1
|
Inositol hexakisphosphate primes syndapin I/PACSIN 1 activation in endocytosis. Cell Mol Life Sci 2022; 79:286. [PMID: 35534740 PMCID: PMC9085685 DOI: 10.1007/s00018-022-04305-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
Abstract
Endocytosis is controlled by a well-orchestrated molecular machinery, where the individual players as well as their precise interactions are not fully understood. We now show that syndapin I/PACSIN 1 is expressed in pancreatic β cells and that its knockdown abrogates β cell endocytosis leading to disturbed plasma membrane protein homeostasis, as exemplified by an elevated density of L-type Ca2+ channels. Intriguingly, inositol hexakisphosphate (InsP6) activates casein kinase 2 (CK2) that phosphorylates syndapin I/PACSIN 1, thereby promoting interactions between syndapin I/PACSIN 1 and neural Wiskott–Aldrich syndrome protein (N-WASP) and driving β cell endocytosis. Dominant-negative interference with endogenous syndapin I/PACSIN 1 protein complexes, by overexpression of the syndapin I/PACSIN 1 SH3 domain, decreases InsP6-stimulated endocytosis. InsP6 thus promotes syndapin I/PACSIN 1 priming by CK2-dependent phosphorylation, which endows the syndapin I/PACSIN 1 SH3 domain with the capability to interact with the endocytic machinery and thereby initiate endocytosis, as exemplified in β cells.
Collapse
|
2
|
Dumont V, Lehtonen S. PACSIN proteins in vivo: Roles in development and physiology. Acta Physiol (Oxf) 2022; 234:e13783. [PMID: 34990060 PMCID: PMC9285741 DOI: 10.1111/apha.13783] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
Protein kinase C and casein kinase substrate in neurons (PACSINs), or syndapins (synaptic dynamin‐associated proteins), are a family of proteins involved in the regulation of cell cytoskeleton, intracellular trafficking and signalling. Over the last twenty years, PACSINs have been mostly studied in the in vitro and ex vivo settings, and only in the last decade reports on their function in vivo have emerged. We first summarize the identification, structure and cellular functions of PACSINs, and then focus on the relevance of PACSINs in vivo. During development in various model organisms, PACSINs participate in diverse processes, such as neural crest cell development, gastrulation, laterality development and neuromuscular junction formation. In mouse, PACSIN2 regulates angiogenesis during retinal development and in human, PACSIN2 associates with monosomy and embryonic implantation. In adulthood, PACSIN1 has been extensively studied in the brain and shown to regulate neuromorphogenesis, receptor trafficking and synaptic plasticity. Several genetic studies suggest a role for PACSIN1 in the development of schizophrenia, which is also supported by the phenotype of mice depleted of PACSIN1. PACSIN2 plays an essential role in the maintenance of intestinal homeostasis and participates in kidney repair processes after injury. PACSIN3 is abundant in muscle tissue and necessary for caveolar biogenesis to create membrane reservoirs, thus controlling muscle function, and has been linked to certain genetic muscular disorders. The above examples illustrate the importance of PACSINs in diverse physiological or tissue repair processes in various organs, and associations to diseases when their functions are disturbed.
Collapse
Affiliation(s)
- Vincent Dumont
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Pathology University of Helsinki Helsinki Finland
| |
Collapse
|
3
|
Pozhidaev IV, Boiko AS, Loonen AJM, Paderina DZ, Fedorenko OY, Tenin G, Kornetova EG, Semke AV, Bokhan NA, Wilffert B, Ivanova SA. Association of Cholinergic Muscarinic M4 Receptor Gene Polymorphism with Schizophrenia. APPLICATION OF CLINICAL GENETICS 2020; 13:97-105. [PMID: 32368127 PMCID: PMC7183770 DOI: 10.2147/tacg.s247174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Background Previous studies have linked muscarinic M4 receptors (CHRM4) to schizophrenia. Specifically, the rs2067482 polymorphism was found to be highly associated with this disease. Purpose To test whether rs2067482 and rs72910092 are potential risk factors for schizophrenia and/or pharmacogenetic markers for antipsychotic-induced tardive dyskinesia. Patients and Methods We genotyped DNA of 449 patients with schizophrenia and 134 healthy controls for rs2067482 and rs72910092 polymorphisms of the CHRM4 gene with the use of the MassARRAY® System by Agena Bioscience. Mann–Whitney test was used to compare qualitative traits and χ2 test was used for categorical traits. Results The frequency of genotypes and alleles of rs72910092 did not differ between patients with schizophrenia and control subjects. We did not reveal any statistical differences for both rs2067482 and rs72910092 between schizophrenia patients with and without tardive dyskinesia. The frequency of the C allele of the polymorphic variant rs2067482 was significantly higher in healthy persons compared to patients with schizophrenia (OR=0.51, 95% CI [0.33–0.80]; p=0.003). Accordingly, the CC genotype was found significantly more often in healthy persons compared to patients with schizophrenia (OR=0.49, 95% CI [0.31–0.80]; p=0.010). Conclusion Our study found the presence of the minor allele (T) of rs2067482 variant being associated with schizophrenia. We argue that the association of rs2067482 with schizophrenia may be via its regulatory effect on some other gene with protein kinase C and casein Kknase substrate in neurons 3 (PACSIN3) as a possible candidate. Neither rs2067482 nor rs72910092 is associated with tardive dyskinesia.
Collapse
Affiliation(s)
- Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Anton J M Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Diana Z Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Gennadiy Tenin
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
4
|
Postema MM, Grega-Larson NE, Meenderink LM, Tyska MJ. PACSIN2-dependent apical endocytosis regulates the morphology of epithelial microvilli. Mol Biol Cell 2019; 30:2515-2526. [PMID: 31390291 PMCID: PMC6743356 DOI: 10.1091/mbc.e19-06-0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apical microvilli are critical for the homeostasis of transporting epithelia, yet mechanisms that control the assembly and morphology of these protrusions remain poorly understood. Previous studies in intestinal epithelial cell lines suggested a role for the F-BAR domain protein PACSIN2 in normal microvillar assembly. Here we report the phenotype of PACSIN2 KO mice and provide evidence that through its role in promoting apical endocytosis, this molecule plays a role in controlling microvillar morphology. PACSIN2 KO enterocytes exhibit reduced numbers of microvilli and defects in the microvillar ultrastructure, with membranes lifting away from rootlets of core bundles. Dynamin2, a PACSIN2 binding partner, and other endocytic factors were also lost from their normal localization near microvillar rootlets. To determine whether loss of endocytic machinery could explain defects in microvillar morphology, we examined the impact of PACSIN2 KD and endocytosis inhibition on live intestinal epithelial cells. These assays revealed that when endocytic vesicle scission fails, tubules are pulled into the cytoplasm and this, in turn, leads to a membrane-lifting phenomenon reminiscent of that observed at PACSIN2 KO brush borders. These findings lead to a new model where inward forces generated by endocytic machinery on the plasma membrane control the membrane wrapping of cell surface protrusions.
Collapse
Affiliation(s)
- Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| | - Leslie M Meenderink
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| |
Collapse
|
5
|
Tabet AC, Rolland T, Ducloy M, Lévy J, Buratti J, Mathieu A, Haye D, Perrin L, Dupont C, Passemard S, Capri Y, Verloes A, Drunat S, Keren B, Mignot C, Marey I, Jacquette A, Whalen S, Pipiras E, Benzacken B, Chantot-Bastaraud S, Afenjar A, Héron D, Le Caignec C, Beneteau C, Pichon O, Isidor B, David A, El Khattabi L, Kemeny S, Gouas L, Vago P, Mosca-Boidron AL, Faivre L, Missirian C, Philip N, Sanlaville D, Edery P, Satre V, Coutton C, Devillard F, Dieterich K, Vuillaume ML, Rooryck C, Lacombe D, Pinson L, Gatinois V, Puechberty J, Chiesa J, Lespinasse J, Dubourg C, Quelin C, Fradin M, Journel H, Toutain A, Martin D, Benmansour A, Leblond CS, Toro R, Amsellem F, Delorme R, Bourgeron T. A framework to identify contributing genes in patients with Phelan-McDermid syndrome. NPJ Genom Med 2017; 2:32. [PMID: 29263841 PMCID: PMC5677962 DOI: 10.1038/s41525-017-0035-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/23/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is characterized by a variety of clinical symptoms with heterogeneous degrees of severity, including intellectual disability (ID), absent or delayed speech, and autism spectrum disorders (ASD). It results from a deletion of the distal part of chromosome 22q13 that in most cases includes the SHANK3 gene. SHANK3 is considered a major gene for PMS, but the factors that modulate the severity of the syndrome remain largely unknown. In this study, we investigated 85 patients with different 22q13 rearrangements (78 deletions and 7 duplications). We first explored the clinical features associated with PMS, and provide evidence for frequent corpus callosum abnormalities in 28% of 35 patients with brain imaging data. We then mapped several candidate genomic regions at the 22q13 region associated with high risk of clinical features, and suggest a second locus at 22q13 associated with absence of speech. Finally, in some cases, we identified additional clinically relevant copy-number variants (CNVs) at loci associated with ASD, such as 16p11.2 and 15q11q13, which could modulate the severity of the syndrome. We also report an inherited SHANK3 deletion transmitted to five affected daughters by a mother without ID nor ASD, suggesting that some individuals could compensate for such mutations. In summary, we shed light on the genotype-phenotype relationship of patients with PMS, a step towards the identification of compensatory mechanisms for a better prognosis and possibly treatments of patients with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anne-Claude Tabet
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Marie Ducloy
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Jonathan Lévy
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Julien Buratti
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Alexandre Mathieu
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Damien Haye
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Laurence Perrin
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Céline Dupont
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | | | - Yline Capri
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Alain Verloes
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Séverine Drunat
- Genetics Department, Robert Debré Hospital, APHP, Paris, France
| | - Boris Keren
- Cytogenetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Cyril Mignot
- Neurogenetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Isabelle Marey
- Clinical Genetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Aurélia Jacquette
- Clinical Genetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Sandra Whalen
- Clinical Genetics Unit, Pitié Salpetrière Hospital, APHP, Paris, France
| | - Eva Pipiras
- Cytogenetics Unit, Jean Verdier Hospital, APHP, Bondy, France
| | | | | | | | - Delphine Héron
- Clinical Genetics Unit, Trousseau Hospital, APHP, Paris, France
| | | | | | | | | | - Albert David
- Clinical Genetics Unit, Nantes Hospital, Nantes, France
| | | | | | | | - Philippe Vago
- Genetics Unit, CHU Estaing, Clermont-Ferrand, France
| | | | | | | | - Nicole Philip
- Genetics Unit, La Timone Hospital, Marseille, France
| | | | - Patrick Edery
- Clinical Genetics Unit, Lyon Civil Hospital, Lyon, France
| | | | | | | | | | | | | | | | - Lucile Pinson
- Genetics Unit, Montpellier Hospital, Montpellier, France
| | | | | | | | - James Lespinasse
- Cytogenetics Unit, Chambéry-Hôtel-Dieu Hospital, Chambéry, France
| | | | | | | | | | | | | | | | - Claire S. Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| | - Frédérique Amsellem
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Université Paris Diderot, Paris, France
| |
Collapse
|
6
|
H.M. Y, Kumar S, Dubey PP, Modi RP, Chaudhary R, A. SK, Ghosh SK, Sarkar M, B. S. Profiling of sperm gene transcripts in crossbred ( Bos taurus x Bos indicus ) bulls. Anim Reprod Sci 2017; 177:25-34. [DOI: 10.1016/j.anireprosci.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022]
|
7
|
Samasilp P, Lopin K, Chan SA, Ramachandran R, Smith C. Syndapin 3 modulates fusion pore expansion in mouse neuroendocrine chromaffin cells. Am J Physiol Cell Physiol 2014; 306:C831-43. [PMID: 24500282 DOI: 10.1152/ajpcell.00291.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenal neuroendocrine chromaffin cells receive excitatory synaptic input from the sympathetic nervous system and secrete hormones into the peripheral circulation. Under basal sympathetic tone, modest amounts of freely soluble catecholamine are selectively released through a restricted fusion pore formed between the secretory granule and the plasma membrane. Upon activation of the sympathoadrenal stress reflex, elevated stimulation drives fusion pore expansion, resulting in increased catecholamine secretion and facilitating release of copackaged peptide hormones. Thus regulated expansion of the secretory fusion pore is a control point for differential hormone release of the sympathoadrenal stress response. Previous work has shown that syndapin 1 deletion alters transmitter release and that the dynamin 1-syndapin 1 interaction is necessary for coupled endocytosis in neurons. Dynamin has also been shown to be involved in regulation of fusion pore expansion in neuroendocrine chromaffin cells through an activity-dependent association with syndapin. However, it is not known which syndapin isoform(s) contributes to pore dynamics in neuroendocrine cells. Nor is it known at what stage of the secretion process dynamin and syndapin associate to modulate pore expansion. Here we investigate the expression and localization of syndapin isoforms and determine which are involved in mediating fusion pore expansion. We show that all syndapin isoforms are expressed in the adrenal medulla. Mutation of the SH3 dynamin-binding domain of all syndapin isoforms shows that fusion pore expansion and catecholamine release are limited specifically by mutation of syndapin 3. The mutation also disrupts targeting of syndapin 3 to the cell periphery. Syndapin 3 exists in a persistent colocalized state with dynamin 1.
Collapse
Affiliation(s)
- Prattana Samasilp
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| | | | | | | | | |
Collapse
|
8
|
Quan A, Robinson PJ. Syndapin--a membrane remodelling and endocytic F-BAR protein. FEBS J 2013; 280:5198-212. [PMID: 23668323 DOI: 10.1111/febs.12343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/17/2022]
Abstract
Syndapin [also called PACSIN (protein kinase C and casein kinase II interacting protein)] is an Fes-CIP4 homology Bin-amphiphysin-Rvs161/167 (F-BAR) and Src-homology 3 domain-containing protein. Three genes give rise to three main isoforms in mammalian cells. They each function in different endocytic and vesicle trafficking pathways and provide critical links between the cytoskeletal network in different cellular processes, such as neuronal morphogenesis and cell migration. The membrane remodelling activity of syndapin via its F-BAR domain and its interaction partners, such as dynamin and neural Wiskott-Aldrich syndrome protein binding to its Src-homology 3 domain, are important with respect to its function. Its various partner proteins provide insights into its mechanism of action, as well as its differential roles in these cellular processes. Signalling pathways leading to the regulation of syndapin function by phosphorylation are now contributing to our understanding of the broader functions of this family of proteins.
Collapse
Affiliation(s)
- Annie Quan
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, New South Wales, Australia
| | | |
Collapse
|
9
|
Esashi E, Bao M, Wang YH, Cao W, Liu YJ. PACSIN1 regulates the TLR7/9-mediated type I interferon response in plasmacytoid dendritic cells. Eur J Immunol 2012; 42:573-9. [PMID: 22488361 DOI: 10.1002/eji.201142045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are the professional interferon (IFN)-producing cells of the immune system. pDCs specifically express Toll-like receptor (TLR)7 and TLR9 molecules and produce massive amounts of type I IFN by sensing microbial nucleic acids via TLR7 and TLR9. Here we report that protein kinase C and casein kinase substrate in neurons (PACSIN) 1, is specifically expressed in human and mouse pDCs. Knockdown of PACSIN1 by short hairpin RNA (shRNA) in a human pDC cell line significantly inhibited the type I IFN response of the pDCs to TLR9 ligand. PACSIN1-deficient mice exhibited normal levels of conventional DCs and pDCs, demonstrating that development of pDCs was intact although PACSIN1-deficient pDCs showed reduced levels of IFN-α production in response to both cytosine guanine dinucleotide (CpG)-oligonucleotide (ODN) and virus. In contrast, the production of proinflammatory cytokines in response to those ligands was not affected in PACSIN1-deficient pDCs, suggesting that PACSIN1 represents a pDC-specific adaptor molecule that plays a specific role in the type I IFN signaling cascade.
Collapse
Affiliation(s)
- Eiji Esashi
- Department of Immunology and Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
10
|
Bai X, Meng G, Zheng X. Cloning, purification, crystallization and preliminary X-ray diffraction analysis of mouse PACSIN 3 protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:159-62. [PMID: 22297988 DOI: 10.1107/s1744309111049116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/17/2011] [Indexed: 11/10/2022]
Abstract
PACSIN-family proteins are cytoplasmic proteins that have vesicle-transport, membrane-dynamics, actin-reorganization and microtubule activities. Here, the N-terminal F-BAR domain of mouse PACSIN 3, which contains 341 amino acids, was successfully cloned, purified and crystallized. The crystal of PACSIN 3 (1-341) diffracted to 2.6 Å resolution and belonged to space group P2(1), with unit-cell parameters a = 46.9, b = 54.7, c = 193.7 Å, α = 90, β = 96.9, γ = 90°. These data should provide further information on PACSIN-family protein structures.
Collapse
Affiliation(s)
- Xiaoyun Bai
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | | | | |
Collapse
|
11
|
Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J, Mägi R, Sharp S, Jackson AU, Assimes TL, Shrader P, Knowles JW, Zethelius B, Abbasi FA, Bergman RN, Bergmann A, Berne C, Boehnke M, Bonnycastle LL, Bornstein SR, Buchanan TA, Bumpstead SJ, Böttcher Y, Chines P, Collins FS, Cooper CC, Dennison EM, Erdos MR, Ferrannini E, Fox CS, Graessler J, Hao K, Isomaa B, Jameson KA, Kovacs P, Kuusisto J, Laakso M, Ladenvall C, Mohlke KL, Morken MA, Narisu N, Nathan DM, Pascoe L, Payne F, Petrie JR, Sayer AA, Schwarz PEH, Scott LJ, Stringham HM, Stumvoll M, Swift AJ, Syvänen AC, Tuomi T, Tuomilehto J, Tönjes A, Valle TT, Williams GH, Lind L, Barroso I, Quertermous T, Walker M, Wareham NJ, Meigs JB, McCarthy MI, Groop L, Watanabe RM, Florez JC. Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans. Diabetes 2010; 59:1266-75. [PMID: 20185807 PMCID: PMC2857908 DOI: 10.2337/db09-1568] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
Collapse
Affiliation(s)
- Erik Ingelsson
- Corresponding authors: Erik Ingelsson, ; Leif Groop, ; Richard M. Watanabe, ; Jose C. Florez,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Leif Groop
- Corresponding authors: Erik Ingelsson, ; Leif Groop, ; Richard M. Watanabe, ; Jose C. Florez,
| | - Richard M. Watanabe
- Corresponding authors: Erik Ingelsson, ; Leif Groop, ; Richard M. Watanabe, ; Jose C. Florez,
| | - Jose C. Florez
- Corresponding authors: Erik Ingelsson, ; Leif Groop, ; Richard M. Watanabe, ; Jose C. Florez,
| | | |
Collapse
|
12
|
Edeling MA, Sanker S, Shima T, Umasankar PK, Höning S, Kim HY, Davidson LA, Watkins SC, Tsang M, Owen DJ, Traub LM. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development. PLoS One 2009; 4:e8150. [PMID: 19997509 PMCID: PMC2780292 DOI: 10.1371/journal.pone.0008150] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022] Open
Abstract
PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.
Collapse
Affiliation(s)
- Melissa A. Edeling
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Subramaniam Sanker
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaki Shima
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - P. K. Umasankar
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Stefan Höning
- Institute of Biochemistry I and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Hye Y. Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michael Tsang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David J. Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Linton M. Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
PACSIN2 regulates cell adhesion during gastrulation in Xenopus laevis. Dev Biol 2008; 319:86-99. [PMID: 18495106 DOI: 10.1016/j.ydbio.2008.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 02/05/2023]
Abstract
We previously identified the adaptor protein PACSIN2 as a negative regulator of ADAM13 proteolytic function. In Xenopus embryos, PACSIN2 is ubiquitously expressed, suggesting that PACSIN2 may control other proteins during development. To investigate this possibility, we studied PACSIN2 function during Xenopus gastrulation and in XTC cells. Our results show that PACSIN2 is localized to the plasma membrane via its coiled-coil domain. We also show that increased levels of PACSIN2 in embryos inhibit gastrulation, fibronectin (FN) fibrillogenesis and the ability of ectodermal cells to spread on a FN substrate. These effects require PACSIN2 coiled-coil domain and are not due to a reduction of FN or integrin expression and/or trafficking. The expression of a Mitochondria Anchored PACSIN2 (PACSIN2-MA) sequesters wild type PACSIN2 to mitochondria, and blocks gastrulation without interfering with cell spreading or FN fibrillogenesis but perturbs both epiboly and convergence/extension. In XTC cells, the over-expression of PACSIN2 but not PACSIN2-MA prevents the localization of integrin beta1 to focal adhesions (FA) and filamin to stress fiber. PACSIN2-MA prevents filamin localization to membrane ruffles but not to stress fiber. We propose that PACSIN2 may regulate gastrulation by controlling the population of activated alpha5beta1 integrin and cytoskeleton strength during cell movement.
Collapse
|
14
|
D'hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, Voets T, Nilius B. Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 2008; 283:6272-80. [PMID: 18174177 DOI: 10.1074/jbc.m706386200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV4, a member of the vanilloid subfamily of the transient receptor potential (TRP) channels, is activated by a variety of stimuli, including cell swelling, moderate heat, and chemical compounds such as synthetic 4alpha-phorbol esters. TRPV4 displays a widespread expression in various cells and tissues and has been implicated in diverse physiological processes, including osmotic homeostasis, thermo- and mechanosensation, vasorelaxation, tuning of neuronal excitability, and bladder voiding. The mechanisms that regulate TRPV4 in these different physiological settings are currently poorly understood. We have recently shown that the relative amount of TRPV4 in the plasma membrane is enhanced by interaction with the SH3 domain of PACSIN 3, a member of the PACSIN family of proteins involved in synaptic vesicular membrane trafficking and endocytosis. Here we demonstrate that PACSIN 3 strongly inhibits the basal activity of TRPV4 and its activation by cell swelling and heat, while leaving channel gating induced by the synthetic ligand 4alpha-phorbol 12,13-didecanoate unaffected. A single proline mutation in the SH3 domain of PACSIN 3 abolishes its inhibitory effect on TRPV4, indicating that PACSIN 3 must bind to the channel to modulate its function. In line herewith, mutations at specific proline residues in the N terminus of TRPV4 abolish binding of PACSIN 3 and render the channel insensitive to PACSIN 3-induced inhibition. Taken together, these data suggest that PACSIN 3 acts as an auxiliary protein of TRPV4 channel that not only affects the channel's subcellular localization but also modulates its function in a stimulus-specific manner.
Collapse
Affiliation(s)
- Dieter D'hoedt
- Department of Physiology, Katholieke Universiteit Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49 Bus 802, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Charlet-Berguerand N, Feuerhahn S, Kong SE, Ziserman H, Conaway JW, Conaway R, Egly JM. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J 2006; 25:5481-91. [PMID: 17110932 PMCID: PMC1679758 DOI: 10.1038/sj.emboj.7601403] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/04/2006] [Indexed: 12/15/2022] Open
Abstract
Oxidative lesions represent the most abundant DNA lesions within the cell. In the present study, we investigated the impact of the oxidative lesions 8-oxoguanine, thymine glycol and 5-hydroxyuracil on RNA polymerase II (RNA pol II) transcription using a well-defined in vitro transcription system. We found that in a purified, reconstituted transcription system, these lesions block elongation by RNA pol II to different extents, depending on the type of lesion. Suggesting the presence of a bypass activity, the block to elongation is alleviated when transcription is carried out in HeLa cell nuclear extracts. By purifying this activity, we discovered that TFIIF could promote elongation through a thymine glycol lesion. The elongation factors Elongin and CSB, but not TFIIS, can also stimulate bypass of thymine glycol lesions, whereas Elongin, CSB and TFIIS can all enhance bypass of an 8-oxoguanine lesion. By increasing the efficiency with which RNA pol II reads through oxidative lesions, elongation factors can contribute to transcriptional mutagenesis, an activity that could have implications for the generation or progression of human diseases.
Collapse
Affiliation(s)
| | - Sascha Feuerhahn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, CU Strasbourg, France
| | | | - Howard Ziserman
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ronald Conaway
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jean Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, CU Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex 67000, CU Strasbourg, France. Tel.: +33 388 65 34 47; Fax: +33 388 65 32 01; E-mail:
| |
Collapse
|
16
|
Cuajungco MP, Grimm C, Oshima K, D'hoedt D, Nilius B, Mensenkamp AR, Bindels RJM, Plomann M, Heller S. PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 2006; 281:18753-62. [PMID: 16627472 DOI: 10.1074/jbc.m602452200] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV4 is a cation channel that responds to a variety of stimuli including mechanical forces, temperature, and ligand binding. We set out to identify TRPV4-interacting proteins by performing yeast two-hybrid screens, and we isolated with the avian TRPV4 amino terminus the chicken orthologues of mammalian PACSINs 1 and 3. The PACSINs are a protein family consisting of three members that have been implicated in synaptic vesicular membrane trafficking and regulation of dynamin-mediated endocytotic processes. In biochemical interaction assays we found that all three murine PACSIN isoforms can bind to the amino terminus of rodent TRPV4. No member of the PACSIN protein family was able to biochemically interact with TRPV1 and TRPV2. Co-expression of PACSIN 3, but not PACSINs 1 and 2, shifted the ratio of plasma membrane-associated versus cytosolic TRPV4 toward an apparent increase of plasma membrane-associated TRPV4 protein. A similar shift was also observable when we blocked dynamin-mediated endocytotic processes, suggesting that PACSIN 3 specifically affects the endocytosis of TRPV4, thereby modulating the subcellular localization of the ion channel. Mutational analysis shows that the interaction of the two proteins requires both a TRPV4-specific proline-rich domain upstream of the ankyrin repeats of the channel and the carboxyl-terminal Src homology 3 domain of PACSIN 3. Such a functional interaction could be important in cell types that show distribution of both proteins to the same subcellular regions such as renal tubule cells where the proteins are associated with the luminal plasma membrane.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Johnson SE, Winner DG, Wang X. Ran binding protein 9 interacts with Raf kinase but does not contribute to downstream ERK1/2 activation in skeletal myoblasts. Biochem Biophys Res Commun 2006; 340:409-16. [PMID: 16364241 DOI: 10.1016/j.bbrc.2005.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Raf kinase is the upstream activator of MEK1/2 leading to phosphorylation and activation of ERK1/2. Sustained activation of Raf represses skeletal muscle-specific reporter gene transcription and formation of multinucleated myofibers. Inhibition of myogenesis by activated Raf involves downstream ERK1/2 as well as undefined mediators. To identify Raf-interacting proteins that may influence repression of muscle formation, a yeast two-hybrid screen was performed using a MEK1-binding defective Raf (RafBXB-T481A) as bait. Twenty cDNAs coding for Raf-interacting proteins were identified including Ran binding protein 9 (RanBP9), a protein previously reported to interact with receptor tyrosine kinases. Forced expression of RanBP9 in myogenic cells did not alter myogenesis. Co-expression of RanBP9 with constitutively active RafBXB, but not RafBXB-T481A, synergistically inhibited MyoD-directed muscle reporter gene transcription. Knockdown of RanBP9 expression did not restore the differentiation program to Raf-expressing myoblasts. Thus, RanBP9 physically associates with Raf but does not substantially contribute to the inhibitory actions of the kinase.
Collapse
|
18
|
Xu Y, Shi H, Wei S, Wong SH, Hong W. Mutually exclusive interactions of EHD1 with GS32 and syndapin II. Mol Membr Biol 2005; 21:269-77. [PMID: 15371016 DOI: 10.1080/09687680410001716871] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
GS32/SNAP-29 is a SNAP-25-like SNARE and has been shown to interact with syntaxin 6. Using immobilized recombinant GS32, we have recovered EHD1 as a major GS32-interacting protein from total HeLa cell extracts. This interaction is mediated by the EH domain of EHD1 and the N-terminal NPF-containing 17-residue region of GS32. Co-immunoprecipitation suggests that GS32 could also interact with EHD1 in intact cells. When immobilized GST-EHD1 was used to fish out interacting proteins from total brain extracts, syndapin II was identified as a major interacting partner. Similar to the GS32-EHD1 interaction, syndapin II also interacts with the EH domain of EHD1 via its NPF repeat region. Interaction of endogenous EHD1 and syndapin II was also established by co-immunoprecipitation. Furthermore, interaction of GS32 and syndapin II with EHD1 was shown to be mutually exclusive, suggesting that EHD1 may regulate/participate in the functional pathways of both GS32 and syndapin II in a mutual exclusive manner. Opposing roles of GS32 and syndapin II in regulating the surface level of transferrin receptor (TfR) were observed.
Collapse
Affiliation(s)
- Yue Xu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | |
Collapse
|
19
|
Kessels MM, Qualmann B. The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci 2004; 117:3077-86. [PMID: 15226389 DOI: 10.1242/jcs.01290] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syndapins – also called PACSINs – are highly conserved Src-homology 3 (SH3)-domain-containing proteins that seem to exist in all multicellular eukaryotes. They interact with the large GTPase dynamin and several other proteins implicated in vesicle trafficking. Syndapin-dynamin complexes appear to play an important role in vesicle fission at different donor membranes, including the plasma membrane (endocytosis) and Golgi membranes. In addition, syndapins are implicated in later steps of vesicle cycling in neuronal and non-neuronal cells. Syndapins also interact with N-WASP, a potent activator of the Arp2/3 complex that forms a critical part of the actin polymerization machinery. Syndapin oligomers can thereby couple bursts of actin polymerization with the vesicle fission step involving dynamins. This allows newly formed vesicles to move away from the donor membrane driven by actin polymerization. Syndapins also engage in additional interactions with molecules involved in several signal transduction pathways, producing crosstalk at the interface between membrane trafficking and the cytoskeleton. Given the distinct expression patterns of the different syndapins and their splice forms, these proteins could have isoform-specific functions.
Collapse
Affiliation(s)
- Michael M Kessels
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | | |
Collapse
|
20
|
Abstract
Regulated interactions between short, unstructured amino acid sequences and modular protein domains are central to cell signaling. Here we use synthetic peptides in "active" (e.g. phosphorylated) and "control" (e.g. non-phosphorylated) forms as baits in affinity pull-down experiments to determine such interactions by quantitative proteomics. Stable isotope labeling by amino acids in cell culture distinguishes specific binders directly by the isotope ratios determined by mass spectrometry (Blagoev, B., Kratchmarova, I., Ong, S.-E., Nielsen, M., Foster, L. J., and Mann, M. (2003) Nat. Biotechnol. 21, 315-318). A tyrosine-phosphorylated peptide of the epidermal growth factor receptor specifically retrieved the Src homology domain (SH) 2- and SH3 domain-containing adapter protein Grb2. A proline-rich sequence of Son of Sevenless also specifically bound Grb2, demonstrating that the screen maintains specificity with low affinity interactions. The proline-rich Sos peptide retrieved only SH3 domain containing proteins as specific binding partners. Two of these, Pacsin 3 and Sorting Nexin 9, were confirmed by immunoprecipitation. Our data are consistent with a change in the role of Sos from Ras-dependent signaling to actin remodeling/endocytic signaling events by a proline-SH3 domain switch.
Collapse
Affiliation(s)
- Waltraud X Schulze
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense
| | | |
Collapse
|
21
|
Mori S, Tanaka M, Nanba D, Nishiwaki E, Ishiguro H, Higashiyama S, Matsuura N. PACSIN3 binds ADAM12/meltrin alpha and up-regulates ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J Biol Chem 2003; 278:46029-34. [PMID: 12952982 DOI: 10.1074/jbc.m306393200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A disintegrin and metalloprotease 12 (ADAM12/meltrin alpha) is a key enzyme implicated in the ectodomain shedding of membrane-anchored heparin-binding epidermal growth factor (EGF)-like growth factor (proHB-EGF)-dependent epidermal growth factor receptor (EGFR) transactivation. However, the activation mechanisms of ADAM12 are obscure. To determine how ADAM12 is activated, we screened proteins that bind to the cytoplasmic domain of ADAM12 using a yeast two-hybrid system and identified a protein called PACSIN3 that contains a Src homology 3 domain. An analysis of interactions between ADAM12 and PACSIN3 using glutathione S-transferase fusion protein revealed that a proline-rich region (amino acid residues 829-840) of ADAM12 was required to bind PACSIN3. Furthermore, co-immunoprecipitation and co-localization analyses of ADAM12 and PACSIN3 proteins also revealed their interaction in mammalian cells expressing both of them. The overexpression of PACSIN3 in HT1080 cells enhanced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced proHB-EGF shedding. Furthermore, knockdown of endogenous PACSIN3 by small interfering RNA in HT1080 cells significantly attenuated the shedding of proHB-EGF induced by TPA and angiotensin II. Our data indicate that PACSIN3 has a novel function as an up-regulator in the signaling of proHB-EGF shedding induced by TPA and angiotensin II.
Collapse
Affiliation(s)
- Seiji Mori
- Department of Molecular Pathology, School of Allied Health Science, Osaka University Faculty of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, USA
| | | | | | | | | | | | | |
Collapse
|