1
|
Dagoudo M, Mutebi ET, Qiang J, Tao YF, Zhu HJ, Ngoepe TK, Xu P. Effects of acute heat stress on haemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (pelteobagrus fulvidraco × P. vachelli) juveniles. Vet Res Commun 2023; 47:1217-1229. [PMID: 36707493 DOI: 10.1007/s11259-022-10062-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
This study investigated the effect of heat stress on the physiological parameters, oxidation resistance ability and immune responses in juvenile hybrid yellow catfish. Heat stress group exposed to 35 °C and control to 28 °C. Blood and liver were sampled at different hours' post-exposure. Results showed that red blood cell (RBC), white blood cell (WBC) counts, Hemoglobin (HGB) levels and hematocrit (HCT) values increased significantly (P < 0.05) post-exposure to heat stress. This indicates the increase of cell metabolism. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities, total cholesterol (TC), total protein (TP), triglyceride (TG) and glucose increased significantly (P < 0.05) indicating the need to cope with stress and cell damage. Liver TC, TG, COR hormone, C3 complement increased significantly from 24 to 96 h. Heat stress mostly affects the hepatic antioxidant and immune resistance functions, resulting in increments of cortisol levels, lysozyme, superoxide dismutase (SOD), and catalase (CAT) enzyme activities. The increase of Malondialdehyde (MDA), alkaline phosphatase (AKP) indicate stimulation of the immune responses to protect the liver cells from damage. The decrease in Liver TP indicated liver impairment. Decrease in Glycogen content from 6 to 96 h indicated mobilization of more metabolites to cope with increased energy demand. Interestingly, results showed that heat stress trigged costly responses in the experimental fish like accelerated metabolism and deplete energy reserves, which could indirectly affect ability of fish to set up efficient long term defense responses against stress. These results provide insight into prevention and management of stress in juvenile hybrid yellow catfish.
Collapse
Affiliation(s)
- Missinhoun Dagoudo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China.
- Wuxi Fisheries College of Nanjing Agricultural University, 214081, Wuxi, Jiangsu, China.
| | - Ezra Tumukunde Mutebi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
- Wuxi Fisheries College of Nanjing Agricultural University, 214081, Wuxi, Jiangsu, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
| | - Hao-Jun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
| | - Tlou Kevin Ngoepe
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
- Wuxi Fisheries College of Nanjing Agricultural University, 214081, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Kanerva M, Kiljunen M, Torniainen J, Nikinmaa M, Dutz J, Vuori KA. Environmentally driven changes in Baltic salmon oxidative status during marine migration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140259. [PMID: 32721710 DOI: 10.1016/j.scitotenv.2020.140259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The fitness and recruitment of fish stocks can be markedly affected by environmental disturbances including global warming, eutrophication and contamination. Understanding the effects of environmental stressors on salmon physiology during marine residence is of a global concern as marine survival has decreased. We present a unique combination of physiological responses - antioxidant defence and oxidative damage biomarkers, stable isotopes and contaminant exposure biomarkers - measured from adult Atlantic salmon (Salmo salar) collected at the Baltic Sea and studied in relation to environmental variables and fitness estimates. The results demonstrate that feeding populations of salmon display marked temporal and spatial variation in oxidative status. Better oxidative status of salmon was characterized by a higher amount of reduced glutathione (GSH) and decreased lipid peroxidation (LPX), when the weight-at-age of 3-4-year old sprats was higher and contaminant exposure biomarker (EROD) was lower. Summer season conditions, which included cooler sea surface temperature (SST), higher bottom O2 and less cyanobacteria also indicated conditions for better oxidative status. Summer SST was additionally shown to affected glutathione metabolism enzyme activities. Oxidative status was associated with stable isotopes δ13C and δ15N indicating indirect effect of abiotic conditions and lower levels of the food web. Differences in condition factor and growth were associated with oxidative status in one and two sea winter salmon, respectively. Wild salmon survival was higher in years when they had higher GSH and catalase activity and lower LPX. Enhanced glutathione metabolism and increased protein carbonyls were associated with higher occurrence of yolk-sac fry mortality (M74). Our results show that oxidative status can provide information on exposure to complex combinations of environmental conditions and stressors in the wild and provide a link of physiological function to individual and population level fitness effects.
Collapse
Affiliation(s)
- Mirella Kanerva
- Laboratory of Animal Physiology, Division of Genetics and Physiology, Department of Biology, FI-20014, University of Turku, Finland.
| | - Mikko Kiljunen
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, Finland
| | - Jyrki Torniainen
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, Finland; University of Jyvaskyla, Open Science Centre, P.O. Box 35, FI-40014, Finland
| | - Mikko Nikinmaa
- Laboratory of Animal Physiology, Division of Genetics and Physiology, Department of Biology, FI-20014, University of Turku, Finland
| | - Jörg Dutz
- Leibniz Institute for Baltic Sea Research, Department of Biological Oceanography, Seestrasse 15, D-18119 Rostock-Warnemünde, Germany
| | - Kristiina A Vuori
- Laboratory of Animal Physiology, Division of Genetics and Physiology, Department of Biology, FI-20014, University of Turku, Finland
| |
Collapse
|
3
|
Park JY, Han KH, Cho JK, Kim KM, Son MH, Park JM, Kang HW. Survival Rate and Hematological Responses with Temperature Changes of Red Spotted Grouper, Epinephelus akaara in South Korea. Dev Reprod 2016; 20:103-12. [PMID: 27660825 PMCID: PMC5027215 DOI: 10.12717/dr.2016.20.2.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of sudden changes of water temperature (WT) on the survival rate and physiological responses of the red spotted grouper (Epinephelus akaara) were examined by manipulating WT control system for 9 days. Experimental condition was divided in two different regimes at low (from 10°C to 4°C, decreased 1℃/d) and high (from 28°C to 34°C, increased 1°C/d) WT. Survival rate of experimental fishes were observed, and determined the changes of hematological characteristics by analyzing plasma levels of cortisol, glucose, total protein, and electrolytes (Na(+), Cl-, K(+)). No mortality was observed until low WT 6°C (144 h) and high WT 32°C (96 h), and 100% mortality was observed at low WT 4°C (216 h) and high WT 35°C (171 h). Plasma levels of cortisol and glucose increased rapidly as decreasing WT, and the loss of swimming ability and respiration response was observed at low WT 7°C and high WT 34°C conditions.
Collapse
Affiliation(s)
- Jong Youn Park
- Aquaculture Research Division, Aquaculture Research Department, NIFS, Busan 46083, Korea
| | | | - Jae Kwon Cho
- Aquaculture Research Division, Aquaculture Research Department, NIFS, Busan 46083, Korea
| | - Kyong Min Kim
- South Sea Fisheries Research Institute, NIFS, Yeosu 89780, Korea
| | - Maeng Hyun Son
- South Sea Fisheries Research Institute, NIFS, Yeosu 89780, Korea
| | - Jae Min Park
- Native Fish Business Center, Gyeongsangbuk-do Fishery Resources Development Institute, Uiseong 37366, Korea
| | - Hee Woong Kang
- East Sea Fisheries Research Institute, NIFS, Gangneung 25435, Korea
| |
Collapse
|
4
|
Liu B, Xu P, Brown PB, Xie J, Ge X, Miao L, Zhou Q, Ren M, Pan L. The effect of hyperthermia on liver histology, oxidative stress and disease resistance of the Wuchang bream, Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2016; 52:317-324. [PMID: 27016402 DOI: 10.1016/j.fsi.2016.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/05/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
This study aimed to investigate the effects of hyperthermia on serum hormones, hepatic oxidization indices, hepatic heat shock protein (HSP60, 70, and 90) mRNA expression levels and liver cell ultrastructure in Megalobrama amblycephala before and after high temperature stress. Fish were exposed to the optimal temperature (25 ± 1 °C) or high temperature (32 ± 1 °C) and then challenged with Aeromonas hydrophila. The results showed that hyperthermic stress significantly increased serum adrenocorticotropic hormone (ACTH) at 0.5 and 2 d, serum cortisol (COR) at 0.5, 14, and 21 d and serum 3,5,3'-triiodothyronine (T3) at 1, 14, and 21 d after stress. Additionally, hyperthermia led to oxidative stress, as evidenced by a significant decrease in the hepatic anti-superoxide anion free radical concentration (ASAFER) at 1, 2, 7, and 21 d and in hepatic superoxide dismutase (SOD) activity at 1, 2, 14 and 21 d after stress; however, hepatic malondialdehyde content (MDA) increased at 1, 2, and 7 d after stress. Moreover, the expression of HSP60 at 1 d, HSP70 at 1 and 2 d, and HSP90 at 0.25, 0.5, 1 and 2 d after stress was higher in the stress group compared with the control group. The histological results clearly showed that hyperthermia resulted in fat and glycogen accumulation and structural alterations of the hepatocytes, mitochondria, and nuclei. The cumulative mortality increased in the high temperature stress group at 1 d after acute stress and at 2 and 7 d after chronic stress compared with the control group. Overall, 1 d or 2 d after hyperthermia stress damaged the hepatic ultrastructure and impaired mitochondrial bioenergetics. Dysfunction of the mitochondria subsequently mediated oxidative stress and improved HSP expression modulated the cellular anti-stress response, which in turn led to reduced efficacy of the immune system and increased mortality from Aeromonas hydrophila infection in Megalobrama amblycephala.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Paul B Brown
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, 47907, Indiana, USA
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Xianping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| |
Collapse
|
5
|
Liu F, Shi HZ, Guo QS, Yu YB, Wang AM, Lv F, Shen WB. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2016; 51:125-135. [PMID: 26899124 DOI: 10.1016/j.fsi.2016.02.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) has become a commercially important fish species in China and eastern Asia. High-density aquaculture has led to congestion and excessive stress and contributed to bacterial infection outbreaks that have caused high mortality. We investigated the effects of dietary supplementation with astaxanthin and emodin alone and in combination on the growth and stress resistance of yellow catfish. After 60 days of feeding, each group of fish (control, astaxanthin, emodin, and astaxanthin plus emodin (combination) groups) was exposed to acute crowding stress for 24 h, and a subsample of fish from the four groups was challenged with the bacterial septicemia pathogen Proteus mirabilis after the end of the crowding stress experiment. Compared with the control, the astaxanthin and emodin groups showed increases in serum total protein (TP), hepatic superoxide dismutase (SOD) activity and hepatic heat shock proteins 70 (HSP70) mRNA levels at 12 and 24 h after the initiation of crowding stress. The combination group exhibited increases in alanine aminotransferase (ALT) activity, aspartate aminotransferase (AST) activity, serum TP, hepatic SOD activity and hepatic HSP70 mRNA levels within 24 h after the initiation of crowding stress. However, decreases relative to the control were observed in the serum cortisol and glucose contents in the three treatment groups at 12 and 24 h after the initiation of crowding stress, in ALT and AST activity in the astaxanthin and emodin group at 24 h after the initiation of crowding stress, and in the serum lysozyme activity, serum alkaline phosphatase (ALP) activity, and hepatic catalase (CAT) and malondialdehyde (MDA) activity in the combination group at 24 h after the initiation of crowding stress. Additionally, the cumulative mortality after P. mirabilis infection was lower in all three treatment groups (57.00%-70.33%) than in the control (77.67%). Dietary supplementation with astaxanthin and emodin decreased the specific growth rate (SGR) and weight gain (WG) of healthy yellow catfish, although significant differences in mortality were not observed. These results indicate that dietary supplementation with 80 mg/kg astaxanthin and 150 mg/kg emodin can improve the anti-oxidative capabilities, hepatic HSP70 levels, and resistance to acute crowding stress of yellow catfish. Finally, an appropriate strategy for enhance yellow catfish stress resistance and disease resistance is proposed.
Collapse
Affiliation(s)
- Fei Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China; Biology Post-doctoral Mobile Stations, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hong-Zhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qiao-Sheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ye-Bing Yu
- Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Ai-Ming Wang
- Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Fu Lv
- Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Wen-Biao Shen
- Biology Post-doctoral Mobile Stations, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
6
|
Treidel LA, Carter AW, Bowden RM. Temperature experienced during incubation affects antioxidant capacity but not oxidative damage in hatchling red-eared slider turtles (Trachemys scripta elegans). J Exp Biol 2015; 219:561-70. [DOI: 10.1242/jeb.128843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022]
Abstract
Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine if temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5°C) or daily fluctuating temperature incubation (28.7±3°C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes; 28.7±3°C fluctuations every 12 (Hyper), 24 (Normal), or 48 hours (Hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5°C (Low), 27.1°C (Medium), or 27.7°C (High). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that while sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially due to temperature mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival.
Collapse
Affiliation(s)
- L. A. Treidel
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| | - A. W. Carter
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| | - R. M. Bowden
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| |
Collapse
|
7
|
Bone JWP, Renshaw GMC, Furse JM, Wild CH. Using biochemical markers to assess the effects of imposed temperature stress on freshwater decapod crustaceans: Cherax quadricarinatus as a test case. J Comp Physiol B 2014; 185:291-301. [PMID: 25528146 DOI: 10.1007/s00360-014-0883-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 01/05/2023]
Abstract
The effects of thermal stress can impact negatively on the abundance and distribution of temperature-sensitive species, particularly freshwater crustaceans. This study investigated the effects of thermal stress on physiological and biochemical parameters at five treatment temperatures resulting in minimal (25 °C), moderate (27, 29 °C) or severe (31, 33 °C) thermal stress in the common tropical freshwater crayfish Cherax quadricarinatus. The aim was to develop a suite of stress-sensitive assays to use on threatened populations of freshwater crustaceans, particularly those restricted to cooler temperatures and only found in high altitude refugia. Significant increases in indicators of oxidative and metabolic stress were observed at 29 °C and were elevated further at 33 °C. After a 50-day acclimation to an imposed temperature stress, significant changes in the level of total glutathione, total lipids, muscular protein, total haemocyte count, lipid peroxidation and protein carbonyls were observed between treatments while superoxide dismutase activity and haemolymph protein concentrations did not change. The data provided proof of concept that measuring key biochemical responses to high temperature can provide a means of contrasting the level of thermal stress experienced between individuals of the same species adapted to different temperatures. The methods developed are expected to be of use in research on wild populations of other freshwater poikilothermic organisms, particularly those susceptible to increased environmental temperatures associated with climate change.
Collapse
Affiliation(s)
- J W P Bone
- Environmental Futures Research Institute, Griffith School of Environment, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia,
| | | | | | | |
Collapse
|
8
|
Liu B, Xu P, Xie J, Ge X, Xia S, Song C, Zhou Q, Miao L, Ren M, Pan L, Chen R. Effects of emodin and vitamin E on the growth and crowding stress of Wuchang bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2014; 40:595-602. [PMID: 25134848 DOI: 10.1016/j.fsi.2014.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to investigate the effects of dietary emodin, high-dose vitamin E and their combination on the growth of Megalobrama amblycephala and its resistance to acute crowding stress. The fish were randomly divided into four groups: a control group fed with basal diet, and three treatment groups fed with basal diet supplemented with 60 mg/kg emodin (the emodin group), 500 mg/kg vitamin E (the vit E group), and 60 mg/kg emodin together with 500 mg/kg vitamin E (the combination group). After 60 days, the fish were exposed to acute crowding stress for 24 h. The results showed that the weight gain of the vit E group, specific growth rate of the vit E group, total serum protein concentration (TP) of the vit E group, serum lysozyme activity of the emodin group, serum superoxide dismutase (SOD) activity of the emodin group, hepatic heat shock protein 70 (HSP70) levels of the vit E group and the emodin group, and serum alanine aminotransferase (ALT) activity of the combination group significantly increased while the weight gain and specific growth rate of the combination group significantly decreased compared with the control group before stress. After crowding stress, the vit E group had improved serum TP 12 h post-stress, hepatic SOD activity 24 h post-stress, and hepatic HSP70 mRNA levels 12 and 24 h post-stress while the emodin group had enhanced serum SOD activity 12 and 24 h post-stress and hepatic HSP70 mRNA levels 12 and 24 h post-stress, as compared with the control. However, the serum cortisol content of the three treatment groups 12 and 24 h post-stress, ALT activity in the vit E group and emodin group 24 h post-stress, and serum alkaline phosphatase and liver catalase activity in the combination group 24 h post-stress were lower than those in the control group. The cumulative mortality was lower in the emodin, vit E, and combination group after Aeromonas hydrophila infection compared with the control group. Therefore, dietary supplementation with 60 mg/kg emodin or 500 mg/kg vitamin E can improve HSP70 mRNA levels and antioxidant capabilities, resistance to crowding stress, and growth in M. amblycephala. However, the combination of emodin and vit E does not have a synergistic effect in M. amblycephala.
Collapse
Affiliation(s)
- Bo Liu
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fishery College, Nanjing Agriculture University, Wuxi 214081, China.
| | - Pao Xu
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fishery College, Nanjing Agriculture University, Wuxi 214081, China
| | - Jun Xie
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fishery College, Nanjing Agriculture University, Wuxi 214081, China.
| | - Xianping Ge
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fishery College, Nanjing Agriculture University, Wuxi 214081, China.
| | - Silei Xia
- Wuxi Fishery College, Nanjing Agriculture University, Wuxi 214081, China
| | - Changyou Song
- Wuxi Fishery College, Nanjing Agriculture University, Wuxi 214081, China
| | - Qunlan Zhou
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Linghong Miao
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liangkun Pan
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ruli Chen
- Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
9
|
The effect of LED light spectra on antioxidant system by thermal stress in goldfish, Carassius auratus. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0006-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Vergauwen L, Hagenaars A, Blust R, Knapen D. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:52-62. [PMID: 23143039 DOI: 10.1016/j.aquatox.2012.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
Standard ecotoxicity tests are performed at species' specific standard temperatures, but temperature is known to affect chemical toxicity. A temperature increase has been shown to increase cadmium toxicity in several aquatic species but information in fish is scarce. Based on literature we hypothesize that with increasing temperature, cadmium accumulation and oxidative stress increase, resulting in increased toxicity. In this study zebrafish acclimated to 12, 18, 26 (standard temperature) or 34°C for one month, were exposed to 5 μM cadmium for 4 or 28 days at the respective acclimation temperature. Cadmium toxicity (mortality) increased with increasing temperature. PCA showed that the high mortality at 34°C was closely correlated to an increasing tissue cadmium accumulation with increasing temperature, but not to liver oxidative damage under the form of protein carbonyl content or lipid peroxidation (measured as malondialdehyde levels) or liver antioxidative potential. Instead, acclimation to 12°C induced the highest oxidative damage to liver proteins and lipids, and transcript levels of glucose-6P-dehydrogenase, 6P-gluconate-dehydrogenase and glutathione peroxidase were particularly good markers of cold-induced oxidative stress. At this low temperature there was no interaction with cadmium exposure and there was no sign of cadmium sensitivity. Contrastingly, the combined effect of high temperature and cadmium exposure on mortality proved synergistic. Therefore we conclude that interactions between temperature and cadmium toxicity increased with increasing temperature and that this probably played part in increasing cadmium sensitivity. Increased cadmium compartmentalization and protein carbonyl content in liver of zebrafish acclimated to the standard temperature of 26°C probably played part in increased sensitivity towards the same cadmium body burden compared to lower temperatures. On the one hand we recognize and this study even confirms the importance of applying standard temperatures in standard ecotoxicity tests to ensure inter-study comparability. On the other hand temperatures in the field may deviate from standard temperatures and accounting for deviating temperatures, which can alter chemical sensitivity, in regulation can improve environmental protection.
Collapse
Affiliation(s)
- Lucia Vergauwen
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Belgium.
| | | | | | | |
Collapse
|
11
|
Castro C, Pérez-Jiménez A, Guerreiro I, Peres H, Castro-Cunha M, Oliva-Teles A. Effects of temperature and dietary protein level on hepatic oxidative status of Senegalese sole juveniles (Solea senegalensis). Comp Biochem Physiol A Mol Integr Physiol 2012; 163:372-8. [PMID: 22841605 DOI: 10.1016/j.cbpa.2012.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/16/2022]
Abstract
Effects of 55 and 45% dietary protein levels (55P and 45P diets, respectively) and temperature (12 and 18 °C) on hepatic activity of superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase (GR), glucose-6-phosphate dehydrogenase and lipid peroxidation (LPO) levels of Solea senegalensis juveniles were studied. Further, effects of acute thermal shocks provoked by a drop (18 °C to 12 °C) or a rise (12 °C to 18 °C) of water temperature on sole oxidative state was also evaluated. Dietary protein reduction increased LPO levels though no major alterations were found on antioxidant enzyme activities between dietary treatments. At 12 °C GR activity was higher and SOD activity was lower than 18 °C but LPO levels were not affected. In both thermal shock cases, LPO levels increased in 55P group, probably due to insufficient antioxidant enzyme activation. In contrast, fish of 45P group under acute exposition to warmer and colder temperature exhibited no substantial changes and a significant decrease on LPO levels, respectively, along with no major changes in antioxidant enzymes. Overall, results suggest that independently of rearing temperatures 45P group was more susceptible to oxidative stress than 55P group. Thermal shock either due to rise or drop of temperature seemed to induce oxidative stress in 55P group.
Collapse
Affiliation(s)
- C Castro
- CIMAR/CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
12
|
Ming J, Xie J, Xu P, Ge X, Liu W, Ye J. Effects of emodin and vitamin C on growth performance, biochemical parameters and two HSP70s mRNA expression of Wuchang bream (Megalobrama amblycephala Yih) under high temperature stress. FISH & SHELLFISH IMMUNOLOGY 2012; 32:651-661. [PMID: 22281609 DOI: 10.1016/j.fsi.2012.01.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
In order to study the effects of dietary emodin, high-dose vitamin C (Vc) and their combination on growth of Wuchang bream (Megalobrama amblycephala Y.) and its resistance to high temperature stress, 1200 healthy Wuchang bream with initial body weight of 133.44 ± 2.11 g were randomly divided into four groups: a control group fed with basal diet (containing 50.3 mg/kg Vc) and three treated groups fed with basal diets supplemented with 60 mg/kg emodin, 700 mg/kg Vc, and the combination of 60 mg/kg emodin + 700 mg/kg Vc, respectively. After feeding for 60 days, the growth performance of Wuchang bream was measured. Then 25 fish per tank were exposed to heat stress of 34 °C. The biochemical parameters of blood and liver, and expression levels of liver two HSP70s mRNA before and after heat stress were determined and the cumulative mortality of each group under heat stress was counted. The results showed that before stress, compared with the control, the weight gain (WG) and specific growth rate (SGR), serum total protein (TP), lysozyme (LSZ), and alkaline phosphatase (ALP) levels, liver superoxide dismutase (SOD) activity and expression level of HSP70 mRNA significantly increased in emodin and Vc groups while feed conversion rate (FCR), serum cortisol (COR), triglyceride (TG) and liver malondialdehyde (MDA) contents decreased (P < 0.05); liver catalase (CAT) activity also significantly increased in emodin group (P < 0.05). Although serum TP, LSZ, and liver HSP70 mRNA levels significantly increased and liver MDA level decreased in combination group (P < 0.05), no synergism was observed. After heat stress, compared with the control, the serum TP, LSZ, ALP levels, liver SOD, CAT activities, and expression levels of HSC70 and HSP70 mRNAs increased in emodin and Vc groups in varying degrees and serum COR, glucose, glutamic-pyruvic transaminase (GPT), glutamic-oxaloacetic transaminase (GOT), TG and liver MDA levels decreased to some extent. Although these parameters had similar changing trend as above ones in combination group, it did not show any synergism either. Statistics showed that under heat stress, the cumulative mortalities of emodin and Vc groups, except at 6 h in emodin group, were significantly lower than that of the control (P < 0.05) while the difference between the combination and control groups was not significant (P > 0.05). Thus, the basal diet supplemented with 60 mg/kg emodin or 700 mg/kg Vc could promote the growth of Wuchang bream, reduce FCR, increase non-specific immunity of fish, antioxidant capacity, and two HSP70s mRNA expression levels, and enhance resistance to heat stress in fish. However, the combination of emodin and high-dose Vc showed no better effect.
Collapse
Affiliation(s)
- Jianhua Ming
- College of Life Sciences, Huzhou Normal University, Huzhou, China.
| | | | | | | | | | | |
Collapse
|
13
|
Lapointe D, Pierron F, Couture P. Individual and combined effects of heat stress and aqueous or dietary copper exposure in fathead minnows (Pimephales promelas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:80-85. [PMID: 21543052 DOI: 10.1016/j.aquatox.2011.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/28/2011] [Accepted: 02/28/2011] [Indexed: 05/30/2023]
Abstract
Despite its role as an essential micronutrient, copper (Cu) can be present in aquatic ecosystems at concentrations able to cause adverse health effects on aquatic organisms. Although Cu is acquired by fish by either water or diet, studies that have investigated Cu impacts in fish have mainly focused on the toxicity of waterborne Cu. Moreover, as the majority of experiments were carried out under simplified conditions, little is known about the effects of natural factors other than competitive ions on Cu toxicity in fish. As temperature is a primary factor that affects the physiological state of poikilotherm organisms, we investigated the individual and combined effects of temperature and waterborne or dietary Cu on fathead minnows (Pimephales promelas). Fish were exposed to environmentally realistic concentrations of waterborne or dietary Cu at 20 °C and 32 °C. Transcriptional and enzymatic responses of various indicators of metabolic capacities as well as indicators of heat, oxidative and metal stresses were measured in fish muscle. Under our experimental conditions, temperature was the most important factor affecting the general condition of fish. Although no significant Cu accumulation was observed in the muscle of Cu-exposed fish, at 20 °C, waterborne and dietary Cu triggered significant changes in the transcription level of genes encoding for proteins involved in energy metabolism, metal detoxification and protein protection. Moreover, the response was quantitatively more important for dietary Cu than for waterborne Cu. Combined exposure to heat and Cu triggered the most significant changes in gene transcription levels and enzyme activities. During combined exposure to heat and Cu, in addition to synergistic effects of the two factors, both waterborne and dietary Cu impaired the adaptive response developed by fish to curb heat stress. Reciprocally, temperature impaired the adaptive response developed by fish to combat Cu toxicity. These results suggest that wild fish populations subjected to elevated temperatures due to seasonal warming or global climate change may become more susceptible to Cu pollution, and vice versa.
Collapse
Affiliation(s)
- Dominique Lapointe
- Institut National de la Recherche Scientifique-Centre Eau Terre Environnement (INRS-ETE), Université du Québec, 490 de la Couronne, Québec, QC G1K9A9, Canada
| | | | | |
Collapse
|
14
|
Crockett EL. The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review. J Comp Physiol B 2008; 178:795-809. [PMID: 18506451 DOI: 10.1007/s00360-008-0275-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/02/2008] [Accepted: 05/07/2008] [Indexed: 01/17/2023]
Abstract
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.
Collapse
|
15
|
Leggatt RA, Brauner CJ, Schulte PM, Iwama GK. Effects of acclimation and incubation temperature on the glutathione antioxidant system in killifish and RTH-149 cells. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:317-26. [PMID: 17161638 DOI: 10.1016/j.cbpa.2006.10.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 10/09/2006] [Accepted: 10/26/2006] [Indexed: 12/22/2022]
Abstract
Glutathione (GSH) is an important antioxidant that is involved in a multitude of cellular processes. However, in fish, GSH levels, turnover, and activity of associated enzymes are low when compared to those of mammals. To determine whether temperature influences the GSH antioxidant system in fish, and can explain the differences in GSH between fish and mammals, we examined the effects of acclimation temperature on total GSH (tGSH) levels and apparent half-life (as an estimate of turnover) in a rainbow trout hepatoma cell line (RTH-149), and GSH levels, and glutathione peroxidase (GPx) and reductase (GR) activity in the eurythermal killifish. Increasing incubation temperature decreased half-life and transiently increased levels of tGSH in RTH-149 cells. In killifish, increased acclimation temperature increased tGSH levels in the liver, brain and muscle, and increased hepatic GPx and GR activities. When the relationships between temperature and GSH half-life, levels and enzyme activity were extrapolated to 37 degrees C, temperature could only partially accounted for differences in the GSH antioxidant system in fish compared to mammals. The differences in the GSH antioxidant system between fish and mammals may not be solely due to temperature effects, but also to the increased metabolic cost of endothermy in mammals.
Collapse
Affiliation(s)
- R A Leggatt
- Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, Canada V6T 1Z4
| | | | | | | |
Collapse
|
16
|
Amado LL, da Rosa CE, Leite AM, Moraes L, Pires WV, Pinho GLL, Martins CMG, Robaldo RB, Nery LEM, Monserrat JM, Bianchini A, Martinez PE, Geracitano LA. Biomarkers in croakers Micropogonias furnieri (Teleostei: Sciaenidae) from polluted and non-polluted areas from the Patos Lagoon estuary (Southern Brazil): evidences of genotoxic and immunological effects. MARINE POLLUTION BULLETIN 2006; 52:199-206. [PMID: 16380142 DOI: 10.1016/j.marpolbul.2005.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biomarkers of exposure and effect of pollutants were analyzed in croakers Micropogonias furnieri (Teleostei: Sciaenidae) captured in winter and summer in a polluted and in a non-polluted site at the Patos Lagoon estuary (Southern Brazil). Catalase and glutathione S-transferase activities (exposure biomarkers) and lipid peroxidation (effect biomarker) were analyzed in liver samples. Other two effect biomarkers were also studied: blood cells DNA damage (through comet assay and micronucleus test) and respiratory burst measurements. In a broad view, results point to an important seasonal variation of the biochemical biomarkers analyzed. However, data obtained clearly indicate that croakers collected in winter at the polluted site were subjected to a level of clastogenic agents sufficient to generate irreversible genetic damages (mutations) and impair the fish immune system.
Collapse
Affiliation(s)
- Lílian Lund Amado
- Programa de Pós-Graduação em Oceanografia Biológica, Fundação Universidade Federal do Rio Grande, Av. Itália Km 8, Campus Carreiros, 96201-900, Rio Grande, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen R, Lochmann R, Goodwin A, Praveen K, Dabrowski K, Lee KJ. Alternative complement activity and resistance to heat stress in golden shiners (Notemigonus crysoleucas) are increased by dietary vitamin C levels in excess of requirements for prevention of deficiency signs. J Nutr 2003; 133:2281-6. [PMID: 12840194 DOI: 10.1093/jn/133.7.2281] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Golden shiners (Notemigonus crysoleucas) require a dietary source of ascorbic acid (AA) for growth or survival, depending on diet composition. However, no quantitative requirements of golden shiners for AA for growth, health or survival have been determined, and specific deficiency signs have not been observed. The purpose of this study was to determine the effects of different dietary levels of AA on the growth and health of golden shiners fed diets containing 0-218.5 mg AA/kg diet for 10-16 wk. Weight gain, survival and gross deformities were assessed at 10 wk. The remaining fish were fed the same diets from wk 11-16; hematology and alternative complement activity were then assessed and a subset of live fish from each tank was exposed to elevated temperature. Gross deformities appeared in fish fed 0 mg AA/kg diet at 9 wk. The 19.5 mg AA/kg diet was sufficient to prevent the deformities and optimize survival, whereas growth did not differ among treatments. Fish fed 40.3 mg of AA/kg diet had a higher survival rate than fish fed 0 or 19.5 mg AA/kg diet after exposure to elevated temperatures (34-35.5 degrees C). Alternative complement activity and visceral AA concentrations were greater in fish fed diets with 218.5 mg AA/kg than in all other groups. The results indicate that the dietary requirement of AA for golden shiners increases in response to heat stress, and that the alternative complement activity (one index of immune competence) was strongly enhanced in fish fed a diet with approximately 10 times the amount of AA required to prevent deficiency signs.
Collapse
Affiliation(s)
- Ruguang Chen
- FSN Research Center, University of Rhode Island, West Kingston, RI 02892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yao D, Vlessidis AG, Evmiridis NP, Zhou Y, Xu S, Zhou H. Novel chemiluminescence method for detection of superoxide anions and its application to dry-cured meat. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00099-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Prakash P, Kumar GP, Laloraya M, Hemnani T, Parihar MS. Superoxide anion radical generation as a temperature stress response in the gills of freshwater catfish Heteropneustes fossilis: role in mucus exudation under elevated temperature. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:211-6. [PMID: 9669091 DOI: 10.1016/s0742-8413(97)00209-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Temperature induced superoxide anion radical (O2-) generation in vivo has been demonstrated in the gills of Heteropneustes fossilis by electron spin resonance (ESR) spin trapping. Temperature exposures from 25 degrees C to 37 degrees C for various times (1-4 hr) caused generation of O2- in the gill. The acid mucopolysaccharide test was conducted in gill sections during elevated temperatures. The results showed an increased activity of mucopolysaccharide in gills which indicate an increased mucus secretion in gills during elevated temperatures. The detectable stable levels of O2- in the gill at 32 and 37 degrees C temperature exposures point towards a probable role for this radical in the exudation of mucus under elevated temperature.
Collapse
Affiliation(s)
- P Prakash
- School of Life Sciences, Devi Ahilya University, India
| | | | | | | | | |
Collapse
|
20
|
Parihar M, Javeri T, Hemnani T, Dubey A, Prakash P. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J Therm Biol 1997. [DOI: 10.1016/s0306-4565(97)00006-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|