1
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
2
|
Campos LMG, Osório EC, Santos GLDS, Nogueira MI, Cruz-Rizzolo RJ, Pinato L. Temporal changes in calcium-binding proteins in the medial geniculate nucleus of the monkey Sapajus apella. J Chem Neuroanat 2015. [PMID: 26222835 DOI: 10.1016/j.jchemneu.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The subdivisions of the medial geniculate complex can be distinguished based on the immunostaining of calcium-binding proteins and by the properties of the neurons within each subdivision. The possibility of changes in neurochemistry in this and other central auditory areas are important aspects to understand the basis that contributing to functional variations determined by environmental cycles or the animal's cycles of activity and rest. This study investigated, for the first time, day/night differences in the amounts of parvalbumin-, calretinin- and calbindin-containing neurons in the thalamic auditory center of a non-human primate, Sapajus apella. The immunoreactivity of the PV-IR, CB-IR and CR-IR neurons demonstrated different distribution patterns among the subdivisions of the medial geniculate. Moreover, a high number of CB- and CR-IR neurons were found during day, whereas PV-IR was predominant at night. We conclude that in addition to the chemical heterogeneity of the medial geniculate nucleus with respect to the expression of calcium-binding proteins, expression also varied relative to periods of light and darkness, which may be important for a possible functional adaptation of central auditory areas to environmental changes and thus ensure the survival and development of several related functions.
Collapse
Affiliation(s)
- Leila M G Campos
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil; University of Marilia, Medical School, Marilia, SP, Brazil
| | - Elaine C Osório
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil
| | | | - Maria Inês Nogueira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | - Luciana Pinato
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil.
| |
Collapse
|
3
|
Morphological changes in the suprachiasmatic nucleus of aging female marmosets (Callithrix jacchus). BIOMED RESEARCH INTERNATIONAL 2014; 2014:243825. [PMID: 24987675 PMCID: PMC4060761 DOI: 10.1155/2014/243825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/04/2014] [Accepted: 04/18/2014] [Indexed: 12/13/2022]
Abstract
The suprachiasmatic nuclei (SCN) are pointed to as the mammals central circadian pacemaker. Aged animals show internal time disruption possibly caused by morphological and neurochemical changes in SCN components. Some studies reported changes of neuronal cells and neuroglia in the SCN of rats and nonhuman primates during aging. The effects of senescence on morphological aspects in SCN are important for understanding some alterations in biological rhythms expression. Therefore, our aim was to perform a comparative study of the morphological aspects of SCN in adult and aged female marmoset. Morphometric analysis of SCN was performed using Nissl staining, NeuN-IR, GFAP-IR, and CB-IR. A significant decrease in the SCN cells staining with Nissl, NeuN, and CB were observed in aged female marmosets compared to adults, while a significant increase in glial cells was found in aged marmosets, thus suggesting compensatory process due to neuronal loss evoked by aging.
Collapse
|
4
|
Intrinsic organization of the suprachiasmatic nucleus in the capuchin monkey. Brain Res 2013; 1543:65-72. [PMID: 24161828 DOI: 10.1016/j.brainres.2013.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/22/2013] [Accepted: 10/20/2013] [Indexed: 12/25/2022]
Abstract
The suprachiasmatic nucleus (SCN), which is the main circadian biological clock in mammals, is composed of multiple cells that function individually as independent oscillators to express the self-sustained mRNA and protein rhythms of the so-called clock genes. Knowledge regarding the presence and localization of the proteins and neuroactive substances of the SCN are essential for understanding this nucleus and for its successful manipulation. Although there have been advances in the investigation of the intrinsic organization of the SCN in rodents, little information is available in diurnal species, especially in primates. This study, which explores the pattern of expression and localization of PER2 protein in the SCN of capuchin monkey, evaluates aspects of the circadian system that are common to both primates and rodents. Here, we showed that PER2 protein immunoreactivity is higher during the light phase. Additionally, the complex organization of cells that express vasopressin, vasoactive intestinal polypeptide, neuron-specific nuclear protein, calbindin and calretinin in the SCN, as demonstrated by their immunoreactivity, reveals an intricate network that may be related to the similarities and differences reported between rodents and primates in the literature.
Collapse
|
5
|
Bottum K, Poon E, Haley B, Karmarkar S, Tischkau SA. Suprachiasmatic nucleus neurons display endogenous resistance to excitotoxicity. Exp Biol Med (Maywood) 2010; 235:237-46. [PMID: 20404040 DOI: 10.1258/ebm.2009.009244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive understanding of neuroprotective pathways is essential to progress in the battle against numerous neurodegenerative conditions. The hypothalamic suprachiasmatic nucleus (SCN) is endogenously resistant to glutamate (Glu) excitotoxicity in vivo. This study was designed to determine whether immortalized SCN neurons (SCN2.2 cells) retain this characteristic. We first established that SCN2.2 cells retained the ability to respond to Glu. SCN2.2 cells expressed N-methyl-d-aspartate (NMDA) receptor subtypes NR1 and NR2A/2B, suggesting the presence of functional receptors. mRNA for the NMDA receptor subunits NR2A and NR2B were higher in the SCN2.2 than in the control hypothalamic neurons (GT1-7). Specific NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate and d-(-)-2-amino-5-phosphonovaleric acid blocked Glu-induced activation of gene expression. SCN2.2 cells were resistant to Glu excitotoxicity compared with GT1-7 neurons as assessed with a mitochondrial function assay, cell death by trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. SCN2.2 resistance to Glu excitoxicity was retained in the presence of the broad spectrum Glu transport inhibitor, l-trans-pyrrolidine-2,4 dicarboxylate, excluding glial Glu uptake as a major neuroprotective mechanism. Collectively, these observations demonstrate endogenous neuroprotection in SCN2.2 cells; this cell line is resistant to excitotoxicity under conditions that are toxic to other immortalized cell lines. Thus, the SCN2.2 cell line may provide insights into the molecular mechanisms that confer endogenous neuroprotection in the SCN.
Collapse
Affiliation(s)
- Kathleen Bottum
- Department of Medicine, Division of Internal Medicine and Psychiatry, Southern Illinois School of Medicine, Springfield, IL 62794-9636, USA
| | | | | | | | | |
Collapse
|
6
|
Mahoney MM, Smale L, Lee TM. Daily Immediate Early Gene Expression in the Suprachiasmatic Nucleus of Male and FemaleOctodon degus. Chronobiol Int 2010; 26:821-37. [DOI: 10.1080/07420520903044265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Cohen R, Kronfeld-Schor N, Ramanathan C, Baumgras A, Smale L. The substructure of the suprachiasmatic nucleus: Similarities between nocturnal and diurnal spiny mice. BRAIN, BEHAVIOR AND EVOLUTION 2010; 75:9-22. [PMID: 20134153 DOI: 10.1159/000282172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 11/16/2009] [Indexed: 01/08/2023]
Abstract
Evolutionary transitions between nocturnal and diurnal patterns of adaptation to the day-night cycle must have involved fundamental changes in the neural mechanisms that coordinate the daily patterning of activity, but little is known about how these mechanisms differ. One reason is that information on these systems in very closely related diurnal and nocturnal species is lacking. In this study, we characterize the suprachiasmatic nucleus (SCN), the primary brain structure involved in the generation and coordination of circadian rhythms, in two members of the genus Acomys with very different activity patterns, Acomys russatus (the golden spiny mouse, diurnal) and Acomys cahirinus (the common spiny mouse, nocturnal). Immunohistochemical techniques were used to label cell bodies containing vasoactive intestinal polypeptide (VIP), vasopressin (VP), gastrin-releasing peptide (GRP) and calbindin (CalB) in the SCN, as well as two sets of inputs to it, those containing serotonin (5-HT) and neuropeptide Y (NPY), respectively. All were present in the SCN of both species and no differences between them were seen. On the basis of neuronal phenotype, the SCN was organized into three basic regions that contained VIP-immunoreactive (-ir), CalB-ir and VP-ir cells, in the ventral, middle and dorsal SCN, respectively. In the rostral SCN, GRP-ir cells were in both the VIP and the CalB cell regions, and in the caudal area they were distributed across a portion of each of the other three regions. Fibers containing NPY-ir and serotonin (5-HT)-ir were most concentrated in the areas containing VIP-ir and CalB-ir cells, respectively. The details of the spatial relationships among the labeled cells and fibers seen here are discussed in relation to different approaches investigators have taken to characterize the SCN more generally.
Collapse
Affiliation(s)
- Rotem Cohen
- Department of Zoology, Tel Aviv University, Israel.
| | | | | | | | | |
Collapse
|
8
|
Pinato L, Frazão R, Cruz-Rizzolo R, Cavalcante J, Nogueira M. Immunocytochemical characterization of the pregeniculate nucleus and distribution of retinal and neuropeptide Y terminals in the suprachiasmatic nucleus of the Cebus monkey. J Chem Neuroanat 2009; 37:207-13. [DOI: 10.1016/j.jchemneu.2009.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/18/2008] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
|
9
|
Morona R, González A. Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: Further support for newly identified subdivisions. J Comp Neurol 2008; 511:187-220. [DOI: 10.1002/cne.21832] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Kriegsfeld LJ, Mei DF, Yan L, Witkovsky P, Lesauter J, Hamada T, Silver R. Targeted mutation of the calbindin D28K gene disrupts circadian rhythmicity and entrainment. Eur J Neurosci 2008; 27:2907-21. [PMID: 18588531 DOI: 10.1111/j.1460-9568.2008.06239.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker in mammals. A salient feature of the SCN is that cells of a particular phenotype are topographically organized; this organization defines functionally distinct subregions that interact to generate coherent rhythmicity. In Syrian hamsters (Mesocricetus auratus), a dense population of directly retinorecipient calbindin D(28K) (CalB) neurons in the caudal SCN marks a subregion critical for circadian rhythmicity. In mouse SCN, a dense cluster of CalB neurons occurs during early postnatal development, but in the adult CalB neurons are dispersed through the SCN. In the adult retina CalB colocalizes with melanopsin-expressing ganglion cells. In the present study, we explored the role of CalB in modulating circadian function and photic entrainment by investigating mice with a targeted mutation of the CalB gene (CalB-/- mice). In constant darkness (DD), CalB-/- animals either become arrhythmic (40%) or exhibit low-amplitude locomotor rhythms with marked activity during subjective day (60%). Rhythmic clock gene expression is blunted in these latter animals. Importantly, CalB-/- mice exhibit anomalies in entrainment revealed following transfer from a light : dark cycle to DD. Paradoxically, responses to acute light pulses measured by behavioral phase shifts, SCN FOS protein and Period1 mRNA expression are normal. Together, the developmental pattern of CalB expression in mouse SCN, the presence of CalB in photoresponsive ganglion cells and the abnormalities seen in CalB-/- mice suggest an important role for CalB in mouse circadian function.
Collapse
Affiliation(s)
- Lance J Kriegsfeld
- Department of Psychology and Helen Wills Neuroscience Institute, 3210 Tolman Hall, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Cavalcante JS, Britto LRG, Toledo CAB, Nascimento ES, Lima RRM, Pontes ALB, Costa MSMO. Calcium-binding proteins in the circadian centers of the common marmoset (Callithrix jacchus) and the rock cavy (Kerodon rupestris) brains. Brain Res Bull 2008; 76:354-60. [PMID: 18502310 DOI: 10.1016/j.brainresbull.2008.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 01/04/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic intergeniculate leaflet (IGL) are considered to be the main centers of the mammalian circadian timing system. In primates, the IGL is included as part of the pregeniculate nucleus (PGN), a cell group located mediodorsally to the dorsal lateral geniculate nucleus. This work was carried out to comparatively evaluate the immunohistochemical expression of the calcium-binding proteins calbindin D-28k (CB), parvalbumin (PV), and calretinin (CR) into the circadian brain districts of the common marmoset and the rock cavy. In both species, although no fibers, terminals or perikarya showed PV-immunoreaction (IR) into the SCN, CB-IR perikarya labeling was detected throughout the SCN rostrocaudal extent, seeming to delimit its cytoarchitectonic borders. CR-IR perikarya and neuropil were noticed into the ventral and dorsal portions of the SCN, lacking immunoreactivity in the central core of the marmoset and filling the entire nucleus in the rock cavy. The PGN of the marmoset presented a significant number of CB-, PV-, and CR-IR perikarya throughout the nucleus. The IGL of the rocky cavy exhibited a prominent CB- and CR-IR neuropil, showing similarity to the pattern found in other rodents. By comparing with literature data from other mammals, the results of the present study suggest that CB, PV, and CR are differentially distributed into the SCN and IGL among species. They may act either in concert or in a complementary manner in the SCN and IGL, so as to participate in specific aspects of the circadian regulation.
Collapse
Affiliation(s)
- J S Cavalcante
- Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970, Natal, RN, Brazil.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cayetanot F, Deprez J, Aujard F. Calbindin D28K protein cells in a primate suprachiasmatic nucleus: localization, daily rhythm and age-related changes. Eur J Neurosci 2007; 26:2025-32. [PMID: 17897402 DOI: 10.1111/j.1460-9568.2007.05826.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the master circadian pacemaker. The SCN controls daily rhythms and synchronizes the organism to its environment and especially to photic signals. Photic signals via the retinohypothalamic tract reach the ventral part of the SCN, where the majority of calbindin-containing neurons are located. Calbindin cells seem important for the control of circadian rhythmicity. As ageing leads to marked changes in the expression of circadian rhythms, we investigated in the mouse lemur, a nocturnal primate, age-related changes in the oscillation of calbindin protein expression in SCN neurons. We used immunohistochemistry and quantitative analysis of calbindin expression in the SCN of adult and aged mouse lemurs. In this primate, a dense cluster of calbindin-positive neurons was found in the ventral part of the SCN. In adult animals, calbindin-positive SCN neurons did not exhibit daily rhythms in their number or intensity, but exhibited significant daily variations in the percentage of cells with a calbindin-positive nucleus, characterized by high values during the daytime and low values during the night. Immunoreactive intensity peaked in the middle of the daytime. Calbindin expression in the nuclei of calbindin cells in the SCN tends to be modified by ageing. The amplitude of daily variation in calbindin expression was damped, with a lower immunointensity during the daytime and a delayed decrease during the night. These changes may affect the ability of the SCN to transmit rhythmic information to other SCN cells and thereby modify the synchronization of the different cell populations in the SCN.
Collapse
|
13
|
Negroni J, Bennett NC, Cooper HM. Organization of the circadian system in the subterranean mole rat, Cryptomys hottentotus (Bathyergidae). Brain Res 2003; 967:48-62. [PMID: 12650965 DOI: 10.1016/s0006-8993(02)04208-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mole rat, Cryptomys hottentotus (Bathyergidae) is a gregarious subterranean rodent, which shows no entrainment to ambient light-dark cycles. The locomotor activity of individuals or of a whole colony, which shows no circadian rhythmicity. Since the lack of both synchronization to light-dark cycle and an endogenous rhythm of locomotor activity could be related to the organization of the circadian system, we have investigated the neuropeptidergic features of the SCN and IGL, and have used pseudorabies viral tracing methods to identify the visual and circadian pathways in this species. The precise topographic distribution of certain neuropeptide populations in the SCN differs from typical rodent pattern of organization and may be correlated with the apparent absence of light entrainment of activity and lack of endogenous rhythmicity. The IGL is highly reduced in size. This structure can nevertheless be identified by the presence of NPY and CALB positive neurons, as well as by a dense network of SP fibers. Viral tracing using intraocular injection of the PRV-Becker and PRV-Bartha strains, leads to differential infection of neurons in circadian and visual structures. With the Bartha strain, infected neurons are principally observed in the SCN, whereas the Becker strain leads primarily to infection of the dLGN and shows an anatomical regression of visual structures. Transsynaptic retrograde infection of the retina contralateral to the injected eye reveals a morphologically homogeneous population, which resemble to retinohypothalamic ganglion cells described in other mammals.
Collapse
Affiliation(s)
- Julia Negroni
- INSERM Unité 371, 'Cerveau et Vision', 18 Avenue du Doyen Lépine, 69675 Bron, France.
| | | | | |
Collapse
|
14
|
Cavalcante JS, Alves AS, Costa MSMO, Britto LRG. Differential distribution of afferents containing serotonin and neuropeptide Y within the marmoset suprachiasmatic nucleus. Brain Res 2002; 927:200-3. [PMID: 11821013 DOI: 10.1016/s0006-8993(01)03312-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y-containing fibers/terminals were immunohistochemically detected in the ventral portion of the marmoset suprachiasmatic nucleus, approximately matching the distribution of its retinal afferents. On the other hand, serotonergic fibers/terminals were found mostly in central and dorsal areas of the suprachiasmatic nucleus, almost completely sparing its ventral portion. These data may represent a morphological substrate for differential actions of serotonin and neuropeptide Y in the control of circadian rhythmicity in marmosets.
Collapse
Affiliation(s)
- Jeferson S Cavalcante
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
15
|
Mahoney MM, Nunez AA, Smale L. Calbindin and Fos within the suprachiasmatic nucleus and the adjacent hypothalamus of Arvicanthis niloticus and Rattus norvegicus. Neuroscience 2001; 99:565-75. [PMID: 11029548 DOI: 10.1016/s0306-4522(00)00212-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The suprachiasmatic nucleus is the site of the primary circadian pacemaker in mammals. The lower sub paraventricular zone that is dorsal to and receives input from the suprachiasmatic nucleus may also play a role in the regulation of circadian rhythms. Calbindin has been described in the suprachiasmatic nucleus of some mammals, and may be important in the control of endogenous rhythms. In the first study we characterized calbindin-expressing cells in the suprachiasmatic nucleus and lower sub-paraventricular zone of nocturnal and diurnal rodents. Specifically, Rattus norvegicus was compared to Arvicanthis niloticus, a primarily diurnal species within which some individuals exhibit nocturnal patterns of wheel running. Calbindin-immunoreactive cells were present in the suprachiasmatic nucleus of Arvicanthis and were most concentrated within its central region but were relatively sparse in the suprachiasmatic nucleus of Rattus. Calbindin-expressing cells were present in the lower sub-paraventricular zone of both species. In the second study we evaluated Fos expression within calbindin-immunoreactive cells in nocturnal Rattus and in Arvicanthis that were either diurnal or nocturnal with respect to wheel-running. All animals were kept on a 12:12 light/dark cycle and perfused at either 4h after lights-on or 4h after lights-off. In the suprachiasmatic nucleus in both species, Fos expression was elevated during the day relative to the night but less than 1% of calbindin cells contained Fos in Arvicanthis, compared with 13-17% in Rattus. In the lower sub-paraventricular zone of both species, 9-14% of calbindin cells expressed Fos, and this proportion did not change as a function of time. Among Arvicanthis, the number of calbindin expressing neurons in the lower sub-paraventricular zone was influenced by an interaction between the wheel running patterns (nocturnal vs diurnal) and time of day. Thus, the number of calbindin-positive cells within the suprachiasmatic nucleus differed in Arvicanthis and Rattus, whereas the number of calbindin-positive cells within the lower sub-paraventricular zone differed in nocturnal and diurnal Arvicanthis. Our examination of R. norvegicus and A. niloticus suggests potentially important relationships between calbindin-containing neurons and whether animals are nocturnal or diurnal. Specifically, rats had more Fos expression in calbindin containing cells in the suprachiasmatic nucleus than Arvicanthis. In contrast, Arvicanthis exhibiting diurnal and nocturnal patterns of wheel-running differed in the number of calbindin-containing cells in the lower sub-paraventricular zone, dorsal to the suprachiasmatic nucleus.
Collapse
Affiliation(s)
- M M Mahoney
- Department of Zoology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
16
|
Marshall ST, Fa'anunu AI, Bult A. Calretinin is not a marker for subdivisions within the suprachiasmatic nucleus. Brain Res 2000; 854:216-9. [PMID: 10784124 DOI: 10.1016/s0006-8993(99)02263-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, we report the immunocytochemical localization of the calcium-binding protein calretinin (CAL) in the suprachiasmatic nuclei (SCN) of male and female rodents including rats, mice, golden hamsters, and Arvicanthis niloticus. The results revealed that CAL is present in different subdivisions of the SCN in the different species studied and CAL can, therefore, not be considered a marker for particular subdivisions within the SCN. No differences were found between males and females.
Collapse
Affiliation(s)
- S T Marshall
- Biology Department, Middlebury College, VT 05753, USA
| | | | | |
Collapse
|
17
|
Costa MS, Santee UR, Cavalcante JS, Moraes PR, Santos NP, Britto LR. Retinohypothalamic projections in the common marmoset (Callithrix jacchus): A study using cholera toxin subunit B. J Comp Neurol 1999; 415:393-403. [PMID: 10553121 DOI: 10.1002/(sici)1096-9861(19991220)415:3<393::aid-cne5>3.0.co;2-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinal projections in vertebrates reach the primary visual, accessory optic, and circadian timing structures. The central feature of the circadian timing system is the principal circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. The direct projections from the retina to the SCN are considered the entrainment pathway of the circadian timing system. In this study, unilateral intravitreal injections of cholera toxin subunit B were used to trace the retinal projections to the marmoset hypothalamus. The retinohypothalamic tract reaches the ventral suprachiasmatic nucleus bilaterally, as anticipated from previous studies. However, labeled fibers were found in several other hypothalamic regions, such as the medial and lateral preoptic areas, supraoptic nucleus, anterior and lateral hypothalamic areas, retrochiasmatic area, and subparaventricular zone. These results reveal new aspects of retinohypothalamic projection in primates and are discussed in terms of their implications for circadian as well as noncircadian control systems.
Collapse
Affiliation(s)
- M S Costa
- Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil.
| | | | | | | | | | | |
Collapse
|
18
|
Chevassus-au-Louis N, Cooper HM. Is there a geniculohypothalamic tract in primates? A comparative immunohistochemical study in the circadian system of strepsirhine and haplorhine species. Brain Res 1998; 805:213-9. [PMID: 9733968 DOI: 10.1016/s0006-8993(98)00741-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In rodents, the circadian rhythm generated by the hypothalamic suprachiasmatic nucleus (SCN) is modulated by two types of phenomena: photic phase-shifts, mediated by the retinohypothalamic pathway and non-photic phase-shifts mediated by the projection of the intergeniculate leaflet (IGL) to the SCN which contains the neuropeptide Y (NPY). In primates, the retinohypothalamic pathway has been well-demonstrated but very little is known about the geniculohypothalamic tract. This prompted us to study NPY immunoreactivity in both the SCN and the IGL in species representative of the three main primate lineages: prosimians (Microcebus), New World monkeys (Callithrix) and Old World monkeys (Macacca). In species studied, we found a region in the pregeniculate nucleus containing both NPY immunopositive cells and substance P immunopositive fibres that we identified as the IGL. During evolution, this structure has moved from a ventral to a dorsomedial position relative to the adjacent dorsal lateral geniculate nucleus. By contrast, NPY-IP fibres in the SCN are dense in prosimians, but are sparse or absent in other primate species. We suggest that either the geniculohypothalamic projection is absent in higher primates as is the case in humans, or is absent in diurnal mammals, or contains a different peptide, or that NPY immunoreactivity varies according to other parameters.
Collapse
|