in liver, suggesting decreased long-term storage of carbohydrate in KO mice. Conclusions: Impairment of leptin signaling in VAN reduces responsiveness to gastrointestinal signals, which reduces intestinal absorption of carbohydrates and de novo lipogenesis resulting in reduced long-term energy storage. This study reveals a novel role of vagal afferents to support digestion and energy storage that may contribute to the effectiveness of vagal blockade to induce weight loss.
Collapse
Affiliation(s)
- Kuei-Pin Huang
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Michael L Goodson
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Wendie Vang
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Hui Li
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Helen E Raybould
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
9
|
Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents. J Neurosci 2020; 40:7054-7064. [PMID: 32817248 DOI: 10.1523/jneurosci.1865-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/05/2019] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Leptin signaling within the nucleus of the solitary tract (NTS) contributes to the control of food intake, and injections of leptin into the NTS reduce meal size and increase the efficacy of vagus-mediated satiation signals. Leptin receptors (LepRs) are expressed by vagal afferents as well as by a population of NTS neurons. However, the electrophysiological properties of LepR-expressing NTS neurons have not been well characterized, and it is unclear how leptin might act on these neurons to reduce food intake. To address this question, we recorded from LepR-expressing neurons in horizontal brain slices containing the NTS from male and female LepR-Cre X Rosa-tdTomato mice. We found that the vast majority of NTS LepR neurons received monosynaptic innervation from vagal afferent fibers and LepR neurons exhibited large synaptic NMDA receptor (NMDAR)-mediated currents compared with non-LepR neurons. During high-frequency stimulation of vagal afferents, leptin increased the size of NMDAR-mediated currents, but not AMPAR-mediated currents. Leptin also increased the size of evoked EPSPs and the ability of low-intensity solitary tract stimulation to evoke action potentials in LepR neurons. These effects of leptin were blocked by bath applying a competitive NMDAR antagonist (DCPP-ene) or by an NMDAR channel blocker applied through the recording pipette (MK-801). Last, feeding studies using male rats demonstrate that intra-NTS injections of DCPP-ene attenuate reduction of overnight food intake following intra-NTS leptin injection. Our results suggest that leptin acts in the NTS to reduce food intake by increasing NMDAR-mediated currents, thus enhancing NTS sensitivity to vagal inputs.SIGNIFICANCE STATEMENT Leptin is a hormone that critically impacts food intake and energy homeostasis. The nucleus of the solitary tract (NTS) is activated by vagal afferents from the gastrointestinal tract, which promotes termination of a meal. Injection of leptin into the NTS inhibits food intake, while knockdown of leptin receptors (LepRs) in NTS neurons increases food intake. However, little was known about how leptin acts in the NTS neurons to inhibit food intake. We found that leptin increases the sensitivity of LepR-expressing neurons to vagal inputs by increasing NMDA receptor-mediated synaptic currents and that NTS NMDAR activation contributes to leptin-induced reduction of food intake. These findings suggest a novel mechanism by which leptin, acting in the NTS, could potentiate gastrointestinal satiation signals.
Collapse
|
10
|
Wu X, Li JY, Lee A, Lu YX, Zhou SY, Owyang C. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight 2020; 5:132400. [PMID: 32699194 DOI: 10.1172/jci.insight.132400] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to elucidate the role and the pathways used by bile acid receptor TGR5 in transmitting satiety signals. We showed TGR5 colocalized with cholecystokinin type A (CCK-A) receptors in a subpopulation of rat nodose ganglia (NG) neurons. Intra-arterial injection of deoxycholic acid (DCA) dose-dependently increased firing rate in NG while a subthreshold dose of DCA and CCK-8 increased firing rates synergistically. TGR5-specific agonist oleanolic acid induced NG neuronal firing in a dose-dependent manner. However, the same units did not respond to GW4064, a nuclear receptor-specific agonist. Quantity of DCA-activated neurons in the hypothalamus was determined by c-Fos expression. Combining DCA and CCK-8 caused a 4-fold increase in c-Fos activation. In the arcuate nucleus, c-Fos-positive neurons coexpressed cocaine and amphetamine regulated transcript and proopiomelanocortin. DCA-induced c-Fos expression was eliminated following truncal vagotomy or silencing of TGR5 in the NG. Feeding studies showed intravenous injection of 1 μg/kg of DCA reduced food intake by 12% ± 3%, 24% ± 5%, and 32% ± 6% in the first 3 hours, respectively. Silencing of TGR5 or CCK-A receptor in the NG enhanced spontaneous feeding by 18% ± 2% and 13.5% ± 2.4%, respectively. When both TGR5 and CCK-A receptor were silenced, spontaneous feeding was enhanced by 37% ± 4% in the first 3 hours, suggesting that bile acid may have a physiological role in regulating satiety. Working in concert with CCK, bile acid synergistically enhanced satiety signals to reduce spontaneous feeding.
Collapse
|
11
|
Wang YB, de Lartigue G, Page AJ. Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Front Physiol 2020; 11:643. [PMID: 32595525 PMCID: PMC7300233 DOI: 10.3389/fphys.2020.00643] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the brain. Numerous subtypes of GI vagal afferent have been identified but their individual roles in gut function and feeding regulation are unclear. In the past decade, technical approaches to selectively target vagal afferent subtypes and to assess their function has significantly progressed. This review examines the classification of GI vagal afferent subtypes and discusses the current available techniques to study vagal afferents. Investigating the distribution of GI vagal afferent subtypes and understanding how to access and modulate individual populations are essential to dissect their fundamental roles in the gut-brain axis.
Collapse
Affiliation(s)
- Yoko B Wang
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, United States
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
12
|
Maniscalco JW, Edwards CM, Rinaman L. Ghrelin signaling contributes to fasting-induced attenuation of hindbrain neural activation and hypophagic responses to systemic cholecystokinin in rats. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1014-R1023. [PMID: 32292065 DOI: 10.1152/ajpregu.00346.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In rats, overnight fasting reduces the ability of systemic cholecystokinin-8 (CCK) to suppress food intake and to activate cFos in the caudal nucleus of the solitary tract (cNTS), specifically within glucagon-like peptide-1 (GLP-1) and noradrenergic (NA) neurons of the A2 cell group. Systemic CCK increases vagal sensory signaling to the cNTS, an effect that is amplified by leptin and reduced by ghrelin. Since fasting reduces plasma leptin and increases plasma ghrelin levels, we hypothesized that peripheral leptin administration and/or antagonism of ghrelin receptors in fasted rats would rescue the ability of CCK to activate GLP-1 neurons and a caudal subset of A2 neurons that coexpress prolactin-releasing peptide (PrRP). To test this, cFos expression was examined in ad libitum-fed and overnight food-deprived (DEP) rats after intraperitoneal CCK, after coadministration of leptin and CCK, or after intraperitoneal injection of a ghrelin receptor antagonist (GRA) before CCK. In fed rats, CCK activated cFos in ~60% of GLP-1 and PrRP neurons. Few or no GLP-1 or PrRP neurons expressed cFos in DEP rats treated with CCK alone, CCK combined with leptin, or GRA alone. However, GRA pretreatment increased the ability of CCK to activate GLP-1 and PrRP neurons and also enhanced the hypophagic effect of CCK in DEP rats. Considered together, these new findings suggest that reduced behavioral sensitivity to CCK in fasted rats is at least partially due to ghrelin-mediated suppression of hindbrain GLP-1 and PrRP neural responsiveness to CCK.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Psychology and Neuroscience, Regis University, Denver, Colorado
| | - Caitlyn M Edwards
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
13
|
Leon Mercado L, Caron A, Wang Y, Burton M, Gautron L. Identification of Leptin Receptor-Expressing Cells in the Nodose Ganglion of Male Mice. Endocrinology 2019; 160:1307-1322. [PMID: 30907928 PMCID: PMC6482037 DOI: 10.1210/en.2019-00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 12/29/2022]
Abstract
Leptin has been proposed to modulate viscerosensory information directly at the level of vagal afferents. In support of this view, broad expression for the leptin receptor (Lepr) has previously been reported in vagal afferents. However, the exact identity and distribution of leptin-sensitive vagal afferents has not been elucidated. Using quantitative PCR, we found that the whole mouse nodose ganglion was predominantly enriched in the short form of Lepr, rather than its long form. Consistent with this observation, the acute administration of leptin did not stimulate JAK-STAT signaling in the nodose ganglion. Using chromogenic in situ hybridization in wild-type mice and several reporter mouse models, we demonstrated that Lepr mRNA was restricted to nonneuronal cells in the epineurium and parenchyma of the nodose ganglion and a subset of vagal afferents, which accounted for only 3% of all neuronal profiles. Double labeling studies further established that Lepr-expressing vagal afferents were Nav1.8-negative fibers that did not supply the peritoneal cavity. Finally, double chromogenic in situ hybridization revealed that many Lepr-expressing neurons coexpressed the angiotensin 1a receptor (At1ar), which is a gene expressed in baroreceptors. Taken together, our data challenge the commonly held view that Lepr is broadly expressed in vagal afferents. Instead, our data suggest that leptin may exert a previously unrecognized role, mainly via its short form, as a direct modulator of a very small group of At1ar-positive vagal fibers.
Collapse
Affiliation(s)
- Luis Leon Mercado
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexandre Caron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yibing Wang
- Department of Biochemistry, Utah Southwestern Medical Center at Dallas, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael Burton
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Correspondence: Laurent Gautron, PhD, Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390. E-mail:
| |
Collapse
|
14
|
The vagus neurometabolic interface and clinical disease. Int J Obes (Lond) 2018; 42:1101-1111. [PMID: 29795463 DOI: 10.1038/s41366-018-0086-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
Abstract
The nervous system both monitors and modulates body metabolism to maintain homoeostasis. In disease states such as obesity and diabetes, the neurometabolic interface is dysfunctional and contributes to clinical illness. The vagus nerve, in particular, with both sensory and motor fibres, provides an anatomical substrate for this interface. Its sensory fibres contain receptors for important circulating metabolic mediators, including leptin and cholecystokinin, and provide real-time information about these mediators to the central nervous system. In turn, efferent fibres within the vagus nerve participate in a brain-gut axis to regulate metabolism. In this review, we describe these vagus nerve-mediated metabolic pathways and recent clinical trials of vagus nerve stimulation for the management of obesity. These early studies suggest that neuromodulation approaches that employ electricity to tune neurometabolic circuits may represent a new tool in the clinical armamentarium directed against obesity.
Collapse
|
15
|
Abstract
Hypothalamic integration of gastrointestinal and adipose tissue-derived hormones serves as a key element of neuroendocrine control of food intake. Leptin, adiponectin, oleoylethanolamide, cholecystokinin, and ghrelin, to name a few, are in a constant "cross talk" with the feeding-related brain circuits that encompass hypothalamic populations synthesizing anorexigens (melanocortins, CART, oxytocin) and orexigens (Agouti-related protein, neuropeptide Y, orexins). While this integrated neuroendocrine circuit successfully ensures that enough energy is acquired, it does not seem to be equally efficient in preventing excessive energy intake, especially in the obesogenic environment in which highly caloric and palatable food is constantly available. The current review presents an overview of intricate mechanisms underlying hypothalamic integration of energy balance-related peripheral endocrine input. We discuss vulnerabilities and maladaptive neuroregulatory processes, including changes in hypothalamic neuronal plasticity that propel overeating despite negative consequences.
Collapse
|
16
|
Diepenbroek C, Quinn D, Stephens R, Zollinger B, Anderson S, Pan A, de Lartigue G. Validation and characterization of a novel method for selective vagal deafferentation of the gut. Am J Physiol Gastrointest Liver Physiol 2017; 313:G342-G352. [PMID: 28705805 PMCID: PMC5668568 DOI: 10.1152/ajpgi.00095.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/01/2017] [Accepted: 06/23/2017] [Indexed: 01/31/2023]
Abstract
There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation.NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Charlene Diepenbroek
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Cellular and Molecular Physiology, Yale Medical School, New Haven, Connecticut; and
| | | | - Ricky Stephens
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis, Davis, California
| | | | - Seth Anderson
- The John B. Pierce Laboratory, New Haven, Connecticut
| | - Annabelle Pan
- The John B. Pierce Laboratory, New Haven, Connecticut
| | - Guillaume de Lartigue
- The John B. Pierce Laboratory, New Haven, Connecticut;
- Department of Cellular and Molecular Physiology, Yale Medical School, New Haven, Connecticut; and
| |
Collapse
|
17
|
|
18
|
Abstract
The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.
Collapse
|
19
|
Smith PM, Brzezinska P, Hubert F, Mimee A, Maurice DH, Ferguson AV. Leptin influences the excitability of area postrema neurons. Am J Physiol Regul Integr Comp Physiol 2015; 310:R440-8. [PMID: 26719304 DOI: 10.1152/ajpregu.00326.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022]
Abstract
The area postrema (AP) is a circumventricular organ with important roles in central autonomic regulation. This medullary structure has been shown to express the leptin receptor and has been suggested to have a role in modulating peripheral signals, indicating energy status. Using RT-PCR, we have confirmed the presence of mRNA for the leptin receptor, ObRb, in AP, and whole cell current-clamp recordings from dissociated AP neurons demonstrated that leptin influenced the excitability of 51% (42/82) of AP neurons. The majority of responsive neurons (62%) exhibited a depolarization (5.3 ± 0.7 mV), while the remaining affected cells (16/42) demonstrated hyperpolarizing effects (-5.96 ± 0.95 mV). Amylin was found to influence the same population of AP neurons. To elucidate the mechanism(s) of leptin and amylin actions in the AP, we used fluorescence resonance energy transfer (FRET) to determine the effect of these peptides on cAMP levels in single AP neurons. Leptin and amylin were found to elevate cAMP levels in the same dissociated AP neurons (leptin: % total FRET response 25.3 ± 4.9, n = 14; amylin: % total FRET response 21.7 ± 3.1, n = 13). When leptin and amylin were coapplied, % total FRET response rose to 53.0 ± 8.3 (n = 6). The demonstration that leptin and amylin influence a subpopulation of AP neurons and that these two signaling molecules have additive effects on single AP neurons to increase cAMP, supports a role for the AP as a central nervous system location at which these circulating signals may act through common intracellular signaling pathways to influence central control of energy balance.
Collapse
Affiliation(s)
- Pauline M Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paulina Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Fabien Hubert
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Andrea Mimee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
20
|
Grabauskas G, Wu X, Lu Y, Heldsinger A, Song I, Zhou SY, Owyang C. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J Physiol 2015; 593:3973-89. [PMID: 26174421 PMCID: PMC4575581 DOI: 10.1113/jp270788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological techniques, we show that ghrelin hyperpolarizes neurons and inhibits currents evoked by leptin and CCK-8. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition. The inhibitory actions of ghrelin were also abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K(+) conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Xiaoyin Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Yuanxu Lu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Andrea Heldsinger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Il Song
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Shi-Yi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
- Corresponding author C. Owyang: 3912 Taubman Center, SPC 5362, 1500 East Medical Center Drive, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Duca FA, Bauer PV, Hamr SC, Lam TKT. Glucoregulatory Relevance of Small Intestinal Nutrient Sensing in Physiology, Bariatric Surgery, and Pharmacology. Cell Metab 2015. [PMID: 26212718 DOI: 10.1016/j.cmet.2015.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Emerging evidence suggests the gastrointestinal tract plays an important glucoregulatory role. In this perspective, we first review how the intestine senses ingested nutrients, initiating crucial negative feedback mechanisms through a gut-brain neuronal axis to regulate glycemia, mainly via reduction in hepatic glucose production. We then highlight how intestinal energy sensory mechanisms are responsible for the glucose-lowering effects of bariatric surgery, specifically duodenal-jejunal bypass, and the antidiabetic agents metformin and resveratrol. A better understanding of these pathways lays the groundwork for intestinally targeted drug therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada
| | - Paige V Bauer
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sophie C Hamr
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tony K T Lam
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
22
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
23
|
Ciriello J, Caverson MM. Carotid chemoreceptor afferent projections to leptin receptor containing neurons in nucleus of the solitary tract. Peptides 2014; 58:30-5. [PMID: 24905621 DOI: 10.1016/j.peptides.2014.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/23/2022]
Abstract
Neurons expressing the leptin receptor (Ob-R) exist within the caudal nucleus of the solitary tract (NTS). Additionally, afferent neurons expressing the Ob-R have been identified within the nodose ganglion and NTS. Furthermore, systemic injections or focal injections of leptin directly into NTS potentiate the response of NTS neurons to carotid chemoreceptor activation. However, the distribution of carotid body afferents in relation to Ob-R containing neurons within NTS is not known. In this study, chemoreceptor afferent fibers were labeled following microinjection of the anterograde tract tracer biotinylated dextran amine (BDA) into the carotid body or petrosal/nodose ganglion of Wistar rats. After a survival period of 10-14 days, the NTS was processed for BDA and Ob-R immunoreactivity. Afferent axons originating in the carotid body were found to project to the lateral (Slt), gelantinosa (Sg), and medial (Sm) subnuclei of the NTS complex. A similar, but more robust distribution of BDA labeled fibers was observed in the NTS complex after injections into the petrosal/nodose ganglion. Carotid body BDA labeled fibers were observed in close apposition to Ob-R immunoreactive neurons in the region of Slt, Sg and Sm. In addition, a small number of carotid body afferents were found to contain both BDA and express Ob-R-like immunoreactivity within the regions of Slt, Sg and Sm. Taken together, these data suggest that leptin may modulate carotid chemoreceptor function not only through direct effects on NTS neurons, but also through a direct effect on carotid body primary afferent fibers that innervate NTS neurons.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1.
| | - Monica M Caverson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| |
Collapse
|
24
|
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol Metab 2014; 3:595-607. [PMID: 25161883 PMCID: PMC4142400 DOI: 10.1016/j.molmet.2014.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 12/15/2022] Open
Abstract
The vagal afferent pathway senses hormones released from the gut in response to nutritional cues and relays these signals to the brain. We tested the hypothesis that leptin resistance in vagal afferent neurons (VAN) is responsible for the onset of hyperphagia by developing a novel conditional knockout mouse to delete leptin receptor selectively in sensory neurons (Nav1.8/LepR (fl/fl) mice). Chow fed Nav1.8/LepR (fl/fl) mice weighed significantly more and had increased adiposity compared with wildtype mice. Cumulative food intake, meal size, and meal duration in the dark phase were increased in Nav1.8/LepR (fl/fl) mice; energy expenditure was unaltered. Reduced satiation in Nav1.8/LepR (fl/fl) mice is in part due to reduced sensitivity of VAN to CCK and the subsequent loss of VAN plasticity. Crucially Nav1.8/LepR (l/fl) mice did not gain further weight in response to a high fat diet. We conclude that disruption of leptin signaling in VAN is sufficient and necessary to promote hyperphagia and obesity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| | - Charlotte C Ronveaux
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
25
|
Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem 2014; 24:1663-77. [PMID: 24041374 DOI: 10.1016/j.jnutbio.2013.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
The gastrointestinal (GI) tract is a specialized sensory system that detects and responds to constant changes in nutrient- and bacterial-derived intestinal signals, thus contributing to controls of food intake. Chronic exposure to dietary fat causes morphological, physiological and metabolic changes leading to disruptions in the regulatory feeding pathways promoting more efficient fat absorption and utilization, blunted satiation signals and excess adiposity. Accumulating evidence demonstrates that impaired gastrointestinal signals following long-term high fat consumption are, at least partially, responsible for increased caloric intake. This review focuses on the role of dietary fat in modulating oral and post-oral chemosensory signaling elements responsible for lipid detection and responses, including changes in sensitivity to satiation signals, such as GLP-1, PYY and CCK and their impact on food intake and weight gain. Furthermore, the influence of the gut microbiota on mechanisms controlling energy regulation in the face of excessive fat exposure will be explored. The profound influence of dietary fats on altering complex regulatory feeding pathways can result in dysregulation of body weight and development of obesity, while restoration or manipulation of satiation signaling may prove an effective tool in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Frank A Duca
- INRA, UMR 1319 Micalis, F-78352 Jouy-en-Josas, France; AgroParis Tech, UMR 1319, F-78352 Jouy-en-Josas, France; University Pierre and Marie Curie, 75006 Paris, France
| | | | | |
Collapse
|
26
|
Alvarez P, Bogen O, Chen X, Giudice LC, Levine JD. Ectopic endometrium-derived leptin produces estrogen-dependent chronic pain in a rat model of endometriosis. Neuroscience 2013; 258:111-20. [PMID: 24239717 DOI: 10.1016/j.neuroscience.2013.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023]
Abstract
Endometriosis pain is a very common and extremely disabling condition whose mechanism is still poorly understood. While increased levels of leptin have been reported in patients with endometriosis, their contribution to endometriosis pain has not been explored. Using a rodent model of endometriosis we provide evidence for an estrogen-dependent contribution of leptin in endometriosis-induced pain. Rats implanted with autologous uterine tissue onto the gastrocnemius muscle developed endometriosis-like lesions and local chronic pain. Compared to eutopic uterine tissue, leptin mRNA and protein were up-regulated in the endometriosis-like lesions. Intramuscular injection of recombinant leptin in naive rats produced dose-dependent local mechanical hyperalgesia and nociceptor sensitization to mechanical stimulation. Ovariectomy attenuated the mechanical hyperalgesia induced by recombinant leptin, in rats treated with vehicle compared to those treated with 17β-estradiol replacement, at 1 and 24 h after leptin injection. Finally, intralesional injections of a pegylated leptin receptor (Ob-R) antagonist or of an inhibitor of Janus kinase2, which transduces the Ob-R signal, markedly attenuated pain in the endometriosis model. Taken together these data support the hypothesis that leptin, generated in ectopic endometrial lesions produces mechanical hyperalgesia by acting on nociceptors innervating the lesion. This sensitivity to leptin is dependent on estrogen levels. Thus, interventions targeting leptin signaling, especially in combination with interventions that lower estrogen levels, might be useful for the treatment of endometriosis pain.
Collapse
Affiliation(s)
- P Alvarez
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Division of Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - O Bogen
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Division of Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - X Chen
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Division of Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - L C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - J D Levine
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Division of Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Duca FA, Zhong L, Covasa M. Reduced CCK signaling in obese-prone rats fed a high fat diet. Horm Behav 2013; 64:812-7. [PMID: 24100196 DOI: 10.1016/j.yhbeh.2013.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/23/2022]
Abstract
Deficits in satiation signaling during obesogenic feeding have been proposed to play a role in hyperphagia and weight gain in animals prone to become obese. However, whether this impaired signaling is due to high fat (HF) feeding or to their obese phenotype is still unknown. Therefore, in the current study, we examined the effects of CCK-8 (0.5, 1.0, 2.0, and 4.0 μg/kg) on suppression of food intake of HF-fed obese prone (OP) and resistant (OR) rats. Additionally, we determined the role of endogenous CCK in lipid-induced satiation by measuring plasma CCK levels following a lipid gavage, and tested the effect of pretreatment with devazepide, a CCK-1R antagonist on intragastric lipid-induced satiation. Finally, we examined CCK-1R mRNA levels in the nodose ganglia. We show that OP rats have reduced feeding responses to the low doses of exogenous CCK-8 compared to OR rats. Furthermore, OP rats exhibit deficits in endogenous CCK signaling, as pretreatment with devazepide failed to abolish the reduction in food intake following lipid gavage. These effects were associated with reduced plasma CCK after intragastric lipid in OP but not OR rats. Furthermore, HF feeding resulted in downregulation of CCK-1Rs in the nodose ganglia of OP rats. Collectively, these results demonstrate that HF feeding leads to impairments in lipid-induced CCK satiation signaling in obese-prone rats, potentially contributing to hyperphagia and weight gain.
Collapse
Affiliation(s)
- Frank A Duca
- UMR1913-MICALIS, INRA, Domaine de Vilvert, Jouy-en-Josas 78352, France; UMR1913-MICALIS, AgroParisTech, Domaine de Vilvert, Jouy-en-Josas, 78352, France; Doctoral School of Physiology and Pathophysiology, University Pierre and Marie Currie, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | | | | |
Collapse
|
28
|
Avau B, De Smet B, Thijs T, Geuzens A, Tack J, Vanden Berghe P, Depoortere I. Ghrelin is involved in the paracrine communication between neurons and glial cells. Neurogastroenterol Motil 2013; 25:e599-608. [PMID: 23781841 DOI: 10.1111/nmo.12171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/20/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ghrelin is the only known peripherally active orexigenic hormone produced by the stomach that activates vagal afferents to stimulate food intake and to accelerate gastric emptying. Vagal sensory neurons within the nodose ganglia are surrounded by glial cells, which are able to receive and transmit chemical signals. We aimed to investigate whether ghrelin activates or influences the interaction between both types of cells. The effect of ghrelin was compared with that of leptin and cholecystokinin (CCK). METHODS Cultures of rat nodose ganglia were characterized by immunohistochemistry and the functional effects of peptides, neurotransmitters, and pharmacological blockers were measured by Ca(2+) imaging using Fluo-4-AM as an indicator. KEY RESULTS Neurons responded to KCl and were immunoreactive for PGP-9.5 whereas glial cells responded to lysophosphatidic acid and had the typical SOX-10-positive nuclear staining. Neurons were only responsive to CCK (31 ± 5%) whereas glial cells responded equally to the applied stimuli: ghrelin (27 ± 2%), leptin (21 ± 2%), and CCK (30 ± 2%). In contrast, neurons stained more intensively for the ghrelin receptor than glial cells. ATP induced [Ca(2+) ]i rises in 90% of the neurons whereas ACh and the NO donor, SIN-1, mainly induced [Ca(2+) ]i changes in glial cells (41 and 51%, respectively). The percentage of ghrelin-responsive glial cells was not affected by pretreatment with suramin, atropine, hexamethonium or 1400 W, but was reduced by l-NAME and by tetrodotoxin. Neurons were shown to be immunoreactive for neuronal NO-synthase (nNOS). CONCLUSIONS & INFERENCES Our data show that ghrelin induces Ca(2+) signaling in glial cells of the nodose ganglion via the release of NO originating from the neurons.
Collapse
Affiliation(s)
- B Avau
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Irwin N, Montgomery IA, Flatt PR. Comparison of the metabolic effects of sustained CCK1 receptor activation alone and in combination with upregulated leptin signalling in high-fat-fed mice. Diabetologia 2013; 56:1425-35. [PMID: 23462797 DOI: 10.1007/s00125-013-2878-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/11/2013] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Cholecystokinin (CCK) and leptin are important hormones with effects on energy balance. The present study assessed the biological effects of (pGlu-Gln)-CCK-8 and [D-Leu-4]-OB3, smaller isoforms of CCK and leptin, respectively. METHODS The actions and overall therapeutic use of (pGlu-Gln)-CCK-8 and [D-Leu-4]-OB3, alone and in combination, were evaluated in normal and high-fat-fed mice. RESULTS (pGlu-Gln)-CCK-8 had prominent (p < 0.01 to p < 0.001), acute feeding-suppressive effects, which were significantly augmented (p < 0.05 to p < 0.01) by [D-Leu-4]-OB3. In agreement, the acute dose-dependent glucose-lowering and insulinotropic actions of (pGlu-Gln)-CCK-8 were significantly enhanced by concurrent administration of [D-Leu-4]-OB3. Twice daily injection of (pGlu-Gln)-CCK-8 alone and in combination with [D-Leu-4]-OB3 in high-fat-fed mice for 18 days decreased body weight (p < 0.05 to p < 0.001), energy intake (p < 0.01), circulating triacylglycerol (p < 0.01), non-fasting glucose (p < 0.05 to p < 0.001) and triacylglycerol deposition in liver and adipose tissue (p < 0.001). All treatment regimens improved glucose tolerance (p < 0.05 to p < 0.001) and insulin sensitivity (p < 0.001). Combined treatment with (pGlu-Gln)-CCK-8 and [D-Leu-4]-OB3 resulted in significantly lowered plasma insulin levels, normalisation of circulating LDL-cholesterol and decreased triacylglycerol deposition in muscle. These effects were superior to either treatment regimen alone. There were no changes in overall locomotor activity or respiratory exchange ratio, but treatment with (pGlu-Gln)-CCK-8 significantly reduced (p < 0.001) energy expenditure. CONCLUSIONS/INTERPRETATION These studies highlight the potential of (pGlu-Gln)-CCK-8 alone and in combination with [D-Leu-4]-OB3 in the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- N Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 2DD Northern Ireland, UK.
| | | | | |
Collapse
|
30
|
Ciriello J. Leptin in nucleus of the solitary tract alters the cardiovascular responses to aortic baroreceptor activation. Peptides 2013; 44:1-7. [PMID: 23535030 DOI: 10.1016/j.peptides.2013.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 11/25/2022]
Abstract
Recent data suggests that neurons expressing the long form of the leptin receptor form at least two distinct groups within the caudal nucleus of the solitary tract (NTS): a group within the lateral NTS (Slt) and one within the medial (Sm) and gelantinosa (Sg) NTS. Discrete injections of leptin into Sm and Sg, a region that receives chemoreceptor input, elicit increases in arterial pressure (AP) and renal sympathetic nerve activity (RSNA). However, the effect of microinjections of leptin into Slt, a region that receives baroreceptor input is unknown. Experiments were done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar or Zucker obese rat to determine leptin's effect in Slt on heart rate (HR), AP and RSNA during electrical stimulation of the aortic depressor nerve (ADN). Depressor sites within Slt were first identified by the microinjection of l-glutamate (Glu; 0.25M; 10nl) followed by leptin microinjections. In the Wistar rat leptin microinjection (50ng; 20nl) into depressor sites within the lateral Slt elicited increases in HR and RSNA, but no changes in AP. Additionally, leptin injections into Slt prior to Glu injections at the same site or to stimulation of the ADN were found to attenuate the decreases in HR, AP and RSNA to both the Glu injection and ADN stimulation. In Zucker obese rats, leptin injections into NTS depressor sites did not elicit cardiovascular responses, nor altered the cardiovascular responses elicited by stimulation of ADN. Those data suggest that leptin acts at the level of NTS to alter the activity of neurons that mediate the cardiovascular responses to activation of the aortic baroreceptor reflex.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1.
| |
Collapse
|
31
|
Alén F, Ramírez-López MT, Gómez de Heras R, Rodríguez de Fonseca F, Orio L. Cannabinoid Receptors and Cholecystokinin in Feeding Inhibition. ANOREXIA 2013; 92:165-96. [DOI: 10.1016/b978-0-12-410473-0.00007-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Kentish SJ, O'Donnell TA, Isaacs NJ, Young RL, Li H, Harrington AM, Brierley SM, Wittert GA, Blackshaw LA, Page AJ. Gastric vagal afferent modulation by leptin is influenced by food intake status. J Physiol 2012; 591:1921-34. [PMID: 23266933 DOI: 10.1113/jphysiol.2012.247577] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Energy intake is strongly influenced by vagal afferent signals from the stomach, and is also modulated by leptin. Leptin may be secreted from gastric epithelial cells, so we aimed to determine the direct effect of leptin on gastric vagal afferents under different feeding conditions. Female C57BL/6 mice were fed standard laboratory diet, high-fat diet or were food restricted. The expression of leptin receptor (Lep-R) and its signal transduction molecules in vagal afferents was determined by retrograde tracing and reverse-transcription polymerase chain reaction, and the relationship between leptin-immunopositive cells and gastric vagal afferent endings determined by anterograde tracing and leptin immunohistochemistry. An in vitro preparation was used to determine the functional effects of leptin on gastric vagal afferents and the second messenger pathways involved. Leptin potentiated vagal mucosal afferent responses to tactile stimuli, and epithelial cells expressing leptin were found close to vagal mucosal endings. After fasting or diet-induced obesity, potentiation of mucosal afferents by leptin was lost and Lep-R expression reduced in the cell bodies of gastric mucosal afferents. These effects in diet-induced obese mice were accompanied by a reduction in anatomical vagal innervation of the gastric mucosa. In striking contrast, after fasting or diet-induced obesity, leptin actually inhibited responses to distension in tension receptors. The inhibitory effect on gastric tension receptors was mediated through phosphatidylinositol 3-kinase-dependent activation of large-conductance calcium-activated potassium channels. The excitatory effect of leptin on gastric mucosal vagal afferents was mediated by phospholipase C-dependent activation of canonical transient receptor potential channels. These data suggest the effect of leptin on gastric vagal afferent excitability is dynamic and related to the feeding state. Paradoxically, in obesity, leptin may reduce responses to gastric distension following food intake.
Collapse
Affiliation(s)
- Stephen J Kentish
- Nerve-Gut Research Laboratory, Room 1-216-H, Level 1, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ciriello J, Moreau JM. Systemic administration of leptin potentiates the response of neurons in the nucleus of the solitary tract to chemoreceptor activation in the rat. Neuroscience 2012; 229:88-99. [PMID: 23159310 DOI: 10.1016/j.neuroscience.2012.10.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/30/2022]
Abstract
Leptin microinjections into the nucleus of the solitary tract (NTS) have been shown to elicit sympathoexcitatory responses, and potentiate the cardiovascular responses to activation of the chemoreflex. In this study, experiments were done in Sprague-Dawley rats initially to provide a detailed mapping within the NTS complex of cells containing immunoreactivity to the long form of the leptin receptor (Ob-Rb). In a second series, this NTS region containing Ob-Rb immunoreactive cells was explored for single units antidromically activated by stimulation of pressor sites in the rostral ventrolateral medulla (RVLM). These antidromically identified neurons were then tested for their response to intra-carotid injections of leptin (50-100 ng/0.1 ml), and to activation of peripheral chemoreceptors following an injection of potassium cyanide (KCN) (80 μg/0.1 ml) into the carotid artery. Cells containing Ob-Rb-like immunoreactivity were found predominantly in the caudal NTS: within the medial, commissural and gelatinous (sub-postremal area) subnuclei of the NTS complex. Of 73 single units tested in these NTS regions, 48 were antidromically activated by stimulation of RVLM pressor sites and 25 of these single units responded with an increase in discharge rate after intra-carotid injections of leptin. In addition, 17 of these leptin responsive neurons were excited by the intra-carotid injections of KCN (80 μg/0.1 ml). Furthermore, the excitatory response of these single units to KCN was potentiated (59-83%) immediately following the leptin injection. These data indicate that leptin responsive neurons in NTS mediate chemoreceptor afferent information to pressor sites in the RVLM, and suggest that leptin may act as a facilitator on neuronal circuits within the NTS that potentiates the sympathoexcitatory responses elicited during the reflex activation of arterial chemoreceptors.
Collapse
Affiliation(s)
- J Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1.
| | | |
Collapse
|
34
|
Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 2012; 16:296-309. [PMID: 22902836 PMCID: PMC4862653 DOI: 10.1016/j.cmet.2012.06.015] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/20/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023]
Abstract
This Review highlights the processing and integration performed by hindbrain nuclei, focusing on the inputs received by nucleus tractus solitarius (NTS) neurons. These inputs include vagally mediated gastrointestinal satiation signals, blood-borne energy-related hormonal and nutrient signals, and descending neural signals from the forebrain. We propose that NTS (and hindbrain neurons, more broadly) integrate these multiple energy status signals and issue-output commands controlling the behavioral, autonomic, and endocrine responses that collectively govern energy balance. These hindbrain-mediated controls are neuroanatomically distributed; they involve endemic hindbrain neurons and circuits, hindbrain projections to peripheral circuits, and projections to and from midbrain and forebrain nuclei.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Group of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
35
|
Ciriello J, Moreau JM. Leptin signaling in the nucleus of the solitary tract alters the cardiovascular responses to activation of the chemoreceptor reflex. Am J Physiol Regul Integr Comp Physiol 2012; 303:R727-36. [PMID: 22914750 DOI: 10.1152/ajpregu.00068.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circulating levels of leptin are elevated in individuals suffering from chronic intermittent hypoxia (CIH). Systemic and central administration of leptin elicits increases in sympathetic nervous activity (SNA), arterial pressure (AP), and heart rate (HR), and it attenuates the baroreceptor reflex, cardiovascular responses that are similar to those observed during CIH as a result of activation of chemoreceptors by the systemic hypoxia. Therefore, experiments were done in anesthetized Wistar rats to investigate the effects of leptin in nucleus of the solitary tract (NTS) on AP and HR responses, and renal SNA (RSNA) responses during activation of NTS neurons and the chemoreceptor reflex. Microinjection of leptin (5-100 ng; 20 nl) into caudal NTS pressor sites (l-glutamate; l-Glu; 0.25 M; 10 nl) elicited dose-related increases in AP, HR, and RSNA. Leptin microinjections (5 ng; 20 nl) into these sites potentiated the increase in AP and HR elicited by l-Glu. Additionally, bilateral injections of leptin (5 ng; 100 nl) into NTS potentiated the increase in AP and attenuated the bradycardia to systemic activation of the chemoreflex. In the Zucker obese rat, leptin injections into NTS neither elicited cardiovascular responses nor altered the cardiovascular responses to activation of the chemoreflex. Taken together, these data indicate that leptin exerts a modulatory effect on neuronal circuits within NTS that control cardiovascular responses elicited during the reflex activation of arterial chemoreceptors and suggest that increased AP and SNA observed in individuals with CIH may be due, in part, by leptin's effects on the chemoreflex at the level of NTS.
Collapse
Affiliation(s)
- John Ciriello
- Dept. of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Univ. of Western Ontario, London, ON, Canada.
| | | |
Collapse
|
36
|
Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:824305. [PMID: 22899902 PMCID: PMC3415214 DOI: 10.1155/2012/824305] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
37
|
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
|
38
|
Sympathoinhibitory signals from the gut and obesity-related hypertension. Clin Auton Res 2012; 23:33-9. [DOI: 10.1007/s10286-012-0171-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/31/2012] [Indexed: 12/13/2022]
|
39
|
Page AJ, Symonds E, Peiris M, Blackshaw LA, Young RL. Peripheral neural targets in obesity. Br J Pharmacol 2012; 166:1537-58. [PMID: 22432806 PMCID: PMC3419899 DOI: 10.1111/j.1476-5381.2012.01951.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Interest in pharmacological treatments for obesity that act in the brain to reduce appetite has increased exponentially over recent years, but failures of clinical trials and withdrawals due to adverse effects have so far precluded any success. Treatments that do not act within the brain are, in contrast, a neglected area of research and development. This is despite the fact that a vast wealth of molecular mechanisms exists within the gut epithelium and vagal afferent system that could be manipulated to increase satiety. Here we discuss mechano- and chemosensory pathways from the gut involved in appetite suppression, and distinguish between gastric and intestinal vagal afferent pathways in terms of their basic physiology and activation by enteroendocrine factors. Gastric bypass surgery makes use of this system by exposing areas of the intestine to greater nutrient loads resulting in greater satiety hormone release and reduced food intake. A non-surgical approach to this system is preferable for many reasons. This review details where the opportunities may lie for such approaches by describing nutrient-sensing mechanisms throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Amanda J Page
- Nerve-Gut Research Laboratory, Discipline of Medicine, South Australia, Australia
| | | | | | | | | |
Collapse
|
40
|
de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS One 2012; 7:e32967. [PMID: 22412960 PMCID: PMC3296757 DOI: 10.1371/journal.pone.0032967] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/06/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND AIMS The gastrointestinal hormone cholecystokinin (CCK) plays an important role in regulating meal size and duration by activating CCK1 receptors on vagal afferent neurons (VAN). Leptin enhances CCK signaling in VAN via an early growth response 1 (EGR1) dependent pathway thereby increasing their sensitivity to CCK. In response to a chronic ingestion of a high fat diet, VAN develop leptin resistance and the satiating effects of CCK are reduced. We tested the hypothesis that leptin resistance in VAN is responsible for reducing CCK signaling and satiation. RESULTS Lean Zucker rats sensitive to leptin signaling, significantly reduced their food intake following administration of CCK8S (0.22 nmol/kg, i.p.), while obese Zucker rats, insensitive to leptin, did not. CCK signaling in VAN of obese Zucker rats was reduced, preventing CCK-induced up-regulation of Y2 receptor and down-regulation of melanin concentrating hormone 1 receptor (MCH1R) and cannabinoid receptor (CB1). In VAN from diet-induced obese (DIO) Sprague Dawley rats, previously shown to become leptin resistant, we demonstrated that the reduction in EGR1 expression resulted in decreased sensitivity of VAN to CCK and reduced CCK-induced inhibition of food intake. The lowered sensitivity of VAN to CCK in DIO rats resulted in a decrease in Y2 expression and increased CB1 and MCH1R expression. These effects coincided with the onset of hyperphagia in DIO rats. CONCLUSIONS Leptin signaling in VAN is required for appropriate CCK signaling and satiation. In response to high fat feeding, the onset of leptin resistance reduces the sensitivity of VAN to CCK thus reducing the satiating effects of CCK.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Claire Barbier de la Serre
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Elvis Espero
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jennifer Lee
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Helen E. Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Raybould HE. Gut microbiota, epithelial function and derangements in obesity. J Physiol 2011; 590:441-6. [PMID: 22183718 DOI: 10.1113/jphysiol.2011.222133] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The gut epithelium is a barrier between the 'outside' and 'inside' world. The major function of the epithelium is to absorb nutrients, ions and water, yet it must balance these functions with that of protecting the 'inside' world from potentially harmful toxins, irritants, bacteria and other pathogens that also exist in the gut lumen. The health of an individual depends upon the efficient digestion and absorption of all required nutrients from the diet. This requires sensing of meal components by gut enteroendocrine cells, activation of neural and humoral pathways to regulate gastrointestinal motor, secretory and absorptive functions, and also to regulate food intake and plasma levels of glucose. In this way, there is a balance between the delivery of food and the digestive and absorptive capacity of the intestine. Maintenance of the mucosal barrier likewise requires sensory detection of pathogens, toxins and irritants; breakdown of the epithelial barrier is associated with gut inflammation and may ultimately lead to inflammatory bowel disease. However, disruption of the barrier alone is not sufficient to cause frank inflammatory bowel disease. Several recent studies have provided compelling new evidence to suggest that changes in epithelial barrier function and inflammation are associated with and may even lead to altered regulation of body weight and glucose homeostasis. This article provides a brief review of some recent evidence to support the hypothesis that changes in the gut microbiota and alteration of gut epithelial function will perturb the homeostatic humoral and neural pathways controlling food intake and body weight.
Collapse
Affiliation(s)
- Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1321 Haring Hall, UC Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Owyang C, Heldsinger A. Vagal control of satiety and hormonal regulation of appetite. J Neurogastroenterol Motil 2011; 17:338-48. [PMID: 22148102 PMCID: PMC3228973 DOI: 10.5056/jnm.2011.17.4.338] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/10/2011] [Accepted: 09/15/2011] [Indexed: 12/27/2022] Open
Abstract
The paradigm for the control of feeding behavior has changed significantly. In this review, we present evidence that the separation of function in which cholecystokinin (CCK) controls short-term food intake and leptin regulate long-term eating behavior and body weight become less clear. In addition to the hypothalamus, the vagus nerve is critically involved in the control of feeding by transmitting signals arising from the upper gut to the nucleus of the solitary tract. Among the peripheral mediators, CCK is the key peptide involved in generating the satiety signal via the vagus. Leptin receptors have also been identified in the vagus nerve. Studies in the rodents clearly indicate that leptin and CCK interact synergistically to induce short-term inhibition of food intake and long-term reduction of body weight. The synergistic interaction between vagal CCK-A receptor and leptin is mediated by the phosphorylation of signal transducer and activator of transcription3 (STAT3), which in turn, activates closure of K(+) channels, leading to membrane depolarization and neuronal firing. This involves the interaction between CCK/SRC/phosphoinositide 3-kinase cascades and leptin/Janus kinase-2/phosphoinositide 3-kinase/STAT3 signaling pathways. It is conceivable that malfunctioning of these signaling molecules may result in eating disorders.
Collapse
Affiliation(s)
- Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
43
|
de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab 2011; 301:E187-95. [PMID: 21521717 PMCID: PMC3129833 DOI: 10.1152/ajpendo.00056.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ingestion of high-fat, high-calorie diets is associated with hyperphagia, increased body fat, and obesity. The mechanisms responsible are currently unclear; however, altered leptin signaling may be an important factor. Vagal afferent neurons (VAN) integrate signals from the gut in response to ingestion of nutrients and express leptin receptors. Therefore, we tested the hypothesis that leptin resistance occurs in VAN in response to a high-fat diet. Sprague-Dawley rats, which exhibit a bimodal distribution of body weight gain, were used after ingestion of a high-fat diet for 8 wk. Body weight, food intake, and plasma leptin levels were measured. Leptin signaling was determined by immunohistochemical localization of phosphorylated STAT3 (pSTAT3) in cultured VAN and by quantifaction of pSTAT3 protein levels by Western blot analysis in nodose ganglia and arcuate nucleus in vivo. To determine the mechanism of leptin resistance in nodose ganglia, cultured VAN were stimulated with leptin alone or with lipopolysaccharide (LPS) and SOCS-3 expression measured. SOCS-3 protein levels in VAN were measured by Western blot following leptin administration in vivo. Leptin resulted in appearance of pSTAT3 in VAN of low-fat-fed rats and rats resistant to diet-induced obesity but not diet-induced obese (DIO) rats. However, leptin signaling was normal in arcuate neurons. SOCS-3 expression was increased in VAN of DIO rats. In cultured VAN, LPS increased SOCS-3 expression and inhibited leptin-induced pSTAT3 in vivo. We conclude that VAN of diet-induced obese rats become leptin resistant; LPS and SOCS-3 may play a role in the development of leptin resistance.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | | | | | | | | |
Collapse
|
44
|
Scott MM, Williams KW, Rossi J, Lee CE, Elmquist JK. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J Clin Invest 2011; 121:2413-21. [PMID: 21606595 DOI: 10.1172/jci43703] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/09/2011] [Indexed: 11/17/2022] Open
Abstract
Leptin is an adipose-derived hormone that signals to inform the brain of nutrient status; loss of leptin signaling results in marked hyperphagia and obesity. Recent work has identified several groups of neurons that contribute to the effects of leptin to regulate energy balance, but leptin receptors are distributed throughout the brain, and the function of leptin signaling in discrete neuronal populations outside of the hypothalamus has not been defined. In the current study, we produced mice in which the long form of the leptin receptor (Lepr) was selectively ablated using Cre-recombinase selectively expressed in the hindbrain under control of the paired-like homeobox 2b (Phox2b) promoter (Phox2b Cre Lepr(flox/flox) mice). In these mice, Lepr was deleted from glucagon-like 1 peptide-expressing neurons resident in the nucleus of the solitary tract. Phox2b Cre Lepr(flox/flox) mice were hyperphagic, displayed increased food intake after fasting, and gained weight at a faster rate than wild-type controls. Paradoxically, Phox2b Cre Lepr(flox/flox) mice also exhibited an increased metabolic rate independent of a change in locomotor activity that was dependent on food intake, and glucose homeostasis was normal. Together, these data support a physiologically important role of direct leptin action in the hindbrain.
Collapse
Affiliation(s)
- Michael M Scott
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | | | | | | | | |
Collapse
|
45
|
Heldsinger A, Grabauskas G, Song I, Owyang C. Synergistic interaction between leptin and cholecystokinin in the rat nodose ganglia is mediated by PI3K and STAT3 signaling pathways: implications for leptin as a regulator of short term satiety. J Biol Chem 2011; 286:11707-15. [PMID: 21270124 PMCID: PMC3064222 DOI: 10.1074/jbc.m110.198945] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/25/2011] [Indexed: 11/06/2022] Open
Abstract
Research has shown that the synergistic interaction between vagal cholecystokinin-A receptors (CCKARs) and leptin receptors (LRbs) mediates short term satiety. We hypothesize that this synergistic interaction is mediated by cross-talk between signaling cascades used by CCKARs and LRbs, which, in turn, activates closure of K(+) channels, leading to membrane depolarization and neuronal firing. Whole cell patch clamp recordings were performed on isolated rat nodose ganglia neurons. Western immunoblots elucidated the intracellular signaling pathways that modulate leptin/CCK synergism. In addition, STAT3, PI3K, Src, and MAPK genes were silenced by lentiviral infection and transient Lipofectamine transfection of cultured rat nodose ganglia to determine the effect of these molecules on leptin/CCK synergism. Patch clamp studies showed that a combination of leptin and CCK-8 caused a significant increase in membrane input resistance compared with leptin or CCK-8 alone. Silencing the STAT3 gene abolished the synergistic action of leptin/CCK-8 on neuronal firing. Leptin/CCK-8 synergistically stimulated a 7.7-fold increase in phosphorylated STAT3 (pSTAT3), which was inhibited by AG490, C3 transferase, PP2, LY294002, and wortmannin, but not PD98059. Silencing the Src and PI3K genes resulted in a loss of leptin/CCK-stimulated pSTAT3. We conclude that the synergistic interaction between vagal CCKARs and LRbs is mediated by the phosphorylation of STAT3, which, in turn, activates closure of K(+) channels, leading to membrane depolarization and neuronal firing. This involves the interaction between CCK/Src/PI3K cascades and leptin/JAK2/PI3K/STAT3 signaling pathways. Malfunctioning of these signaling molecules may result in eating disorders.
Collapse
Affiliation(s)
- Andrea Heldsinger
- From the Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Gintautas Grabauskas
- From the Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Il Song
- From the Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Chung Owyang
- From the Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
46
|
Dockray GJ, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance. Acta Physiol (Oxf) 2011; 201:313-21. [PMID: 21062423 DOI: 10.1111/j.1748-1716.2010.02219.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ingestion of food activates mechanisms leading to inhibition of food intake and gastric emptying mediated by the release of regulatory peptides, for example cholecystokinin (CCK), and lipid amides, e.g. oleylethanolamide from the gut. In addition, there are both peptides (e.g. ghrelin) and lipid amides (e.g. anandamide) that appear to signal the absence of food in the gut and that are associated with the stimulation of food intake. Vagal afferent neurones are a common target for both types of signal. Remarkably, the neurochemical phenotype of these neurones itself depends on nutritional status. CCK acting at CCK1 receptors on vagal afferent neurones stimulates expression in these neurones of Y2-receptors and the neuropeptide CART, both of which are associated with the inhibition of food intake. Conversely, in fasted rats when plasma CCK is low, these neurones express cannabinoid (CB)-1 and melanin concentrating hormone (MCH)-1 receptors, and MCH, and this is inhibited by exogenous CCK or endogenous CCK released by refeeding. The stimulation of CART expression by CCK is mediated by the activation of CREB and EGR1; ghrelin inhibits the action of CCK by promoting nuclear exclusion of CREB and leptin potentiates the action of CCK by the stimulation of EGR1 expression. Vagal afferent neurones therefore constitute a level of integration outside the CNS for nutrient-derived signals that control energy intake and that are capable of encoding recent nutrient ingestion.
Collapse
Affiliation(s)
- G J Dockray
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool, UK.
| | | |
Collapse
|
47
|
Li Y, Wu X, Zhou S, Owyang C. Low-affinity CCK-A receptors are coexpressed with leptin receptors in rat nodose ganglia: implications for leptin as a regulator of short-term satiety. Am J Physiol Gastrointest Liver Physiol 2011; 300:G217-27. [PMID: 21109591 PMCID: PMC3043649 DOI: 10.1152/ajpgi.00356.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The paradigm for the control of feeding behavior has changed significantly. Research has shown that leptin, in the presence of CCK, may mediate the control of short-term food intake. This interaction between CCK and leptin occurs at the vagus nerve. In the present study, we aimed to characterize the interaction between CCK and leptin in the vagal primary afferent neurons. Single neuronal discharges of vagal primary afferent neurons innervating the gastrointestinal tract were recorded from rat nodose ganglia. Three groups of nodose ganglia neurons were identified: group 1 responded to CCK-8 but not leptin; group 2 responded to leptin but not CCK-8; group 3 responded to high-dose CCK-8 and leptin. In fact, the neurons in group 3 showed CCK-8 and leptin potentiation, and they responded to gastric distention. To identify the CCK-A receptor (CCKAR) affinity states that colocalize with the leptin receptor OB-Rb, we used CCK-JMV-180, a high-affinity CCKAR agonist and low-affinity CCKAR antagonist. As expected, immunohistochemical studies showed that CCK-8 administration significantly potentiated the increase in the number of c-Fos-positive neurons stimulated by leptin in vagal nodose ganglia. Administration of CCK-JMV-180 eliminated the synergistic interaction between CCK-8 and leptin. We conclude that both low- and high-affinity CCKAR are expressed in nodose ganglia. Many nodose neurons bearing low-affinity CCKAR express OB-Rb. These neurons also respond to mechanical distention. An interaction between CCKAR and OB-Rb in these neurons likely facilitates leptin mediation of short-term satiety.
Collapse
Affiliation(s)
- Ying Li
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xiaoyin Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shiyi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
48
|
de Lartigue G, Lur G, Dimaline R, Varro A, Raybould H, Dockray GJ. EGR1 Is a target for cooperative interactions between cholecystokinin and leptin, and inhibition by ghrelin, in vagal afferent neurons. Endocrinology 2010; 151:3589-99. [PMID: 20534729 PMCID: PMC2940532 DOI: 10.1210/en.2010-0106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Food intake is regulated by signals from peripheral organs, but the way these are integrated remains uncertain. Cholecystokinin (CCK) from the intestine and leptin from adipocytes interact to inhibit food intake. Our aim was to examine the hypothesis that these interactions occur at the level of vagal afferent neurons via control of the immediate early gene EGR1. We now report that CCK stimulates redistribution to the nucleus of early growth response factor-1 (EGR1) in these neurons in vivo and in culture, and these effects are not dependent on EGR1 synthesis. Leptin stimulates EGR1 expression; leptin alone does not stimulate nuclear translocation, but it strongly potentiates the action of CCK. Ghrelin inhibits CCK-stimulated nuclear translocation of EGR1 and leptin-stimulated EGR1 expression. Expression of the gene encoding the satiety peptide cocaine- and amphetamine-regulated transcript (CARTp) is stimulated by CCK via an EGR1-dependent mechanism, and this is strongly potentiated by leptin. Leptin potentiated inhibition of food intake by endogenous CCK in the rat in conditions reflecting changes in EGR1 activation. The data indicate that by separately regulating EGR1 activation and synthesis, CCK and leptin interact cooperatively to define the capacity for satiety signaling by vagal afferent neurons; manipulation of these interactions may be therapeutically beneficial.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ. Expression of cannabinoid CB1 receptors by vagal afferent neurons: kinetics and role in influencing neurochemical phenotype. Am J Physiol Gastrointest Liver Physiol 2010; 299:G63-9. [PMID: 20430875 PMCID: PMC2904113 DOI: 10.1152/ajpgi.00059.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal hormone cholecystokinin (CCK) inhibits food intake via stimulation of vagal afferent neurons (VAN). Recent studies suggest that CCK also regulates the expression of some G protein-coupled receptors and neuropeptide transmitters in these neurons. The aim of the present study was to characterize the expression of cannabinoid (CB)1 receptors in VAN and to determine whether stimulation of these receptors plays a role in regulating neurochemical phenotype. Expression of CB1 in rat VAN was detectable by in situ hybridization or immunohistochemistry after 6 h of fasting and increased to a maximum after 24 h when approximately 50% of neurons in the mid and caudal regions expressed the receptor. Melanin-concentrating hormone (MCH)1 receptors also increased with fasting, but the changes were delayed compared with CB1; in contrast Y2 receptors (Y2R) exhibited reciprocal changes in expression to CB1. Administration of CCK8s (10 nmol ip) to fasted rats decreased expression of CB1 with a t(1/2) of approximately 1 h compared with 3 h for MCH1. The action of CCK8s was inhibited by ghrelin and orexin-A. The CB1 agonist anandamide (intraperitoneally) reversed the effect of CCK8s on CB1, MCH1, and Y2 receptor expression. In contrast, in rats fasted for 18 h, administration of a CB1 antagonist/inverse agonist (AM281 ip) downregulated CB1 expression and increased Y2 receptor expression. Activation of vagal CB1 receptors therefore influences the neurochemical phenotype of these neurons, indicating a new and hitherto unrecognized role for endocannabinoids in gut-brain signaling.
Collapse
Affiliation(s)
- Galina Burdyga
- 1Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool;
| | - Andrea Varro
- 1Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool;
| | - Rod Dimaline
- 1Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool;
| | - David G. Thompson
- 2Division of Gastroenterology, Hope University Hospital, Salford, United Kingdom
| | - Graham J. Dockray
- 1Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool;
| |
Collapse
|
50
|
Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J 2010; 57:359-72. [PMID: 20424341 DOI: 10.1507/endocrj.k10e-077] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The World Health Organisation has estimated that by 2015 approximately 2.3 billion adults will be overweight and more than 700 million obese. Obesity is associated with an increased risk of diabetes, cardiovascular events, stroke and cancer. The hypothalamus is a crucial region for integrating signals from central and peripheral pathways and plays a major role in appetite regulation. In addition, there are reciprocal connections with the brainstem and higher cortical centres. In the arcuate nucleus of the hypothalamus, there are two major neuronal populations which stimulate or inhibit food intake and influence energy homeostasis. Within the brainstem, the dorsal vagal complex plays a role in the interpretation and relaying of peripheral signals. Gut hormones act peripherally to modulate digestion and absorption of nutrients. However, they also act as neurotransmitters within the central nervous system to control food intake. Peptide YY, pancreatic polypeptide, glucagon-like peptide-1 and oxyntomodulin suppress appetite, whilst ghrelin increases appetite through afferent vagal fibres to the caudal brainstem or directly to the hypothalamus. A better understanding of the role of these gut hormones may offer the opportunity to develop successful treatments for obesity. Here we review the current understanding of the role of gut hormones and the hypothalamus on food intake and body weight control.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|