1
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Du Y, Zhou S, Ma C, Chen H, Du A, Deng G, Liu Y, Tose AJ, Sun L, Liu Y, Wu H, Lou H, Yu YQ, Zhao T, Lammel S, Duan S, Yang H. Dopamine release and negative valence gated by inhibitory neurons in the laterodorsal tegmental nucleus. Neuron 2023; 111:3102-3118.e7. [PMID: 37499661 DOI: 10.1016/j.neuron.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/25/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
GABAergic neurons in the laterodorsal tegmental nucleus (LDTGABA) encode aversion by directly inhibiting mesolimbic dopamine (DA). Yet, the detailed cellular and circuit mechanisms by which these cells relay unpleasant stimuli to DA neurons and regulate behavioral output remain largely unclear. Here, we show that LDTGABA neurons bidirectionally respond to rewarding and aversive stimuli in mice. Activation of LDTGABA neurons promotes aversion and reduces DA release in the lateral nucleus accumbens. Furthermore, we identified two molecularly distinct LDTGABA cell populations. Somatostatin-expressing (Sst+) LDTGABA neurons indirectly regulate the mesolimbic DA system by disinhibiting excitatory hypothalamic neurons. In contrast, Reelin-expressing LDTGABA neurons directly inhibit downstream DA neurons. The identification of separate GABAergic subpopulations in a single brainstem nucleus that relay unpleasant stimuli to the mesolimbic DA system through direct and indirect projections is critical for establishing a circuit-level understanding of how negative valence is encoded in the mammalian brain.
Collapse
Affiliation(s)
- Yonglan Du
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Siyao Zhou
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chenyan Ma
- Division of Neurobiology, Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hui Chen
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Ana Du
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Guochuang Deng
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yige Liu
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Amanda J Tose
- Division of Neurobiology, Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Li Sun
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yijun Liu
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou 310058, China
| | - Huifang Lou
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yan-Qin Yu
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Ting Zhao
- PKU-Nanjing Joint Institute of Translational Medicine, Nanjing 211800, China
| | - Stephan Lammel
- Division of Neurobiology, Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Shumin Duan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Yang
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Shabani M, Ilaghi M, Naderi R, Razavinasab M. The hyperexcitability of laterodorsal tegmentum cholinergic neurons accompanies adverse behavioral and cognitive outcomes of prenatal stress. Sci Rep 2023; 13:6011. [PMID: 37045899 PMCID: PMC10097720 DOI: 10.1038/s41598-023-33016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Exposure to prenatal stress (PS) leads to the offspring's vulnerability towards the development of cognitive and behavioral disorders. Laterodorsal tegmentum (LDT) is a part of the brainstem cholinergic system that is believed to play a pivotal role in the stress-associated progression of anxiety, memory impairment, and addictive behaviors. In this study, we aimed to investigate the electrophysiological alterations of LDT cholinergic neurons and its accompanied behavioral and cognitive outcomes in the offspring of mice exposed to physical or psychological PS. Swiss Webster mice were exposed to physical or psychological stress on the tenth day of gestation. Ex vivo investigations in LDT brain slices of adolescent male offspring were performed to evaluate the effects of two stressor types on the activity of cholinergic neurons. Open field test, elevated plus maze, passive avoidance test, and conditioned place preference were conducted to assess behavioral and cognitive alterations in the offspring. The offspring of both physical and psychological PS-exposed mice exhibited increased locomotor activity, anxiety-like behavior, memory impairment, and preference to morphine. In both early- and late-firing cholinergic neurons of the LDT, stressed groups demonstrated higher firing frequency, lower adaptation ratio, decreased action potential threshold, and therefore increased excitability compared to the control group. The findings of the present study suggest that the hyperexcitability of the cholinergic neurons of LDT might be involved in the development of PS-associated anxiety-like behaviors, drug seeking, and memory impairment.
Collapse
Affiliation(s)
- Mohammad Shabani
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, P.O. Box 76198-13159, Kerman, Iran
| | - Mehran Ilaghi
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, P.O. Box 76198-13159, Kerman, Iran
| | - Reyhaneh Naderi
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street 3, 02-093, Warsaw, Poland
| | - Moazamehosadat Razavinasab
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, P.O. Box 76198-13159, Kerman, Iran.
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Polli FS, Kohlmeier KA. Prenatal nicotine alters development of the laterodorsal tegmentum: Possible role for attention-deficit/hyperactivity disorder and drug dependence. World J Psychiatry 2022; 12:212-235. [PMID: 35317337 PMCID: PMC8900586 DOI: 10.5498/wjp.v12.i2.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
As we cycle between the states of wakefulness and sleep, a bilateral cholinergic nucleus in the pontine brain stem, the laterodorsal tegmentum (LDT), plays a critical role in controlling salience processing, attention, behavioral arousal, and electrophysiological signatures of the sub- and microstates of sleep. Disorders involving abnormal alterations in behavioral and motivated states, such as drug dependence, likely involve dysfunctions in LDT signaling. In addition, as the LDT exhibits connectivity with the thalamus and mesocortical circuits, as well as receives direct, excitatory input from the prefrontal cortex, a role for the LDT in cognitive symptoms characterizing attention-deficit/hyperactivity disorder (ADHD) including impulsivity, inflexibility, and dysfunctions of attention is suggested. Prenatal nicotine exposure (PNE) is associated with a higher risk for later life development of drug dependence and ADHD, suggesting alteration in development of brain regions involved in these behaviors. PNE has been shown to alter glutamate and cholinergic signaling within the LDT. As glutamate and acetylcholine are major excitatory mediators, these alterations would likely alter excitatory output to target regions in limbic motivational circuits and to thalamic and cortical networks mediating executive control. Further, PNE alters neuronal development and transmission within prefrontal cortex and limbic areas that send input to the LDT, which would compound effects of differential processing within the PNE LDT. When taken together, alterations in signaling in the LDT are likely to play a role in negative behavioral outcomes seen in PNE individuals, including a heightened risk of drug dependence and ADHD behaviors.
Collapse
Affiliation(s)
- Filip S Polli
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
5
|
Abburi C, McDaid J. Ethanol interaction with α3β4 nicotinic acetylcholine receptors in neurons of the laterodorsal tegmentum. Alcohol Clin Exp Res 2021; 45:2495-2505. [PMID: 34625982 DOI: 10.1111/acer.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) play a key role in the rewarding effects of ethanol (EtOH), and while several nAChR subtypes have been implicated, attention has recently shifted to a role for the α3β4 nAChR. The laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic nucleus that sends excitatory projections to the ventral tegmental area, is an Integral part of the brain reward pathway. Here we investigate a potential role for LDTg α3β4 nAChRs in EtOH self-administration and reward. METHODS Sprague-Dawley rats were given ad libitum access to a 20% EtOH solution, as part of a two-bottle choice paradigm. Approximately 1 week after removal of EtOH access, we measured LDTg α3β4 nAChR current responses to focal application of acetylcholine (ACh), using whole-cell patch clamp electrophysiology recordings in acute brain slices. In addition, we used whole-cell electrophysiology to assess the acute effects of EtOH on the sensitivity of LDTg α3β4 nAChRs. RESULTS Focal application of ACh onto LDTg neurons resulted in large α3β4 nAChR-mediated inward currents, the magnitude of which showed a positive correlation with levels of EtOH self-administration. In addition, using brain slices taken from EtOH-naïve rats, bath application of EtOH resulted in a moderate potentiation of LDTg α3β4 nAChR sensitivity. CONCLUSIONS Using a rat model, increased α3β4 nAChR function was associated with greater EtOH self-administration, with α3β4 nAChR function also acutely potentiated by EtOH. Assuming that similar findings apply to humans, the α3β4 nAChR could be a therapeutic target in the treatment of EtOH use disorder.
Collapse
Affiliation(s)
- Chandrika Abburi
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| | - John McDaid
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| |
Collapse
|
6
|
Coimbra B, Domingues AV, Soares‐Cunha C, Correia R, Pinto L, Sousa N, Rodrigues AJ. Laterodorsal tegmentum-ventral tegmental area projections encode positive reinforcement signals. J Neurosci Res 2021; 99:3084-3100. [PMID: 34374447 PMCID: PMC9541203 DOI: 10.1002/jnr.24931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
The laterodorsal tegmentum (LDT) is a brainstem nucleus classically involved in REM sleep and attention, and that has recently been associated with reward-related behaviors, as it controls the activity of ventral tegmental area (VTA) dopaminergic neurons, modulating dopamine release in the nucleus accumbens. To further understand the role of LDT-VTA inputs in reinforcement, we optogenetically manipulated these inputs during different behavioral paradigms in male rats. We found that in a two-choice instrumental task, optical activation of LDT-VTA projections shifts and amplifies preference to the laser-paired reward in comparison to an otherwise equal reward; the opposite was observed with inhibition experiments. In a progressive ratio task, LDT-VTA activation boosts motivation, that is, enhances the willingness to work to get the reward associated with LDT-VTA stimulation; and the reverse occurs when inhibiting these inputs. Animals abolished preference if the reward was omitted, suggesting that LDT-VTA stimulation adds/decreases value to the stimulation-paired reward. In addition, we show that LDT-VTA optical activation induces robust preference in the conditioned and real-time place preference tests, while optical inhibition induces aversion. The behavioral findings are supported by electrophysiological recordings and c-fos immunofluorescence correlates in downstream target regions. In LDT-VTA ChR2 animals, we observed an increase in the recruitment of lateral VTA dopamine neurons and D1 neurons from nucleus accumbens core and shell; whereas in LDT-VTA NpHR animals, D2 neurons appear to be preferentially recruited. Collectively, these data show that the LDT-VTA inputs encode positive reinforcement signals and are important for different dimensions of reward-related behaviors.
Collapse
Affiliation(s)
- Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Carina Soares‐Cunha
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Raquel Correia
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| |
Collapse
|
7
|
Nunes-Freitas AL, Soni N, Polli FS, Kohlmeier KA. Prenatal exposure to nicotine in mice is associated with alterations in development and cellular and synaptic effects of alcohol in a brainstem arousal nucleus. Neurotoxicol Teratol 2021; 87:106980. [PMID: 33838245 DOI: 10.1016/j.ntt.2021.106980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023]
Abstract
Using drugs of abuse while pregnant has tremendous negative consequences for the offspring, including an enhanced risk for substance use disorder (SUD). This vulnerability suggests that gestational exposure to drugs alters the developmental trajectory of neurons important in SUD processes, which could lead to later life changes in responsiveness to motivationally salient stimuli. The laterodorsal tegmentum (LDT) gates the behaviorally relevant firing pattern signaling stimuli saliency in mesoaccumbal circuits. Accordingly, any alterations in LDT functionality could alter output, and play a role in negative outcomes on motivated behavior associated with early-life nicotine exposure. Therefore, we investigated whether prenatal exposure to nicotine (PNE), which is a known teratogen, altered responsiveness of LDT neurons to alcohol by conducting electrophysiology in brain slices. Alcohol induced an outward current in control LDT cells, which was not seen in PNE LDT neurons. The frequency of mEPSCs was significantly decreased by alcohol in LDT PNE cells and accompanied by a decrease in action potential frequency, which were actions not seen in controls. Changes in baseline activity of PNE LDT cells were also observed. In summary, PNE LDT neurons showed alterations in baseline activity and membrane and synaptic responses to postnatal exposures to alcohol. The differences in PNE baseline activity and alcohol responses likely lead to differential output from the LDT to mesoaccumbal targets that could play a role in biasing coding of relevant stimuli, which could participate in the enhanced proclivity for development of SUD in those exposed during gestation to nicotine.
Collapse
Affiliation(s)
- André Luiz Nunes-Freitas
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark; Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Neeraj Soni
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Filip S Polli
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
8
|
Neurobiology of reward-related learning. Neurosci Biobehav Rev 2021; 124:224-234. [PMID: 33581225 DOI: 10.1016/j.neubiorev.2021.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/23/2022]
Abstract
A major goal in psychology is to understand how environmental stimuli associated with primary rewards come to function as conditioned stimuli, acquiring the capacity to elicit similar responses to those elicited by primary rewards. Our neurobiological model is predicated on the Hebbian idea that concurrent synaptic activity on the primary reward neural substrate-proposed to be ventral tegmental area (VTA) dopamine (DA) neurons-strengthens the synapses involved. We propose that VTA DA neurons receive both a strong unconditioned stimulus signal (acetylcholine stimulation of DA cells) from the primary reward capable of unconditionally activating DA cells and a weak stimulus signal (glutamate stimulation of DA cells) from the neutral stimulus. Through joint stimulation the weak signal is potentiated and capable of activating the VTA DA cells, eliciting a conditioned response. The learning occurs when this joint stimulation initiates intracellular second-messenger cascades resulting in enhanced glutamate-DA synapses. In this review we present evidence that led us to propose this model and the most recent evidence supporting it.
Collapse
|
9
|
Kohlmeier KA, Polli FS. Plasticity in the Brainstem: Prenatal and Postnatal Experience Can Alter Laterodorsal Tegmental (LDT) Structure and Function. Front Synaptic Neurosci 2020; 12:3. [PMID: 32116639 PMCID: PMC7019863 DOI: 10.3389/fnsyn.2020.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
The brainstem has traditionally been considered an area of the brain with autonomous control of mostly homeostatic functions such as heart rate, respiration, and the sleep and wakefulness state, which would preclude the necessity to exhibit the high degree of synaptic or cellular mechanisms of plasticity typical of regions of the brain responsible for flexible, executive control, such as the medial prefrontal cortex or the hippocampus. The perception that the brainstem does not share the same degree of flexibility to alter synaptic strength and/or wiring within local circuits makes intuitive sense, as it is not easy to understand how "soft wiring" would be an advantage when considering the importance of faithful and consistent performance of the homeostatic, autonomic functions that are controlled by the brainstem. However, many of the molecular and cellular requirements which underlie strengthening of synapses seen in brain regions involved in higher-level processing are present in brainstem nuclei, and recent research suggest that the view of the brainstem as "hard wired," with rigid and static connectivity and with unchanging synaptic strength, is outdated. In fact, information from studies within the last decades, including work conducted in our group, leads us to propose that the brainstem can dynamically alter synaptic proteins, and change synaptic connections in response to prenatal or postnatal stimuli, and this would likely alter functionality and output. This article reviews recent research that has provided information resulting in our revision of the view of the brainstem as static and non-changing by using as example recent information gleaned from a brainstem pontine nucleus, the laterodorsal tegmentum (LDT). The LDT has demonstrated mechanisms underlying synaptic plasticity, and plasticity has been exhibited in the postnatal LDT following exposure to drugs of abuse. Further, exposure of the brain during gestation to drugs of abuse results in alterations in development of signaling pathways in the LDT. As the LDT provides a high degree of innervation of mesoaccumbal and mesocortical circuits involved in salience, as well as thalamocortical circuits involved in control of arousal and orientation, changes in synaptic strength would be expected to alter output, which would significantly impact behavioral state, motivated behavior and directed attention. Further, alterations in developmental trajectory within the LDT following prenatal exposure to drugs of abuse would be expected to impact on later life expression of motivation and arousal.
Collapse
Affiliation(s)
- Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Coimbra B, Soares-Cunha C, Vasconcelos NAP, Domingues AV, Borges S, Sousa N, Rodrigues AJ. Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors. Nat Commun 2019; 10:4138. [PMID: 31515512 PMCID: PMC6742663 DOI: 10.1038/s41467-019-11557-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
The laterodorsal tegmentum (LDT) is associated with reward considering that it modulates VTA neuronal activity, but recent anatomical evidence shows that the LDT also directly projects to nucleus accumbens (NAc). We show that the majority of LDT-NAc inputs are cholinergic, but there is also GABAergic and glutamatergic innervation; activation of LDT induces a predominantly excitatory response in the NAc. Non-selective optogenetic activation of LDT-NAc projections in rats enhances motivational drive and shifts preference to an otherwise equal reward; whereas inhibition of these projections induces the opposite. Activation of these projections also induces robust place preference. In mice, specific activation of LDT-NAc cholinergic inputs (but not glutamatergic or GABAergic) is sufficient to shift preference, increase motivation, and drive positive reinforcement in different behavioral paradigms. These results provide evidence that LDT-NAc projections play an important role in motivated behaviors and positive reinforcement, and that distinct neuronal populations differentially contribute for these behaviors.
Collapse
Affiliation(s)
- Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nivaldo A P Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Biomedical Engineering, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Clinical Academic Center (2CA-Braga), Braga, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Clinical Academic Center (2CA-Braga), Braga, Portugal.
| |
Collapse
|
11
|
Ferrucci M, Limanaqi F, Ryskalin L, Biagioni F, Busceti CL, Fornai F. The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine From the Brainstem Reticular Formation. Front Neuroanat 2019; 13:48. [PMID: 31133823 PMCID: PMC6524618 DOI: 10.3389/fnana.2019.00048] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Amphetamine (AMPH) and methamphetamine (METH) are widely abused psychostimulants, which produce a variety of psychomotor, autonomic and neurotoxic effects. The behavioral and neurotoxic effects of both compounds (from now on defined as AMPHs) stem from a fair molecular and anatomical specificity for catecholamine-containing neurons, which are placed in the brainstem reticular formation (RF). In fact, the structural cross-affinity joined with the presence of shared molecular targets between AMPHs and catecholamine provides the basis for a quite selective recruitment of brainstem catecholamine neurons following AMPHs administration. A great amount of investigations, commentary manuscripts and books reported a pivotal role of mesencephalic dopamine (DA)-containing neurons in producing behavioral and neurotoxic effects of AMPHs. Instead, the present review article focuses on catecholamine reticular neurons of the low brainstem. In fact, these nuclei add on DA mesencephalic cells to mediate the effects of AMPHs. Among these, we also include two pontine cholinergic nuclei. Finally, we discuss the conundrum of a mixed neuronal population, which extends from the pons to the periaqueductal gray (PAG). In this way, a number of reticular nuclei beyond classic DA mesencephalic cells are considered to extend the scenario underlying the neurobiology of AMPHs abuse. The mechanistic approach followed here to describe the action of AMPHs within the RF is rooted on the fine anatomy of this region of the brainstem. This is exemplified by a few medullary catecholamine neurons, which play a pivotal role compared with the bulk of peripheral sympathetic neurons in sustaining most of the cardiovascular effects induced by AMPHs.
Collapse
Affiliation(s)
- Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
12
|
Reiner DJ, Leon RM, McGrath LE, Koch-Laskowski K, Hahn JD, Kanoski SE, Mietlicki-Baase EG, Hayes MR. Glucagon-Like Peptide-1 Receptor Signaling in the Lateral Dorsal Tegmental Nucleus Regulates Energy Balance. Neuropsychopharmacology 2018; 43:627-637. [PMID: 28920591 PMCID: PMC5770766 DOI: 10.1038/npp.2017.225] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/05/2023]
Abstract
The neurobiological substrates that mediate the anorectic effects of both endogenous glucagon-like peptide-1 (GLP-1) and exogenous GLP-1 receptor (GLP-1R) agonists are an active area of investigation. As the lateral dorsal tegmental nucleus (LDTg) expresses the GLP-1R and represents a potential neuroanatomical hub connecting the nucleus tractus solitarius (NTS), the major central source of GLP-1, with the other nuclei in the midbrain and forebrain, we tested the hypothesis that GLP-1R signaling in the LDTg controls food intake. Direct activation of LDTg GLP-1R suppresses food intake through a reduction in average meal size and independent of nausea/malaise. Immunohistochemical data show that GLP-1-producing neurons in the NTS project to the LDTg, providing anatomical evidence of endogenous central GLP-1 in the LDTg. Pharmacological blockade of LDTg GLP-1Rs with exendin-(9-39) dose-dependently increases food intake and attenuates the hypophagic effects of gastric distension. As GLP-1 mimetics are administered systemically in humans, we evaluated whether peripherally administered GLP-1R agonists access the LDTg to affect feeding. Immunohistochemical data show that a systemically administered fluorescent GLP-1R agonist accesses the LDTg and is juxtaposed with neurons. Additionally, blockade of LDTg GLP-1Rs attenuates the hypophagic effects of a systemic GLP-1R agonist. Together, these data indicate that LDTg GLP-1R signaling controls energy balance and underscores the role of the LDTg in integrating energy balance-relevant signals to modulate feeding.
Collapse
Affiliation(s)
- David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Rosa M Leon
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Lauren E McGrath
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Kieran Koch-Laskowski
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Joel D Hahn
- Neurobiology Section, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA,Department of Psychiatry, University of Pennsylvania, Center for Neurobiology and Behavior, 125 S. 31st St, Philadelphia, PA 19104, USA, Tel: +1 215 573 6070, Fax: +1 215 573 2041, E-mail:
| |
Collapse
|
13
|
Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neurosci Biobehav Rev 2017; 83:72-82. [PMID: 28951251 DOI: 10.1016/j.neubiorev.2017.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/12/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023]
Abstract
Opioids, such as morphine or heroin, increase forebrain dopamine (DA) release and locomotion, and support the acquisition of conditioned place preference (CPP) or self-administration. The most sensitive sites for these opioid effects in rodents are in the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg). Opioid inhibition of GABA neurons in these sites is hypothesized to lead to arousing and rewarding effects through disinhibition of VTA DA neurons. We review findings that the laterodorsal tegmental (LDTg) and pedunculopontine tegmental (PPTg) nuclei, which each contain cholinergic, GABAergic, and glutamatergic cells, are important for these effects. LDTg and/or PPTg cholinergic inputs to VTA mediate opioid-induced locomotion and DA activation via VTA M5 muscarinic receptors. LDTg and/or PPTg cholinergic inputs to RMTg also modulate opioid-induced locomotion. Lesions or inhibition of LDTg or PPTg neurons reduce morphine-induced increases in forebrain DA release, acquisition of morphine CPP or self-administration. We propose a circuit model that links VTA and RMTg GABA with LDTg and PPTg neurons critical for DA-dependent opioid effects in drug-naïve rodents.
Collapse
|
14
|
Coimbra B, Soares-Cunha C, Borges S, Vasconcelos NAP, Sousa N, Rodrigues AJ. Impairments in laterodorsal tegmentum to VTA projections underlie glucocorticoid-triggered reward deficits. eLife 2017; 6:e25843. [PMID: 28837419 PMCID: PMC5576484 DOI: 10.7554/elife.25843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023] Open
Abstract
Ventral tegmental area (VTA) activity is critical for reward/reinforcement and is tightly modulated by the laterodorsal tegmentum (LDT). In utero exposure to glucocorticoids (iuGC) triggers prominent motivation deficits but nothing is known about the impact of this exposure in the LDT-VTA circuit. We show that iuGC-rats have long-lasting changes in cholinergic markers in the LDT, together with a decrease in LDT basal neuronal activity. Interestingly, upon LDT stimulation, iuGC animals present a decrease in the magnitude of excitation and an increase in VTA inhibition, as a result of a shift in the type of cells that respond to the stimulus. In agreement with LDT-VTA dysfunction, we show that iuGC animals present motivational deficits that are rescued by selective optogenetic activation of this pathway. Importantly, we also show that LDT-VTA optogenetic stimulation is reinforcing, and that iuGC animals are more susceptible to the reinforcing properties of LDT-VTA stimulation.
Collapse
Affiliation(s)
- Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nivaldo AP Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| |
Collapse
|
15
|
Lambert MØ, Ipsen TH, Kohlmeier KA. Acute cocaine exposure elicits rises in calcium in arousal-related laterodorsal tegmental neurons. Pharmacol Res Perspect 2016; 5:e00282. [PMID: 28596834 PMCID: PMC5461641 DOI: 10.1002/prp2.282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
Cocaine has strong reinforcing properties, which underlie its high addiction potential. Reinforcement of use of addictive drugs is associated with rises in dopamine (DA) in mesoaccumbal circuitry. Excitatory afferent input to mesoaccumbal circuitry sources from the laterodorsal tegmental nucleus (LDT). Chronic, systemic cocaine exposure has been shown to have cellular effects on LDT cells, but acute actions of local application have never been demonstrated. Using calcium imaging, we show that acute application of cocaine to mouse brain slices induces calcium spiking in cells of the LDT. Spiking was attenuated by tetrodotoxin (TTX) and low calcium solutions, and abolished by prior exhaustion of intracellular calcium stores. Further, DA receptor antagonists reduced these transients, whereas DA induced rises with similar spiking kinetics. Amphetamine, which also results in elevated levels of synaptic DA, but via a different pharmacological action than cocaine, induced calcium spiking with similar profiles. Although large differences in spiking were not noted in an animal model associated with a heightened proclivity of acquiring addiction‐related behavior, the prenatal nicotine exposed mouse (PNE), subtle differences in cocaine's effect on calcium spiking were noted, indicative of a reduction in action of cocaine in the LDT associated with exposure to nicotine during gestation. When taken together, our data indicate that acute actions of cocaine do include effects on LDT cells. Considering the role of intracellular calcium in cellular excitability, and of the LDT in addiction circuitry, our data suggest that cocaine effects in this nucleus may contribute to the high addiction potential of this drug.
Collapse
Affiliation(s)
- Mads Ødum Lambert
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| | - Theis Højland Ipsen
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| |
Collapse
|
16
|
Veleanu M, Axen TE, Kristensen MP, Kohlmeier KA. Comparison of bNOS and chat immunohistochemistry in the laterodorsal tegmentum (LDT) and the pedunculopontine tegmentum (PPT) of the mouse from brain slices prepared for electrophysiology. J Neurosci Methods 2016; 263:23-35. [DOI: 10.1016/j.jneumeth.2016.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 01/16/2023]
|
17
|
Steidl S, Cardiff KM, Wise RA. Increased latencies to initiate cocaine self-administration following laterodorsal tegmental nucleus lesions. Behav Brain Res 2015; 287:82-8. [PMID: 25746513 DOI: 10.1016/j.bbr.2015.02.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/24/2015] [Indexed: 01/07/2023]
Abstract
Cholinergic input to the ventral tegmental area (VTA), origin of the mesocorticolimbic dopamine system that is critical for cocaine reward, is important for both cocaine seeking and cocaine taking. The laterodorsal tegmental nucleus (LDTg) provides one of the two major sources of excitatory cholinergic input to the VTA, but little is known of the role of the LDTg in cocaine reward. LDTg cholinergic cells express urotensin-II receptors and here we used local microinjections of a conjugate of the endogenous ligand for these receptors with diphtheria toxin (Dtx::UII) to lesion the cholinergic cells of the LDTg in rats previously trained to self-administer cocaine (1mg/kg/infusion, i.v.). Lesioned rats showed long latencies to initiate cocaine self-administration after treatment with the toxin, which resulted in a reduction in cocaine intake per session. Priming injections reduced latencies to initiate responding for cocaine in lesioned rats, and once they began to respond the rats regulated their moment-to-moment cocaine intake within normal limits. Thus we conclude that while LDTg cholinergic cell loss does not significantly alter the rewarding effects of cocaine, LDTg lesions can reduce the rat's responsiveness to cocaine-predictive stimuli.
Collapse
Affiliation(s)
- Stephan Steidl
- Intramural Research Program National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD 21224, USA.
| | - Katherine M Cardiff
- Intramural Research Program National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD 21224, USA
| | - Roy A Wise
- Intramural Research Program National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD 21224, USA
| |
Collapse
|
18
|
Hauberg K, Kohlmeier KA. The appetite-inducing peptide, ghrelin, induces intracellular store-mediated rises in calcium in addiction and arousal-related laterodorsal tegmental neurons in mouse brain slices. Peptides 2015; 65:34-45. [PMID: 25645492 DOI: 10.1016/j.peptides.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 12/16/2022]
Abstract
Ghrelin, a gut and brain peptide, has recently been shown to be involved in motivated behavior and regulation of the sleep and wakefulness cycle. The laterodorsal tegmental nucleus (LDT) is involved in appetitive behavior and control of the arousal state of an organism, and accordingly, behavioral actions of ghrelin could be mediated by direct cellular actions within this nucleus. Consistent with this interpretation, postsynaptically mediated depolarizing membrane actions of ghrelin on LDT neurons have been reported. Direct actions were ascribed solely to closure of a potassium conductance however this peptide has been shown in other cell types to lead to rises in calcium via release of calcium from intracellular stores. To determine whether ghrelin induced intracellular calcium rises in mouse LDT neurons, we conducted calcium imaging studies in LDT brain slices loaded with the calcium binding dye, Fura-2AM. Ghrelin elicited TTX-insensitive changes in dF/F indicative of rises in calcium, and a portion of these rises were independent of membrane depolarization, as they persisted in conditions of high extracellular potassium solutions and were found to involve SERCA-pump mediated intracellular calcium stores. Involvement of the ghrelin receptor (GHR-S) in these actions was confirmed. Taken together with other studies, our data suggest that ghrelin has multiple cellular actions on LDT cells. Ghrelin's induction of calcium via intracellular release in the LDT could play a role in behavioral actions of this peptide as the LDT governs processes involved in stimulation of motivated behavior and control of cortical arousal.
Collapse
Affiliation(s)
- Katrine Hauberg
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
19
|
Bajic D, Soiza-Reilly M, Spalding AL, Berde CB, Commons KG. Endogenous cholinergic neurotransmission contributes to behavioral sensitization to morphine. PLoS One 2015; 10:e0117601. [PMID: 25647082 PMCID: PMC4315441 DOI: 10.1371/journal.pone.0117601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 12/29/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Mariano Soiza-Reilly
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Allegra L. Spalding
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
| | - Charles B. Berde
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Kathryn G. Commons
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| |
Collapse
|
20
|
Nicotine during pregnancy: changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention. J Dev Orig Health Dis 2014; 6:169-81. [PMID: 25385318 DOI: 10.1017/s2040174414000531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prenatal exposure to nicotine, occurring either via maternal smoking or via use of transdermal nicotine patches to facilitate cigarette abstinence by pregnant women, is associated with ∼ 13% of pregnancies worldwide. Nicotine exposure during gestation has been correlated with several negative physiological and psychosocial outcomes, including heightened risk for aberrant behaviors involving alterations in processing of attention as well as an enhanced liability for development of drug dependency. Nicotine is a terotogen, altering neuronal development of various neurotransmitter systems, and it is likely these alterations participate in postnatal deficits in attention control and facilitate development of drug addiction. This review discusses the alterations in neuronal development within the brain's major neurotransmitter systems, with special emphasis placed on alterations within the laterodorsal tegmental nucleus, in light of the role this cholinergic nucleus plays in attention and addiction. Changes induced within this nucleus by gestational exposure to nicotine, in combination with changes induced in other brain regions, are likely to contribute to the transgenerational burden imposed by nicotine. Although neuroplastic changes induced by nicotine are not likely to act in isolation, and are expected to interact with epigenetic changes induced by preconception exposure to drugs of abuse, unraveling these changes within the developing brain will facilitate eventual development of targeted treatments for the unique vulnerability for arousal disorders and development of addiction within the population of individuals who have been prenatally exposed to nicotine.
Collapse
|
21
|
Lesions of the laterodorsal tegmental nucleus alter the cholinergic innervation and neuropeptide Y expression in the medial prefrontal cortex and nucleus accumbens. Neuroscience 2014; 284:707-718. [PMID: 25451286 DOI: 10.1016/j.neuroscience.2014.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/25/2023]
Abstract
The effects of the ibotenic acid infused into the area of the laterodorsal tegmental nucleus (LDT) of rats on the expression of cortical and accumbal neuropeptides were assessed. The effects of this manipulation were determined in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) by estimating the numerical density of varicosities immunoreactive for vesicular acetylcholine transporter and the total number of NAc neurons immunoreactive for choline acetyltransferase (ChAT) and neuropeptide Y (NPY) as well as the total number of mPFC neurons immunoreactive for NPY and vasoactive intestinal polypeptide (VIP). In LDT-lesioned rats, the density of the cholinergic varicosities was reduced in the ventral divisions of the mPFC and in all divisions of the NAc. In addition, in these rats, the total number of NPY-immunoreactive neurons was reduced in all subregions of the mPFC and in the NAc. Conversely, the total number of VIP-immunoreactive neurons in the mPFC and of ChAT-immunoreactive neurons in the NAc did not differ between LDT- and sham-lesioned rats. These data provide the first direct evidence for a relationship between selective damage of LDT cholinergic neurons and decreased expression of NPY in the mPFC and NAc. They also reveal that different types of cortical and accumbal interneurons respond differently to the cholinergic denervation induced by LDT lesions.
Collapse
|
22
|
Prenatal nicotine is associated with reduced AMPA and NMDA receptor-mediated rises in calcium within the laterodorsal tegmentum: a pontine nucleus involved in addiction processes. J Dev Orig Health Dis 2014; 6:225-41. [DOI: 10.1017/s2040174414000439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite huge efforts from public sectors to educate society as to the deleterious physiological consequences of smoking while pregnant, 12–25% of all babies worldwide are born to mothers who smoked during their pregnancies. Chief among the negative legacies bestowed to the exposed individual is an enhanced proclivity postnatally to addict to drugs of abuse, which suggests that the drug exposure during gestation changed the developing brain in such a way that biased it towards addiction. Glutamate signalling has been shown to be altered by prenatal nicotine exposure (PNE) and glutamate is the major excitatory neurotransmitter within the laterodorsal tegmental nucleus (LDT), which is a brainstem region importantly involved in responding to motivational stimuli and critical in development of drug addiction-associated behaviours, however, it is unknown whether PNE alters glutamate signalling within this nucleus. Accordingly, we used calcium imaging, to evaluate AMPA and NMDA receptor-mediated calcium responses in LDT brain slices from control and PNE mice. We also investigated whether the positive AMPA receptor modulator cyclothiazide (CYZ) had differential actions on calcium in the LDT following PNE. Our data indicated that PNE significantly decreased AMPA receptor-mediated calcium responses, and altered the neuronal calcium response to consecutive NMDA applications within the LDT. Furthermore, CYZ strongly potentiated AMPA-induced responses, however, this action was significantly reduced in the LDT of PNE mice when compared with enhancements in responses in control LDT cells. Immunohistochemical processing confirmed that calcium imaging recordings were obtained from the LDT nucleus as determined by presence of cholinergic neurons. Our results contribute to the body of evidence suggesting that neurobiological changes are induced if gestation is accompanied by nicotine exposure. We conclude that in light of the role played by the LDT in motivated behaviour, the cellular changes in the LDT induced by exposures to nicotine prenatally, when combined with alterations in other reward-related regions, could contribute to the increased susceptibility to smoking observed in the offspring.
Collapse
|
23
|
Steidl S, Lee E, Wasserman D, Yeomans JS. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice. Behav Brain Res 2013; 252:176-9. [DOI: 10.1016/j.bbr.2013.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/30/2013] [Accepted: 05/24/2013] [Indexed: 11/30/2022]
|
24
|
Off the beaten path: drug addiction and the pontine laterodorsal tegmentum. ISRN NEUROSCIENCE 2013; 2013:604847. [PMID: 24959564 PMCID: PMC4045562 DOI: 10.1155/2013/604847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/29/2013] [Indexed: 02/01/2023]
Abstract
Drug addiction is a multileveled behavior controlled by interactions among many diverse neuronal groups involving several neurotransmitter systems. The involvement of brainstem-sourced, cholinergic neurotransmission in the development of addiction and in the persistent physiological processes that drive this maladaptive behavior has not been widely investigated. The major cholinergic input to neurons in the midbrain which are instrumental in assessment of reward and assignment of salience to stimuli, including drugs of abuse, sources from acetylcholine- (ACh-) containing pontine neurons of the laterodorsal tegmentum (LDT). Excitatory LDT input, likely cholinergic, is critical in allowing behaviorally relevant neuronal firing patterns within midbrain reward circuitry. Via this control, the LDT is positioned to be importantly involved in development of compulsive, addictive patterns of behavior. The goal of this review is to present the anatomical, physiological, and behavioral evidence suggesting a role of the LDT in the neurobiology underlying addiction to drugs of abuse. Although focus is directed on the evidence supporting a vital participation of the cholinergic neurons of the LDT, data indicating a contribution of noncholinergic LDT neurons to processes underlying addiction are also reviewed. While sparse, available information of actions of drugs of abuse on LDT cells and the output of these neurons as well as their influence on addiction-related behavior are also presented. Taken together, data from studies presented in this review strongly support the position that the LDT is a major player in the neurobiology of drug addiction. Accordingly, the LDT may serve as a future treatment target for efficacious pharmaceutical combat of drug addiction.
Collapse
|
25
|
Wasserman DI, Wang HG, Rashid AJ, Josselyn SA, Yeomans JS. Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. Eur J Neurosci 2013; 38:2774-85. [DOI: 10.1111/ejn.12279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 01/01/2023]
Affiliation(s)
- David I. Wasserman
- Department of Psychology; University of Toronto; 100 St. George Street; Toronto; ON; M5S 3G3; Canada
| | - Haoran G. Wang
- Department of Psychology; University of Toronto; 100 St. George Street; Toronto; ON; M5S 3G3; Canada
| | - Asim J. Rashid
- Sick Children's Research Institute; University of Toronto; 555 University Avenue; Toronto; ON; M5G 1X8; Canada
| | - Sheena A. Josselyn
- Sick Children's Research Institute; University of Toronto; 555 University Avenue; Toronto; ON; M5G 1X8; Canada
| | - John S. Yeomans
- Department of Psychology; University of Toronto; 100 St. George Street; Toronto; ON; M5S 3G3; Canada
| |
Collapse
|
26
|
Nieh EH, Kim SY, Namburi P, Tye KM. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Res 2013; 1511:73-92. [PMID: 23142759 PMCID: PMC4099056 DOI: 10.1016/j.brainres.2012.11.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/26/2022]
Abstract
The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. This article is part of a Special Issue entitled Optogenetics (7th BRES).
Collapse
Affiliation(s)
- Edward H. Nieh
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sung-Yon Kim
- Department of Bioengineering, Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Praneeth Namburi
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kay M. Tye
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Burke AR, Forster GL, Novick AM, Roberts CL, Watt MJ. Effects of adolescent social defeat on adult amphetamine-induced locomotion and corticoaccumbal dopamine release in male rats. Neuropharmacology 2013; 67:359-69. [PMID: 23220295 PMCID: PMC3562400 DOI: 10.1016/j.neuropharm.2012.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 11/22/2022]
Abstract
Maturation of mesocorticolimbic dopamine systems occurs during adolescence, and exposure to social stress during this period results in behavioral dysfunction including substance abuse disorders. Adult male rats exposed to repeated social defeat in adolescence exhibit reduced basal dopamine tissue content in the medial prefrontal cortex, altered dopamine tissue content in corticoaccumbal dopamine regions following acute amphetamine, and increased amphetamine conditioned place preference following repeated amphetamine treatment. Such changes may reflect altered amphetamine-induced extracellular dopamine release in the corticoaccumbal regions. Therefore, we used in vivo microdialysis to measure extracellular dopamine simultaneously within the medial prefrontal cortex and nucleus accumbens core of previously defeated rats and controls, in response to either acute or repeated (7 daily injections) of amphetamine (1.0 mg/kg). Locomotion responses to acute/repeated amphetamine were also assessed the day prior to taking dopamine measurements. Adolescent defeat potentiated adult locomotion responses to acute amphetamine, which was negatively correlated with attenuated amphetamine-induced dopamine release in the medial prefrontal cortex, but there was no difference in amphetamine-induced accumbal dopamine release. However, both locomotion and corticoaccumbal dopamine responses to repeated amphetamine were equivalent between previously defeated rats and controls. These data suggest adolescent defeat enhances behavioral responses to initial amphetamine exposure as a function of diminished prefrontal cortex dopamine activity, which may be sufficient to promote subsequently enhanced seeking of drug-associated cues. Interestingly, repeated amphetamine treatment appears to normalize amphetamine-elicited locomotion and cortical dopamine responses observed in adult rats exposed to adolescent social defeat, providing implications for treating stress-induced dopamine dysfunction.
Collapse
Affiliation(s)
- Andrew R. Burke
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA, USA 02155
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| | - Andrew M. Novick
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| | - Christina L. Roberts
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| |
Collapse
|
28
|
Kohlmeier KA, Christensen MH, Kristensen MP, Kristiansen U. Pharmacological evidence of functional inhibitory metabotrophic glutamate receptors on mouse arousal-related cholinergic laterodorsal tegmental neurons. Neuropharmacology 2012; 66:99-113. [PMID: 22381584 DOI: 10.1016/j.neuropharm.2012.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) are importantly involved in neurobiological mechanisms governing states of arousal such as sleep and wakefulness as well as other appetitive behaviors, such as drug-seeking. Accordingly, mechanisms controlling their excitability are important to elucidate if we are to understand how these LDT neurons generate arousal states. Glutamate mediates the vast majority of excitatory synaptic transmission in the vertebrate CNS and while presence of glutamate input in the LDT has been shown and ionotropic responses to glutamate have been reported in the LDT, characterization of metabotropic responses is lacking. Therefore, electrophysiological responses and changes in levels of intracellular Ca(2+) in mouse cholinergic LDT neurons following application of specific mGluR agonists and antagonists were examined. Unexpectedly, both the mGluR(5)specific agonist, CHPG, and the group II mGluR (mGlu(2/3)) agonist, LY379268 (LY), induced a TTX-insensitive outward current/hyperpolarization. Both outward currents were significantly reduced by the mGluR antagonist MCPG and the CHPG-induced current was blocked by the specific mGluR(5) antagonist MTEP. Concurrent Ca(2+)imaging revealed that while CHPG actions did include release of Ca(2+) from CPA/thapsigargin-sensitive intracellular stores, actions of LY did not. Both CHPG- and LY-induced outward currents were mediated by a TEA-sensitive potassium conductance. The large-conductance, Ca(2+)-dependent potassium (BK) channel blocker, iberiotoxin, attenuated CHPG actions. Consistent with actions on the BK conductance, CHPG enhanced the amplitude of the fast component of the after hyperpolarizing potential, concurrent with a reduction in the firing rate. We conclude that stimulation of mGluR(5) and group II (mGluR(2/3)) elicits postsynaptically-mediated outward currents/hyperpolarizations in cholinergic LDT neurons. Effects of glutamatergic input would be, thus, expected not only to be excitation via stimulation of ionotropic glutamate receptors and mGluR(1), but also inhibition via actions at mGluR(5) and mGluR(2/3) on these neurons. As these two processes counteract each other, these surprising findings necessitate revision of predictions regarding the net level of excitation generated by glutamate input to cholinergic LDT cells and, by extension, the functional outcome of glutamate transmission on processes which these neurons regulate. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitsparken 2, Copenhagen 2100, Denmark.
| | | | | | | |
Collapse
|
29
|
Steidl S, Miller AD, Blaha CD, Yeomans JS. M₅ muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS One 2011; 6:e27538. [PMID: 22102904 PMCID: PMC3216953 DOI: 10.1371/journal.pone.0027538] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/19/2011] [Indexed: 11/23/2022] Open
Abstract
Opiates, like other addictive drugs, elevate forebrain dopamine levels and are thought to do so mainly by inhibiting GABA neurons near the ventral tegmental area (VTA), in turn leading to a disinhibition of dopamine neurons. However, cholinergic inputs from the laterodorsal (LDT) and pedunculopontine (PPT) tegmental nucleus to the VTA and substantia nigra (SN) importantly contribute, as either LDT or PPT lesions strongly attenuate morphine-induced forebrain dopamine elevations. Pharmacological blockade of muscarinic acetylcholine receptors in the VTA or SN has similar effects. M5 muscarinic receptors are the only muscarinic receptor subtype associated with VTA and SN dopamine neurons. Here we tested the contribution of M5 muscarinic receptors to morphine-induced dopamine elevations by measuring nucleus accumbens dopamine efflux in response to intra-VTA morphine infusion using in vivo chronoamperometry. Intra-VTA morphine increased nucleus accumbens dopamine efflux in urethane-anesthetized wildtype mice starting at 10 min after infusion. These increases were absent in M5 knockout mice and were similarly blocked by pre-treatment with VTA scopolamine in wildtype mice. Furthermore, in wildtype mice electrical stimulation of the PPT evoked an initial, short-lasting increase in striatal dopamine efflux, followed 5 min later by a second prolonged increase in dopamine efflux. In M5 knockout mice, or following systemic pre-treatment with scopolamine in wildtype mice, the prolonged increase in striatal dopamine efflux was absent. The time course of increased accumbal dopamine efflux in wildtype mice following VTA morphine was consistent with both the prolonged M5-mediated excitation of striatal dopamine efflux following PPT electrical stimulation and accumbal dopamine efflux following LDT electrical stimulation. Therefore, M5 receptors appear critical for prolonged PPT excitation of dopamine efflux and for dopamine efflux induced by intra-VTA morphine.
Collapse
Affiliation(s)
- Stephan Steidl
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
30
|
Ramsson ES, Howard CD, Covey DP, Garris PA. High doses of amphetamine augment, rather than disrupt, exocytotic dopamine release in the dorsal and ventral striatum of the anesthetized rat. J Neurochem 2011; 119:1162-72. [PMID: 21806614 DOI: 10.1111/j.1471-4159.2011.07407.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action.
Collapse
Affiliation(s)
- Eric S Ramsson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | | | | | |
Collapse
|
31
|
Burke AR, Renner KJ, Forster GL, Watt MJ. Adolescent social defeat alters neural, endocrine and behavioral responses to amphetamine in adult male rats. Brain Res 2010; 1352:147-56. [PMID: 20603109 PMCID: PMC2926242 DOI: 10.1016/j.brainres.2010.06.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
Abstract
The mesocorticolimbic dopamine system, which governs components of reward and goal-directed behaviors, undergoes final maturation during adolescence. Adolescent social stress contributes to adult behavioral dysfunction and is linked to adult psychiatric and addiction disorders. Here, behavioral, corticosterone and limbic dopamine responses to amphetamine were examined in adult male rats previously exposed to repeated social defeat stress during mid-adolescence. Amphetamine (2.5mg/kg, ip) was administered after a novel environment test, with behavior observed in the same context for 90min thereafter. Adult rats that had been defeated in adolescence showed increased locomotion in the novel environment but reduced amphetamine-induced locomotion relative to non-defeated age matched controls. Monoamine and corticosterone responses to amphetamine were examined following a second amphetamine injection 3 days later. In previously defeated rats, corticosterone and medial prefrontal cortex dopamine responses to amphetamine were blunted while dopamine responses in the nucleus accumbens core were elevated. Our results suggest that experience of social defeat stress during adolescent development can contribute to altered behavioral and endocrine responses to amphetamine in adulthood. Furthermore, these effects are paralleled by changes in amphetamine-induced dopamine responses in corticolimbic systems implicated in addiction disorders.
Collapse
Affiliation(s)
- Andrew R. Burke
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| | - Kenneth J. Renner
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
- Department of Biology, University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| |
Collapse
|
32
|
Liang J, Peng Y, Ge X, Zheng X. The expression of morphine-induced behavioral sensitization depends more on treatment regimen and environmental novelty than on conditioned drug effects. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3206-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Ishibashi M, Leonard CS, Kohlmeier KA. Nicotinic activation of laterodorsal tegmental neurons: implications for addiction to nicotine. Neuropsychopharmacology 2009; 34:2529-47. [PMID: 19625996 PMCID: PMC2762000 DOI: 10.1038/npp.2009.82] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non-cholinergic neurons. Utilization of nicotinic acetylcholine receptors (nAChR) subunit antagonists revealed that presynaptic, inhibitory terminals on cholinergic neurons were activated by receptors containing alpha 7, beta2, and non-alpha 7 subunits, whereas, presynaptic glutamatergic terminals were activated by nAChRs that comprised non-alpha 7 subunits. We also found that direct nicotinic actions on cholinergic LDT neurons were mediated by receptors containing alpha 7, beta2, and non-alpha 7 subunits. These findings led us to suggest that nicotine exposure from smoking will enhance both the excitability and synaptic modulation of cholinergic and non-cholinergic LDT neurons, and increase their signature neurotransmitter outflow to target regions, including the VTA. This may reinforce the direct actions of this drug within reward circuitry and contribute to encoding stimulus saliency.
Collapse
Affiliation(s)
- Masaru Ishibashi
- Department of Physiology, New York Medical College, Valhalla, NY 10595 USA
| | | | - Kristi A. Kohlmeier
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark,Author to whom correspondence should be addressed: Kristi A. Kohlmeier, Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark, Phone: +45 35 33 60 07, FAX: +45 35 30 60 20, e-mail:
| |
Collapse
|
34
|
Scholl JL, Feng N, Watt MJ, Renner KJ, Forster GL. Individual differences in amphetamine sensitization, behavior and central monoamines. Physiol Behav 2008; 96:493-504. [PMID: 19103211 DOI: 10.1016/j.physbeh.2008.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/29/2008] [Accepted: 12/03/2008] [Indexed: 01/21/2023]
Abstract
Repeated amphetamine treatment results in behavioral sensitization in a high percentage of rats. Alterations to plasma corticosterone, neural monoamines and stress behavior can accompany amphetamine sensitization. Whether these changes occur following repeated amphetamine treatment in the absence of behavioral sensitization is not known. Male Sprague-Dawley rats were treated with amphetamine (2.5 mg/kg, i.p.) or saline once daily for 6 days. Amphetamine-induced locomotion and stereotypy, open-field anxiety behavior, plasma corticosterone and limbic monoamines were measured during withdrawal. Sixty-two percent of amphetamine-treated rats showed behavioral sensitization over the test periods. Only amphetamine-sensitized rats showed increased latency to enter the center of the open-field, as well as increased plasma corticosterone when compared to saline-treated controls. Amphetamine-sensitized rats showed increased dopamine concentrations in the shell of the nucleus accumbens and increased serotonin concentrations in the dorsal hippocampus, which were not observed in amphetamine-treated non-sensitized rats. These findings suggest that anxiety behavior, plasma corticosterone and limbic monoamines concentrations are altered by repeated amphetamine (2.5 mg/kg) treatment, and that these neuroendocrine and behavioral changes are often associated with sensitization to the psychostimulant effects of amphetamine.
Collapse
Affiliation(s)
- Jamie L Scholl
- Basic Biomedical Sciences & Neuroscience Group, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | | | | | | | | |
Collapse
|
35
|
Steidl S, Yeomans JS. M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J Pharmacol Exp Ther 2008; 328:263-75. [PMID: 18849356 DOI: 10.1124/jpet.108.144824] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
M(5) muscarinic receptors are the only muscarinic receptor subtype expressed by mesencephalic dopamine neurons and provide an important excitatory input to mesolimbic and nigrostriatal dopamine systems. Here, we studied locomotion induced by systemic morphine (3, 10, and 30 mg/kg i.p.) in M(5) knockout mice of the C57BL/6 (B6) and CD1 x 129SvJ background strains. M(5) knockout mice of both strains showed reduced locomotion in response to 30 mg/kg morphine. B6 M(5) knockout mice were less sensitive to naltrexone in either the antagonism of morphine-induced locomotion or in the reduction of locomotion by naltrexone alone. This suggests that M(5) knockout mice are less sensitive to the effects of either exogenous or endogenous opiates on locomotion and that spontaneous locomotion in B6 mice is sustained by endogenous opiates. In B6 wild-type mice, ventral tegmental area (VTA) pretreatment with the muscarinic receptor antagonist atropine (3 microg bilateral), but not the nicotinic receptor antagonist mecamylamine (5 microg bilateral), reduced locomotion in response to 30 mg/kg morphine to a similar extent as systemic M(5) knockout, suggesting that reduced morphine-induced locomotion in M(5) knockout mice is due to the loss of M(5) receptors on VTA dopamine neurons. In contrast, in M(5) knockout mice, but not in wild-type mice, either intra-VTA atropine or mecamylamine alone increased locomotion by almost 3 times relative to saline and potentiated morphine-induced locomotion. Therefore, in M(5) knockout mice, blockade of either VTA muscarinic or nicotinic receptors increased locomotion, suggesting that in the absence of VTA M(5) receptors, VTA cholinergic inputs inhibit locomotion.
Collapse
Affiliation(s)
- Stephan Steidl
- Department of Psychology, Centre for Biological Timing and Cognition, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors are involved in mediating the ghrelin-induced locomotor stimulation and dopamine overflow in nucleus accumbens. Eur Neuropsychopharmacol 2008; 18:508-18. [PMID: 18343642 DOI: 10.1016/j.euroneuro.2008.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/23/2008] [Accepted: 02/07/2008] [Indexed: 01/28/2023]
Abstract
Previously, we have reported that the orexigenic peptide ghrelin activates the cholinergic-dopaminergic reward link, involving nicotinic acetylcholine receptors (nAChR). The alpha(3)-alpha(7) and beta(2)-beta(4) subunits of the nAChR can be combined into pentameric nAChRs, with different functional roles. The present experiments show that the locomotor stimulatory effects of ghrelin, either into laterodorsal tegmental area (LDTg) or ventral tegmental area (VTA), are mediated via ventral tegmental nAChR, but neither the alpha(4)beta(2) (using dihydro-beta-erythroidine) nor the alpha(7) (using methyllycaconitine) subtypes appears to be involved. On the other hand, the alpha(3)beta(2), beta(3) and/or alpha(6) (using alpha-conotoxin MII) subtypes in the VTA mediate the stimulatory and DA-enhancing effects of ghrelin, a pattern that ghrelin shares with ethanol (n=5-8). Radioligand-binding experiments shown that ghrelin does not interfere directly with nAChRs (n=26). We therefore suggest that the alpha(3)beta(2), beta(3) and/or alpha(6) subtypes might be pharmacological targets for treatment of addictive behaviours including compulsive overeating and alcoholism.
Collapse
|
37
|
Vezina P, McGehee DS, Green WN. Exposure to nicotine and sensitization of nicotine-induced behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1625-38. [PMID: 17936462 PMCID: PMC2139894 DOI: 10.1016/j.pnpbp.2007.08.038] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Evidence for an important link between sensitization of midbrain dopamine (DA) neuron reactivity and enhanced self-administration of amphetamine and cocaine has been reported. To the extent that exposure to nicotine also sensitizes nucleus accumbens DA reactivity, it is likely that it will also impact subsequent drug taking. It is thus necessary to gain an understanding of the long-term effects of exposure to nicotine on nicotinic acetylcholine receptors (nAChRs), neuronal excitability and behavior. A review of the literature is presented in which different regimens of nicotine exposure are assessed for their effects on upregulation of nAChRs, induction of LTP in interconnected midbrain nuclei and development of long-lasting locomotor and DA sensitization. Exposure to nicotine upregulates nAChRs and nAChR currents and produces LTP of excitatory inputs to midbrain DA neurons. These effects appear in the hours to days following exposure. Exposure to nicotine also leads to long-lasting sensitization of nicotine's nucleus accumbens DA and locomotor activating effects. These effects appear days to weeks after drug exposure. A model is proposed in which nicotine exposure regimens that produce transient nAChR upregulation and LTP consequently produce long-lasting sensitization of midbrain DA neuron reactivity and nicotine-induced behaviors. These neuroadaptations are proposed to constitute critical components of the mechanisms underlying the initiation, maintenance and escalation of drug use.
Collapse
Affiliation(s)
- P Vezina
- Department of Psychiatry, The University of Chicago, 5841 S. Maryland Avenue, MC3077, Chicago, IL 60637, United States.
| | | | | |
Collapse
|
38
|
Hamlin AS, McNally GP, Osborne PB. Induction of c-Fos and zif268 in the nociceptive amygdala parallel abstinence hyperalgesia in rats briefly exposed to morphine. Neuropharmacology 2007; 53:330-43. [PMID: 17631915 DOI: 10.1016/j.neuropharm.2007.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 04/25/2007] [Accepted: 05/21/2007] [Indexed: 02/06/2023]
Abstract
Opioid-induced analgesia can be followed by spontaneous pain in humans, and hyperalgesia in rodents. In this study, opioid-induced hyperalgesia was measured by the tail-flick test when acute abstinence was precipitated by administering naloxone to drug naive rats that had experienced morphine analgesia for only 30 min. In a further experiment, the drug treatment that previously caused opioid-induced hyperalgesia was found to increase neurons expressing nuclear c-Fos or zif268 proteins in extended amygdalar regions targeted by projections of the ascending spino-parabrachio-amygdaloid nociceptive pathway. Transcription factor induction, however, was not detected in multiple brain regions known to respond in parallel with the same extended amygdalar structures when (1) rats are exposed to interoceptive/physical stressors, or (2) naloxone is used to precipitate abstinence in opioid dependent rats. Surprisingly, in many regions c-Fos induction by morphine was reduced or blocked by naloxone, even though these subjects had also experienced the effects of morphine for 30 min prior to antagonist administration. It is suggested transcription factor induction during opioid hyperalgesia in non-dependent rats could support the induction or consolidation of neural plasticity in nociceptive amygdaloid circuitry previously suggested to function in bi-directional control of pain and expression of pain-related behaviors.
Collapse
Affiliation(s)
- Adam S Hamlin
- Pain Management Research Institute (Kolling Institute), The University of Sydney at the Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | | | |
Collapse
|
39
|
Nelson CL, Wetter JB, Milovanovic M, Wolf ME. The laterodorsal tegmentum contributes to behavioral sensitization to amphetamine. Neuroscience 2007; 146:41-9. [PMID: 17321058 PMCID: PMC2040044 DOI: 10.1016/j.neuroscience.2007.01.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/22/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
A critical event in the development of behavioral sensitization is a transient increase in excitatory drive to dopamine neurons of the ventral tegmental area (VTA). This is likely to be due, in part, to the ability of drugs of abuse to produce long-term potentiation, expressed as increased AMPA receptor transmission, at excitatory synapses onto VTA dopamine neurons. We investigated the role of the laterodorsal tegmentum (LDT) in behavioral sensitization because LDT neurons provide an important source of excitatory drive to VTA dopamine neurons, through mixed glutamate and cholinergic inputs. To test the role of the LDT in amphetamine sensitization, ibotenic acid or sham lesions of the LDT were performed 1 week before the first of six daily amphetamine injections. When challenged with amphetamine 13 days after the last injection, sham rats expressed sensitization of stereotypy and post-stereotypy locomotor hyperactivity, whereas the latter was attenuated by ibotenic acid lesions of the LDT. To determine whether plasticity occurs in the LDT during amphetamine sensitization, we used a previously developed microdialysis assay in which increased ability of AMPA to activate a pathway serves as a marker for long-term potentiation. Two days after discontinuing repeated saline or amphetamine injections, the responsiveness of LDT-VTA neurons to AMPA was determined by microinjecting AMPA (0.4 nmol) into the LDT and measuring glutamate efflux in the ipsilateral VTA. Glutamate efflux was transiently increased in both groups but a delayed group difference was apparent with relatively higher glutamate efflux in amphetamine rats 30-60 min after AMPA injection. In parallel experiments, dopamine efflux in the nucleus accumbens (NAc) following intra-LDT AMPA declined in saline rats but remained relatively stable in amphetamine rats. Both results suggest relatively greater excitability of the LDT-VTA-NAc pathway after repeated amphetamine treatment. Our results provide the first evidence that neuronal plasticity in the LDT contributes to behavioral sensitization.
Collapse
Affiliation(s)
- C L Nelson
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA
| | | | | | | |
Collapse
|
40
|
Lodge DJ, Grace AA. The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci U S A 2006; 103:5167-72. [PMID: 16549786 PMCID: PMC1458812 DOI: 10.1073/pnas.0510715103] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 02/07/2023] Open
Abstract
In response to behaviorally salient stimuli, dopamine (DA) neurons fire in bursts. Burst firing induces a large transient increase in synaptic DA and is regarded as the functionally relevant mode of transmission that signals reward and modulates goal-directed behavior. DA neuron burst firing is dynamically regulated by afferent inputs, and it is not present in vitro because of severing of afferent processes. However, what afferents are requisite for burst firing in vivo is not known. Here, we show that tonic input from the laterodorsal tegmental nucleus (LDTg) is required for glutamate-elicited burst firing in ventral tegmental area DA neurons of anesthetized rats. Also, after LDTg inactivation, DA neurons fire as they do in vitro (i.e., as pacemakers); even direct glutamate application fails to cause them to burst fire under these conditions. These data show that the LDTg is critical to normal DA function, and thus, pathology within this region may lead to aberrant DA signaling.
Collapse
Affiliation(s)
- D J Lodge
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
41
|
Alderson HL, Latimer MP, Winn P. Involvement of the laterodorsal tegmental nucleus in the locomotor response to repeated nicotine administration. Neurosci Lett 2005; 380:335-9. [PMID: 15862913 DOI: 10.1016/j.neulet.2005.01.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 11/23/2022]
Abstract
The locomotor altering properties of nicotine depend on activation of nicotinic acetylcholine receptors in the ventral tegmental area (VTA). The laterodorsal tegmental nucleus (LDTg) provides a significant proportion of the cholinergic innervation of the VTA. We tested the hypothesis that the locomotor effects of nicotine depend on the functional integrity of the LDTg. The spontaneous locomotor activity of LDTg and sham-lesioned control rats was measured over seven sessions, after which we examined the effects of repeated injections of nicotine in a day on-day off design, giving injections of saline on the nicotine-off days. Spontaneous locomotor activity was significantly lower in LDTg lesioned compared to control rats. LDTg lesions also blunted the effects of nicotine: control rats showed an initial locomotor depression after nicotine, but on repeated testing showed a progressive increase in the amount of locomotion in response to drug challenge. LDTg lesioned rats showed no differences in responding to nicotine compared to saline. These data show that the functional integrity of the LDTg is required in order to show normal locomotor response to nicotine. One explanation for this is that loss of the LDTg affects synaptic activity in the VTA.
Collapse
Affiliation(s)
- Helen L Alderson
- School of Psychology, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife KY169JP, UK.
| | | | | |
Collapse
|
42
|
Miller AD, Forster GL, Yeomans JS, Blaha CD. Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience 2005; 136:531-8. [PMID: 16216430 DOI: 10.1016/j.neuroscience.2005.08.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/20/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
Midbrain dopamine neurons are critical in mediating the rewarding effects of opiates in dependent rats, as well as modulating some manifestations of opiate withdrawal. Morphine is known to excite dopamine neurons and thereby facilitate forebrain dopamine transmission through inhibition of GABA neurons. Cholinergic neurons in the mesopontine laterodorsal and pedunculopontine tegmental nuclei provide the principal source of excitatory cholinergic input to ventral tegmental area and substantia nigra pars compacta dopamine-containing neurons, via actions on midbrain muscarinic and nicotinic acetylcholine receptors. The present study hypothesized that a reduction in tonic cholinergic input via blockade of midbrain muscarinic receptors would reduce the pharmacological effects of morphine on forebrain dopamine release. Using in vivo chronoamperometry, alterations in morphine-evoked dopamine efflux were monitored at stearate-graphite paste electrodes implanted unilaterally in the nucleus accumbens and striatum of urethane (1.5 g/kg) anesthetized rats, following the pharmacological inhibition of ventral tegmental area/substantia nigra pars compacta muscarinic receptors. The facilitatory effects of morphine (2.0 mg/kg, i.v.) on accumbens and striatal dopamine efflux were markedly reduced by prior infusion of the non-selective muscarinic receptor antagonist scopolamine (200 microg/microl) into the ventral tegmental area or substantia nigra pars compacta, respectively. These findings demonstrate that decreased activation of midbrain muscarinic receptors attenuates the excitatory effects of morphine on mesoaccumbens and nigrostriatal dopaminergic transmission.
Collapse
Affiliation(s)
- A D Miller
- Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | |
Collapse
|
43
|
Wang H, Ng K, Hayes D, Gao X, Forster G, Blaha C, Yeomans J. Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology 2004; 29:2126-39. [PMID: 15213703 DOI: 10.1038/sj.npp.1300502] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
M5 muscarinic receptors are coexpressed with D2 dopamine receptors in the ventral tegmentum and striatum, and are important for reward in rodents. Previously, we reported that disruption of the M5 receptor gene in mice reduced dopamine release in the nucleus accumbens. In this study, we established a polymerase chain reaction (PCR) genotyping method for M5 mutant mice, and, using RT-PCR, found that M5 mRNA expression was highest in the ventral tegmentum, striatum, and thalamus in wild-type mice. In the M5 mutant mice, D2 mRNA expression was increased in several brain structures, including the striatum. Genome mapping studies showed the M5 gene is localized to chromosome 2E4 in mice, and to 15q13 in humans in the region that has been linked to schizophrenia. Amphetamine-induced locomotion, but not baseline locomotion or motor functions, decreased in M5 mutant mice, consistent with lower accumbal dopamine release. Previous reports found latent inhibition improvement in rats following nucleus accumbens lesions, or blockade of dopamine D2 receptors with neuroleptic drugs. Here, latent inhibition was significantly increased in M5 mutant mice as compared with controls, consistent with reduced dopamine function in the nucleus accumbens. In summary, our results showed that M5 gene disruption in mice decreased amphetamine-induced locomotion and increased latent inhibition, suggesting that increased M5 mesolimbic function may be relevant to schizophrenia.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Amphetamine/pharmacology
- Animals
- Behavior, Animal
- Blotting, Southern/methods
- Brain/anatomy & histology
- Brain/metabolism
- Central Nervous System Stimulants/pharmacology
- Chromosome Mapping/methods
- Chromosomes, Human, Pair 15
- Dose-Response Relationship, Drug
- Genotype
- Humans
- Inhibition, Psychological
- Locomotion/drug effects
- Mice
- Mice, Mutant Strains
- Pain Measurement/drug effects
- Psychomotor Performance/drug effects
- RNA, Messenger/biosynthesis
- Receptor, Muscarinic M5/genetics
- Receptor, Muscarinic M5/metabolism
- Receptor, Muscarinic M5/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/immunology
- Reflex, Startle/drug effects
- Reflex, Startle/radiation effects
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Time Factors
Collapse
Affiliation(s)
- Haoran Wang
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
This review covers beta-phenylethylamines and isoquinoline alkaloids derived from them, including further products of oxidation. condensation with formaldehyde and rearrangement, some of which do not contain an isoquinoline system, together with naphthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids, with the structures of new bases, together with their reactions, syntheses and biological activities are reported. The literature from July 2002 to June 2003 is reviewed, with 568 references cited.
Collapse
|
45
|
Abstract
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
46
|
Forster GL, Blaha CD. Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 2003; 17:751-62. [PMID: 12603265 DOI: 10.1046/j.1460-9568.2003.02511.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pedunculopontine tegmental nucleus appears to influence striatal dopamine activity via cholinergic and glutamatergic afferents to dopaminergic cells of the substantia nigra pars compacta. We measured changes in striatal dopamine oxidation current (dopamine efflux) in response to electrical stimulation of the pedunculopontine tegmental nucleus using in vivo electrochemistry in urethane-anaesthetized rats. Pedunculopontine tegmental nucleus stimulation evoked a three-component change in striatal dopamine efflux, consisting of: (i) an initial rapid increase of 2 min duration; followed by (ii) a decrease below prestimulation levels of 9 min duration; then by (iii) a prolonged increase lasting 35 min. Intra-nigral infusions of the ionotropic glutamate receptor antagonist kynurenate (10 microg/ microL) or the nicotinic cholinergic receptor antagonist mecamylamine (5 microg/0.5 microL) selectively attenuated the rapid first component, while systemic injections of the muscarinic cholinergic antagonist scopolamine (5 mg/kg, i.p.) diminished the second and third components. In addition, intra-pedunculopontine tegmental nucleus infusions of the M2 muscarinic antagonist methoctramine (50 microg/ microL) selectively abolished the inhibitory second component, while intranigral infusions of scopolamine (200 microg/ microL) selectively abolished the prolonged third component. Intra-nigral infusions of the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine (2 microg/ microL) had no effect on pedunculopontine tegmental nucleus-elicited striatal dopamine efflux. These results suggest that the pedunculopontine tegmental nucleus utilizes nicotinic and ionotropic glutamate receptors in the substantia nigra to mediate rapid activation, M2-like muscarinic autoreceptors in the pedunculopontine tegmental nucleus to mediate decreased activation, and muscarinic receptors in the substantia nigra (probably of the M5 subtype) to mediate prolonged activation, of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Gina L Forster
- Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia
| | | |
Collapse
|