1
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
2
|
Microglia Mediate HIV-1 gp120-Induced Synaptic Degeneration in Spinal Pain Neural Circuits. J Neurosci 2019; 39:8408-8421. [PMID: 31471472 DOI: 10.1523/jneurosci.2851-18.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infection of the nervous system causes various neurological diseases, and synaptic degeneration is likely a critical step in the neuropathogenesis. Our prior studies revealed a significant decrease of synaptic protein, specifically in the spinal dorsal horn of patients with HIV-1 in whom pain developed, suggesting a potential contribution of synaptic degeneration to the pathogenesis of HIV-associated pain. However, the mechanism by which HIV-1 causes the spinal synaptic degeneration is unclear. Here, we identified a critical role of microglia in the synaptic degeneration. In primary cortical cultures (day in vitro 14) and spinal cords of 3- to 5-month-old mice (both sexes), microglial ablation inhibited gp120-induced synapse decrease. Fractalkine (FKN), a microglia activation chemokine specifically expressed in neurons, was upregulated by gp120, and knockout of the FKN receptor CX3CR1, which is predominantly expressed in microglia, protected synapses from gp120-induced toxicity. These results indicate that the neuron-to-microglia intercellular FKN/CX3CR1 signaling plays a role in gp120-induced synaptic degeneration. To elucidate the mechanism controlling this intercellular signaling, we tested the role of the Wnt/β-catenin pathway in regulating FKN expression. Inhibition of Wnt/β-catenin signaling blocked both gp120-induced FKN upregulation and synaptic degeneration, and gp120 stimulated Wnt/β-catenin-regulated FKN expression via NMDA receptors (NMDARs). Furthermore, NMDAR antagonist APV, Wnt/β-catenin signaling suppressor DKK1, or knockout of CX3CR1 alleviated gp120-induced mechanical allodynia in mice, suggesting a critical contribution of the Wnt/β-catenin/FKN/CX3R1 pathway to gp120-induced pain. These findings collectively suggest that HIV-1 gp120 induces synaptic degeneration in the spinal pain neural circuit by activating microglia via Wnt3a/β-catenin-regulated FKN expression in neurons.SIGNIFICANCE STATEMENT Synaptic degeneration develops in the spinal cord dorsal horn of HIV patients with chronic pain, but the patients without the pain disorder do not show this neuropathology, indicating a pathogenic contribution of the synaptic degeneration to the development of HIV-associated pain. However, the mechanism underlying the synaptic degeneration is unclear. We report here that HIV-1 gp120, a neurotoxic protein that is specifically associated with the manifestation of pain in HIV patients, induces synapse loss via microglia. Further studies elucidate that gp120 activates microglia by stimulating Wnt/β-catenin-regulated fractalkine in neuron. The results demonstrate a critical role of microglia in the pathogenesis of HIV-associated synaptic degeneration in the spinal pain neural circuit.
Collapse
|
3
|
Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2019; 16:258-269. [PMID: 30280668 PMCID: PMC6398609 DOI: 10.2174/1570162x16666181003144740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.
Collapse
Affiliation(s)
- Lisa K Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Thomas B Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jack Chen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
Maubert ME, Wigdahl B, Nonnemacher MR. Opinion: Inhibition of Blood-Brain Barrier Repair as a Mechanism in HIV-1 Disease. Front Neurosci 2017; 11:228. [PMID: 28491017 PMCID: PMC5405129 DOI: 10.3389/fnins.2017.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Monique E Maubert
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
5
|
HIV-1 Glycoprotein 120 Enhancement of N-Methyl-D-Aspartate NMDA Receptor-Mediated Excitatory Postsynaptic Currents: Implications for HIV-1-Associated Neural Injury. J Neuroimmune Pharmacol 2016; 12:314-326. [PMID: 28005232 DOI: 10.1007/s11481-016-9719-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023]
Abstract
It is widely accepted that human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120) plays an important role in HIV-1-induced neural injury and pathogenesis of HIV-1-associated dementia (HAND). Multiple pathways have been proposed for gp120-induced neurotoxicity, amongst is the activation of N-Methyl-D-Aspartate receptors (NMDARs). It has been shown that gp120 causes neuronal injury or death and gp120 transgenic mice exhibit neurological similarity to that of HAND, all of which can be blocked or attenuated by NMDAR antagonists. Several lines of evidence indicate the subtype and location of activated NMDARs are key determinants of the nature of NMDAR physiology. To examine the subtype and the location of NMDARs affected by gp120, we studied gp120 on subtype NMDAR-mediated EPSCs in the CA1 region of rat hippocampal slices through "blind" whole-cell patch recordings. Our results showed bath application of gp120 increased both NR2A- and NR2B-mediated EPSCs possibly via a presynaptic mechanism, with much stronger effect on NR2B-mediated EPSCs. In contrast, gp120 failed on enhancing AMPA receptor-mediated EPSCs. Ca2+ imaging studies revealed that gp120 potentiated glutamate-induced increase of intracellular Ca2+ concentration in rat hippocampal neuronal cultures which were blocked by a NMDAR antagonist, but not by an AMPA receptor antagonist, indicating gp120 induces Ca2+ influx through NMDARs. Further investigations demonstrated that gp120 increased the EPSCs mediated by extrasynaptic NR2BRs. Taken together, these results demonstrate that gp120 interacts with both NR2A and NR2B subtypes of NMDARs with a predominant action on the extrasynaptic NR2B, implicating a role NR2B may play in HIV-1-associated neuropathology.
Collapse
|
6
|
Di Prisco S, Olivero G, Merega E, Bonfiglio T, Marchi M, Pittaluga A. CXCR4 and NMDA Receptors Are Functionally Coupled in Rat Hippocampal Noradrenergic and Glutamatergic Nerve Endings. J Neuroimmune Pharmacol 2016; 11:645-656. [PMID: 27147258 DOI: 10.1007/s11481-016-9677-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/25/2016] [Indexed: 01/31/2023]
Abstract
Previous studies had shown that the HIV-1 capsidic glycoprotein gp120 (strain IIIB) modulates presynaptic release-regulating NMDA receptors on noradrenergic and glutamatergic terminals. This study aims to assess whether the chemokine CXC4 receptors (CXCR4s) has a role in the gp120-mediated effects. The effect of CXCL12, the endogenous ligand at CXCR4, on the NMDA-mediated releasing activity was therefore investigated. Rat hippocampal synaptosomes were preloaded with [3H]noradrenaline ([3H]NA) or [3H]D-aspartate ([3H]D-Asp) and acutely exposed to CXCL12, to NMDA or to both agonists. CXCL12, inactive on its own, facilitated the NMDA-evoked tritium release. The NMDA antagonist MK-801 abolished the NMDA/CXCL12-evoked tritium release of both radiolabelled tracers, while the CXCR4 antagonist AMD 3100 halved it, suggesting that rat hippocampal nerve endings possess presynaptic release-regulating CXCR4 receptors colocalized with NMDA receptors. Accordingly, Western blot analysis confirmed the presence of CXCR4 proteins in synaptosomal plasmamembranes. In both synaptosomal preparations, CXCL12-induced facilitation of NMDA-mediated release was dependent upon PLC-mediated src-induced events leading to mobilization of Ca2+ from intraterminal IP3-sensitive stores Finally, the gp120-induced facilitation of NMDA-mediated release of [3H]NA and [3H]D-Asp was prevented by AMD 3100. We propose that CXCR4s are functionally coupled to NMDA receptors in rat hippocampal noradrenergic and glutamatergic terminals and account for the gp120-induced modulation of the NMDA-mediated central effects. The NMDA/CXCR4 cross-talk could have a role in the neuropsychiatric symptoms often observed in HIV-1 positive patients.
Collapse
Affiliation(s)
- Silvia Di Prisco
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Elisa Merega
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy. .,Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy.
| |
Collapse
|
7
|
Ru W, Tang SJ. HIV-1 gp120Bal down-Regulates Phosphorylated NMDA Receptor Subunit 1 in Cortical Neurons via Activation of Glutamate and Chemokine Receptors. J Neuroimmune Pharmacol 2016; 11:182-91. [PMID: 26582091 PMCID: PMC4746099 DOI: 10.1007/s11481-015-9644-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023]
Abstract
HIV-1 envelope glycoprotein gp120 (gp120) is a major virulence protein implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Although gp120 has been suggested to cause synaptic and neuronal injuries by disrupting NMDA receptor (NMDAR) function, the underlying mechanism is unclear. Here, we show that gp120Bal down-regulates the phosphorylation of the NMDAR subunit1 NR1 (at Ser896 and Ser897), which is essential for NMDAR function. This effect of gp120Bal is blocked by specific antagonists of both NMDA and AMPA receptors, indicating a critical role of synaptic activation. Furthermore, AMD3100 and maraviroc, antagonists of CCR5 and CXCR4 chemokine receptors, respectively, inhibit the effect of gp120Bal on NR1, suggesting that CXCR4 and CCR5 activation are involved. These findings may provide mechanistic insights into the synaptopathogenesis caused by HIV-1 infection.
Collapse
Affiliation(s)
- Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
8
|
Viviani B, Boraso M, Marchetti N, Marinovich M. Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology 2014; 43:10-20. [PMID: 24662010 DOI: 10.1016/j.neuro.2014.03.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022]
Abstract
Emerging evidences underline the ability of several environmental contaminants to induce an inflammatory response within the central nervous system, named neuroinflammation. This can occur as a consequence of a direct action of the neurotoxicant to the CNS and/or as a response secondary to the activation of the peripheral inflammatory response. In both cases, neuroinflammation is driven by the release of several soluble factors among which pro-inflammatory cytokines. IL-1β and TNF-α have been extensively studied for their effects within the CNS and emerged for their role in the modulation of the neuronal response, which allow the immune response to integrate with specific neuronal functions, as neurotransmission and synaptic plasticity. In particular, it has been evidenced a potential detrimental link between these cytokines and the glutamatergic system that seems to be part of increased brain excitability and excitotoxicity occurring in different pathological conditions. Aim of this mini-review will be to present experimental evidence on the way IL-1β and TNF-α impact neurons, focusing on the glutamatergic signalling, to provide a perspective on novel pathways possibly involved in environmental contaminants neurotoxicity.
Collapse
Affiliation(s)
- Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Mariaserena Boraso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Natalia Marchetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Merega E, Prisco SD, Lanfranco M, Severi P, Pittaluga A. Complement selectively elicits glutamate release from nerve endings in different regions of mammal central nervous system. J Neurochem 2014; 129:473-83. [DOI: 10.1111/jnc.12650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/29/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Elisa Merega
- Department of Pharmacy; Pharmacology and Toxicology Section; University of Genoa; Genoa Italy
| | - Silvia Di Prisco
- Department of Pharmacy; Pharmacology and Toxicology Section; University of Genoa; Genoa Italy
| | | | - Paolo Severi
- Division of Neurosurgery; Galliera Hospital; Genoa Italy
| | - Anna Pittaluga
- Department of Pharmacy; Pharmacology and Toxicology Section; University of Genoa; Genoa Italy
- Center of Excellence for Biomedical Research; University of Genoa; Genoa Italy
| |
Collapse
|
10
|
Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res 2013; 87:183-240. [PMID: 23809924 DOI: 10.1016/b978-0-12-407698-3.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
HIV-1 gp120 induces autophagy in cardiomyocytes via the NMDA receptor. Int J Cardiol 2013; 167:2517-23. [DOI: 10.1016/j.ijcard.2012.06.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/09/2012] [Indexed: 02/07/2023]
|
12
|
Kim HJ, Shin AH, Thayer SA. Activation of cannabinoid type 2 receptors inhibits HIV-1 envelope glycoprotein gp120-induced synapse loss. Mol Pharmacol 2011; 80:357-66. [PMID: 21670103 PMCID: PMC3164336 DOI: 10.1124/mol.111.071647] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/13/2011] [Indexed: 11/22/2022] Open
Abstract
HIV-1 infection of the central nervous system is associated with dendritic and synaptic damage that correlates with cognitive decline in patients with HIV-1-associated dementia (HAD). HAD is due in part to the release of viral proteins from infected cells. Because cannabinoids modulate neurotoxic and inflammatory processes, we investigated their effects on changes in synaptic connections induced by the HIV-1 envelope glycoprotein gp120. Morphology and synapses between cultured hippocampal neurons were visualized by confocal imaging of neurons expressing DsRed2 and postsynaptic density protein 95 fused to green fluorescent protein (PSD95-GFP). Twenty-four-hour treatment with gp120 IIIB decreased the number of PSD95-GFP puncta by 37 ± 4%. The decrease was concentration-dependent (EC₅₀ = 153 ± 50 pM). Synapse loss preceded cell death as defined by retention of DsRed2 fluorescence gp120 activated CXCR4 on microglia to evoke interleukin-1β (IL-1β) release. Pharmacological studies determined that sequential activation of CXCR4, the IL-1β receptor, and the N-methyl-d-aspartate receptor was required. Expression of alternative reading frame polypeptide, which inhibits the ubiquitin ligase murine double minute 2, protected synapses, implicating the ubiquitin-proteasome pathway. Cannabimimetic drugs are of particular relevance to HAD because of their clinical and illicit use in patients with AIDS. The cannabinoid receptor full agonist [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt] (Win55,212-2) inhibited gp120-induced IL-1β production and synapse in a manner reversed by a cannabinoid type 2 receptor antagonist. In contrast, Win55,212-2 did not inhibit synapse loss elicited by exposure to the HIV-1 protein Tat. These results indicate that cannabinoids prevent the impairment of network function produced by gp120 and, thus, might have therapeutic potential in HAD.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
13
|
Buch S, Yao H, Guo M, Mori T, Su TP, Wang J. Cocaine and HIV-1 interplay: molecular mechanisms of action and addiction. J Neuroimmune Pharmacol 2011; 6:503-15. [PMID: 21766222 DOI: 10.1007/s11481-011-9297-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/07/2011] [Indexed: 01/16/2023]
Abstract
Human immunodeficiency virus (HIV) infection is now being driven by drug-abusing populations. Epidemiological studies on drug abusers with AIDS link abuse of cocaine, even more than other drugs, to increased incidence of HIV seroprevalence and progression to AIDS. Both cell culture and animal studies demonstrate that cocaine can both potentiate HIV replication and can potentiate HIV proteins to cause enhanced glial cell activation, neurotoxicity, and breakdown of the blood-brain barrier. Based on the ability of both HIV proteins and cocaine to modulate NMDA receptor on neurons, NMDA receptors have been suggested as a common link underlying the crosstalk between drug addiction and HIV infection. While the role of dopamine system as a major target of cocaine cannot be overlooked, recent studies on the role of sigma receptors in mediating the effects of cocaine in both cell and organ systems warrants a deeper understanding of their functional role in the field. In this review, recent findings on the interplay of HIV infection and cocaine abuse and their possible implications in mode of action and/or addiction will be discussed.
Collapse
Affiliation(s)
- Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Samikkannu T, Agudelo M, Gandhi N, Reddy PVB, Saiyed ZM, Nwankwo D, Nair MPN. Human immunodeficiency virus type 1 clade B and C gp120 differentially induce neurotoxin arachidonic acid in human astrocytes: implications for neuroAIDS. J Neurovirol 2011; 17:230-8. [PMID: 21491143 PMCID: PMC5737634 DOI: 10.1007/s13365-011-0026-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/04/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
Abstract
HIV-1 clades (subtypes) differentially contribute to the neuropathogenesis of HIV-associated dementia (HAD) in neuroAIDS. HIV-1 envelop protein, gp120, plays a major role in neuronal function. It is not well understood how these HIV-1 clades exert these neuropathogenic differences. The N-methyl-D: -aspartate (NMDA) receptor-reduced glutamine synthesis could lead to secretion of neurotoxins such as arachidonic acid (AA) which plays a significant role in the neuropathogenic mechanisms in neuroAIDS. We hypothesize that clade B and C gp120 proteins exert differential effects on human primary astrocytes by production of the neurotoxin arachidonic acid. Our results indicate that clade B gp120 significantly downregulated NMDA receptor gene and protein expression, and level of glutamine while increasing expression of prostaglandin E2 (PGE(2)) and thromboxane A2 receptor (TBXA(2) R) compared to HIV-1 clade C gp120 protein. Thus, our studies for the first time demonstrate that HIV-1 clade B-gp120 protein appears to induce higher levels of expression of the neuropathogenic molecule cyclooxygenase-2 (COX-2)-mediated arachidonic acid by-products, PGE(2), and TBXA(2) R compared to HIV-1 clade C gp120 protein. These studies suggest that HIV-1 clade B and C gp120 proteins may play a differential role in the neuropathogenesis of HAD in neuroAIDS.
Collapse
Affiliation(s)
- Thangavel Samikkannu
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 S.W. 8th Street, HLS-1 #418A, Miami, FL 33199, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Glutamate and GABA, the two most abundant neurotransmitters in the mammalian central nervous system, can act on metabotropic receptors that are structurally quite dissimilar from those targeted by most other neurotransmitters/modulators. Accordingly, metabotropic glutamate receptors (mGluRs) and GABA(B) receptors (GABA(B)Rs) are classified as members of family 3 (or family C) of G protein-coupled receptors. On the other hand, mGluRs and GABA(B)Rs exhibit pronounced and partly unresolved differences between each other. The most intriguing difference is that mGluRs exist as multiple pharmacologically as well as structurally distinct subtypes, whereas, in the case of GABA(B)Rs, molecular biologists have so far identified only one structurally distinct heterodimeric complex whose few variants seem unable to explain the pharmacological heterogeneity of GABA(B)Rs observed in many functional studies. Both mGluRs and GABA(B)Rs can be localized on axon terminals of different neuronal systems as presynaptic autoreceptors and heteroreceptors modulating the exocytosis of various transmitters.
Collapse
Affiliation(s)
- M Raiteri
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, 16148 Genoa, Italy.
| |
Collapse
|
16
|
Luccini E, Musante V, Neri E, Raiteri M, Pittaluga A. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus. J Neurosci Res 2007; 85:3657-65. [PMID: 17671992 DOI: 10.1002/jnr.21446] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Presynaptic NMDA autoreceptors regulating glutamate release have rarely been investigated. High-micromolar N-methyl-D-aspartate (NMDA) was reported to elicit glutamate release from hippocampal synaptosomes in a Ca(2+)-independent manner by reversal of excitatory amino acid transporters. The aim of this work was to characterize excitatory amino acid release evoked by low-micromolar NMDA from glutamatergic axon terminals. Purified rat hippocampal synaptosomes were prelabelled with [(3)H]D-aspartate ([(3)H]D-ASP) and exposed in superfusion to varying concentrations of NMDA in the presence of 1 microM glycine. The release of [(3)H]D-ASP and also that of endogenous glutamate provoked by 10 microM NMDA were external Ca(2+) dependent and sensitive to the NMDA channel blocker MK-801 but insensitive to the glutamate transporter inhibitor DL-TBOA, which, on the contrary, prevented the Ca(2+)-independent release evoked by 100 microM NMDA. The NMDA (10 microM) response was blocked by 1 nM Zn(2+) and 1 microM ifenprodil, compatible with the involvement of a NR1/NR2A/NR2B assembly, although the presence of two separate receptor populations, i.e., NR1/NR2A and NR1/NR2B, cannot be excluded. This response was strongly antagonized by submicromolar (0.01-1 microM) concentrations of kynurenic acid and was mimicked by quinolinic acid (1-100 microM) plus 1 microM glycine. Finally, the HIV-1 protein gp120 potently mimicked the NMDA co-agonists glycine and D-serine, being significantly effective at 30 pM. In conclusion, glutamatergic nerve terminals possess NMDA autoreceptors mediating different types of release when activated by different agonist concentrations: low-micromolar glutamate would potentiate glutamate exocytosis, whereas higher glutamate concentrations would also provoke carrier-mediated release.
Collapse
Affiliation(s)
- Elisa Luccini
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa, Viale Cembrano 4, Genoa, Italy
| | | | | | | | | |
Collapse
|
17
|
Longordo F, Feligioni M, Chiaramonte G, Sbaffi PF, Raiteri M, Pittaluga A. The human immunodeficiency virus-1 protein transactivator of transcription up-regulates N-methyl-D-aspartate receptor function by acting at metabotropic glutamate receptor 1 receptors coexisting on human and rat brain noradrenergic neurones. J Pharmacol Exp Ther 2006; 317:1097-105. [PMID: 16489129 DOI: 10.1124/jpet.105.099630] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of the human immunodeficiency virus-1 transactivator of transcription (Tat) on the release of norepinephrine (NE) from human and rat brain synaptosomes. Tat could not evoke directly release of [3H]NE. In the presence of Tat (1 nM), N-methyl-D-aspartate (NMDA) concentrations unable to release (human synaptosomes) or slightly releasing (rat synaptosomes) [3H]NE became very effective. The NMDA/Tat-evoked release depends on NMDA receptors (NMDARs) since it was abolished by MK-801 (dizocilpine). Tat binding at NMDARs was excluded. The NMDA-induced release of [3H]NE in the presence of glycine was further potentiated by Tat. The release evoked by NMDA/glycine/Tat depends on metabotropic glutamate receptor 1 (mGluR1) activation, since it was halved by mGluR1 antagonists. Tat seems to act at the glutamate recognition site of mGluR1. Recently, Tat was shown to release [3H]acetylcholine from human cholinergic terminals; here, we demonstrate that this effect is also mediated by presynaptic mGluR1. The peptide sequence Tat41-60, but not Tat61-80, mimicked Tat. Phospholipase C, protein kinase C, and cytosolic tyrosine kinase are involved in the NMDA/glycine/Tat-evoked [3H]NE release. To conclude, Tat can represent a potent pathological agonist at mGlu1 receptors able to release acetylcholine from human cholinergic terminals and up-regulate NMDARs mediating NE release from human and rat noradrenergic terminals.
Collapse
Affiliation(s)
- Fabio Longordo
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Most neurological and psychiatric disorders involve selective or preferential impairments of neurotransmitter systems. Therefore, studies of functional transmitter pathophysiology in human brain are of unique importance in view of the development of effective, mechanism-based, therapeutic modalities. It is well known that central nervous system functional proteins, including receptors, transporters, ion channels, and enzymes, can exhibit high heterogeneity in terms of structure, function, and pharmacological profile. If the existence of types and subtypes of functional proteins amplifies the possibility of developing selective drugs, such heterogeneity certainly increases the likelihood of interspecies differences. It is therefore essential, before choosing animal models to be used in preclinical pharmacology experimentation, to establish whether functionally corresponding proteins in men and animals also display identical pharmacological profiles. Because of evidence that scaffolding proteins, trafficking between plasma membrane and intracellular pools, phosphorylation and allosteric modulators can affect the function of receptors and transporters, experiments with human clones expressed in host cells where the environment of native receptors is rarely reproduced should be interpreted with caution. Thus, the use of neurosurgically removed fresh human brain tissue samples in which receptors, transporters, ion channels, and enzymes essentially retain their natural environment represents a unique experimental approach to enlarge our understanding of human brain processes and to help in the choice of appropriate animal models. Using this experimental approach, many human brain functional proteins, in particular transmitter receptors, have been characterized in terms of localization, function, and pharmacological properties.
Collapse
Affiliation(s)
- Maurizio Raiteri
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
19
|
Geeraerts T, Deiva K, M'sika I, Salim H, Héry C, Tardieu M. Effects of SDF-1alpha and gp120IIIB on apoptotic pathways in SK-N-SH neuroblastoma cells. Neurosci Lett 2006; 399:115-20. [PMID: 16481105 DOI: 10.1016/j.neulet.2006.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/10/2006] [Accepted: 01/18/2006] [Indexed: 10/25/2022]
Abstract
CXCR4, a chemokine receptor constitutively expressed in the brain, binds both ligands, the chemokine SDF-1alpha and the HIV envelope glycoprotein gp120(IIIB). There seem to be intracellular differences between the neuronal apoptosis induced by SDF-1alpha and that induced by gp120(IIIB), but the apoptotic pathways involved have not been compared in human neuronal cells. In this study, we characterized the apoptotic intracellular pathways activated by neurotoxic concentrations of SDF-1alpha and gp120(IIIB) in human neuroblastoma cells SK-N-SH. SDF-1alpha (10 nM) and gp120(IIIB) (2 nM) induced similar levels of apoptosis after 24 h of incubation (49 +/- 4% and 48 +/- 3%, respectively, of the neurons were apoptotic). SDF1alpha-induced apoptosis was completely abolished by the inhibition of Src phosphorylation by PP2. Exposure to SDF-1alpha (10 nM) triggered an increase in Src phosphorylation, with a maximum after 20 min of incubation (1.80 +/- 0.24 times higher than control, P = 0.01). NMDA calcium flux was enhanced only if cells were incubated with SDF-1alpha for 20 min before applying NMDA. By contrast, gp120(IIIB)-induced apoptosis was not affected by the inhibition of Src phosphorylation. Moreover, gp120(IIIB) enhanced NMDA calcium flux immediately, without modifying Src phosphorylation status. Finally, levels of phospho-JNK increased following exposure to gp120(IIIB) (by a factor of 1.46 +/- 0.4 at 120 min, P = 0.03), but not after exposure to SDF-1alpha. Thus, SDF-1alpha and gp120(IIIB) induced a similar level of neuronal apoptosis, but by activating different intracellular pathways. SDF-1alpha enhanced NMDA activity indirectly via Src phosphorylation, whereas gp120(IIIB) probably activated the NMDA receptor directly and phosphorylated JNK.
Collapse
Affiliation(s)
- Thomas Geeraerts
- Laboratoire Immunologie antivirale systémique et cérébrale, INSERM EMI 0109, Faculté de médecine Paris-Sud, 63 rue Gabriel Péri, 94 276 Le Kremlin Bicêtre, France.
| | | | | | | | | | | |
Collapse
|
20
|
Russo R, Navarra M, Maiuolo J, Rotiroti D, Bagetta G, Corasaniti MT. 17beta-estradiol protects SH-SY5Y Cells against HIV-1 gp120-induced cell death: evidence for a role of estrogen receptors. Neurotoxicology 2005; 26:905-13. [PMID: 15899520 DOI: 10.1016/j.neuro.2005.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 01/27/2005] [Accepted: 01/27/2005] [Indexed: 11/29/2022]
Abstract
Despite the large body of experimental evidence demonstrating the neuroprotective properties of 17beta-estradiol (17beta-E2) both in vitro and in vivo experimental models of neuronal injury, the exact mechanisms implicated in neuroprotection have not been fully delineated. Some experimental evidence highlight a role for the antioxidant properties of 17beta-E2 in mediating protection against oxidative injury. Parallel to these, evidence also exist which point to alternative mechanisms involving estrogen receptors (ER). The HIV-1 coat protein, gp120, has been implicated in the progression of central nervous system damage caused by HIV-1 infection. The neurotoxic effects induced by gp120 are triggered via an excitotoxic mechanism of cell death which implicates alteration of calcium homeostasis, activation of calcium-dependent pathways, mitochondrial uncoupling and membrane lipid peroxidation. In the present study, we demonstrate that 17beta-E2 protects human SH-SY5Y neuroblastoma cells from cell death elicited by gp120. Tamoxifen and ICI 182,780, two ER antagonists, both antagonized 17beta-E2-mediated inhibition of cell death. Exposure of SH-SY5Y cells to gp120 for 30min caused a significant accumulation of intracellular reactive oxygen species (ROS) and this was abrogated by 17beta-E2; however, the ability of 17beta-E2 to counteract ROS generation induced by gp120 does not account for the reported prevention of cell death because ICI 182,780 failed to revert intracellular ROS reduction caused by 17beta-E2 though it was able to revert prevention of cell death. Furthermore, by using 17alpha-E2, the isomer unable to stimulate ER which, however, retains the antioxidant effects, we observed that a pre-treatment with 17alpha-E2 was effective in preventing gp120-induced accumulation of ROS but it failed to affect cell death caused by the viral protein. Collectively, these data demonstrate that neuroprotection afforded by 17beta-E2 is receptor-mediated and ROS scavenging effects may not be implicated.
Collapse
Affiliation(s)
- Rossella Russo
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University Magna Graecia of Catanzaro, c/o Complesso Ninì Barbieri, 88021 Roccelletta di Borgia, Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Li W, Galey D, Mattson MP, Nath A. Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotox Res 2005; 8:119-34. [PMID: 16260390 DOI: 10.1007/bf03033824] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The deaths of neurons, astrocytes and endothelial cells have been described in patients with HIV (human immunodeficiency virus) dementia. HIV-1 does not infect neurons; instead, neurotoxic substances shed by infected glia and macrophages can induce a form of programmed cell death called apoptosis in neurons. These neurotoxins include the HIV-1 proteins Tat and gp120, as well as pro-inflammatory cytokines, chemokines, excitotoxins and proteases. In this article we review the evidence for apoptosis of various cell types within the brain of HIV-infected patients, and describe in vitro and in vivo experimental studies that have elucidated the mechanisms by which HIV causes apoptosis of brain cells.
Collapse
Affiliation(s)
- W Li
- RT Johnson Division of Neuroimmunology and Neurological Infection, Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
22
|
Chen W, Tang Z, Fortina P, Patel P, Addya S, Surrey S, Acheampong EA, Mukhtar M, Pomerantz RJ. Ethanol potentiates HIV-1 gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways. Virology 2005; 334:59-73. [PMID: 15749123 DOI: 10.1016/j.virol.2005.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/05/2005] [Accepted: 01/10/2005] [Indexed: 01/13/2023]
Abstract
Neuronal loss is a hallmark of AIDS dementia syndromes. Human immunodeficiency virus type I (HIV-1)-specific proteins may induce neuronal apoptosis, but the signal transduction of HIV-1 gp120-induced, direct neuronal apoptosis remains unclear. Ethanol (EtOH) is considered to be an environmental co-factor in AIDS development. However, whether EtOH abuse in patients with AIDS increases neuronal dysfunction is still uncertain. Using pure, differentiated, and post-mitotic NT2.N-derived human neurons, we investigated the mechanisms of HIV-1 and/or EtOH-related direct neuronal injury and the molecular interactions between HIV-1-specific proteins and EtOH. It was demonstrated that NT2.N neurons were susceptible to HIV-1 Bal (R5-tropic strain) gp120-induced direct cell death. Of importance, EtOH induced cell death in human neurons in a clinically-relevant dose range and EtOH strongly potentiated HIV-1 gp120-induced neuronal injury at low and moderate concentrations. Furthermore, this potentiation of neurotoxicity could be blocked by N-methyl-D-aspartate (NMDA) receptor subunit 2B (NR2B) antagonists. We analyzed human genomic profiles in these human neurons, using Affymetrix genomics technology, to elucidate the apoptotic pathways involved in HIV-1- and EtOH-related neurodegeneration. Our findings indicated significant over-expression of selected apoptosis functional genes. Significant up-regulation of TRAF5 gene expression may play an essential role in triggering potentiation by EtOH of HIV-1 gp120-induced neuronal apoptosis at early stages of interaction. These studies suggested that two primary apoptotic pathways, death receptor (extrinsic) and NMDA receptor (intrinsic)-related programmed cell-death pathways, are both involved in the potentiation by EtOH of HIV-1 gp120-induced direct human neuronal death. Thus, these data suggest rationally-designed, molecular targets for potential anti-HIV-1 neuroprotection.
Collapse
Affiliation(s)
- Wei Chen
- Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Thomas Jefferson University, 1020 Locust Street, Suite 329, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
van Marle G, Power C. Human immunodeficiency virus type 1 genetic diversity in the nervous system: Evolutionary epiphenomenon or disease determinant? J Neurovirol 2005; 11:107-28. [PMID: 16036790 DOI: 10.1080/13550280590922838] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Over the past decade there has been a revolution in the understanding and care of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS)-associated disease. Much of this progress stems from a broader recognition of the importance of differences in viral types, including receptor preference(s), replication properties, and reservoirs, as contributing factors to immunosuppresion and disease progression. In contrast, there is limited conceptualizatin of viral diversity and turnover in the brain and circulation in relation to neurocognitive impairments. Herein, the authors review current concepts regarding viral molecular diversity and phenotypes together with features of HIV-1 neuroinvasion, neurotropism, neurovirulence and neurosusceptiblity. Viral genetic and antigenic diversity is reduced within the brain compared to blood or other systemic organs within individuals. Conversely, viral molecular heterogeneity is greater in patients with HIV-associated dementia compared to nondemented patients, depending on the viral gene examined. Individual viral proteins exert multiple neuropathogenic effects, although the neurological consequences of different viral polymorphisms remain uncertain. Nonetheless, host genetic polymorphisms clearly influence neurological disease outcomes and likely dictate both acquired and innate immune responses, which in turn shape viral evolution within the host. Emerging issues include widespread antiretroviral therapy resistance and increasing awareness of viral superinfections together with viral recombination, all of which are likely to impact on both HIV genetic variation and neuropathogenesis. With the persisting prevalence of HIV-induced neurocognitive disabilities, despite marked improvements in managing immunosuppression, it remains imperative to fully define and understand the mechanisms by which viral dynamics and diversity contribute to neurological disease, permitting the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Guido van Marle
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
24
|
The human immunodeficiency virus-1 protein Tat and its discrete fragments evoke selective release of acetylcholine from human and rat cerebrocortical terminals through species-specific mechanisms. J Neurosci 2003. [PMID: 12890775 DOI: 10.1523/jneurosci.23-17-06810.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of the human immunodeficiency virus-1 protein Tat was investigated on neurotransmitter release from human and rat cortical nerve endings. Tat failed to affect the release of several neurotransmitters, such as glutamate, GABA, norepinephrine, and others, but it evoked the release of [3H]ACh via increase of cytosolic [Ca2+]. In human nerve terminals, the Tat effect partly depends on Ca2+ entry through voltage-sensitive Ca2+ channels, because Cd2+ halved the Tat-evoked release. Activation of group I metabotropic glutamate receptors (mGluR) and mobilization of Ca2+ from IP3-sensitive intraterminal stores are also involved, because the Tat effect was prevented by mGluR antagonists 2-methyl-6-(phenylethynyl)pyridine hydrochloride and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester and by the IP3 receptor antagonists heparin and xestospongin C. Furthermore, the group I selective mGlu agonist (RS)-3,5-dihydroxyphenylglycine enhanced [3H]ACh release. In rat nerve terminals, the Tat-evoked release neither depends on external Ca2+ ions entry nor on IP3-mediated mechanisms. Tat seems to cause mobilization of Ca2+ from ryanodine-sensitive internal stores because its effect was prevented by both 8-bromo-cyclic adenosine diphosphate-ribose and dantrolene. The Tat-evoked release from human synaptosomes was mimicked by the peptide sequences Tat 32-62, Tat 49-86, and Tat 41-60. In contrast, the Tat 49-86 and Tat 61-80 fragments, but not the Tat 32-62 fragment, were active in rat synaptosomes. In conclusion, Tat elicits Ca2+-dependent [3H]ACh release by species-specific intraterminal mechanisms by binding via discrete amino acid sequences to different receptive sites on human and rat cholinergic terminals.
Collapse
|
25
|
Sundstrom JB, Martinson DE, Mosunjac M, Bostik P, McMullan LK, Donahoe RM, Gravanis MB, Ansari AA. Norepinephrine enhances adhesion of HIV-1-infected leukocytes to cardiac microvascular endothelial cells. Exp Biol Med (Maywood) 2003; 228:730-40. [PMID: 12773706 DOI: 10.1177/153537020322800613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent reports have indicated that norepinephrine (NE) enhances HIV replication in infected monocytes and promotes increased expression of select matrix metalloproteinases associated with dilated cardiomyopathy (DCM) in vitro in co-cultures of HIV-infected leukocytes and human cardiac microvascular endothelial cells (HMVEC-C). The influence of NE on HIV infection and leukocyte-endothelial interactions suggests a pathogenic role in AIDS-related cardiovascular disease. This study examined the effects of norepinephrine (NE) and HIV-1 infection on leukocyte adhesion to HMVEC-C. Both flow and static conditions were examined and the expression of selected adhesion molecules and cytokines were monitored in parallel. NE pretreatment resulted in a detectable, dose-dependent increase of leukocyte-endothelial adhesion (LEA) with both HIV-1-infected and -uninfected peripheral blood mononuclear cells (PBMCs) relative to media controls after 48 hr in co-culture with HMVEC-C in vitro. However, the combination of NE plus HIV infection resulted in a significant (P < 0.0001) 18-fold increase in LEA over uninfected media controls. Increased levels in both cell-associated and -soluble ICAM-1 and E-Selectin but not VCAM-1 correlated with increased LEA and with HIV-1 infection or NE pretreatment. Blocking antibodies specific for ICAM-1 or E-Selectin inhibited HIV-NE-induced LEA. These data suggest a model in which NE primes HIV-1-infected leukocytes for enhanced adhesion and localization in HMVEC-C where they can initiate and participate in vascular injury associated with AIDS-related cardiomyopathy.
Collapse
Affiliation(s)
- J B Sundstrom
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang K, Rana F, Silva C, Ethier J, Wehrly K, Chesebro B, Power C. Human immunodeficiency virus type 1 envelope-mediated neuronal death: uncoupling of viral replication and neurotoxicity. J Virol 2003; 77:6899-912. [PMID: 12768009 PMCID: PMC156161 DOI: 10.1128/jvi.77.12.6899-6912.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although brain tissue from patients with human immunodeficiency virus (HIV) and/or AIDS is consistently infected by HIV type 1 (HIV-1), only 20 to 30% of patients exhibit clinical or neuropathological evidence of brain injury. Extensive HIV-1 sequence diversity is present in the brain, which may account in part for the variability in the occurrence of HIV-induced brain disease. Neurological injury caused by HIV-1 is mediated directly by neurotoxic viral proteins or indirectly through excess production of host molecules by infected or activated glial cells. To elucidate the relationship between HIV-1 infection and neuronal death, we examined the neurotoxic effects of supernatants from human 293T cells or macrophages expressing recombinant HIV-1 virions or gp120 proteins containing the V1V3 or C2V3 envelope region from non-clade B, brain-derived HIV-1 sequences. Neurotoxicity was measured separately as apoptosis or total neuronal death, with apoptosis representing 30 to 80% of the total neuron death observed, depending on the individual virus. In addition, neurotoxicity was dependent on expression of HIV-1 gp120 and could be blocked by anti-gp120 antibodies, as well as by antibodies to the human CCR5 and CXCR4 chemokine receptors. Despite extensive sequence diversity in the recombinant envelope region (V1V3 or C2V3), there was limited variation in the neurotoxicity induced by supernatants from transfected 293T cells. Conversely, supernatants from infected macrophages caused a broader range of neurotoxicity levels that depended on each virus and was independent of the replicative ability of the virus. These findings underscore the importance of HIV-1 envelope protein expression in neurotoxic pathways associated with HIV-induced brain disease and highlight the envelope as a target for neuroprotective therapeutic interventions.
Collapse
Affiliation(s)
- Kunyan Zhang
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Belmadani A, Neafsey EJ, Collins MA. Human immunodeficiency virus type 1 gp120 and ethanol coexposure in rat organotypic brain slice cultures: Curtailment of gp120-induced neurotoxicity and neurotoxic mediators by moderate but not high ethanol concentrations. J Neurovirol 2003; 9:45-54. [PMID: 12587068 DOI: 10.1080/13550280390173409] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2002] [Revised: 02/19/2002] [Accepted: 08/05/2002] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope protein gp120, implicated with other retroviral proteins in acquired immunodeficiency syndrome (AIDS)-related dementia, causes neuronal degeneration by inciting cascades of neurotoxic mediators from glia. It also may facilitate neuronal glutamate (N-methyl-D-aspartate, NMDA) receptor-mediated excitotoxicity by interacting at the glycine coagonist site. The authors reported that preconditioning rat organotypic hippocampal-cortical slice cultures subchronically with ethanol at concentrations occurring during moderate drinking (20 to 30 mM) prevented gp120's induction of neurotoxic mediators and intracellular calcium, as well as neuronal death. The authors now find that the acute copresence of ethanol in moderate as opposed to high concentrations similarly blocks the retroviral protein's neurotoxic effects in brain slice cultures, assessed with lactate dehydrogenase (LDH) release and propidium iodide (PI) labeling. As with ethanol preconditioning, neuroprotection against gp120 by moderate ethanol coexposure appears secondary to abrogation of the retroviral protein's early induction of arachidonic acid (AA), glutamate, and superoxide (but not nitric oxide) elevations/release. Additionally, experiments indicate that 30 mM ethanol is sufficient to inhibit the NMDA receptor, particularly in the presence of added glycine, thus hindering potential direct neuronal stimulation by gp120. However, in contrast to moderate ethanol, 100 mM ethanol, a concentration tolerated only in chronic alcoholics, potentiates gp120-dependent neurotoxicity (PI labeling) in the hippocampal CA1 region, augments LDH release, and fails to curtail gp120's actions on AA, glutamate, and superoxide-but does suppress nitric oxide induction. The results indicate dominant roles for AA, superoxide, and glutamate-mediated oxidative stress in gp120's neurotoxic mechanism, but perhaps a less important role for NMDA receptor stimulation, which would be constrained at both ethanol concentrations employed. We suggest that ethanol's concentration-dependent, two-edged sword behavior could alter the development of dementia in HIV-1-infected individuals during social consumption or abuse. Further studies are needed to elucidate the differing apparently glial effects of the two concentrations of ethanol.
Collapse
Affiliation(s)
- A Belmadani
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | | | | |
Collapse
|
28
|
Van Marle G, Rourke SB, Zhang K, Silva C, Ethier J, Gill MJ, Power C. HIV dementia patients exhibit reduced viral neutralization and increased envelope sequence diversity in blood and brain. AIDS 2002; 16:1905-14. [PMID: 12351950 DOI: 10.1097/00002030-200209270-00007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To examine the relationship between the humoral immune response and viral envelope diversity among HIV/AIDS patients with or without HIV-associated dementia (HAD). METHODS Whole blood and sera were collected from age- and disease-progression matched AIDS-defined patients with and without neuro-cognitive impairment at two centers. Peripheral blood mononuclear cells were isolated from whole blood and separated into monocyte/macrophage and peripheral blood lymphocyte (PBL) preparations. Genomic DNA, isolated from the PBL population, was used as template to amplify HIV-1 C2V3 envelope sequences in a nested PCR protocol. The resulting fragments were sequenced and subjected to a phylogenetic analysis. RESULTS Sera from non-demented (ND; n = 21) patients neutralized infection of CCR5-dependent, but not CXCR4-dependent viruses, more efficiently than sera from HAD patients (n = 15) (P < 0.05). A recombinant virus containing a brain derived C2V3 sequence was also neutralized less efficiently by sera from HAD patients ( < 0.05). C2V3 envelope sequences amplified from PBL revealed significantly greater diversity within the V3 region from HAD compared with ND patients (P < 0.001). The number of non-synonymous substitutions was positively correlated with the severity of neuro-cognitive impairment of patients (P < 0.005). Similarly, brain derived V3 sequences exhibited significantly increased diversity among HAD patients (P < 0.001). CONCLUSION Our findings imply that HAD patients exhibited impaired serological responses that may lead to the emergence of viral mutants that potentially could infect the brain and mediate neurodegeneration.
Collapse
Affiliation(s)
- Guido Van Marle
- Department of Clinical Neurosciences, University of Calgary, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
van de Bovenkamp M, Nottet HSLM, Pereira CF. Interactions of human immunodeficiency virus-1 proteins with neurons: possible role in the development of human immunodeficiency virus-1-associated dementia. Eur J Clin Invest 2002; 32:619-27. [PMID: 12190962 DOI: 10.1046/j.1365-2362.2002.01029.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1)-associated dementia is a severe neurological complication of HIV-1 infection that affects 15-20% of the patients in the late stages of acquired immunodeficiency syndrome. HIV-1-associated dementia is most probably a consequence of HIV-1 infection of the brain rather than of an opportunistic pathogen. The exact mechanism by which the virus causes this disorder, however, is not completely understood. A number of HIV-1 proteins have been shown to be released from HIV-1-infected cells and/or to be present in the extracellular milieu in the HIV-1-infected brain. Moreover, these proteins have been shown to possess neurotoxic and/or neuromodulatory features in vitro. This review describes the possible direct interactions of the HIV-1 proteins gp120, gp41, vpr, tat, rev, vpu and nef with neurons, which might play a role in the development of HIV-1-associated dementia in vivo.
Collapse
|
30
|
Power C, Johnson RT. Neuroimmune and neurovirological aspects of human immunodeficiency virus infection. Adv Virus Res 2002; 56:389-433. [PMID: 11450307 DOI: 10.1016/s0065-3527(01)56034-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Like most lentiviruses, HIV-1 causes both immune suppression and neurological disease. Neurological disease may occur at any stage of HIV infection but is most apparent with severe immune suppression. Cognitive impairment, reflected strikingly by HIV-associated dementia, has attracted intense interest since the outset of the HIV epidemic, and understanding of its pathogenesis has been spurred on by the emergence of several hypotheses outlining potential pathogenic mechanisms. The release of inflammatory molecules by HIV-infected microglia and macrophages and the concurrent neuronal damage play central roles in the conceptualization of HIV neuropathogenesis. Many inflammatory molecules appear to contribute to the pathogenic cascade and their individual roles remain undefined. At the same time, the abundance of virus in the brain and the type or strain of virus found in the brain may also be important codeterminants of neurological disease, as shown for other neurotropic viruses. Coreceptor use by HIV found in the brain appears to closely mirror what has been reported in systemic macrophages. The impact of HAART on viral genotype and phenotype found in the brain, and its relationship to clinical disease, remain uncertain. Several interesting animal models have been developed, using other lentiviruses, transgenic animals, and HIV-infected SCID mice, that may prove useful in future pathogenesis and therapeutic studies. Despite the progress in the understanding of HIV neuropathogenesis, many questions remain unanswered.
Collapse
Affiliation(s)
- C Power
- Departments of Clinical Neuroscience, Microbiology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
31
|
Power C, Gill MJ, Johnson RT. Progress in clinical neurosciences: The neuropathogenesis of HIV infection: host-virus interaction and the impact of therapy. Can J Neurol Sci 2002; 29:19-32. [PMID: 11858531 DOI: 10.1017/s0317167100001682] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite the availability of highly active antiretroviral therapy (HAART), primary HIV-related neurological diseases remain major problems in HIV clinics. The present review examines the pathogenesis of HIV-related dementia and the less severe minor cognitive and motor deficit, together with distal sensory and drug-induced toxic polyneuropathies. Abnormal host immune responses within the nervous system and the role of viral expression and diversity are emphasized in relation to neurovirulence. Induction of innate immune responses within the central and peripheral nervous systems, largely mediated by cells of macrophage lineage, appear to be common to the development of primary HIV-related neurological disease. Activation of these cell types results in the release of a cascade of inflammatory molecules including cytokines, chemokines, matrix metalloproteinases, and arachidonic acid metabolites that influence neuronal survival. Individual viral proteins encoded by envelope and tat genes and discrete sequences within these genes influence the extent to which these pro-inflammatory molecules are induced. At the same time, systemic immune suppression may influence the occurrence and severity of HIV-related neurological diseases. Implementation of HAART and neuroprotective treatments improves neurological function although the evolution of drug-resistant viral strains limits the sustained benefits of HAART.
Collapse
Affiliation(s)
- C Power
- Department of Clinical Neurosciences, University of Calgary, AB, Canada.
| | | | | |
Collapse
|
32
|
Navarra M, Romano C, Lorenzon T, Rotiroti D, Di Renzo G. Ethanol exposure inhibits the cytotoxic effect induced by gp120 in CHP100 human neuroblastoma cells. J Neurosci Res 2001; 65:354-61. [PMID: 11494372 DOI: 10.1002/jnr.1161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of present study was to investigate the acute effects of ethanol on cytotoxicity induced by HIV-1 coat protein gp120 in CHP100 human neuroblastoma cell line. We demonstrate that ethanol, within a range of clinically relevant concentrations (15-90 mM) prevents cell death elicited by gp120 (10 pM) in a dose dependent manner. This protective action seems to be mediated by a reduction of free intracellular Ca(2+) levels because ethanol, at concentrations ranging from 0.1-0.5%, is able to decrease gp120-stimulated Ca(2+) uptake up to 24%. Furthermore, our data show an involvement of NO/cGMP messenger system pathway, because ethanol is also able to reduce gp120-stimulated NO release (up to 45%) and cyclic GMP accumulation (up to 73%). These findings suggest that the protective effect of ethanol against gp120-induced cytotoxicity in CHP100 cells underlies a Ca(2+)-activated, NO/cGMP-dependent mechanism.
Collapse
Affiliation(s)
- M Navarra
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University of Catanzaro Magna Graecia & IBAF-CNR, 88021 Roccelletta di Borgia, Catanzaro, Italy.
| | | | | | | | | |
Collapse
|
33
|
Pittaluga A, Pattarini R, Feligioni M, Raiteri M. N-methyl-D-aspartate receptors mediating hippocampal noradrenaline and striatal dopamine release display differential sensitivity to quinolinic acid, the HIV-1 envelope protein gp120, external pH and protein kinase C inhibition. J Neurochem 2001; 76:139-48. [PMID: 11145986 DOI: 10.1046/j.1471-4159.2001.00057.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NMDA receptors regulating hippocampal noradrenaline (NA) and striatal dopamine (DA) release have been compared using superfused synaptosomes prelabelled with the [(3)H]catecholamines. Both receptors mediated release augmentation when exposed to NMDA plus glycine. Quinolinic acid (100 microM or 1 mM) plus glycine (1 microM)-elicited [(3)H]NA, but not [(3)H]DA release. The NMDA (100 microM)-evoked release of [(3)H]NA and [(3)H]DA was similar and concentration-dependently enhanced by glycine or D-serine (0.1-1 microM); in contrast, the HIV-1 envelope protein gp120 potently (30-100 pM) enhanced the NMDA-evoked release of [(3)H]NA, but not that of [(3)H]DA. Gp120 also potentiated quinolinate-evoked [(3)H]NA release. Ifenprodil (0.1-0.5 microM) or CP-101,606 (0.1-10 microM) inhibited the NMDA plus glycine-evoked release of both [(3)H]catecholamines. Zinc (0.1-1 microM) was ineffective. Lowering external pH from 7.4 to 6.6 strongly inhibited the release of [(3)H]NA elicited by NMDA plus glycine, whereas the release of [(3)H]DA was unaffected. The protein kinase C inhibitors GF 109203X (0.1 microM) or H7 (10 microM) selectively prevented the effect of NMDA plus glycine on the release of [(3)H]NA. GF 109203X also blocked the release of [(3)H]NA induced by NMDA or quinolinate plus gp120. It is concluded that the hippocampal NMDA receptor and the striatal NMDA receptor are pharmacologically distinct native subtypes, possibly containing NR2B subunits but different splice variants of the NR1 subunit.
Collapse
Affiliation(s)
- A Pittaluga
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, Italy.
| | | | | | | |
Collapse
|
34
|
Abstract
This review examines the interaction of steroid hormones, glucocorticoids and estrogen, and gp120, a possible causal agent of acquired immune deficiency syndrome-related dementia complex. The first part of the review examines the data and mechanisms by which gp120 may cause neurotoxicity and by which these steroid hormones effect cell death in general. The second part of the review summarizes recent experiments that show how these steroid hormones can modulate the toxic effects of gp120 and glucocorticoids exacerbating toxicity, and estrogen decreasing it. We then examine the limited in vivo and clinical data relating acquired immune deficiency syndrome-related dementia complex and steroid hormones and speculate on the possible clinical significance of these findings with respect to acquired immune deficiency syndrome-related dementia complex.
Collapse
Affiliation(s)
- S M Brooke
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
35
|
Abstract
Superfused synaptosomes have been utilized in studies of neurotransmitter release during 25 years. This review summarizes the aspects of neurotransmission that have been and could be successfully investigated with this technique. The major aim of the article is to draw attention on the versatility of superfused synaptosomes and to suggest how the system could be exploited in clarifying several aspects of synaptic neurochemistry including neurotransmitter transport, receptor localization, receptor-receptor interactions, functional aspects of multi-sited receptor complexes, receptor heterogeneity and mechanisms of neurotransmitter exocytosis-endocytosis.
Collapse
Affiliation(s)
- L Raiteri
- Dipartimento di Medicina Sperimentale, Genova, Italy
| | | |
Collapse
|
36
|
Gemignani A, Paudice P, Pittaluga A, Raiteri M. The HIV-1 coat protein gp120 and some of its fragments potently activate native cerebral NMDA receptors mediating neuropeptide release. Eur J Neurosci 2000; 12:2839-46. [PMID: 10971626 DOI: 10.1046/j.1460-9568.2000.00172.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to investigate the effects of the HIV-1 envelope protein gp120 and its peptide fragments on the function of N-methyl-D-aspartate (NMDA) receptors mediating release of cholecystokinin (CCK) and somatostatin (SRIF). These are nonconventional NMDA receptors recently found to be activated by glycine or D-serine 'only'. The release of cholecystokinin-like immunoreactivity (CCK-LI) and of somatostatin-like immunoreactivity (SRIF-LI) elicited by 12 mM K+ from superfused rat neocortex synaptosomes was potently increased by gp120, its cyclic V3 loop and the linear V3 sequence BRU-C-34-A, but not by RP-135 (a central portion of BRU-C-34-A). The EC50 values of gp120 were 0.02 nM (CCK-LI release) and 0.01 nM (SRIF-LI release). The releasing effect of gp120 was prevented by blocking the glycine site or the ion channel of NMDA receptors, but not the glutamate recognition site; in addition, the gp120 effect was strongly inhibited by nanomolar concentrations of Zn2+ ions and by low micromolar concentrations of ifenprodil. It is concluded that gp120 acts as a very potent agonist at the glycine site of NMDA receptors sited on CCK- and SRIF-releasing nerve endings; the protein is able to activate the receptor channel in the absence of glutamate. Gp120 activates the receptors through its V3 loop as peptide fragments related to V3 retain near-maximal activity. The sensitivity of the gp120 effect to both Zn2+ and ifenprodil would not be incompatible with the idea that these NMDA receptors contain the triple subunit combination NR1/NR2A/NR2B.
Collapse
Affiliation(s)
- A Gemignani
- Department of Experimental Medicine, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148 Genova, Italy
| | | | | | | |
Collapse
|
37
|
Sánchez-Alavez M, Criado J, Gómez-Chavarín M, Jiménez-Anguiano A, Navarro L, Díaz-Ruiz O, Galicia O, Sánchez-Narváez F, Murillo-Rodríguez E, Henriksen SJ, Elder JH, Prospéro-García O. HIV- and FIV-derived gp120 alter spatial memory, LTP, and sleep in rats. Neurobiol Dis 2000; 7:384-94. [PMID: 10964609 DOI: 10.1006/nbdi.2000.0302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated dementia (HAD) has been detected in 20-30% of patients suffering AIDS. The envelope glycoprotein 120 (gp120) derived from HIV seems to play a critical role in the pathophysiology of this dementia. Likewise, the feline immunodeficiency virus (FIV)-derived gp120 causes neurological and electrophysiological abnormalitites in cats. We have studied the effects of gp120 derived from HIV or FIV on learning and memory processing, hippocampal long-term potentiation (LTP), hippocampal neuronal cAMP production, the sleep-waking cycle, and locomotor activity and equilibrium in rats. Results showed that while both HIV- and FIV-gp120 impaired the rat's performance in the Barnes maze task, only HIVgp120 impaired the induction and maintenance of LTP. However, both glycoproteins induced a significant decrease in the posttetanic potentiation. HIVgp120 also caused a significant reduction in cAMP production in the hippocampus. Regarding the sleep-waking cycle, HIV- and FIV-gp120 increased the waking state and slow-wave sleep 1 (SWS1), while decreasing both SWS2 and REM sleep. Locomotor activity and equilibrium were significantly altered by these glycoproteins. These results suggest that HIVgp120 causes neurophysiological abnormalities and therefore may facilitate HAD development in AIDS patients.
Collapse
|
38
|
Pandey V, Bolsover SR. Immediate and neurotoxic effects of HIV protein gp120 act through CXCR4 receptor. Biochem Biophys Res Commun 2000; 274:212-5. [PMID: 10903920 DOI: 10.1006/bbrc.2000.3113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary rat hippocampal neurones show pronounced elevations of intracellular calcium within minutes of exposure to the HIV coat protein gp120. Culture of hippocampal neurones with gp120 causes significant neurotoxicity. We find that the peptide VSLSYRCPCRFF, a competitive inhibitor of the CXCR4 chemokine receptor, markedly inhibits toxicity and eliminates the acute calcium elevation. CXCR4 receptors are thought to signal to the Gi/Go family of trimeric GTP binding proteins. Pretreatment of hippocampal neurones with pertussis toxin to inactivate Gi/Go proteins markedly reduced gp120 neurotoxicity. These results indicate that both short and long term effects of gp120 are the result of activation of the CXCR4 receptor.
Collapse
Affiliation(s)
- V Pandey
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | |
Collapse
|
39
|
Pittaluga A, Bonfanti A, Raiteri M. Somatostatin potentiates NMDA receptor function via activation of InsP(3) receptors and PKC leading to removal of the Mg(2+) block without depolarization. Br J Pharmacol 2000; 130:557-66. [PMID: 10821783 PMCID: PMC1572105 DOI: 10.1038/sj.bjp.0703346] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors exist on noradrenergic axon terminals and mediate enhancement of noradrenaline (NA) release. We here investigated modulation by somatostatin (SRIF, somatotropin release inhibiting factor) of the NMDA-induced release of NA using superfused hippocampal synaptosomes. The NMDA response was increased by SRIF-28 and SRIF-14, but not SRIF-28((1 - 14)), whereas the release of [(3)H]-NA elicited by alpha-amino-3-hydroxy-5-methylisoxazide-4-propionic acid (AMPA) was unaffected. SRIF-14 did not mimic glycine at the NMDA receptor but activated SRIF receptors sited on noradrenergic terminals. The SRIF-14 effect was blocked by pertussis toxin but mimicked by mastoparan, a G-protein activator. BIM-23056, but not Cyanamid 154806, antagonized the SRIF-14 effect. This effect was mimicked by L362855, a partial agonist at the sst(5) subtype, but not by the new selective sst(1) - sst(4) receptor agonists L797591, L779976, L796778 and L803087. Protein kinase C (PKC) inhibitors (H7, staurosporine, GF 209103X, cheleritrine and sphingosine) prevented the SRIF-14 effect, while phorbol 12-myristate 13-acetate enhanced the NMDA response. SRIF-14 permitted NMDA receptor activation in the presence of 1.2 mM Mg(2+) ions, both in hippocampal synaptosomes and slices. Blockade of inositol-1,4,5-trisphosphate (InsP(3)) receptors with heparin abolished the effect of SRIF-14. It is concluded that SRIF receptors, possibly of the sst(5) subtype, can exert a permissive role on NMDA receptors colocalized on hippocampal noradrenergic terminals: activation of sst(5) receptors is coupled to pertussis toxin-sensitive G proteins enhancing phosphoinositide metabolism with activation of InsP(3) receptors and PKC; NMDA receptor subunits might be phosphorylated with consequent removal of the Mg(2+) block in absence of depolarization.
Collapse
Affiliation(s)
- A Pittaluga
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | | | | |
Collapse
|
40
|
Catani MV, Corasaniti MT, Navarra M, Nisticò G, Finazzi-Agrò A, Melino G. gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 2000; 74:2373-9. [PMID: 10820198 DOI: 10.1046/j.1471-4159.2000.0742373.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To infect target cells, the human immunodeficiency virus (HIV) type I (HIV-1) must engage not only the well-known CD4 molecule, but it also requires one of several recently described coreceptors. In particular, the CXCR4 (LESTR/fusin) receptor allows fusion and entry of T-tropic strains of HIV, whereas CCR5 is the major coreceptor used by primary HIV-1 strains that infect macrophages and CD4(+) T-helper cells (M-tropic viruses). In addition, the alpha chemokine SDF1alpha and the beta chemokines MIP1alpha, MIP1beta, and RANTES, natural ligands of CXCR4 and CCR5, respectively, are potent soluble inhibitors of HIV infection by blocking the binding between the viral envelope glycoprotein gp120 and the coreceptors. Approximately two-thirds of individuals with acquired immunodeficiency syndrome (AIDS) show neurologic complications, which are referred to a syndrome called AIDS dementia complex or HIV-1-associated cognitive/motor complex. The HIV-1 coat glycoprotein gp120 has been proposed as the major etiologic agent for neuronal damage, mediating both direct and indirect effects on the CNS. Furthermore, recent findings showing the presence of chemokine receptors on the surface of different cell types resident in the CNS raise the possibility that the association of gp120 with these receptors may contribute to the pathogenesis of neurological dysfunction. Here, we address the possible role of alpha and beta chemokines in inhibiting gp120-mediated neurotoxicity using the human neuroblastoma CHP100 cell line as an experimental model. We have previously shown that, in CHP100 cells, picomolar concentrations of gp120 produce a significant increase in cell death, which seems to proceed through a Ca(2+) - and NMDA receptor-dependent cascade. In this study, we gained insight into the mechanism(s) of neurotoxicity elicited by the viral glycoprotein. We found that CHP100 cells constitutively express both CXCR4 and CCR5 receptors and that stimulation with phorbol 12-myristate 13-acetate down-regulates their expression, thus preventing gp120-induced cell death. Furthermore, all the natural ligands of these receptors exerted protective effects against gp120-mediated neuronal damage, although with different efficiencies. These findings, together with our previous reports, suggest that the neuronal injury observed in HIV-1 infection could be due to direct (or indirect) interactions between the viral protein gp120 and chemokine and/or NMDA receptors.
Collapse
Affiliation(s)
- M V Catani
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Milligan ED, Mehmert KK, Hinde JL, Harvey LO, Martin D, Tracey KJ, Maier SF, Watkins LR. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res 2000; 861:105-16. [PMID: 10751570 DOI: 10.1016/s0006-8993(00)02050-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Astrocytes and microglia in the spinal cord have recently been reported to contribute to the development of peripheral inflammation-induced exaggerated pain states. Both lowering of thermal pain threshold (thermal hyperalgesia) and lowering of response threshold to light tactile stimuli (mechanical allodynia) have been reported. The notion that spinal cord glia are potential mediators of such effects is based on the disruption of these exaggerated pain states by drugs thought to preferentially affect glial function. Activation of astrocytes and microglia can release many of the same substances that are known to mediate thermal hyperalgesia and mechanical allodynia. The aim of the present series of studies was to determine whether exaggerated pain states could also be created in rats by direct, intraspinal immune activation of astrocytes and microglia. The immune stimulus used was peri-spinal (intrathecal, i.t.) application of the Human Immunodeficiency Virus type 1 (HIV-1) envelope glycoprotein, gp120. This portion of HIV-1 is known to bind to and activate microglia and astrocytes. Robust thermal hyperalgesia (tail-flick, TF, and Hargreaves tests) and mechanical allodynia (von Frey and touch-evoked agitation tests) were observed in response to i.t. gp120. Heat denaturing of the complex protein structure of gp120 blocked gp120-induced thermal hyperalgesia. Lastly, both thermal hyperalgesia and mechanical allodynia to i.t. gp120 were blocked by spinal pretreatment with drugs (fluorocitrate and CNI-1493) thought to preferentially disrupt glial function.
Collapse
Affiliation(s)
- E D Milligan
- Department of Psychology, University of Colorado at Boulder, Campus Box 345, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wittekindt B, Betz H, Laube B. Subunit-dependent inhibition of recombinant rodent N-methyl-D-aspartate receptors by a HIV-1 glycoprotein 120 derived peptide. Neurosci Lett 2000; 280:151-4. [PMID: 10686400 DOI: 10.1016/s0304-3940(00)00775-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Considerable evidence suggests that low (picomolar) concentrations of the HIV-1 envelope glycoprotein gp120 induce neuronal cell death by stimulating the release of microglial toxins, which in turn activate N-methyl-D-aspartate (NMDA) receptors. Conversely, high (micromolar) concentrations of gp120 have been reported to directly inhibit NMDA receptor-mediated currents and do not induce neurotoxicity. Here we show that micromolar concentrations of a synthetic peptide corresponding to the V3-loop of gp120 (V3-pep) inhibited agonist responses of recombinant heteromeric rodent NMDA receptors expressed in Xenopus laevis oocytes by decreasing their apparent glycine affinity. Different combinations of NMDA receptor subunits displayed differential sensitivities to inhibition by V3-pep, with a potency rank order of NR1/2B > NR1/2D > NR1/2C > or = NR1/2A. Our observations may provide an explanation for the reduced neurotoxicity of high doses of gp120 in cell cultures and may be useful for the pharmacological discrimination of NMDA receptor subtypes.
Collapse
Affiliation(s)
- B Wittekindt
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528, Frankfurt, Germany
| | | | | |
Collapse
|
43
|
Xin KQ, Hamajima K, Hattori S, Cao XR, Kawamoto S, Okuda K. Evidence of HIV type 1 glycoprotein 120 binding to recombinant N-methyl-D-aspartate receptor subunits expressed in a baculovirus system. AIDS Res Hum Retroviruses 1999; 15:1461-7. [PMID: 10555109 DOI: 10.1089/088922299309973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Activation of the N-methyl-D-aspartate (NMDA) receptor by HIV-1 envelope glycoprotein 120 (gp120) is thought to represent at least one of the pathways causing neuronal damage in AIDS patients. In the present study, recombinant gp120 binding to NMDA receptor subunits expressed in a baculovirus system was examined by immunocytochemistry and a binding assay, using horseradish peroxidase (HRP)-conjugated and 125I-labeled recombinant gp120, respectively. We found that recombinant gp120 binds to Sf21 cells expressing epsilon1/zeta1 or epsilon2/zeta1 combined NMDA receptor subunits, but not to Sf21 cells infected with mock virus or Sf21 cells expressing a single epsilon1, epsilon2, or zeta1 NMDA receptor subunit. The binding was strongly blocked by unlabeled recombinant gp120, monoclonal anti-HIV-1 gp160 antibody, and a mixture of anti-epsilon1/epsilon2 and anti-zeta1 antibodies. The same results were obtained by flow cytometric analysis. These data suggest that HIV-1 gp120 may directly bind to the NMDA receptor. This evidence enhances our understanding of the mechanism of HIV-1-induced neuronal damage in AIDS patients.
Collapse
Affiliation(s)
- K Q Xin
- Department of Bacteriology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Mitchell TW, Buckmaster PS, Hoover EA, Whalen LR, Dudek FE. Neuron loss and axon reorganization in the dentate gyrus of cats infected with the feline immunodeficiency virus. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990906)411:4<563::aid-cne3>3.0.co;2-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|