1
|
Tari AR, Walker TL, Huuha AM, Sando SB, Wisloff U. Neuroprotective mechanisms of exercise and the importance of fitness for healthy brain ageing. Lancet 2025; 405:1093-1118. [PMID: 40157803 DOI: 10.1016/s0140-6736(25)00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 04/01/2025]
Abstract
Ageing is a scientifically fascinating and complex biological occurrence characterised by morphological and functional changes due to accumulated molecular and cellular damage impairing tissue and organ function. Ageing is often accompanied by cognitive decline but is also the biggest known risk factor for Alzheimer's disease, the most common form of dementia. Emerging evidence suggests that sedentary and unhealthy lifestyles accelerate brain ageing, while regular physical activity, high cardiorespiratory fitness (CRF), or a combination of both, can mitigate cognitive impairment and reduce dementia risk. The purpose of this Review is to explore the neuroprotective mechanisms of endurance exercise and highlight the importance of CRF in promoting healthy brain ageing. Key findings show how CRF mediates the neuroprotective effects of exercise via mechanisms such as improved cerebral blood flow, reduced inflammation, and enhanced neuroplasticity. We summarise evidence supporting the integration of endurance exercise that enhances CRF into public health initiatives as a preventive measure against age-related cognitive decline. Additionally, we address important challenges such as lack of long-term studies with harmonised study designs across preclinical and clinical settings, employing carefully controlled and repeatable exercise protocols, and outline directions for future research.
Collapse
Affiliation(s)
- Atefe R Tari
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aleksi M Huuha
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
2
|
Malter JS. Pin1 and Alzheimer's disease. Transl Res 2023; 254:24-33. [PMID: 36162703 PMCID: PMC10111655 DOI: 10.1016/j.trsl.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is an immense and growing public health crisis. Despite over 100 years of investigation, the etiology remains elusive and therapy ineffective. Despite current gaps in knowledge, recent studies have identified dysfunction or loss-of-function of Pin1, a unique cis-trans peptidyl prolyl isomerase, as an important step in AD pathogenesis. Here I review the functionality of Pin1 and its role in neurodegeneration.
Collapse
Affiliation(s)
- James S Malter
- Department of Pathology, UT Southwestern Medical Center, 5333 Harry Hines Blvd, Dallas, TX 75390.
| |
Collapse
|
3
|
Kawabata S. Excessive/Aberrant and Maladaptive Synaptic Plasticity: A Hypothesis for the Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:913693. [PMID: 35865745 PMCID: PMC9294348 DOI: 10.3389/fnagi.2022.913693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
The amyloid hypothesis for the pathogenesis of Alzheimer’s disease (AD) is widely accepted. Last year, the US Food and Drug Administration considered amyloid-β peptide (Aβ) as a surrogate biomarker and approved an anti-Aβ antibody, aducanumab, although its effectiveness in slowing the progression of AD is still uncertain. This approval has caused a great deal of controversy. Opinions are divided about whether there is enough evidence to definitely consider Aβ as a causative substance of AD. To develop this discussion constructively and to discover the most suitable therapeutic interventions in the end, an alternative persuasive hypothesis needs to emerge to better explain the facts. In this paper, I propose a hypothesis that excessive/aberrant and maladaptive synaptic plasticity is the pathophysiological basis for AD.
Collapse
|
4
|
Clinical and radiological profile of posterior cortical atrophy and comparison with a group of typical Alzheimer disease and amnestic mild cognitive impairment. Acta Neurol Belg 2021; 121:1009-1018. [PMID: 33230741 DOI: 10.1007/s13760-020-01547-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022]
Abstract
Posterior cortical atrophy (PCA) is a rare dementia affecting higher visual processing and other posterior cortical functions with atrophy and hypometabolism in occipito-parieto-temporal areas, more on right side. The objective of the study was to explore the clinical, neuropsychological, and radiological features of PCA patients and to compare them with typical multi-domain amnestic Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients. Four out of 9 patients of PCA fulfilling the criteria of Tang-Wai et al. (2004), 10 patients each of AD and aMCI fulfilling NIA-AA criteria were chosen. Patients were assessed clinically by experienced neurologists. Neuropsychological assessment was performed with standardized validated tests. Each patient underwent an MRI. FDG-PET was done for all PCA and six AD patients. PCA patients were younger, cognitively more impaired with rapid progression showing predominant visuospatial deficits consistent with the damage to the upstream of visual processing. AD patients presented predominantly with amnestic symptoms, with visuospatial dysfunction in some and aMCI had mild memory loss. Marked atrophy and hypometabolism in occipital, parietal and temporal areas in PCA, atrophy and hypometabolism in medial temporal areas in AD and minimal non-localized atrophy in MRI in aMCI were seen. Two PCA patients showed hypometabolism extending to the medial temporal and one to the frontal cortex. The clinical and imaging features of PCA are consistent with the damage predominantly to the upstream of visual processing. The difference between PCA and typical AD suggests involvement of AD pathology at different sites within a common disease-relevant network of brain regions.
Collapse
|
5
|
Gil L, Niño SA, Capdeville G, Jiménez-Capdeville ME. Aging and Alzheimer's disease connection: Nuclear Tau and lamin A. Neurosci Lett 2021; 749:135741. [PMID: 33610669 DOI: 10.1016/j.neulet.2021.135741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
Age-related pathologies like Alzheimer`s disease (AD) imply cellular responses directed towards repairing DNA damage. Postmitotic neurons show progressive accumulation of oxidized DNA during decades of brain aging, which is especially remarkable in AD brains. The characteristic cytoskeletal pathology of AD neurons is brought about by the progressive changes that neurons undergo throughout aging, and their irreversible nuclear transformation initiates the disease. This review focusses on critical molecular events leading to the loss of plasticity that underlies cognitive deficits in AD. During healthy neuronal aging, nuclear Tau participates in the regulation of the structure and function of the chromatin. The aberrant cell cycle reentry initiated for DNA repair triggers a cascade of events leading to the dysfunctional AD neuron, whereby Tau protein exits the nucleus leading to chromatin disorganization. Lamin A, which is not typically expressed in neurons, appears at the transformation from senile to AD neurons and contributes to halting the consequences of cell cycle reentry and nuclear Tau exit, allowing the survival of the neuron. Nevertheless, this irreversible nuclear transformation alters the nucleic acid and protein synthesis machinery as well as the nuclear lamina and cytoskeleton structures, leading to neurofibrillary tangles formation and final neurodegeneration.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad "Alfonso X el Sabio", Madrid, Spain
| | - Sandra A Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | |
Collapse
|
6
|
Ohm DT, Fought AJ, Martersteck A, Coventry C, Sridhar J, Gefen T, Weintraub S, Bigio E, Mesulam M, Rogalski E, Geula C. Accumulation of neurofibrillary tangles and activated microglia is associated with lower neuron densities in the aphasic variant of Alzheimer's disease. Brain Pathol 2021; 31:189-204. [PMID: 33010092 PMCID: PMC7855834 DOI: 10.1111/bpa.12902] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The neurofibrillary tangles (NFT) and amyloid-ß plaques (AP) that comprise Alzheimer's disease (AD) neuropathology are associated with neurodegeneration and microglial activation. Activated microglia exist on a dynamic spectrum of morphologic subtypes that include resting, surveillant microglia capable of converting to activated, hypertrophic microglia closely linked to neuroinflammatory processes and AD neuropathology in amnestic AD. However, quantitative analyses of microglial subtypes and neurons are lacking in non-amnestic clinical AD variants, including primary progressive aphasia (PPA-AD). PPA-AD is a language disorder characterized by cortical atrophy and NFT densities concentrated to the language-dominant hemisphere. Here, a stereologic investigation of five PPA-AD participants determined the densities and distributions of neurons and microglial subtypes to examine how cellular changes relate to AD neuropathology and may contribute to cortical atrophy. Adjacent series of sections were immunostained for neurons (NeuN) and microglia (HLA-DR) from bilateral language and non-language regions where in vivo cortical atrophy and Thioflavin-S-positive APs and NFTs were previously quantified. NeuN-positive neurons and morphologic subtypes of HLA-DR-positive microglia (i.e., resting [ramified] microglia and activated [hypertrophic] microglia) were quantified using unbiased stereology. Relationships between neurons, microglia, AD neuropathology, and cortical atrophy were determined using linear mixed models. NFT densities were positively associated with hypertrophic microglia densities (P < 0.01) and inversely related to neuron densities (P = 0.01). Hypertrophic microglia densities were inversely related to densities of neurons (P < 0.01) and ramified microglia (P < 0.01). Ramified microglia densities were positively associated with neuron densities (P = 0.02) and inversely related to cortical atrophy (P = 0.03). Our findings provide converging evidence of divergent roles for microglial subtypes in patterns of neurodegeneration, which includes hypertrophic microglia likely driving a neuroinflammatory response more sensitive to NFTs than APs in PPA-AD. Moreover, the accumulation of both NFTs and activated hypertrophic microglia in association with low neuron densities suggest they may collectively contribute to focal neurodegeneration characteristic of PPA-AD.
Collapse
Affiliation(s)
- Daniel T. Ohm
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Angela J. Fought
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Adam Martersteck
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Eileen Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - M.‐Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| |
Collapse
|
7
|
Lam AD, Noebels J. Night Watch on the Titanic: Detecting Early Signs of Epileptogenesis in Alzheimer Disease. Epilepsy Curr 2020; 20:369-374. [PMID: 33081517 PMCID: PMC7818196 DOI: 10.1177/1535759720964775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aberrant cortical network excitability is an inextricable feature of Alzheimer disease (AD) that can negatively impact memory and accelerate cognitive decline. Surface electroencephalogram spikes and intracranial recordings of nocturnal silent seizures in human AD, coupled with the abnormal neural synchrony that precedes development of behavioral seizures in mouse AD models, build the case for epileptogenesis as an early therapeutic target for AD. Since most individuals with AD do not develop overt seizures, leveraging functional biomarkers of epilepsy risk to stratify a heterogeneous AD patient population for treatment is research priority for successful clinical trial design. Who will benefit from antiseizure interventions, which one, and when should it begin?
Collapse
Affiliation(s)
- Alice D. Lam
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Paasila PJ, Davies DS, Sutherland GT, Goldsbury C. Clustering of activated microglia occurs before the formation of dystrophic neurites in the evolution of Aβ plaques in Alzheimer's disease. FREE NEUROPATHOLOGY 2020; 1:20. [PMID: 34396367 PMCID: PMC8360389 DOI: 10.17879/freeneuropathology-2020-2845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a late-onset disease that has proved difficult to model. Microglia are implicated in AD, but reports vary on precisely when and how in the sequence of pathological changes they become involved. Here, post-mortem human tissue from two differentially affected regions of the AD brain and from non-demented individuals with a high load of AD-type pathology (high pathology controls) was used to model the disease time course in order to determine how microglial activation relates temporally to the deposition of hallmark amyloid-β (Aβ) and hyperphosphorylated microtubule associated protein tau pathology. Immunofluorescence against the pan-microglial marker, ionised calcium-binding adapter molecule 1 (IBA1), Aβ and tau, was performed in the primary motor cortex (PMC), a region relatively spared of AD pathological changes, and compared to the severely affected inferior temporal cortex (ITC) in the same cases. Unlike the ITC, the PMC in the AD cases was spared of any degenerative changes in cortical thickness and the density of Betz cells and total neurons. The clustering of activated microglia was greatest in the PMC of AD cases and high pathology controls compared to the ITC. This suggests microglial activation is most prominent in the early phases of AD pathophysiology. Nascent tau inclusions were found in neuritic plaques in the PMC but were more numerous in the ITC of the same case. This shows that tau positive neuritic plaques begin early in AD which is likely of pathogenic importance, however major tau deposition follows the accumulation of Aβ and clustering of activated microglia. Importantly, findings presented here demonstrate that different states of microglial activation, corresponding to regional accumulations of Aβ and tau, are present simultaneously in the same individual; an important factor for consideration if targeting these cells for therapeutic intervention.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Danielle Suzanne Davies
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Greg Trevor Sutherland
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Claire Goldsbury
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Pandya M, Palpagama TH, Turner C, Waldvogel HJ, Faull RL, Kwakowsky A. Sex- and age-related changes in GABA signaling components in the human cortex. Biol Sex Differ 2019; 10:5. [PMID: 30642393 PMCID: PMC6332906 DOI: 10.1186/s13293-018-0214-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. Previous studies have shown fluctuations in expression levels of GABA signaling components-glutamic acid decarboxylase (GAD), GABA receptor (GABAR) subunit, and GABA transporter (GAT)-with increasing age and between sexes; however, this limited knowledge is highly based on animal models that produce inconsistent findings. This study is the first analysis of the age- and sex-specific changes of the GAD, GABAA/BR subunits, and GAT expression in the human primary sensory and motor cortices; superior (STG), middle (MTG), and inferior temporal gyrus (ITG); and cerebellum. Utilizing Western blotting, we found that the GABAergic system is relatively robust against sex and age-related differences in all brain regions examined. However, we observed several sex-dependent differences in GABAAR subunit expression in STG along with age-dependent GABAAR subunit and GAD level alteration. No significant age-related differences were found in α1, α2, α5, β3, and γ2 subunit expression in the STG. However, we found significantly higher GABAAR α3 subunit expression in the STG in young males compared to old males. We observed a significant sex-dependent difference in α1 subunit expression: males presenting significantly higher levels compared to women across all stages of life in STG. Older females showed significantly lower α2, α5, and β3 subunit expression compared to old males in the STG. These changes found in the STG might significantly influence GABAergic neurotransmission and lead to sex- and age-specific disease susceptibility and progression.
Collapse
Affiliation(s)
- Madhavi Pandya
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Braak H, Del Tredici K. Top-Down Projections Direct the Gradual Progression of Alzheimer-Related Tau Pathology Throughout the Neocortex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:291-303. [PMID: 32096045 DOI: 10.1007/978-981-32-9358-8_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In sporadic Alzheimer's disease (sAD), tau pathology gradually but relentlessly progresses from the transentorhinal region of the temporal lobe into both the allocortex and temporal high order association areas of the neocortex. From there, it ultimately reaches the primary sensory and motor fields of the neocortex. The brunt of the changes seen during neurofibrillary stages (NFT) I-VI is borne by top-down projection neurons that contribute to cortico-cortical connectivities between different neocortical fields. Very early changes develop in isolated pyramidal cells in layers III and V, and these cells are targets of top-down projections terminating in association areas of the first temporal gyrus or in peristriate regions of the occipital lobe. Neurofibrillary pathology in these regions is routinely associated with late NFT stages. Sequential changes occur in different cell compartments (dendritic, somatic, axonal) of these early-involved neurons. Tau pathology first develops in distal segments of basal dendrites, then in proximal dendrites, the soma, and, finally, in the axon of affected pyramidal neurons. This sequence of abnormal changes supports the concept that axons of cortico-cortical top-down neurons may carry and spread abnormal tau seeds in a focused manner (transsynaptically) into the distal dendritic segments of nerve cells directly following in the neuronal chain, thereby sustaining tau-seeded templating in sAD.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany.
| |
Collapse
|
11
|
Braak H, Del Tredici K. Spreading of Tau Pathology in Sporadic Alzheimer's Disease Along Cortico-cortical Top-Down Connections. Cereb Cortex 2018; 28:3372-3384. [PMID: 29982389 PMCID: PMC6095209 DOI: 10.1093/cercor/bhy152] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 02/02/2023] Open
Abstract
By using AT8-immunocytochemistry that visualizes hyperphosphorylated tau protein, we examined neurofibrillary changes related to sporadic Alzheimer's disease (AD) in N = 40 individuals at neurofibrillary tangle (NFT) stages I-IV. We report the presence of abnormal tau changes within solitary pyramidal neurons in layers III and V of the neocortex. These pyramidal cells showed pathology in different cell compartments (dendritic, somatic, axonal) that appeared to occur sequentially: Tau pathology was seen in distal segments of the basal dendrites, then in proximal dendrites, the soma, and, finally, in the axon of affected neurons. These findings are remarkable in that they point to the existence of neurofibrillary changes in regions routinely associated with later NFT stages. In addition, they lend support to the idea that it may be the axons of cortico-cortical top-down neurons in neocortical fields involved in AD that carry and spread abnormal tau seeds in a focused manner (transsynaptically) into the distal dendritic segments of nerve cells following directly in the neuronal chain, thereby sustaining further tau-seeded templating.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, Ulm, Germany
| |
Collapse
|
12
|
Schaefers ATU, Teuchert-Noodt G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J Biol Psychiatry 2016; 17:587-599. [PMID: 23705632 DOI: 10.3109/15622975.2013.797104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Neurodegenerative diseases like Alzheimer's and Parkinson's Disease, marked by characteristic protein aggregations, are more and more accepted to be synaptic disorders and to arise from a combination of genetic and environmental factors. In this review we propose our concept that neuroplasticity might constitute a link between early life challenges and neurodegeneration. METHODS After introducing the general principles of neuroplasticity, we show how adverse environmental stimuli during development impact adult neuroplasticity and might lead to neurodegenerative processes. RESULTS There are significant overlaps between neurodevelopmental and neurodegenerative processes. Proteins that represent hallmarks of neurodegeneration are involved in plastic processes under physiological conditions. Brain regions - particularly the hippocampus - that retain life-long plastic capacities are the key targets of neurodegeneration. Neuroplasticity is highest in young age making the brain more susceptible to external influences than later in life. Impacts during critical periods have life-long consequences on neuroplasticity and structural self-organization and are known to be common risk factors for neurodegenerative diseases. CONCLUSIONS Several lines of evidence support a link between developmental neuroplasticity and neurodegenerative processes later in life. A deeper insight into these processes is necessary to design strategies to mitigate or even prevent neurodegenerative pathologies.
Collapse
|
13
|
Arendt T, Morawski M, Gärtner U, Fröhlich N, Schulze F, Wohmann N, Jäger C, Eisenlöffel C, Gertz HJ, Mueller W, Brauer K. Inhomogeneous distribution of Alzheimer pathology along the isocortical relief. Are cortical convolutions an Achilles heel of evolution? Brain Pathol 2016; 27:603-611. [PMID: 27564538 DOI: 10.1111/bpa.12442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by neuritic plaques and neurofibrillary tangles. Progression of both plaques and tangles throughout the brain follows a hierarchical distribution which is defined by intrinsic cytoarchitectonic features and extrinsic connectivity patterns. What has less well been studied is how cortical convolutions influence the distribution of AD pathology. Here, the distribution of both plaques and tangles within subsulcal gyral components (fundi) to components forming their top regions at the subarachnoidal brain surface (crowns) by stereological methods in seven different cortical areas was systematically compared. Further, principle differences in cytoarchitectonic organization of cortical crowns and fundi that might provide the background for regionally selective vulnerability were attempted to identify. It was shown that both plaques and tangles were more prominent in sulcal fundi than gyri crowns. The differential distribution of pathology along convolutions corresponds to subgyral differences in the vascular network, GFAP-positive astrocytes and intracortical and subcortical connectivity. While the precise mechanisms accounting for these differences remain open, the presence of systematic inhomogeneities in the distribution of AD pathology along cortical convolutions indicates that the phylogenetic shaping of the cortex is associated with features that render the human brain vulnerable to AD pathology.
Collapse
Affiliation(s)
- Thomas Arendt
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Universität Leipzig, Liebigstrasse 19, Leipzig, 04103, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Universität Leipzig, Liebigstrasse 19, Leipzig, 04103, Germany
| | - Ulrich Gärtner
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Aulweg 123, Giessen, 35385, Germany
| | - Nadine Fröhlich
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Universität Leipzig, Liebigstrasse 19, Leipzig, 04103, Germany
| | - Falko Schulze
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Universität Leipzig, Liebigstrasse 19, Leipzig, 04103, Germany
| | - Nils Wohmann
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Universität Leipzig, Liebigstrasse 19, Leipzig, 04103, Germany
| | - Carsten Jäger
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Universität Leipzig, Liebigstrasse 19, Leipzig, 04103, Germany
| | - Christian Eisenlöffel
- Department of Neuropathology, Universität Leipzig, Liebigstrasse 24, Leipzig, 04103, Germany
| | - Hermann-Josef Gertz
- Department of Psychiatry, Universität Leipzig, Semmelweisstrasse 10, Leipzig, 4103, Germany
| | - Wolf Mueller
- Department of Neuropathology, Universität Leipzig, Liebigstrasse 24, Leipzig, 04103, Germany
| | - Kurt Brauer
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Universität Leipzig, Liebigstrasse 19, Leipzig, 04103, Germany
| |
Collapse
|
14
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [PMID: 27615390 DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
15
|
Murray HC, Low VF, Swanson ME, Dieriks BV, Turner C, Faull RL, Curtis MA. Distribution of PSA-NCAM in normal, Alzheimer’s and Parkinson’s disease human brain. Neuroscience 2016; 330:359-75. [DOI: 10.1016/j.neuroscience.2016.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022]
|
16
|
Mutated tau, amyloid and neuroinflammation in Alzheimer disease—A brief review. ACTA ACUST UNITED AC 2016; 51:1-8. [PMID: 26851150 DOI: 10.1016/j.proghi.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
|
17
|
Bilateral temporal lobe disease: looking beyond herpes encephalitis. Insights Imaging 2016; 7:265-74. [PMID: 26911968 PMCID: PMC4805615 DOI: 10.1007/s13244-016-0481-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/05/2022] Open
Abstract
Abstract The temporal lobes have unique architecture, and functionality that makes them vulnerable to certain disease processes. Patients presenting with bilateral temporal lobe disease are often confused and have altered consciousness, and are therefore unable to provide cogent histories. For these reasons, imaging plays an important role in their workup and management. Disease entities causing bilateral temporal lobe involvement can be infectious, metabolic, neoplastic, and degenerative aetiologies, as well as trauma and cerebrovascular events. We will first describe the structural and functional anatomy of the temporal lobes and explain the mechanisms that underlie bilateral temporal lobe disease, and then show and discuss the different disease entities and differential diagnosis. Teaching points • Bilateral temporal lobe disease is a unique pattern with specific differential diagnosis. • Patients presenting with bilateral temporal lobe disease are often confused. • Radiologists should be familar with the variety of disease processes that cause bitemporal disease.
Collapse
|
18
|
Arendt T, Brückner MK, Lösche A. Regional mosaic genomic heterogeneity in the elderly and in Alzheimer's disease as a correlate of neuronal vulnerability. Acta Neuropathol 2015; 130:501-10. [PMID: 26298468 DOI: 10.1007/s00401-015-1465-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by fibrillary aggregates of Aβ peptide and tau protein. The distribution of these pathological hallmarks throughout the brain is not random; it follows a predictive pattern that is used for pathological staging. However, most etiopathogenetic concepts, irrespective of whether they focus on Aβ or tau pathology, leave a key question unanswered: what is the explanation for the different vulnerabilities of brain regions in AD? The pattern of regional progression of neurofibrillary degeneration in AD to some extent inversely recapitulates ontogenetic and phylogenetic brain development. Accordingly, degeneration preferentially affects brain areas that have recently been acquired or restructured during anthropoid evolution, which means that the involvement of a neurodevelopmental mechanism is highly likely. Since evolutionary expansion of the neocortex is based on a substantial extension of the mitotic activity of progenitor cells, we propose a conceptual link between neurogenesis in anthropoid primates and a higher risk of accumulating mitotic errors that give rise to genomic aberrations commonly referred to as DNA content variation (DCV). If increased rates of DCV make neurons more vulnerable to AD-related pathology, one might expect there to be a higher rate of DCV in areas that are affected very early during the course of AD, as compared to areas which are hardly affected or are affected only during the most advanced stages. Therefore, in the present study, we comparatively analyzed the DCV in five different cortical areas that are affected during the early stage (entorhinal cortex), the intermediate stage (temporal, frontal, and parietal association cortex), and the late stage (primary sensory occipital cortex) of AD in both normal elderly subjects and AD patients. On average, we observed about 10 % neuronal mosaic DCV in the normal elderly and a two- to threefold increase in DCV in AD patients. We were able to demonstrate, moreover, that the neuronal DCV in the cerebral cortex of the normal elderly as well as the increased neuronal DCV in AD patients are not randomly distributed but instead show systematic regional differences which correspond to differences in vulnerability. These findings provide additional evidence that mosaic genomic heterogeneity may play a key role in AD pathology.
Collapse
Affiliation(s)
- Thomas Arendt
- Department of Molecular and Cellular Mechanism of Neurodegeneration, Paul Flechsig Institute for Brain Research, Universität Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany.
| | - Martina K Brückner
- Department of Molecular and Cellular Mechanism of Neurodegeneration, Paul Flechsig Institute for Brain Research, Universität Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany
| | - Andreas Lösche
- Core Unit Fluorescence Technologies of the Medical Faculty, Universität Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany
| |
Collapse
|
19
|
Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 2015; 138:2814-33. [DOI: 10.1093/brain/awv236] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022] Open
|
20
|
van Groen T, Miettinen P, Kadish I. Axonal tract tracing for delineating interacting brain regions: implications for Alzheimer's disease-associated memory. FUTURE NEUROLOGY 2014; 9:89-98. [PMID: 24678267 DOI: 10.2217/fnl.13.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We are studying the projections from the entorhinal cortex to the hippocampal formation in the mouse. The dentate gyrus is innervated by the lateral entorhinal cortex (lateral perforant path) and medial entorhinal cortex (medial perforant path). The entorhinal cortex also projects to hippocampal areas CA3 and CA1, and to the subiculum. In young transgenic Alzheimer's disease mouse models (before amyloid-β pathology), the connections are not different from normal mice. In Alzheimer's disease mice with pathology, two changes occur: first, dystrophic axon endings appear near amyloid-β plaques, and second, there are sparse aberrant axon terminations not in the appropriate area or lamina of the hippocampus. Furthermore, MRI-diffusion tensor imaging analysis indicates a decrease in the quality of the white matter tracts connecting the hippocampus to the brain; in other words, the fimbria/fornix and perforant path. Similar changes in white matter integrity have been found in Alzheimer's disease patients and could potentially be used as early indicators of disease onset.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, 1900 University Boulevard, THT 912, Birmingam, AL 35294-0006, USA
| | - Pasi Miettinen
- Department of Neuroscience, University of Eastern Finland, FIN 70211, Kuopio, Finland
| | - Inga Kadish
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, 1900 University Boulevard, THT 912, Birmingam, AL 35294-0006, USA
| |
Collapse
|
21
|
Herrup K. ATM and the epigenetics of the neuronal genome. Mech Ageing Dev 2013; 134:434-9. [PMID: 23707635 DOI: 10.1016/j.mad.2013.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/01/2013] [Accepted: 05/17/2013] [Indexed: 01/28/2023]
Abstract
Ataxia-telangiectasia (A-T) is a neurodegenerative syndrome caused by the mutation of the ATM gene. The ATM protein is a PI3kinase family member best known for its role in the DNA damage response. While repair of DNA damage is a critical function that every CNS neuron must perform, a growing body of evidence indicates that the full range of ATM functions includes some that are unrelated to DNA damage yet are essential to neuronal survival and normal function. For example, ATM participates in the regulation of synaptic vesicle trafficking and is essential for the maintenance of normal LTP. In addition ATM helps to ensure the cytoplasmic localization of HDAC4 and thus maintains the histone 'code' of the neuronal genome by suppressing genome-wide histone deacetylation, which alters the message and protein levels of many genes that are important for neuronal survival and function. The growing list of ATM functions that go beyond its role in the DNA damage response offers a new perspective on why individuals with A-T express such a wide range of neurological symptoms, and suggests that not all A-T symptoms need to be understood in the context of the DNA repair process.
Collapse
Affiliation(s)
- Karl Herrup
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
22
|
Wang PN, Chou KH, Chang NJ, Lin KN, Chen WT, Lan GY, Lin CP, Lirng JF. Callosal degeneration topographically correlated with cognitive function in amnestic mild cognitive impairment and Alzheimer's disease dementia. Hum Brain Mapp 2013; 35:1529-43. [PMID: 23670960 DOI: 10.1002/hbm.22271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/30/2012] [Accepted: 01/17/2012] [Indexed: 11/09/2022] Open
Abstract
Degeneration of the corpus callosum (CC) is evident in the pathogenesis of Alzheimer's disease (AD). However, the correlation of microstructural damage in the CC on the cognitive performance of patients with amnestic mild cognitive impairment (aMCI) and AD dementia is undetermined. We enrolled 26 normal controls, 24 patients with AD dementia, and 40 single-domain aMCI patients with at least grade 1 hippocampal atrophy and isolated memory impairment. Diffusion tensor imaging (DTI) with fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR) were measured. The entire CC was parcellated based on fiber trajectories to specific cortical Brodmann areas using a probabilistic tractography method. The relationship between the DTI measures in the subregions of the CC and cognitive performance was examined. Although the callosal degeneration in the patients with aMCI was less extended than in the patients with AD dementia, degeneration was already exhibited in several subregions of the CC at the aMCI stage. Scores of various neuropsychological tests were correlated to the severity of microstructural changes in the subregional CC connecting to functionally corresponding cortical regions. Our results confirm that CC degeneration is noticeable as early as the aMCI stage of AD and the disconnection of the CC subregional fibers to the corresponding Brodmann areas has an apparent impact on the related cognitive performance.
Collapse
Affiliation(s)
- Pei-Ning Wang
- Department of Neurology, National Yang-Ming University, School of Medicine, Taipei, Taiwan; Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cell cycle activation and aneuploid neurons in Alzheimer's disease. Mol Neurobiol 2012; 46:125-35. [PMID: 22528601 DOI: 10.1007/s12035-012-8262-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder, characterized by synaptic degeneration associated with fibrillar aggregates of the amyloid-ß peptide and the microtubule-associated protein tau. The progression of neurofibrillary degeneration throughout the brain during AD follows a predictive pattern which provides the basis for the neuropathological staging of the disease. This pattern of selective neuronal vulnerability against neurofibrillary degeneration matches the regional degree of neuronal plasticity and inversely recapitulates ontogenetic and phylogenetic brain development which links neurodegenerative cell death to neuroplasticity and brain development. Here, we summarize recent evidence for a loss of neuronal differentiation control as a critical pathogenetic event in AD, associated with a reactivation of the cell cycle and a partial or full replication of DNA giving rise to neurons with a content of DNA above the diploid level. Neurons with an aneuploid set of chromosomes are also present at a low frequency in the normal brain where they appear to be well tolerated. In AD, however, where the number of aneuploid neurons is highly increased, a rather selective cell death of neurons with this chromosomal aberrancy occurs. This finding add aneuploidy to the list of critical molecular events that are shared between neurodegeneration and oncogenesis. It defines a molecular signature for neuronal vulnerability and directs our attention to a failure of neuronal differentiation control as a critical pathogenetic event and potential therapeutic target in AD.
Collapse
|
24
|
Neill D. Should Alzheimer's disease be equated with human brain ageing? A maladaptive interaction between brain evolution and senescence. Ageing Res Rev 2012; 11:104-22. [PMID: 21763787 DOI: 10.1016/j.arr.2011.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/26/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
In this review Alzheimer's disease is seen as a maladaptive interaction between human brain evolution and senescence. It is predicted to occur in everyone although does not necessarily lead to dementia. The pathological process is initiated in relation to a senescence mediated functional down-regulation in the posteromedial cortex (Initiation Phase). This leads to a loss of glutamatergic excitatory input to layer II entorhinal cortex neurons. A human specific maladaptive neuroplastic response is initiated in these neurons leading to neuronal dysfunction, NFT formation and death. This leads to further loss of glutamatergic excitatory input and propagation of the maladaptive response along excitatory pathways linking evolutionary progressed vulnerable neurons (Propagation Phase). Eventually neurons are affected in many brain areas resulting in dementia. Possible therapeutic approaches include enhancing glutamatergic transmission. The theory may have implications with regards to how Alzheimer's disease is classified.
Collapse
|
25
|
Anand R, Kaushal A, Wani WY, Gill KD. Road to Alzheimer's disease: the pathomechanism underlying. Pathobiology 2011; 79:55-71. [PMID: 22205086 DOI: 10.1159/000332218] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, results from the interplay of various deregulated mechanisms triggering a complex pathophysiology. The neurons suffer from and slowly succumb to multiple irreversible damages, resulting in cell death and thus memory deficits that characterize AD. In spite of our vast knowledge, it is still unclear as to when the disease process starts and how long the perturbations continue before the disease manifests. Recent studies provide sufficient evidence to prove amyloid β (Aβ) as the primary cause initiating secondary events, but Aβ is also known to be produced under normal conditions and to possess physiological roles, hence, the questions that remain are: What are the factors that lead to abnormal Aβ production? When does Aβ turn into a pathological molecule? What is the chain of events that follows Aβ? The answers are still under debate, and further insight may help us in creating better diagnostic and therapeutic options in AD. The present article attempts to review the current literature regarding AD pathophysiology and proposes a pathophysiologic cascade in AD.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
26
|
Ewers M, Frisoni GB, Teipel SJ, Grinberg LT, Amaro E, Heinsen H, Thompson PM, Hampel H. Staging Alzheimer's disease progression with multimodality neuroimaging. Prog Neurobiol 2011; 95:535-46. [PMID: 21718750 PMCID: PMC3223355 DOI: 10.1016/j.pneurobio.2011.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 01/15/2023]
Abstract
Rapid developments in medical neuroimaging have made it possible to reconstruct the trajectory of Alzheimer's disease (AD) as it spreads through the living brain. The current review focuses on the progressive signature of brain changes throughout the different stages of AD. We integrate recent findings on changes in cortical gray matter volume, white matter fiber tracts, neuropathological alterations, and brain metabolism assessed with molecular positron emission tomography (PET). Neurofibrillary tangles accumulate first in transentorhinal and cholinergic brain areas, and 4-D maps of cortical volume changes show early progressive temporo-parietal cortical thinning. Findings from diffusion tensor imaging (DTI) for assessment fiber tract integrity show cortical disconnection in corresponding brain networks. Importantly, the developmental trajectory of brain changes is not uniform and may be modulated by several factors such as onset of disease mechanisms, risk-associated and protective genes, converging comorbidity, and individual brain reserve. There is a general agreement between in vivo brain maps of cortical atrophy and amyloid pathology assessed through PET, reminiscent of post mortem histopathology studies that paved the way in the staging of AD. The association between in vivo and post mortem findings will clarify the temporal dynamics of pathophysiological alterations in the development of preclinical AD. This will be important in designing effective treatments that target specific underlying disease AD mechanisms.
Collapse
Affiliation(s)
- Michael Ewers
- Department of Radiology, University of California at San Francisco, San Francisco, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bufill E, Agustí J, Blesa R. Human neoteny revisited: The case of synaptic plasticity. Am J Hum Biol 2011; 23:729-39. [PMID: 21957070 DOI: 10.1002/ajhb.21225] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 01/12/2023] Open
Abstract
The process of learning requires morphological changes in the neuronal connections and the formation of new synapses. Due to the importance of memory and learning in our species, it has been suggested that the synaptic plasticity in a number of association areas is higher in the human brain than in other primates. Cortical neurons in mammals are characterized by higher metabolism, activity, and synaptic plasticity during development and the juvenile stage than in the adult. In Homo sapiens, brain development is retarded compared with other primates, especially in some association areas. These areas are characterized by the presence of neurons, which remain structurally immature throughout their lifespans and show an increase in the expression of the genes, which deal with metabolism and the activity and synaptic plasticity in adulthood. The retention of juvenile features in some adult neurons in our species has occurred in areas, which are related to episodic memory, planning, and social navigation. The increase of the aerobic metabolism in these neurons may lead, however, to higher levels of oxidative stress, therefore, favoring the development of neurodegenerative diseases which are exclusive, or almost exclusive, to humans, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Enric Bufill
- Servei de Neurología, Consorci Hospitalari de Vic, Spain.
| | | | | |
Collapse
|
28
|
Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer's disease. J Neurosci 2011; 31:3926-34. [PMID: 21389247 DOI: 10.1523/jneurosci.6142-10.2011] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One major hallmark of Alzheimer's disease (AD) is the massive loss of synapses that occurs at an early clinical stage of the disease. In this study, we characterize alterations in spine density and the expression of synapse-associated immediate early gene Arc (activity-regulated cytoskeleton-associated protein) in the hippocampal CA1 regions of two different amyloid precursor protein (APP) transgenic mouse lines before plaque development and their connection to performance in hippocampus-dependent memory tests. The density of mushroom-type spines was reduced by 34% in the basal dendrites proximal to the soma of CA1 pyramidal neurons in 5.5-month-old Tg2576 mice, carrying the Swedish mutation, compared with wild-type littermates. A similar reduction of 42% was confirmed in the same region of 8-month-old APP/Lo mice, carrying the London mutation. In this strain, the reduction extended to the distal dendritic spines (28%), although no differences were found in apical dendrites in either transgenic mouse line. Both transgenic mice lines presented a significant increase in Arc protein expression in CA1 compared with controls, suggesting rather an overactivity and increased spine turnover that was supported by a significant decrease in number of somatostatin-immunopositive inhibitory interneurons in the stratum oriens of CA1. Behaviorally, the transgenic mice showed decrease freezing in the fear contextual conditioning test and impairment in spatial memory assessed by Morris water maze test. These data indicate that cognitive impairment in APP transgenic mice is correlated with impairment of synaptic connectivity in hippocampal CA1, probably attributable to loss of inhibitory interneurons and subsequent hyperactivity.
Collapse
|
29
|
Blazquez-Llorca L, Garcia-Marin V, Defelipe J. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients. Front Neuroanat 2010; 4:20. [PMID: 20631843 PMCID: PMC2903190 DOI: 10.3389/fnana.2010.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/28/2010] [Indexed: 12/16/2022] Open
Abstract
Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.
Collapse
Affiliation(s)
- Lidia Blazquez-Llorca
- Laboratorio de Circuitos Corticales (Centro de Tecnología Biomédica), Universidad Politécnica de Madrid Madrid, Spain
| | | | | |
Collapse
|
30
|
Morawski M, Brückner G, Jäger C, Seeger G, Arendt T. Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer's disease. Neuroscience 2010; 169:1347-63. [PMID: 20497908 DOI: 10.1016/j.neuroscience.2010.05.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/14/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
The biological basis for the selective vulnerability of neurons in Alzheimer's disease (AD) is elusive. Aggrecan-based perineuronal nets (PNs) of the extracellular matrix have been considered to contribute to neuroprotection in the cerebral cortex. In the present study, we investigated the organization of the aggrecan-based extracellular matrix in subcortical regions known to be preferentially affected by tau pathology in AD. Immunocytochemistry of aggrecan core protein was combined with detection of neurofibrillary degeneration. The results show that many regions affected by tau pathology in AD, such as the basal nucleus of Meynert, the dorsal thalamus, hypothalamic nuclei, raphe nuclei, and the locus coeruleus were devoid of a characteristic aggrecan-based extracellular matrix. Regions composed of nuclei with clearly different intensity of tau pathology, such as the amygdala, the thalamus and the oculomotor complex, showed largely complementary distribution patterns of neurofibrillary tangles and PNs. Quantification in the rostral interstitial nucleus of the longitudinal fascicle potentially affected by tau pathology in AD revealed that tau pathology was not accompanied by loss of aggrecan-based PNs. Neuro-fibrillary tangles in net-associated neurons extremely rarely occurred in the pontine reticular formation. We conclude that the low vulnerability of neurons ensheathed by PNs previously described for cortical areas in AD represents a more general phenomenon that also applies to subcortical regions. The aggrecan-based extracellular matrix of PNs may thus, be involved in neuroprotection.
Collapse
Affiliation(s)
- M Morawski
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Medical Faculty, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
31
|
Arendt T, Brückner MK, Mosch B, Lösche A. Selective cell death of hyperploid neurons in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:15-20. [PMID: 20472889 DOI: 10.2353/ajpath.2010.090955] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aneuploidy, an abnormal number of copies of a genomic region, might be a significant source for neuronal complexity, intercellular diversity, and evolution. Genomic instability associated with aneuploidy, however, can also lead to developmental abnormalities and decreased cellular fitness. Here we show that neurons with a more-than-diploid content of DNA are increased in preclinical stages of Alzheimer's disease (AD) and are selectively affected by cell death during progression of the disease. Present findings show that neuronal hyperploidy in AD is associated with a decreased viability. Hyperploidy of neurons thus represents a direct molecular signature of cells prone to death in AD and indicates that a failure of neuronal differentiation is a critical pathogenetic event in AD.
Collapse
Affiliation(s)
- Thomas Arendt
- D.Sc., University of Leipzig, Paul Flechsig Institute for Brain Research Jahnallee 59, 04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
32
|
Nelson PT, Dimayuga J, Wilfred BR. MicroRNA in Situ Hybridization in the Human Entorhinal and Transentorhinal Cortex. Front Hum Neurosci 2010; 4:7. [PMID: 20204141 PMCID: PMC2831629 DOI: 10.3389/neuro.09.007.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/21/2010] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs (miRNAs) play key roles in gene expression regulation in both healthy and disease brains. To better understand those roles, it is necessary to characterize the miRNAs that are expressed in particular cell types under a range of conditions. In situ hybridization (ISH) can demonstrate cell- and lamina-specific patterns of miRNA expression that would be lost in tissue-level expression profiling. In the present study, ISH was performed with special focus on the human entorhinal cortex (EC) and transentorhinal cortex (TEC). The TEC is the area of the cerebral cortex that first develops neurofibrillary tangles in Alzheimer's disease (AD). However, the reason for TEC's special vulnerability to AD-type pathology is unknown. MiRNA ISH was performed on three human brains with well-characterized clinical and pathological parameters. Locked nucleic acid ISH probes were used referent to miR-107, miR-124, miR-125b, and miR-320. In order to correlate the ISH data with AD pathology, the ISH staining was compared with near-adjacent slides processed using Thioflavine stains. Not all neurons or cortical lamina stain with equal intensity for individual miRNAs. As with other areas of brain, the TEC and EC have characteristic miRNA expression patterns. MiRNA ISH is among the first methods to show special staining characteristics of cells and laminae of the human TEC.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Division of Neuropathology, University of Kentucky Medical Center, Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky Lexington, KY, USA
| | | | | |
Collapse
|
33
|
A novel presenilin 1 mutation (Ser169del) in a Chinese family with early-onset Alzheimer's disease. Neurosci Lett 2010; 468:34-7. [DOI: 10.1016/j.neulet.2009.10.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/28/2009] [Accepted: 10/16/2009] [Indexed: 11/22/2022]
|
34
|
Mental stimulation, neural plasticity, and aging: directions for nursing research and practice. J Neurosci Nurs 2008; 40:241-9. [PMID: 18727340 DOI: 10.1097/01376517-200808000-00008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An unprecedented increase in the number of older adults and consequent age-related cognitive declines may negatively contribute to an already overwhelmed healthcare system. Many older adults report cognitive changes and express interest in methods to maintain cognitive functioning. Mental stimulation that consists of cognitively challenging activities is a means to facilitate neural plasticity, which can increase cognitive reserve and result in maintained or improved cognitive functioning. In addition, compensatory activities may provide mental stimulation that can improve cognitive functioning and increase cognitive reserve. Several mental stimulation (e.g., education, cognitive remediation therapy) and mental compensation (e.g., spaced retrieval method, method of loci) strategies are described in this article. Because nurses have a significant amount of direct contact with older adults, these strategies have important implications for nursing practice and research.
Collapse
|
35
|
Shimazawa M, Inokuchi Y, Okuno T, Nakajima Y, Sakaguchi G, Kato A, Oku H, Sugiyama T, Kudo T, Ikeda T, Takeda M, Hara H. Reduced retinal function in amyloid precursor protein-over-expressing transgenic mice via attenuating glutamate-N-methyl-d-aspartate receptor signaling. J Neurochem 2008; 107:279-90. [PMID: 18691390 DOI: 10.1111/j.1471-4159.2008.05606.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we examined whether amyloid-beta (Abeta) protein participates in cell death and retinal function using three types of transgenic (Tg) mice in vivo [human mutant amyloid precursor protein (APP) Tg (Tg 2576) mice, mutant presenilin-1 (PS-1) knock-in mice, and APP/PS-1 double Tg mice]. ELISA revealed that the insoluble form of Abeta(1-40) was markedly accumulated in the retinas of APP and APP/PS-1, but not PS-1 Tg, mice (vs. wild-type mice). In APP Tg and APP/PS-1 Tg mice, immunostaining revealed accumulations of intracellular Abeta(1-42) in retinal ganglion cells and in the inner and outer nuclear layers. APP Tg and APP/PS-1 Tg, but not PS-1 Tg, mice had less NMDA-induced retinal damage than wild-type mice, and the reduced damage in APP/PS-1 Tg mice was diminished by the pre-treatment of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, a gamma-secretase inhibitor. Furthermore, the number of TUNEL-positive cells was significantly less in ganglion cell layer of APP/PS-1 Tg mice than PS-1 Tg mice 24 h after NMDA injection. The phosphorylated form of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha), but not total CaMKIIalpha or total NMDA receptor 1 (NR1) subunit, in total retinal extracts was decreased in non-treated retinas of APP/PS-1 Tg mice (vs. wild-type mice). CaMKIIalpha and NR2B proteins, but not NR1, in retinal membrane fraction were significantly decreased in APP/PS-1 Tg mice as compared with wild-type mice. The NMDA-induced increase in p-CaMKIIalpha in the retina was also lower in APP/PS-1 Tg mice than in wild-type mice. In electroretinogram and visual-evoked potential recordings, the implicit time to each peak from a light stimulus was prolonged in APP/PS-1 mice versus wild-type mice. Hence, Abeta may impair retinal function by reducing activation of NMDA-receptor signaling pathways.
Collapse
Affiliation(s)
- Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Laboratory of Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Del Tredici K, Braak H. Neurofibrillary changes of the Alzheimer type in very elderly individuals: Neither inevitable nor benign. Neurobiol Aging 2008; 29:1133-6. [DOI: 10.1016/j.neurobiolaging.2008.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Accumulation of aspartic acid421- and glutamic acid391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease. J Neuropathol Exp Neurol 2008; 67:470-83. [PMID: 18431250 DOI: 10.1097/nen.0b013e31817275c7] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Truncations of tau protein at aspartic acid421 (D421) and glutamic acid391 (E391) residues are associated with neurofibrillary tangles (NFTs) in the brains of Alzheimer disease (AD) patients. Using immunohistochemistry with antibodies to D421- and E391-truncated tau (Tau-C3 and MN423, respectively), we correlated the presence of NFTs composed of these truncated tau proteins with clinical and neuropathologic parameters in 17 AD and 23 non-AD control brains. The densities of NFTs composed of D421- or E391-truncated tau correlated with clinical dementia index and Braak staging in AD. Glutamic acid391 tau truncation was prominent in the entorhinal cortex, whereas D421 truncation was prominent in the subiculum, suggesting that NFTs composed of either D421- or E391-truncated tau may be formed mutually exclusively in these areas. Both truncations were associated with the prevalence of the apolipoprotein E epsilon4 allele. By double labeling, intact tau in NFTs was commonly associated with D421-cleaved tau but not with E391-truncated tau; D421-cleaved tau was never associated with E391-truncated tau. These results indicate that tau is not randomly proteolyzed at different domains, and that proteolysis occurs sequentially from the C-terminus to inner regions of tau in AD progression. Identification of NFTs composed of tau at different stages of truncation may facilitate assessment of neurofibrillary pathology in AD.
Collapse
|
38
|
Abstract
Reduced androgen levels in aged men and women might be risk factors for age-related cognitive decline and Alzheimer's disease (AD). Ongoing clinical trials are designed to evaluate the potential benefit of estrogen in women and of testosterone in men. In this review, we discuss the potential beneficial effects of androgens and androgen receptors (ARs) in males and females. In addition, we discuss the hypothesis that AR interacts with apolipoprotein (apoE)4, encoded by epsilon4 and a risk factor for age-related cognitive decline and AD, and the potential consequences of this interaction.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
39
|
Thangavel R, Van Hoesen GW, Zaheer A. The abnormally phosphorylated tau lesion of early Alzheimer's disease. Neurochem Res 2008; 34:118-23. [PMID: 18437565 DOI: 10.1007/s11064-008-9701-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
The perirhinal cortex (area 35) is well-known locus for neurofibrillary tangles (NFT) in initial Alzheimer's disease (AD) and fully developed AD and may contain tau alterations in non-demented elderly. The topography and location of this vulnerable cortex, however, is difficult to appreciate because of its variable architecture and to deviations imposed by temporal sulcal patterns. We have immunostained human brains with a short duration of dementia using antibody AT8, which recognize abnormally hyperphosphorylated tau, calcium binding protein-parvalbumin and other phenotype markers to more fully appreciate the extent of area 35 before it is obscured by pathology. We have observed in the mildly affected AD tau immunoreactive lesion that extends from the temporopolar/insular region anteriorly to the posterior parahippocampal cortex. In its anterior-posterior course, it covers the medial bank of the collateral sulcus. Although the tau lesion encroaches slightly into the temporopolar cortex (area TG) anteriorly and medially and the ectorhinal cortex (area 36) laterally, area 35 is unambiguously defined. Ventromedial temporal pathology as revealed by AT8 suggests the presence of a relatively large lesion early in AD involving all of the perirhinal cortex and other non-isocortical areas. The present study demonstrated that the early stage AD patients exhibited AT8 immunoreactive cells in the temporopolar, hippocampus, perirhinal, entorhinal, and insular cortices.
Collapse
|
40
|
Sultana R, Butterfield DA. Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer's disease: Insight into the role of oxidative stress. Proteomics Clin Appl 2008; 2:685-96. [PMID: 21136866 DOI: 10.1002/prca.200780024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease. AD is characterized by the presence of senile plaques, neurofibrillary tangles, and synaptic loss. Amyloid β-peptide (Aβ), a component of senile plaques, has been proposed to play an important role in oxidative stress in AD brain and could be one of the key factors in the pathogenesis of AD. In the present review, we discuss some of the AD animal models that express Aβ, and compare the proteomics-identified oxidatively modified proteins between AD brain and those of Aβ models. Such a comparison would allow better understanding of the role of Aβ in AD pathogenesis thereby helping in developing potential therapeutics to treat or delay AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
41
|
Leuba G, Walzer C, Vernay A, Carnal B, Kraftsik R, Piotton F, Marin P, Bouras C, Savioz A. Postsynaptic density protein PSD-95 expression in Alzheimer's disease and okadaic acid induced neuritic retraction. Neurobiol Dis 2008; 30:408-419. [PMID: 18424056 DOI: 10.1016/j.nbd.2008.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 01/18/2008] [Accepted: 02/22/2008] [Indexed: 10/22/2022] Open
Abstract
In order to understand how plasticity is related to neurodegeneration, we studied synaptic proteins with quantitative immunohistochemistry in the entorhinal cortex from Alzheimer patients and age-matched controls. We observed a significant decrease in presynaptic synaptophysin and an increase in postsynaptic density protein PSD-95, positively correlated with beta amyloid and phosphorylated Tau proteins in Alzheimer cases. Furthermore, Alzheimer-like neuritic retraction was generated in okadaic acid (OA) treated SH-SY5Y neuroblastoma cells with no decrease in PSD-95 expression. However, in a SH-SY5Y clone with decreased expression of transcription regulator LMO4 (as observed in Alzheimer's disease) and increased neuritic length, PSD-95 expression was enhanced but did not change with OA treatment. Therefore, increased PSD-95 immunoreactivity in the entorhinal cortex might result from compensatory mechanisms, as in the SH-SY5Y clone, whereas increased Alzheimer-like Tau phosphorylation is not related to PSD-95 expression, as suggested by the OA-treated cell models.
Collapse
Affiliation(s)
- Geneviève Leuba
- Center for Psychiatric Neuroscience, Department of Psychiatry, CHUV, Lausanne, Switzerland; Service of Old Age Psychiatry, Department of Psychiatry, CHUV, Lausanne, Switzerland
| | - Claude Walzer
- Department of Psychiatry, University Hospital Geneva, Geneva, Switzerland
| | - André Vernay
- Center for Psychiatric Neuroscience, Department of Psychiatry, CHUV, Lausanne, Switzerland; Service of Old Age Psychiatry, Department of Psychiatry, CHUV, Lausanne, Switzerland
| | - Béatrice Carnal
- Center for Psychiatric Neuroscience, Department of Psychiatry, CHUV, Lausanne, Switzerland; Service of Old Age Psychiatry, Department of Psychiatry, CHUV, Lausanne, Switzerland
| | - Rudolf Kraftsik
- Department of Cell Biology and Morphology, Lausanne University, Lausanne, Switzerland
| | - Françoise Piotton
- Department of Psychiatry, University Hospital Geneva, Geneva, Switzerland
| | - Pascale Marin
- Department of Psychiatry, University Hospital Geneva, Geneva, Switzerland
| | - Constantin Bouras
- Department of Psychiatry, University Hospital Geneva, Geneva, Switzerland
| | - Armand Savioz
- Department of Psychiatry, University Hospital Geneva, Geneva, Switzerland.
| |
Collapse
|
42
|
Vannini P, Almkvist O, Dierks T, Lehmann C, Wahlund LO. Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Res 2007; 156:43-57. [PMID: 17719211 DOI: 10.1016/j.pscychresns.2007.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/19/2007] [Accepted: 02/12/2007] [Indexed: 11/18/2022]
Abstract
Mild cognitive impairment (MCI) often refers to the preclinical stage of dementia, where the majority develop Alzheimer's disease (AD). Given that neurodegenerative burden and compensatory mechanisms might exist before accepted clinical symptoms of AD are noticeable, the current prospective study aimed to investigate the functioning of brain regions in the visuospatial networks responsible for preclinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Eighteen MCI patients were evaluated and clinically followed for approximately 3 years. Five progressed to AD (PMCI) and eight remained stable (SMCI). Thirteen age-, gender- and education-matched controls also participated. An angle discrimination task with varying task demands was used. Brain activation patterns as well as task demand-dependent and -independent signal changes between the groups were investigated by using an extended general linear model including individual performance (reaction time [RT]) of each single trial. Similar behavioral (RT and accuracy) responses were observed between MCI patients and controls. A network of bilateral activations, e.g. dorsal pathway, which increased linearly with increasing task demand, was engaged in all subjects. Compared with SMCI patients and controls, PMCI patients showed a stronger relation between task demand and brain activity in left superior parietal lobules (SPL) as well as a general task demand-independent increased activation in left precuneus. Altered brain function can be detected at a group level in individuals that progress to AD before changes occur at the behavioral level. Increased parietal activation in PMCI could reflect a reduced neuronal efficacy due to accumulating AD pathology and might predict future clinical decline in patients with MCI.
Collapse
Affiliation(s)
- Patrizia Vannini
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
43
|
Teter B. Life-span influences of apoE4 on CNS function. Neurobiol Aging 2007; 28:693-703; discussion 704-6. [PMID: 17045362 DOI: 10.1016/j.neurobiolaging.2006.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 06/22/2006] [Indexed: 11/20/2022]
Affiliation(s)
- Bruce Teter
- Department of Medicine SFVP, University of California, Los Angeles and Veteran's Administration-GLAHS, Sepulveda VA Medical Center, mc 151, 16111 Plummer St., Sepulveda, CA 91343, United States.
| |
Collapse
|
44
|
Galtrey CM, Fawcett JW. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. ACTA ACUST UNITED AC 2007; 54:1-18. [PMID: 17222456 DOI: 10.1016/j.brainresrev.2006.09.006] [Citation(s) in RCA: 451] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 07/24/2006] [Accepted: 09/11/2006] [Indexed: 01/09/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) consist of a core protein and glycosaminoglycan (GAG) chains. There is enormous structural diversity among CSPGs due to variation in the core protein, the number of GAG chains and the extent and position of sulfation. Most CSPGs are secreted from cells and participate in the formation of the extracellular matrix (ECM). CSPGs are able to interact with various growth-active molecules and this may be important in their mechanism of action. In the normal central nervous system (CNS), CSPGs have a role in development and plasticity during postnatal development and in the adult. Plasticity is greatest in the young, especially during critical periods. CSPGs are crucial components of perineuronal nets (PNNs). PNNs have a role in closure of the critical period and digestion of PNNs allows their re-opening. In the adult, CSPGs play a part in learning and memory and the hypothalamo-neurohypophysial system. CSPGs have an important role in CNS injuries and diseases. After CNS injury, CSPGs are the major inhibitory component of the glial scar. Removal of CSPGs improves axonal regeneration and functional recovery. CSPGs may also be involved in the pathological processes in diseases such as epilepsy, stroke and Alzheimer's disease. Several possible methods of manipulating CSPGs in the CNS have recently been identified. The development of methods to remove CSPGs has considerable therapeutic potential in a number of CNS disorders.
Collapse
Affiliation(s)
- Clare M Galtrey
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge, CB2 2PY, UK
| | | |
Collapse
|
45
|
Gralle M, Ferreira ST. Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 2007; 82:11-32. [PMID: 17428603 DOI: 10.1016/j.pneurobio.2007.02.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/26/2006] [Accepted: 02/01/2007] [Indexed: 12/30/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane protein that plays major roles in the regulation of several important cellular functions, especially in the nervous system, where it is involved in synaptogenesis and synaptic plasticity. The secreted extracellular domain of APP, sAPPalpha, acts as a growth factor for many types of cells and promotes neuritogenesis in post-mitotic neurons. Alternative proteolytic processing of APP releases potentially neurotoxic species, including the amyloid-beta (Abeta) peptide that is centrally implicated in the pathogenesis of Alzheimer's disease (AD). Reinforcing this biochemical link to neuronal dysfunction and neurodegeneration, APP is also genetically linked to AD. In this review, we discuss the biological functions of APP in the context of tissue morphogenesis and restructuring, where APP appears to play significant roles both as a contact receptor and as a diffusible factor. Structural investigation of APP, which is necessary for a deeper understanding of its roles at a molecular level, has also been advancing rapidly. We summarize recent progress in the determination of the structure of isolated APP fragments and of the conformations of full-length sAPPalpha, in both monomeric and dimeric states. The potential role of APP dimerization for the regulation of its biological functions is also discussed.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | | |
Collapse
|
46
|
Chance SA, Casanova MF, Switala AE, Crow TJ, Esiri MM. Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol 2006; 111:459-64. [PMID: 16496164 DOI: 10.1007/s00401-005-0014-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/06/2005] [Accepted: 10/10/2005] [Indexed: 12/24/2022]
Abstract
The cerebral cortex undergoes changes during normal ageing with increasing effect on cognition. Disruption of minicolumnar organization of neurons is found with increased cognitive impairment in primates. We measured the minicolumn spacing and organization of cells in Heschl's gyrus (primary auditory cortex, A1), the Planum Temporale (Tpt, BA22), and middle temporal gyrus (MTG, BA21) of 17 normally aged human adults. Age-associated minicolumn thinning was found in temporal lobe association cortex (Tpt and MTG) but not primary auditory cortex (HG). Minicolumn thinning was also associated with greater plaque load, although this effect was present in all areas. The regional variability of age-associated minicolumn thinning reflects the regionally selective progression of tangle pathology in Alzheimer's Disease (AD). The generalized effect of plaque load persists when controlling for age. Therefore plaque load combines with age to increase minicolumn thinning, which may reflect increasing risk of AD. Since old age is the greatest risk factor for dementia, the transition to dementia may involve an extension of normal ageing processes.
Collapse
Affiliation(s)
- Steven A Chance
- Department of Neuropathology, Radcliffe Infirmary, Woodstock Road, OX2 6HE, Oxford, UK.
| | | | | | | | | |
Collapse
|
47
|
Unger C, Svedberg MM, Yu WF, Hedberg MM, Nordberg A. Effect of subchronic treatment of memantine, galantamine, and nicotine in the brain of Tg2576 (APPswe) transgenic mice. J Pharmacol Exp Ther 2006; 317:30-6. [PMID: 16354790 DOI: 10.1124/jpet.105.098566] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An increasing number of studies suggest that the present clinical therapy used in Alzheimer's disease (AD), in addition to having a symptomatic effect, also may interact with the ongoing neuropathological processes in the brain. The aim of this study was to investigate the effect of the cholinesterase inhibitor galantamine and the N-methyl-d-aspartate (NMDA) antagonist memantine in comparison to nicotine on the neuropathology of Tg2576 transgenic mice (APPswe). Nontransgenic and APPswe mice at 10 months of age were treated subcutaneously with saline, memantine, galantamine, or nicotine for 10 days. Nicotine reduced the guanidinium-soluble amyloid-beta peptide (Abeta) levels by 46 to 66%, whereas the intracellular Abeta levels remained unchanged. Treatment with nicotine also resulted in less glial fibrillary acidic protein immunoreactive astrocytes around the plaques, increased levels of synaptophysin, and increased number of alpha7 nicotinic acetylcholine receptors (nAChRs) in the cortex of APPswe transgenic mice. Galantamine treatment caused an increase in the cortical levels of synaptophysin in the APPswe mice. Memantine treatment reduced the total cortical levels of membrane-bound amyloid precursor protein (45-55%) in both transgenic and nontransgenic mice, which eventually may decrease the level of Abeta. In conclusion, galantamine, memantine, and nicotine have different interactions with Abeta processes, alpha7 nAChRs, and NMDA receptors in APPswe mice. These different effects might have therapeutic relevance, and this knowledge might be applicable to the development of new effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Christina Unger
- Karolinska Institutet, Neurotec Department, Division of Molecular Neuropharmacology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
48
|
Hölscher C. Development of beta-amyloid-induced neurodegeneration in Alzheimer's disease and novel neuroprotective strategies. Rev Neurosci 2006; 16:181-212. [PMID: 16323560 DOI: 10.1515/revneuro.2005.16.3.181] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a form of dementia in which people develop rapid neurodegeneration, complete loss of cognitive abilities, and are likely to die prematurely. At present, no treatment for AD is known. One of the hallmarks in the development of AD is the aggregation of amyloid protein fragments in the brain, and much evidence points towards beta-amyloid fragments being one of the main causes of the neurodegenerative processes. This review summarises the present concepts and theories on how AD develops, and lists the evidence that supports them. A cascade of biochemical events is initiated that ultimately leads to neuronal death involving an imbalance of intracellular calcium homeostasis via activation of calcium channels, intracellular calcium stores, and subsequent production of free radicals by calcium-sensitive enzymes. Secondary processes include inflammatory responses that produce more free radicals and the induction of apoptosis. Recently, several new strategies have been proposed to try to ameliorate the neurodegenerative developments associated with AD. These include the activation of neuronal growth factor receptors and insulin-like receptors, both of which have neuroprotective properties. Furthermore, the role of cholesterol and potential protective properties of cholesterol-lowering drugs are under intense investigation. Other promising strategies include the inhibition of beta- and gamma-secretases which produce beta-amyloid, activation of proteases that degrade beta-amyloid, glutamate receptor selective drugs, antioxidants, and metal chelating agents, all of which prevent formation of plaques. Novel drugs that act at different levels of the neurodegenerative processes show great promise to reduce neurodegeneration. They could help to prolong the time of unimpaired cognitive abilities of people who develop AD, allowing them to lead an independent life.
Collapse
Affiliation(s)
- Christian Hölscher
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland.
| |
Collapse
|
49
|
Härtig W, Oklejewicz M, Strijkstra AM, Boerema AS, Stieler J, Arendt T. Phosphorylation of the tau protein sequence 199–205 in the hippocampal CA3 region of Syrian hamsters in adulthood and during aging. Brain Res 2005; 1056:100-4. [PMID: 16095576 DOI: 10.1016/j.brainres.2005.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/07/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Paired helical filaments formed by the abnormally phosphorylated microtubule-associated tau are a main sign of Alzheimer's disease and other neurodegenerative disorders. The hippocampal CA3 region, a brain region with a high degree of synaptic plasticity, is known to be strongly involved in tau hyperphosphorylation in several neurodegenerative diseases. In addition, reversible tau phosphorylation was observed during hibernation in European ground squirrels. The present study provides data on the tau phosphorylation status in the hippocampus of euthermic Syrian hamsters (Mesocricetus auratus), laboratory animals potentially prone to hibernation. Mossy fibers in the CA3 region of all investigated hamsters were immunostained using an antiserum detecting phospho-serine 199 of tau. A similar staining pattern was obtained with CP-13 detecting phospho-serine 202. In contrast, the monoclonal antibody AT8, recognizing both phosphorylated serine 202 and threonine 205, stained the CA3 region only in old hamsters. These findings implicate an additional link between aging, tau phosphorylation and synaptic plasticity. Furthermore, the presented data allow analyses whether tau phosphorylation is reversible in these facultative hibernators and versatile laboratory animal as it was recently shown for the hibernation cycle of European ground squirrels.
Collapse
Affiliation(s)
- W Härtig
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Petit-Turcotte C, Aumont N, Beffert U, Dea D, Herz J, Poirier J. The apoE receptor apoER2 is involved in the maintenance of efficient synaptic plasticity. Neurobiol Aging 2005; 26:195-206. [PMID: 15582748 DOI: 10.1016/j.neurobiolaging.2004.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 03/15/2004] [Accepted: 04/05/2004] [Indexed: 11/20/2022]
Abstract
ApoER2 is one of the major receptors for ApoE in the brain, and has been shown to be involved not only in lipoprotein endocytosis, as other members of the LDL receptor family of receptors, but also in various cellular functions such as signalling and cellular guidance. By using a model of synaptic plasticity in mice lacking none, one or two alleles of the apoER2 gene, we investigated the implication of such a receptor deficiency on the remodelling process. Our results indicate that animals lacking apoER2 express higher levels of brain APP, as well as both key amyloid peptides, while apoE levels are slightly lower. Following entorhinal cortex lesioning, apoE levels increase in the deafferented hippocampus, while a delay in the increase of APP was observed. Hippocampal amyloid levels are also increased in response to the lesion, and highly potentiated by the complete absence of apoER2 gene. The results suggest a significant role for apoER2 in signalling various proteins in response to massive deafferentation and may participate in maintaining efficient synaptic plasticity and dendritic remodelling.
Collapse
|