1
|
Liu J, Zeng D, Luo J, Wang H, Xiong J, Chen X, Chen T, Sun J, Xi Q, Zhang Y. LPS-Induced Inhibition of miR-143 Expression in Brown Adipocytes Promotes Thermogenesis and Fever. Int J Mol Sci 2022; 23:13805. [PMID: 36430282 PMCID: PMC9696956 DOI: 10.3390/ijms232213805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fever is an important part of inflammatory response to infection. Although brown adipose tissue (BAT) thermogenesis is known to be potently influenced by systemic inflammation, the role of BAT during infection-induced fever remains largely unknown. Here, we injected mice with a low dose of LPS and found that low-dose LPS can directly induce thermogenesis of brown adipocytes. It is known that miR-143 is highly expressed in the BAT, and miR-143 knockout mice exhibited stronger thermogenesis under cold exposure. Interestingly, miR-143 was negatively correlated with an LPS-induced increase of TNFα and IL-6 mRNA levels, and the IL-6 pathway may mediate the inhibition of miR-143 expression. Moreover, miR-143 is down-regulated by LPS, and overexpression of miR-143 in brown adipocytes by lentivirus could rescue the enhancement of UCP1 protein expression caused by LPS, hinting miR-143 may be an important regulator of the thermogenesis in brown adipocytes. More importantly, the knockout of miR-143 further enhanced the LPS-induced increase of body temperature and BAT thermogenesis, and this result was further confirmed by in vitro experiments by using primary brown adipocytes. Mechanistically, adenylate cyclase 9 (AC9) is a new target gene of miR-143 and LPS increases BAT thermogenesis by a way of inhibiting miR-143 expression, a negative regulator for AC9. Our study considerably improves our collective understanding of the important function of miR-143 in inflammatory BAT thermogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Guo R, Liu T, Shasaltaneh MD, Wang X, Imani S, Wen Q. Targeting Adenylate Cyclase Family: New Concept of Targeted Cancer Therapy. Front Oncol 2022; 12:829212. [PMID: 35832555 PMCID: PMC9271773 DOI: 10.3389/fonc.2022.829212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
The adenylate cyclase (ADCY) superfamily is a group of glycoproteins regulating intracellular signaling. ADCYs act as key regulators in the cyclic adenosine monophosphate (cAMP) signaling pathway and are related to cell sensitivity to chemotherapy and ionizing radiation. Many members of the superfamily are detectable in most chemoresistance cases despite the complexity and unknownness of the specific mechanism underlying the role of ADCYs in the proliferation and invasion of cancer cells. The overactivation of ADCY, as well as its upstream and downstream regulators, is implicated as a major potential target of novel anticancer therapies and markers of exceptional responders to chemotherapy. The present review focuses on the oncogenic functions of the ADCY family and emphasizes the possibility of the mediating roles of deleterious nonsynonymous single nucleotide polymorphisms (nsSNPs) in ADCY as a prognostic therapeutic target in modulating resistance to chemotherapy and immunotherapy. It assesses the mediating roles of ADCY and its counterparts as stress regulators in reprogramming cancer cell metabolism and the tumor microenvironment. Additionally, the well-evaluated inhibitors of ADCY-related signaling, which are under clinical investigation, are highlighted. A better understanding of ADCY-induced signaling and deleterious nsSNPs (p.E1003K and p.R1116C) in ADCY6 provides new opportunities for developing novel therapeutic strategies in personalized oncology and new approaches to enhance chemoimmunotherapy efficacy in treating various cancers.
Collapse
Affiliation(s)
- Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | - Xuan Wang
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| |
Collapse
|
3
|
Investigating the ligand agonism and antagonism at the D 2long receptor by dynamic mass redistribution. Sci Rep 2022; 12:9637. [PMID: 35688965 PMCID: PMC9187652 DOI: 10.1038/s41598-022-14311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The signalling of the D2 receptor (D2R), a G protein-coupled receptor (GPCR), is a complex process consisting of various components. For the screening of D2R ligands, methods quantifying distinct second messengers such as cAMP or the interaction of the receptor with β-arrestin, are commonly employed. In contrast, a label-free biosensor technology like dynamic mass redistribution (DMR), where it is mostly unknown how the individual signalling pathways contribute to the DMR signal, provides a holistic readout of the complex cellular response. In this study, we report the successful application of the DMR technology to CHO-K1 cells stably expressing the human dopamine D2long receptor. In real-time kinetic experiments, studies of D2R reference compounds yielded results for agonists and antagonists that were consistent with those obtained by conventional methods and also allowed a discrimination between partial and full agonists. Furthermore, investigations on the signalling pathway in CHO-K1 hD2longR cells identified the Gαi/o protein as the main proximal trigger of the observed DMR response. The present study has shown that the DMR technology is a valuable method for the characterisation of putative new ligands and, due to its label-free nature, suggests its use for deorphanisation studies of GPCRs.
Collapse
|
4
|
McDowell RJ, Rodgers J, Milosavljevic N, Lucas RJ. Divergent G-protein selectivity across melanopsins from mice and humans. J Cell Sci 2022; 135:274359. [PMID: 35274137 PMCID: PMC8977054 DOI: 10.1242/jcs.258474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Melanopsin is an opsin photopigment and light-activated G-protein-coupled receptor; it is expressed in photoreceptive retinal ganglion cells (mRGCs) and can be employed as an optogenetic tool. Mammalian melanopsins can signal via Gq/11 and Gi/o/t heterotrimeric G proteins, but aspects of the mRGC light response appear incompatible with either mode of signalling. We use live-cell reporter assays in HEK293T cells to show that melanopsins from mice and humans can also signal via Gs. We subsequently show that this mode of signalling is substantially divergent between species. The two established structural isoforms of mouse melanopsin (which differ in the length of their C-terminal tail) both signalled strongly through all three G-protein classes (Gq/11, Gi/o and Gs), whereas human melanopsin showed weaker signalling through Gs. Our data identify Gs as a new mode of signalling for mammalian melanopsins and reveal diversity in G-protein selectivity across mammalian melanopsins. Summary: The photopigment melanopsin (OPN4), which provides inner retinal photoreception in mammals, shows light-dependent activation of Gs G protein that is more pronounced for mouse than human photopigment.
Collapse
Affiliation(s)
- Richard J McDowell
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Byrne DP, Omar MH, Kennedy EJ, Eyers PA, Scott JD. Biochemical Analysis of AKAP-Anchored PKA Signaling Complexes. Methods Mol Biol 2022; 2483:297-317. [PMID: 35286684 PMCID: PMC9518671 DOI: 10.1007/978-1-0716-2245-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Generation of the prototypic second messenger cAMP instigates numerous signaling events. A major intracellular target of cAMP is Protein kinase A (PKA), a Ser/Thr protein kinase. Where and when this enzyme is activated inside the cell has profound implications on the functional impact of PKA. It is now well established that PKA signaling is focused locally into subcellular signaling "islands" or "signalosomes." The A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by dictating spatial and temporal aspects of PKA action. Genetically encoded biosensors, small molecule and peptide-based disruptors of PKA signaling are valuable tools for rigorous investigation of local PKA action at the biochemical level. This chapter focuses on approaches to evaluate PKA signaling islands, including a simple assay for monitoring the interaction of an AKAP with a tunable PKA holoenzyme. The latter approach evaluates the composition of PKA holoenzymes, in which regulatory subunits and catalytic subunits can be visualized in the presence of test compounds and small-molecule inhibitors.
Collapse
Affiliation(s)
- Dominic P Byrne
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, UK
| | - Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, UK.
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Gu Q, Xu F, Orgil BO, Khuchua Z, Munkhsaikhan U, Johnson JN, Alberson NR, Pierre JF, Black DD, Dong D, Brennan JA, Cathey BM, Efimov IR, Towbin JA, Purevjav E, Lu L. Systems genetics analysis defines importance of TMEM43/ LUMA for cardiac- and metabolic-related pathways. Physiol Genomics 2022; 54:22-35. [PMID: 34766515 PMCID: PMC8721901 DOI: 10.1152/physiolgenomics.00066.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
Broad cellular functions and diseases including muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy (ARVC5) and cancer are associated with transmembrane protein43 (TMEM43/LUMA). The study aimed to investigate biological roles of TMEM43 through genetic regulation, gene pathways and gene networks, candidate interacting genes, and up- or downstream regulators. Cardiac transcriptomes from 40 strains of recombinant inbred BXD mice and two parental strains representing murine genetic reference population (GRP) were applied for genetic correlation, functional enrichment, and coexpression network analysis using systems genetics approach. The results were validated in a newly created knock-in Tmem43-S358L mutation mouse model (Tmem43S358L) that displayed signs of cardiac dysfunction, resembling ARVC5 phenotype seen in humans. We found high Tmem43 levels among BXDs with broad variability in expression. Expression of Tmem43 highly negatively correlated with heart mass and heart rate among BXDs, whereas levels of Tmem43 highly positively correlated with plasma high-density lipoproteins (HDL). Through finding differentially expressed genes (DEGs) between Tmem43S358L mutant and wild-type (Tmem43WT) lines, 18 pathways (out of 42 found in BXDs GRP) that are involved in ARVC, hypertrophic cardiomyopathy, dilated cardiomyopathy, nonalcoholic fatty liver disease, Alzheimer's disease, Parkinson's disease, and Huntington's disease were verified. We further constructed Tmem43-mediated gene network, in which Ctnna1, Adcy6, Gnas, Ndufs6, and Uqcrc2 were significantly altered in Tmem43S358L mice versus Tmem43WT controls. Our study defined the importance of Tmem43 for cardiac- and metabolism-related pathways, suggesting that cardiovascular disease-relevant risk factors may also increase risk of metabolic and neurodegenerative diseases via TMEM43-mediated pathways.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Cardiology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Buyan-Ochir Orgil
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Jason N Johnson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Neely R Alberson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Dennis D Black
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Deli Dong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Brianna M Cathey
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
- Department of Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
7
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
8
|
Zeng Y, Li N, Zheng Z, Chen R, Liu W, Zhu J, Zeng M, Cheng J, Peng M, Hong C. A Pan-Cancer Analysis of the Prognostic Value and Expression of Adenylate Cyclase 7 (ADCY7) in Human Tumors. Int J Gen Med 2021; 14:5415-5429. [PMID: 34539183 PMCID: PMC8445103 DOI: 10.2147/ijgm.s330680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The role of adenylate cyclase 7 (ADCY7) in cancer is still unclear. This study analyzed the interrelationship between the expression and immune function of ADCY7. METHODS ADCY7 expression in multiple human cancers was analyzed using the databases of Genotype-Tissue Expression Project (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA). Correlations among ADCY7 gene expression, mismatch repair (MMR) gene expression, and DNA methyltransferase (DNMT) expression were assessed using Spearman correlation analysis. Univariate survival analysis and Kaplan-Meier (KM) curve were used to examine the effect of ADCY7 expression on prognosis. The Tumor Immune Estimation Resource (TIMER) database was used to evaluate the relationship between ADCY7 gene expression and tumor immune invasion or immune checkpoint gene (ICG) expression. RESULTS ADCY7 was abnormally expressed in multiple human cancers and was correlated with MMR genes and DNMT expression. Univariate survival analysis and KM curve showed that ADCY7 expression influences the overall survival (OS) of six types of cancer, disease-specific survival (DSS) of eight, and progression-free interval (PFI) of three. The high expression of ADCY7 in OS, DSS, and PFI was strongly associated with poor outcomes in patients with breast cancer and lung squamous cell carcinoma. ADCY7 expression was strongly associated with immune cell infiltration and ICG expression. CONCLUSION The results of this study indicated that ADCY7 may be a prognostic biomarker of tumorigenesis. The study may also provide a new perspective on the role of ADCY7 in human cancers.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Nanhong Li
- Department of Pathology and Pathophysiology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wang Liu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Jinru Zhu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Mingqing Zeng
- First Clinical School of Medicine, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Junfen Cheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Min Peng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
10
|
Wu Y, Wei X, Feng H, Hu B, Liu B, Luan Y, Ruan Y, Liu X, Liu Z, Wang S, Liu J, Wang T. An eleven metabolic gene signature-based prognostic model for clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:23165-23186. [PMID: 33221754 PMCID: PMC7746370 DOI: 10.18632/aging.104088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
In this study, we performed bioinformatics and statistical analyses to investigate the prognostic significance of metabolic genes in clear cell renal cell carcinoma (ccRCC) using the transcriptome data of 539 ccRCC and 72 normal renal tissues from TCGA database. We identified 79 upregulated and 45 downregulated (n=124) metabolic genes in ccRCC tissues. Eleven prognostic metabolic genes (NOS1, ALAD, ALDH3B2, ACADM, ITPKA, IMPDH1, SCD5, FADS2, ACHE, CA4, and HK3) were identified by further analysis. We then constructed an 11-metabolic gene signature-based prognostic risk score model and classified ccRCC patients into high- and low-risk groups. Overall survival (OS) among the high-risk ccRCC patients was significantly shorter than among the low-risk ccRCC patients. Receiver operating characteristic (ROC) curve analysis of the prognostic risk score model showed that the areas under the ROC curve for the 1-, 3-, and 5-year OS were 0.810, 0.738, and 0.771, respectively. Thus, our prognostic model showed favorable predictive power in the TCGA and E-MTAB-1980 ccRCC patient cohorts. We also established a nomogram based on these eleven metabolic genes and validated internally in the TCGA cohort, showing an accurate prediction for prognosis in ccRCC.
Collapse
Affiliation(s)
- Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
11
|
Frezza E, Amans TM, Martin J. Allosteric Inhibition of Adenylyl Cyclase Type 5 by G-Protein: A Molecular Dynamics Study. Biomolecules 2020; 10:E1330. [PMID: 32957635 PMCID: PMC7563791 DOI: 10.3390/biom10091330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Adenylyl cyclases (ACs) have a crucial role in many signal transduction pathways, in particular in the intricate control of cyclic AMP (cAMP) generation from adenosine triphosphate (ATP). Using homology models developed from existing structural data and docking experiments, we have carried out all-atom, microsecond-scale molecular dynamics simulations on the AC5 isoform of adenylyl cyclase bound to the inhibitory G-protein subunit Gαi in the presence and in the absence of ATP. The results show that Gαi has significant effects on the structure and flexibility of adenylyl cyclase, as observed earlier for the binding of ATP and Gsα. New data on Gαi bound to the C1 domain of AC5 help explain how Gαi inhibits enzyme activity and obtain insight on its regulation. Simulations also suggest a crucial role of ATP in the regulation of the stimulation and inhibition of AC5.
Collapse
Affiliation(s)
- Elisa Frezza
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France
| | - Tina-Méryl Amans
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry, University of Lyon, F-69367 Lyon, France;
| | - Juliette Martin
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry, University of Lyon, F-69367 Lyon, France;
| |
Collapse
|
12
|
Chen SL, Hu F, Wang DW, Qin ZY, Liang Y, Dai YJ. Prognosis and regulation of an adenylyl cyclase network in acute myeloid leukemia. Aging (Albany NY) 2020; 12:11864-11877. [PMID: 32568101 PMCID: PMC7343484 DOI: 10.18632/aging.103357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
We explored the roles of adenylyl cyclases (ADCYs) in acute myeloid leukemia (AML). Expression ADCYs in AML and their effect on prognosis was analyzed using data from Oncomine, GEPIA and cBioPortal databases. Frequently altered neighbor genes (FANGs) of ADCYs were detected using the 3D Genome Browser, after which the functions of these FANGs were predicted using Metascape tools. Cell viability and apoptosis were assessed using CCK-8 and Annexin V-FITC/PI kits. Expression levels of ADCYs were higher in AML cells lines and in bone marrow-derived mononuclear cells from AML patients than in control cells, and were predictive of a poor prognosis. A total of 58 ADCY FANGs were identified from the topologically associating domains on the basis of the Hi-C data. Functional analysis of these FANGs revealed abnormal activation of the MAPK signaling pathway. Drug sensitivity tests showed that fasudil plus trametinib or sapanisertib had a synergistic effect suppressing AML cell viability and increasing apoptosis. These findings suggest that dysregulation of ADCY expression leads to altered signaling in the MAPK pathway in AML and that the ADCY expression profile may be predictive of prognosis in AML patients.
Collapse
Affiliation(s)
- Si-Liang Chen
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Hu
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Da-Wei Wang
- National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe-Yuan Qin
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-Jun Dai
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
13
|
Grigorenko B, Polyakov I, Nemukhin A. Mechanisms of ATP to cAMP Conversion Catalyzed by the Mammalian Adenylyl Cyclase: A Role of Magnesium Coordination Shells and Proton Wires. J Phys Chem B 2020; 124:451-460. [PMID: 31881811 DOI: 10.1021/acs.jpcb.9b07349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. In the lowest energy ES conformation, the coordination shell of MgA2+ does not include the Oδ1 atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized that includes proton transfer from the ribose O3'H3' group in ATP to Asp440 via a shuttling water molecule concerted with PA-O3A bond cleavage and O3'-PA bond formation. The energy profile of this route is consistent with the observed reaction kinetics. The computed energy profiles initiated from higher energy ES complexes are characterized by larger energy expenses to complete the reaction. Consistent with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O3'H3' group via shuttling water molecules.
Collapse
Affiliation(s)
- Bella Grigorenko
- Chemistry Department , M. V. Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia.,N. M. Emanuel Institute of Biochemical Physics , Russian Academy of Sciences , 4 Kosygin Street , Moscow 119334 , Russia
| | - Igor Polyakov
- Chemistry Department , M. V. Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia.,N. M. Emanuel Institute of Biochemical Physics , Russian Academy of Sciences , 4 Kosygin Street , Moscow 119334 , Russia
| | - Alexander Nemukhin
- Chemistry Department , M. V. Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia.,N. M. Emanuel Institute of Biochemical Physics , Russian Academy of Sciences , 4 Kosygin Street , Moscow 119334 , Russia
| |
Collapse
|
14
|
Price T, Brust TF. Adenylyl cyclase 7 and neuropsychiatric disorders: A new target for depression? Pharmacol Res 2019; 143:106-112. [PMID: 30904753 DOI: 10.1016/j.phrs.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
Adenylyl cyclases (ACs) are enzymes that catalyze the production of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Humans express nine isoforms of membranous ACs and a soluble AC. Studies with genetic knockout or overexpression rodent models have indicated that AC isoforms may be targeted to achieve specific therapeutic outcomes. AC1, for instance, has been suggested and pursued as a target for relieving pain. Notably, previous studies examining genetically modified mice as well as human genetic polymorphisms have suggested a link between AC7 activity and depressive disorders. In the present review we present an overview on AC function and discuss the most recent developments to target AC isoforms for drug therapies. We next focus on discussing the available literature on the molecular and animal pharmacology of AC7 highlighting the available studies on the role of AC7 in depressive disorders. In addition, we discuss other possible physiological functions of AC7 relating to ethanol effects and the immune system and conclude with considerations about pharmacological modulation of AC7.
Collapse
Affiliation(s)
- Tatum Price
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, United States
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, United States..
| |
Collapse
|
15
|
Hughes JW, Ustione A, Lavagnino Z, Piston DW. Regulation of islet glucagon secretion: Beyond calcium. Diabetes Obes Metab 2018; 20 Suppl 2:127-136. [PMID: 30230183 PMCID: PMC6148361 DOI: 10.1111/dom.13381] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
The islet of Langerhans plays a key role in glucose homeostasis through regulated secretion of the hormones insulin and glucagon. Islet research has focused on the insulin-secreting β-cells, even though aberrant glucagon secretion from α-cells also contributes to the aetiology of diabetes. Despite its importance, the mechanisms controlling glucagon secretion remain controversial. Proper α-cell function requires the islet milieu, where β- and δ-cells drive and constrain α-cell dynamics. The response of glucagon to glucose is similar between isolated islets and that measured in vivo, so it appears that the glucose dependence requires only islet-intrinsic factors and not input from blood flow or the nervous system. Elevated intracellular free Ca2+ is needed for α-cell exocytosis, but interpreting Ca2+ data is tricky since it is heterogeneous among α-cells at all physiological glucose levels. Total Ca2+ activity in α-cells increases slightly with glucose, so Ca2+ may serve a permissive, rather than regulatory, role in glucagon secretion. On the other hand, cAMP is a more promising candidate for controlling glucagon secretion and is itself driven by paracrine signalling from β- and δ-cells. Another pathway, juxtacrine signalling through the α-cell EphA receptors, stimulated by β-cell ephrin ligands, leads to a tonic inhibition of glucagon secretion. We discuss potential combinations of Ca2+ , cAMP, paracrine and juxtacrine factors in the regulation of glucagon secretion, focusing on recent data in the literature that might unify the field towards a quantitative understanding of α-cell function.
Collapse
Affiliation(s)
- Jing W. Hughes
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
Deciphering the multicomponent synergy mechanism from a systems pharmacology perspective: Application to Gualou Xiebai Decoction for coronary heart disease. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
A molecular dynamics study of adenylyl cyclase: The impact of ATP and G-protein binding. PLoS One 2018; 13:e0196207. [PMID: 29694437 PMCID: PMC5918993 DOI: 10.1371/journal.pone.0196207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the biosynthesis of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP) and play an important role in many signal transduction pathways. The enzymatic activity of ACs is carefully controlled by a variety of molecules, including G-protein subunits that can both stimulate and inhibit cAMP production. Using homology models developed from existing structural data, we have carried out all-atom, microsecond-scale molecular dynamics simulations on the AC5 isoform of adenylyl cyclase and on its complexes with ATP and with the stimulatory G-protein subunit Gsα. The results show that both ATP and Gsα binding have significant effects on the structure and flexibility of adenylyl cyclase. New data on ATP bound to AC5 in the absence of Gsα notably help to explain how Gsα binding enhances enzyme activity and could aid product release. Simulations also suggest a possible coupling between ATP binding and interactions with the inhibitory G-protein subunit Gαi.
Collapse
|
18
|
Johnstone TB, Agarwal SR, Harvey RD, Ostrom RS. cAMP Signaling Compartmentation: Adenylyl Cyclases as Anchors of Dynamic Signaling Complexes. Mol Pharmacol 2018; 93:270-276. [PMID: 29217670 PMCID: PMC5820540 DOI: 10.1124/mol.117.110825] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that cAMP signaling is compartmentalized within cells. However, our knowledge of how receptors, cAMP signaling enzymes, effectors, and other key proteins form specific signaling complexes to regulate specific cell responses is limited. The multicomponent nature of these systems and the spatiotemporal dynamics involved as proteins interact and move within a cell make cAMP responses highly complex. Adenylyl cyclases, the enzymatic source of cAMP production, are key starting points for understanding cAMP compartments and defining the functional signaling complexes. Three basic elements are required to form a signaling compartment. First, a localized signal is generated by a G protein-coupled receptor paired to one or more of the nine different transmembrane adenylyl cyclase isoforms that generate the cAMP signal in the cytosol. The diffusion of cAMP is subsequently limited by several factors, including expression of any number of phosphodiesterases (of which there are 24 genes plus spice variants). Finally, signal response elements are differentially localized to respond to cAMP produced within each locale. A-kinase-anchoring proteins, of which there are 43 different isoforms, facilitate this by targeting protein kinase A to specific substrates. Thousands of potential combinations of these three elements are possible in any given cell type, making the characterization of cAMP signaling compartments daunting. This review will focus on what is known about how cells organize cAMP signaling components as well as identify the unknowns. We make an argument for adenylyl cyclases being central to the formation and maintenance of these signaling complexes.
Collapse
Affiliation(s)
- Timothy B Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Shailesh R Agarwal
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Robert D Harvey
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| |
Collapse
|
19
|
Hernández-Ramírez LC, Trivellin G, Stratakis CA. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease. Mol Cell Endocrinol 2018; 463:72-86. [PMID: 28822849 DOI: 10.1016/j.mce.2017.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
20
|
Abstract
Mammalian membranous and soluble adenylyl cyclases (mAC, sAC) and soluble guanylyl cyclases (sGC) generate cAMP and cGMP from ATP and GTP, respectively, as substrates. mACs (nine human isoenzymes), sAC, and sGC differ in their overall structures owing to specific membrane-spanning and regulatory domains but consist of two similarly folded catalytic domains C1 and C2 with high structure-based homology between the cyclase species. Comparison of available crystal structures - VC1:IIC2 (a construct of domains C1a from dog mAC5 and C2a from rat mAC2), human sAC and sGC, mostly in complex with substrates, substrate analogs, inhibitors, metal ions, and/or modulators - reveals that especially the nucleotide binding sites are closely related. An evolutionarily well-conserved catalytic mechanism is based on common binding modes, interactions, and structural transformations, including the participation of two metal ions in catalysis. Nucleobase selectivity relies on only few mutations. Since in all cases the nucleoside moiety is embedded in a relatively spacious cavity, mACs, sAC, and sGC are rather promiscuous and bind nearly all purine and pyrimidine nucleotides, including CTP and UTP, and many of their derivatives as inhibitors with often high affinity. By contrast, substrate specificity of mammalian adenylyl and guanylyl cyclases is high due to selective dynamic rearrangements during turnover.
Collapse
|
21
|
Hu W, Yu X, Liu Z, Sun Y, Chen X, Yang X, Li X, Lam WK, Duan Y, Cao X, Steller H, Liu K, Huang P. The complex of TRIP-Br1 and XIAP ubiquitinates and degrades multiple adenylyl cyclase isoforms. eLife 2017; 6. [PMID: 28656888 PMCID: PMC5503512 DOI: 10.7554/elife.28021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/28/2017] [Indexed: 12/03/2022] Open
Abstract
Adenylyl cyclases (ACs) generate cAMP, a second messenger of utmost importance that regulates a vast array of biological processes in all kingdoms of life. However, almost nothing is known about how AC activity is regulated through protein degradation mediated by ubiquitination or other mechanisms. Here, we show that transcriptional regulator interacting with the PHD-bromodomain 1 (TRIP-Br1, Sertad1), a newly identified protein with poorly characterized functions, acts as an adaptor that bridges the interaction of multiple AC isoforms with X-linked inhibitor of apoptosis protein (XIAP), a RING-domain E3 ubiquitin ligase. XIAP ubiquitinates a highly conserved Lys residue in AC isoforms and thereby accelerates the endocytosis and degradation of multiple AC isoforms in human cell lines and mice. XIAP/TRIP-Br1-mediated degradation of ACs forms part of a negative-feedback loop that controls the homeostasis of cAMP signaling in mice. Our findings reveal a previously unrecognized mechanism for degrading multiple AC isoforms and modulating the homeostasis of cAMP signaling. DOI:http://dx.doi.org/10.7554/eLife.28021.001
Collapse
Affiliation(s)
- Wenbao Hu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaojie Yu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhengzhao Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Sun
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xibing Chen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaofen Li
- Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Kwan Lam
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuanyuan Duan
- Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xu Cao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
22
|
Abstract
Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3′,5′-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla 92093, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
24
|
Shin GH, Kang BC, Jang DJ. Metabolic Pathways Associated with Kimchi, a Traditional Korean Food, Based on In Silico Modeling of Published Data. Genomics Inform 2016; 14:222-229. [PMID: 28154515 PMCID: PMC5287128 DOI: 10.5808/gi.2016.14.4.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/23/2016] [Accepted: 12/27/2016] [Indexed: 12/24/2022] Open
Abstract
Kimchi is a traditional Korean food prepared by fermenting vegetables, such as Chinese cabbage and radishes, which are seasoned with various ingredients, including red pepper powder, garlic, ginger, green onion, fermented seafood (Jeotgal), and salt. The various unique microorganisms and bioactive components in kimchi show antioxidant activity and have been associated with an enhanced immune response, as well as anti-cancer and anti-diabetic effects. Red pepper inhibits decay due to microorganisms and prevents food from spoiling. The vast amount of biological information generated by academic and industrial research groups is reflected in a rapidly growing body of scientific literature and expanding data resources. However, the genome, biological pathway, and related disease data are insufficient to explain the health benefits of kimchi because of the varied and heterogeneous data types. Therefore, we have constructed an appropriate semantic data model based on an integrated food knowledge database and analyzed the functional and biological processes associated with kimchi in silico. This complex semantic network of several entities and connections was generalized to answer complex questions, and we demonstrated how specific disease pathways are related to kimchi consumption.
Collapse
Affiliation(s)
- Ga Hee Shin
- Data Science Center, Insilicogen, Inc., Yongin 16954, Korea
| | | | - Dai Ja Jang
- Processing Technology Research Group, Korea Food Research Institute, Seongnam 13539, Korea
| |
Collapse
|
25
|
Azimzadeh Jamalkandi S, Mozhgani SH, Gholami Pourbadie H, Mirzaie M, Noorbakhsh F, Vaziri B, Gholami A, Ansari-Pour N, Jafari M. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways. Front Microbiol 2016; 7:1688. [PMID: 27872612 PMCID: PMC5098112 DOI: 10.3389/fmicb.2016.01688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.
Collapse
Affiliation(s)
| | - Sayed-Hamidreza Mozhgani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | | | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry and Proteomics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Tehran, Iran
| | - Alireza Gholami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Tehran, Iran
| | - Naser Ansari-Pour
- Faculty of New Sciences and Technology, University of TehranTehran, Iran; Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College LondonLondon, UK
| | - Mohieddin Jafari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Tehran, Iran
| |
Collapse
|
26
|
Bakan E, Kilic Baygutalp N, Ozturk N, Kaynar O, Gul MA, Dorman E, Kurt N. The effect of exercise in some sport branches on urinary second messenger cyclic nucleotide levels. COGENT MEDICINE 2016. [DOI: 10.1080/2331205x.2015.1125411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Ebubekir Bakan
- Faculty of Medicine, Department of Medical Biochemistry, Ataturk University, Erzurum 25240, Turkey
| | - Nurcan Kilic Baygutalp
- Faculty of Medicine, Department of Medical Biochemistry, Ataturk University, Erzurum 25240, Turkey
| | - Nurinnisa Ozturk
- Faculty of Medicine, Department of Medical Biochemistry, Ataturk University, Erzurum 25240, Turkey
| | - Omer Kaynar
- Physical Education and Sports High School, Ataturk University, Erzurum, Turkey
- Faculty of Education, Department of Physical Education, Alparslan University, Mus, Turkey
| | - Mehmet Ali Gul
- Faculty of Medicine, Department of Medical Biochemistry, Ataturk University, Erzurum 25240, Turkey
| | - Emrullah Dorman
- Faculty of Medicine, Department of Medical Biochemistry, Ataturk University, Erzurum 25240, Turkey
| | - Nezahat Kurt
- Faculty of Medicine, Department of Medical Biochemistry, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
27
|
Kennedy EJ, Scott JD. Selective disruption of the AKAP signaling complexes. Methods Mol Biol 2015; 1294:137-50. [PMID: 25783883 DOI: 10.1007/978-1-4939-2537-7_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthesis of the second messenger cAMP activates a variety of signaling pathways critical for all facets of intracellular regulation. Protein kinase A (PKA) is the major cAMP-responsive effector. Where and when this enzyme is activated has profound implications on the cellular role of PKA. A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by orchestrating spatial and temporal aspects of PKA action. A popular means of evaluating the impact of these anchored signaling events is to biochemically interfere with the PKA-AKAP interface. Hence, peptide disruptors of PKA anchoring are valuable tools in the investigation of local PKA action. This article outlines the development of PKA isoform-selective disruptor peptides, documents the optimization of cell-soluble peptide derivatives, and introduces alternative cell-based approaches that interrogate other aspects of the PKA-AKAP interface.
Collapse
Affiliation(s)
- Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA, USA
| | | |
Collapse
|
28
|
Brust TF, Conley JM, Watts VJ. Gα(i/o)-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later. Eur J Pharmacol 2015; 763:223-32. [PMID: 25981304 DOI: 10.1016/j.ejphar.2015.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Heterologous sensitization of adenylyl cyclase (also referred to as superactivation, sensitization, or supersensitization of adenylyl cyclase) is a cellular adaptive response first described 40 years ago in the laboratory of Dr. Marshall Nirenberg. This apparently paradoxical cellular response occurs following persistent activation of Gαi/o-coupled receptors and causes marked enhancement in the activity of adenylyl cyclases, thereby increasing cAMP production. Since our last review in 2005, significant progress in the field has led to a better understanding of the relevance of, and the cellular biochemical processes that occur during the development and expression of heterologous sensitization. In this review we will discuss the recent advancements in the field and the mechanistic hypotheses on heterologous sensitization.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jason M Conley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
29
|
Birrell MA, Bonvini SJ, Wortley MA, Buckley J, Yew-Booth L, Maher SA, Dale N, Dubuis ED, Belvisi MG. The role of adenylyl cyclase isoform 6 in β-adrenoceptor signalling in murine airways. Br J Pharmacol 2014; 172:131-41. [PMID: 25205328 DOI: 10.1111/bph.12905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Adenylyl cyclase (AC) is a key signalling enzyme for many GPCRs and catalyses the conversion of ATP to cAMP which, in turn, is a crucial determinant of many biological responses. β-Adrenoceptor agonists are prescribed as bronchodilators for asthma and chronic obstructive pulmonary disease, and it is commonly assumed that they elicit their actions via AC-dependent production of cAMP. However, empirical evidence in support of this is lacking and the exact mechanism by which these drugs acts remains elusive. This is partly due to the existence of at least 10 different isoforms of AC and the absence of any truly selective pharmacological inhibitors. Here, we have used genetically modified mice and model systems to establish the role of AC isoforms in the airway responses to β-adrenoceptor agonists. EXPERIMENTAL APPROACH Receptors mediating responses to β-adrenoceptor agonists in airway smooth muscle (ASM) and sensory nerve were identified in isolated tissue systems. Expression of mRNA for the AC isoforms in ASM and neurones was determined by qPCR. Functional responses were assessed in AC isoform KO mice and wild-type controls. KEY RESULTS Airway and vagal tissue expressed mRNA for various isoforms of AC. AC6 was the most prominent isoform. Responses to β-adrenoceptor agonists in tissues from AC6 KO mice were virtually abolished. CONCLUSIONS AND IMPLICATIONS AC6 played a critical role in relaxation of ASM to β1 -adrenoceptor agonists and in modulation of sensory nerves by β1-3 -adrenoceptor agonists. These results further unravel the signalling pathway of this extensively prescribed class of medicine.
Collapse
Affiliation(s)
- Mark A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK; MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yu P, Sun M, Villar VAM, Zhang Y, Weinman EJ, Felder RA, Jose PA. Differential dopamine receptor subtype regulation of adenylyl cyclases in lipid rafts in human embryonic kidney and renal proximal tubule cells. Cell Signal 2014; 26:2521-9. [PMID: 25049074 DOI: 10.1016/j.cellsig.2014.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023]
Abstract
Dopamine D1-like receptors (D1R and D5R) stimulate adenylyl cyclase (AC) activity, whereas the D2-like receptors (D2, D3 and D4) inhibit AC activity. D1R, but not the D5R, has been reported to regulate AC activity in lipid rafts (LRs). We tested the hypothesis that D1R and D5R differentially regulate AC activity in LRs using human embryonic kidney (HEK) 293 cells heterologously expressing human D1 or D5 receptor (HEK-hD1R or HEK-hD5R) and human renal proximal tubule (hRPT) cells that endogenously express D1R and D5R. Of the AC isoforms expressed in HEK and hRPT cells (AC3, AC5, AC6, AC7, and AC9), AC5/6 was distributed to a greater extent in LRs than non-LRs in HEK-hD1R (84.5±2.3% of total), HEK-hD5R (68.9±3.1% of total), and hRPT cells (66.6 ± 2.2% of total) (P<0.05, n=4/group). In HEK-hD1R cells, the D1-like receptor agonist fenoldopam (1 μM/15 min) increased AC5/6 protein (+17.2 ± 3.9% of control) in LRs but decreased it in non-LRs (-47.3±5.3% of control) (P<0.05, vs. control, n=4/group). By contrast, in HEK-hD5R cells, fenoldopam increased AC5/6 protein in non-LRs (+67.1 ± 5.3% of control, P<0.006, vs. control, n=4) but had no effect in LRs. In hRPT cells, fenoldopam increased AC5/6 in LRs but had little effect in non-LRs. Disruption of LRs with methyl-β-cyclodextrin decreased basal AC activity in HEK-D1R (-94.5 ± 2.0% of control) and HEK-D5R cells (-87.1 ± 4.6% of control) but increased it in hRPT cells (6.8±0.5-fold). AC6 activity was stimulated to a greater extent by D1R than D5R, in agreement with the greater colocalization of AC5/6 with D1R than D5R in LRs. We conclude that LRs are essential not only for the proper membrane distribution and maintenance of AC5/6 activity but also for the regulation of D1R- and D5R-mediated AC signaling.
Collapse
Affiliation(s)
- Peiying Yu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Min Sun
- Department of Biological Sciences, School of Life Science, Anhui University, Anhui, China
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Yanrong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edward J Weinman
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Robin A Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22903, United States
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
31
|
Abstract
3'-5'-cyclic adenosine monophosphate (cAMP) is a second messenger, which plays an important role in the heart. It is generated in response to activation of G-protein-coupled receptors (GPCRs). Initially, it was thought that protein kinase A (PKA) exclusively mediates cAMP-induced cellular responses such as an increase in cardiac contractility, relaxation, and heart rate. With the identification of the exchange factor directly activated by cAMP (EPAC) and hyperpolarizing cyclic nucleotide-gated (HCN) channels as cAMP effector proteins it became clear that a protein network is involved in cAMP signaling. The Popeye domain containing (Popdc) genes encode yet another family of cAMP-binding proteins, which are prominently expressed in the heart. Loss-of-function mutations in mice are associated with cardiac arrhythmia and impaired skeletal muscle regeneration. Interestingly, the cardiac phenotype, which is present in both, Popdc1 and Popdc2 null mutants, is characterized by a stress-induced sinus bradycardia, suggesting that Popdc proteins participate in cAMP signaling in the sinuatrial node. The identification of the two-pore channel TREK-1 and Caveolin 3 as Popdc-interacting proteins represents a first step into understanding the mechanisms of heart rate modulation triggered by Popdc proteins.
Collapse
|
32
|
De Lorenzo MS, Chen W, Baljinnyam E, Carlini MJ, La Perle K, Bishop SP, Wagner TE, Rabson AB, Vatner DE, Puricelli LI, Vatner SF. 'Reduced malignancy as a mechanism for longevity in mice with adenylyl cyclase type 5 disruption'. Aging Cell 2014; 13:102-10. [PMID: 23957304 PMCID: PMC3980454 DOI: 10.1111/acel.12152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2013] [Indexed: 11/28/2022] Open
Abstract
Disruption of adenylyl cyclase type 5 (AC5) knockout (KO) is a novel model for longevity. Because malignancy is a major cause of death and reduced lifespan in mice, the goal of this investigation was to examine the role of AC5KO in protecting against cancer. There have been numerous discoveries in genetically engineered mice over the past several decades, but few have been translated to the bedside. One major reason is that it is difficult to alter a gene in patients, but rather a pharmacological approach is more appropriate. The current investigation employs a parallel construction to examine the extent to which inhibiting AC5, either in a genetic knockout (KO) or by a specific pharmacological inhibitor protects against cancer. This study is unique, not only because a combined genetic and pharmacological approach is rare, but also there are no prior studies on the extent to which AC5 affects cancer. We found that AC5KO delayed age-related tumor incidence significantly, as well as protecting against mammary tumor development in AC5KO × MMTV-HER-2 neu mice, and B16F10 melanoma tumor growth, which can explain why AC5KO is a model of longevity. In addition, a Food and Drug Administration approved antiviral agent, adenine 9-β-D-arabinofuranoside (Vidarabine or AraAde), which specifically inhibits AC5, reduces LP07 lung and B16F10 melanoma tumor growth in syngeneic mice. Thus, inhibition of AC5 is a previously unreported mechanism for prevention of cancers associated with aging and that can be targeted by an available pharmacologic inhibitor, with potential consequent extension of lifespan.
Collapse
Affiliation(s)
- Mariana S. De Lorenzo
- Department of Cell Biology & Molecular Medicine and the Cardiovascular Research Institute; New Jersey Medical School; Rutgers University; The State University of New Jersey; 185 South Orange Avenue, MSB G609 Newark NJ 07103 USA
| | - Wen Chen
- Clemson University; Clemson SC 29634 USA
| | - Erdene Baljinnyam
- Department of Cell Biology & Molecular Medicine and the Cardiovascular Research Institute; New Jersey Medical School; Rutgers University; The State University of New Jersey; 185 South Orange Avenue, MSB G609 Newark NJ 07103 USA
| | - María J. Carlini
- Instituto de Oncología ‘Ángel H. Roffo’; Av. San Martín 5481 C1417DTB Buenos Aires Argentina
| | - Krista La Perle
- Department of Veterinary Biosciences; College of Veterinary Medicine; The Ohio State University; 470 Veterinary Medicine Academic Building, 1900 Coffey Road Columbus OH 43210 USA
| | - Sanford P. Bishop
- Department of Cell Biology & Molecular Medicine and the Cardiovascular Research Institute; New Jersey Medical School; Rutgers University; The State University of New Jersey; 185 South Orange Avenue, MSB G609 Newark NJ 07103 USA
| | | | - Arnold B. Rabson
- RWJMS; Rutgers; The State University of New Jersey; 89 French Street, 4th Floor New Brunswick NJ 08901 USA
| | - Dorothy E. Vatner
- Department of Cell Biology & Molecular Medicine and the Cardiovascular Research Institute; New Jersey Medical School; Rutgers University; The State University of New Jersey; 185 South Orange Avenue, MSB G609 Newark NJ 07103 USA
| | - Lydia I. Puricelli
- Instituto de Oncología ‘Ángel H. Roffo’; Av. San Martín 5481 C1417DTB Buenos Aires Argentina
| | - Stephen F. Vatner
- Department of Cell Biology & Molecular Medicine and the Cardiovascular Research Institute; New Jersey Medical School; Rutgers University; The State University of New Jersey; 185 South Orange Avenue, MSB G609 Newark NJ 07103 USA
| |
Collapse
|
33
|
Yang HY, Wu ZY, Wood M, Whiteman M, Bian JS. Hydrogen sulfide attenuates opioid dependence by suppression of adenylate cyclase/cAMP pathway. Antioxid Redox Signal 2014; 20:31-41. [PMID: 23682813 PMCID: PMC3880902 DOI: 10.1089/ars.2012.5119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The best-established mechanism of opioid dependence is the up-regulation of adenylate cyclase (AC)/cAMP pathway, which was reported to be negatively regulated by hydrogen sulfide (H2S), a novel endogenous neuromodulator. The present study was, therefore, designed to determine whether H2S is able to attenuate the development of opioid dependence via down-regulating AC/cAMP pathway. RESULTS We demonstrated that application of sodium hydrosulphide (NaHS) and GYY4137, two donors of H2S, significantly alleviated naloxone-induced robust withdrawal jumping (the most sensitive and reliable index of opioid physical dependence) in morphine-treated mice. Repeated treatment with NaHS inhibited the up-regulated protein expression of AC in the striatum of morphine-dependent mice. Furthermore, NaHS also attenuated morphine/naloxone-elevated mRNA levels of AC isoform 1 and 8, production of cAMP, and phosphorylation of cAMP response element-binding protein (CREB) in mice striatum. These effects were mimicked by the application of exogenous H2S or over-expression of cystathione-β-synthase, an H2S -producing enzyme, in SH-SY5Y neuronal cells on treatment with [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-Enkephalin, a selective μ-opioid receptor agonist. Blockade of extracellular-regulated protein kinase 1/2 (ERK1/2) with its specific inhibitor attenuated naloxone-induced CREB phosphorylation. Pretreatment with NaHS or stimulation of endogenous H2S production also significantly suppressed opioid withdrawal-induced ERK1/2 activation in mice striatum or SH-SY5Y cells. INNOVATION H2S treatment is important in prevention of the development of opioid dependence via suppression of cAMP pathway in both animal and cellular models. CONCLUSION Our data suggest a potential role of H2S in attenuating the development of opioid dependence, and the underlying mechanism is closely related to the inhibition of AC/cAMP pathway.
Collapse
Affiliation(s)
- Hai-Yu Yang
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | | | | | | | | |
Collapse
|
34
|
Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:329-39. [PMID: 24363043 DOI: 10.1007/s00210-013-0950-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/08/2013] [Indexed: 01/26/2023]
Abstract
Adenylyl cyclase (AC) isoforms differ in their tissue distribution, cellular localization, regulation, and protein interactions. Most cell types express multiple AC isoforms. We hypothesized that cAMP produced by different AC isoforms regulates unique cellular responses in human bronchial smooth muscle cells (BSMC). Overexpression of AC2, AC3, or AC6 had distinct effects on forskolin (Fsk)-induced expression of a number of known cAMP-responsive genes. These data show that different AC isoforms can differentially regulate gene expression. Most notable, overexpression and activation of AC2 enhanced interleukin 6 (IL-6) expression, but overexpression of AC3 or AC6 had no effect. IL-6 production by BSMC was induced by Fsk and select G protein-coupled receptor (GPCR) agonists, though IL-6 levels did not directly correlate with global cAMP levels. Treatment with PKA selective 6-Bnz-cAMP or Epac selective 8-CPT-2Me-cAMP cAMP analogs revealed a predominant role for PKA in cAMP-mediated induction of IL-6. IL-6 promoter mutations demonstrated that AP-1 and CRE transcription sites were required for Fsk to stimulate IL-6 expression. Our present study defines an AC2 cAMP signaling compartment that specifically regulates IL-6 expression in BSMC via Epac and PKA and demonstrates that other AC isoforms are excluded from this pool.
Collapse
|
35
|
Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J. Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther 2013; 347:589-98. [PMID: 24091307 DOI: 10.1124/jpet.113.208496] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The second messenger cAMP is involved in a number of cellular signaling pathways. In mammals, cAMP is produced by either the hormonally responsive, G protein-regulated transmembrane adenylyl cyclases (tmACs) or by the bicarbonate- and calcium-regulated soluble adenylyl cyclase (sAC). To develop tools to differentiate tmAC and sAC signaling, we determined the specificity and potency of commercially available adenylyl cyclase inhibitors. In cellular systems, two inhibitors, KH7 and catechol estrogens, proved specific for sAC, and 2',5'-dideoxyadenosine proved specific for tmACs. These tools provide a means to define the specific contributions of the different families of adenylyl cyclases in cells and tissues, which will further our understanding of cell signaling.
Collapse
Affiliation(s)
- Jacob L Bitterman
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | | | | | | | | |
Collapse
|
36
|
Conley JM, Brand CS, Bogard AS, Pratt EPS, Xu R, Hockerman GH, Ostrom RS, Dessauer CW, Watts VJ. Development of a high-throughput screening paradigm for the discovery of small-molecule modulators of adenylyl cyclase: identification of an adenylyl cyclase 2 inhibitor. J Pharmacol Exp Ther 2013; 347:276-87. [PMID: 24008337 DOI: 10.1124/jpet.113.207449] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the study of AC isoform function in vivo. Identification of chemical probes for AC2 is particularly important because there are no published genetic deletion studies and few small-molecule modulators. The present report describes the development and implementation of an intact-cell, small-molecule screening approach and subsequent validation paradigm for the discovery of AC2 inhibitors. The NIH clinical collections I and II were screened for inhibitors of AC2 activity using PMA-stimulated cAMP accumulation as a functional readout. Active compounds were subsequently confirmed and validated as direct AC2 inhibitors using orthogonal and counterscreening assays. The screening effort identified SKF-83566 [8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide] as a selective AC2 inhibitor with superior pharmacological properties for selective modulation of AC2 compared with currently available AC inhibitors. The utility of SKF-83566 as a small-molecule probe to study the function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle cells and human bronchial smooth muscle cells.
Collapse
Affiliation(s)
- Jason M Conley
- Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.M.C., E.P.S.P., R.X., G.H.H., V.J.W.); Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); and Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee (A.S.B., R.S.O.)
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kassner A, Toischer K, Bohms B, Kolkhof P, Abraham G, Hasenfuβ G, Morshuis M, Schulte Eistrup S, El-Banayosy A, Gummert J, Milting H. Regulation of cyclic adenosine monophosphate release by selective β2-adrenergic receptor stimulation in human terminal failing myocardium before and after ventricular assist device support. J Heart Lung Transplant 2013; 31:1127-35. [PMID: 22975104 DOI: 10.1016/j.healun.2012.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/30/2012] [Accepted: 07/18/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Response to catecholamines is blunted in terminal heart failure due to β-receptor downregulation and uncoupling from adenylyl cyclase (AC). Improved myocardial responsiveness to catecholamines after ventricular assist device (VAD) support is associated with upregulation of β1-adrenergic receptors (β1-ARs). Little is known about the regulation of AC and β2-AR coupling after VAD; moreover β2-AR stimulation during VAD was claimed to induce myocardial recovery. METHODS We analyzed in VAD-supported human myocardium the regulation of AC activity upon β1-AR and selective β2-AR stimulation in 8 non-failing hearts (NF) and 17 paired samples of VAD patients. AC messenger RNA was measured by TaqMan. AC was stimulated via β2-AR using clenbuterol (β2-AR agonist) and bisoprolol (β1-AR blocker). Organ bath experiments were done with trabeculae from both ventricles. Samples were stratified according to chronic or acute heart failure history. RESULTS Isoprenaline-induced AC activity was downregulated (p < 0.001) pre-VAD and increased significantly (p < 0.05) after unloading (mean ± standard deviation pmole/mg/min) in NF (47.9 ± 14.9), pre-VAD (24.35 ± 13.3), and post-VAD (50.04 ± 50.25). Forskolin stimulation revealed significant (p < 0.05) upregulation of AC activity during VAD, especially in acutely failing hearts (NF, 192.1 ± 68.7; pre-VAD, 191.1 ± 60.4; post-VAD, 281.5 ± 133). However, forskolin stimulation relative to isoprenaline-induced inotropy remained reduced before and after VAD compared with NF. The selective stimulation of β2-AR did not reveal influence of VAD support on β2-AR-AC coupling. Stimulation of ventricular trabeculae by > 100 μmole/liter clenbuterol revealed negative inotropic responses. CONCLUSIONS VAD does not influence β2-AR coupling to AC stimulation. Elevated response to catecholamines after VAD support is influenced by β1-AR upregulation and modulation of AC activity. Restoration of β-adrenergic responsiveness was restricted to acutely failing hearts.
Collapse
Affiliation(s)
- Astrid Kassner
- Herz- und Diabeteszentrum NRW, Klinik f. Thorax- und Kardiovaskularchirurgie, E. & H. Klessmann-Institut f. Kardiovaskuläre Forschung und Entwicklung, Bad Oeynhausen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jiang LI, Wang JE, Sternweis PC. Regions on adenylyl cyclase VII required for selective regulation by the G13 pathway. Mol Pharmacol 2012; 83:587-93. [PMID: 23229509 DOI: 10.1124/mol.112.082446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of multiple adenylyl cyclases (AC) provides unique inputs to mediate the synthesis of cAMP, a ubiquitous second messenger that controls many aspects of cellular function. On stimulation by G(s), the activities of ACs can be further selectively modulated by other pathways to ensure precise control of intracellular cAMP responses to specific stimuli. Recently, we reported that one of the AC isoforms, AC7, is uniquely regulated by the G(13) pathway. To understand more fully the molecular mechanism of this regulation, we compared the regulation of AC7 with that of AC2 in bone marrow-derived macrophages devoid of AC7. Although both enzymes could fully restore regulation of cAMP by Gβγ, activation of the G(13) pathway preferentially synergized with AC7. Exchange of domains between the two isoforms indicates that the C1b domain and the N-terminus of the C1a domain are important for directing selective regulation of AC7 by the G(13) pathway. A mutagenesis screen identified more specific regions of AC7 that differentially mediate its regulation by distinct pathways.
Collapse
Affiliation(s)
- Lily I Jiang
- Department of Pharmacology, University of Texas-Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, USA 74390-9041, USA
| | | | | |
Collapse
|
39
|
Koh W, Blackwell KT. Improved spatial direct method with gradient-based diffusion to retain full diffusive fluctuations. J Chem Phys 2012; 137:154111. [PMID: 23083152 PMCID: PMC3487926 DOI: 10.1063/1.4758459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/27/2012] [Indexed: 11/14/2022] Open
Abstract
The spatial direct method with gradient-based diffusion is an accelerated stochastic reaction-diffusion simulation algorithm that treats diffusive transfers between neighboring subvolumes based on concentration gradients. This recent method achieved a marked improvement in simulation speed and reduction in the number of time-steps required to complete a simulation run, compared with the exact algorithm, by sampling only the net diffusion events, instead of sampling all diffusion events. Although the spatial direct method with gradient-based diffusion gives accurate means of simulation ensembles, its gradient-based diffusion strategy results in reduced fluctuations in populations of diffusive species. In this paper, we present a new improved algorithm that is able to anticipate all possible microscopic fluctuations due to diffusive transfers in the system and incorporate this information to retain the same degree of fluctuations in populations of diffusing species as the exact algorithm. The new algorithm also provides a capability to set the desired level of fluctuation per diffusing species, which facilitates adjusting the balance between the degree of exactness in simulation results and the simulation speed. We present numerical results that illustrate the recovery of fluctuations together with the accuracy and efficiency of the new algorithm.
Collapse
Affiliation(s)
- Wonryull Koh
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | | |
Collapse
|
40
|
Pinto CS, Reif GA, Nivens E, White C, Wallace DP. Calmodulin-sensitive adenylyl cyclases mediate AVP-dependent cAMP production and Cl- secretion by human autosomal dominant polycystic kidney cells. Am J Physiol Renal Physiol 2012; 303:F1412-24. [PMID: 22952279 DOI: 10.1152/ajprenal.00692.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), binding of AVP to the V2 receptor (V2R) increases cAMP and accelerates cyst growth by stimulating cell proliferation and Cl(-)-dependent fluid secretion. Basal cAMP is elevated in human ADPKD cells compared with normal human kidney (NHK) cells. V2R mRNA levels are elevated in ADPKD cells; however, AVP caused a greater increase in global cAMP in NHK cells, suggesting an intrinsic difference in cAMP regulation. Expression, regulatory properties, and receptor coupling of specific adenylyl cyclases (ACs) provide temporal and spatial regulation of the cAMP signal. ADPKD and NHK cells express mRNAs for all nine ACs. Ca(2+)-inhibited ACs 5 and 6 are increased in ADPKD cells, while Ca(2+)/CaM-stimulated ACs 1 and 3 are downregulated. ACs 1, 3, 5, and 6 were detected in cyst cells in situ, and codistribution with aquaporin-2 suggests that these cysts were derived from collecting ducts. To determine the contribution of CaM-sensitive ACs to AVP signaling, cells were treated with W-7, a CaM inhibitor. W-7 decreased AVP-induced cAMP production and Cl(-) secretion by ADPKD cells. CaMKII inhibition increased AVP-induced cAMP, suggesting that cAMP synthesis is mediated by AC3. In contrast, CaM and CaMKII inhibition in NHK cells did not affect AVP-induced cAMP production. Restriction of intracellular Ca(2+) switched the response in NHK cells, such that CaM inhibition decreased AVP-induced cAMP production. We suggest that a compensatory response to decreased Ca(2+) in ADPKD cells switches V2R coupling from Ca(2+)-inhibited ACs 5/6 to Ca(2+)/CaM-stimulated AC3, to mitigate high cAMP levels in response to continuous AVP stimulation.
Collapse
Affiliation(s)
- Cibele S Pinto
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | | | | | | | | |
Collapse
|
41
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
42
|
Balfanz S, Ehling P, Wachten S, Jordan N, Erber J, Mujagic S, Baumann A. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:435-445. [PMID: 22426196 DOI: 10.1016/j.ibmb.2012.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 05/31/2023]
Abstract
The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior.
Collapse
Affiliation(s)
- Sabine Balfanz
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Antoni FA. New paradigms in cAMP signalling. Mol Cell Endocrinol 2012; 353:3-9. [PMID: 22085559 DOI: 10.1016/j.mce.2011.10.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/24/2011] [Accepted: 10/29/2011] [Indexed: 12/16/2022]
Abstract
Signalling through adenosine 3'5' monophosphate (cAMP) is known to be important in virtually every cell. The mapping of the human genome over the past two decades has revealed an unexpected complexity of cAMP signalling, which is shared from insects to mammals. A more recent technical advance is the ability to monitor intracellular cAMP levels at subcellular spatial resolution within the time-domains of fast biochemical reactions. Thus, new light has been shed on old paradigms, some of which turn out to be multiple new ones. The novel aspects of cAMP signalling are highlighted here: (1) agonist induced plasticity - showing how the repertory of cAMP signalling genes supports homeostatic adaptation; (2) sustained cAMP signalling after endocytosis; (3) pre-assembled receptor-Gs-adenylyl cyclase complexes. Finally, a hypothetical model of propagating neuronal cAMP signals travelling form dendrites to the cell body is presented.
Collapse
Affiliation(s)
- Ferenc A Antoni
- Division of Preclinical Research, EGIS PLC, Bökényföldi út 116, 1165 Budapest, Hungary.
| |
Collapse
|
44
|
Ujcikova H, Dlouha K, Roubalova L, Vosahlikova M, Kagan D, Svoboda P. Up-regulation of adenylylcyclases I and II induced by long-term adaptation of rats to morphine fades away 20days after morphine withdrawal. Biochim Biophys Acta Gen Subj 2011; 1810:1220-9. [DOI: 10.1016/j.bbagen.2011.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/12/2011] [Accepted: 09/27/2011] [Indexed: 02/04/2023]
|
45
|
Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 385:5-12. [PMID: 22012074 DOI: 10.1007/s00210-011-0696-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
Abstract
Adenylyl cyclases are a ubiquitous family of enzymes and are critical regulators of metabolic and cardiovascular function. Multiple isoforms of the enzyme are expressed in a range of tissues. However, for many processes, the adenylyl cyclase isoforms have been thought of as essentially interchangeable, with their impact more dependent on their common actions to increase intracellular cyclic adenosine monophosphate content regardless of the isoform involved. It has long been appreciated that each subfamily of isoforms demonstrate a specific pattern of "upstream" regulation, i.e., specific patterns of ion dependence (e.g., calcium-dependence) and specific patterns of regulation by kinases (protein kinase A (PKA), protein kinase C (PKC), raf). However, more recent studies have suggested that adenylyl cyclase isoform-selective patterns of signaling are a wide-spread phenomenon. The determinants of these selective signaling patterns relate to a number of factors, including: (1) selective coupling of specific adenylyl cyclase isoforms with specific G protein-coupled receptors, (2) localization of specific adenylyl cyclase isoforms in defined structural domains (AKAP complexes, caveolin/lipid rafts), and (3) selective coupling of adenylyl cyclase isoforms with specific downstream signaling cascades important in regulation of cell growth and contractility. The importance of isoform-specific regulation has now been demonstrated both in mouse models as well as in humans. Adenylyl cyclase has not been viewed as a useful target for therapeutic regulation, given the ubiquitous expression of the enzyme and the perceived high risk of off-target effects. Understanding which isoforms of adenylyl cyclase mediate distinct cellular effects would bring new significance to the development of isoform-specific ligands to regulate discrete cellular actions.
Collapse
|
46
|
Hill SJ, Williams C, May LT. Insights into GPCR pharmacology from the measurement of changes in intracellular cyclic AMP; advantages and pitfalls of differing methodologies. Br J Pharmacol 2011; 161:1266-75. [PMID: 21049583 DOI: 10.1111/j.1476-5381.2010.00779.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
It is clear that the G protein-coupled receptor family play a key role in the pharmaceutical industry, with a significant proportion of approved drugs targeting this protein class. While our growing understanding of the complexity of G protein-coupled receptor pharmacology is playing a key role in the future success of these endeavours, with allosteric mechanisms now well integrated into the industrial community and G protein-independent signalling mechanisms establishing themselves as novel phenomenon to be exploited, it is still possible to underestimate the complexity of G protein signal transduction mechanisms and the impact that inappropriate study of these mechanisms can have on data interpretation. In this manuscript we review different approaches to measuring the cAMP signal transduction pathway, with particular emphasis on key parameters influencing the data quality and biological relevance.
Collapse
Affiliation(s)
- Stephen J Hill
- Institute of Cell Signalling, School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | | | |
Collapse
|
47
|
Taouji S, Dahan S, Bossé R, Chevet E. Current Screens Based on the AlphaScreen Technology for Deciphering Cell Signalling Pathways. Curr Genomics 2011; 10:93-101. [PMID: 19794881 PMCID: PMC2699825 DOI: 10.2174/138920209787847041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 01/08/2009] [Accepted: 01/20/2009] [Indexed: 11/22/2022] Open
Abstract
Global deciphering of signal transduction pathways represents a new challenge of the post-genomic era. However, for the majority of these signaling pathways the role(s), the function(s) and the interaction(s) of the signaling intermediates remain to be characterized in an integrated fashion. The global molecular study of cell signaling pathways and networks consequently requires sensitive, robust technologies which may allow in addition multi-parallel and highthroughput applications. The Alphascreen™ technology, relying on a bead-based homogenous approach, constitutes a valuable tool to detect and quantify a wide range of signaling events such as enzymatic activities or biomolecular interactions. In this article, we exhaustively review the literature and report the broad spectrum of Alphascreen™-based applications in the study of signal transduction pathways.
Collapse
|
48
|
Jackson CR, Chaurasia SS, Hwang CK, Iuvone PM. Dopamine D₄ receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina. Eur J Neurosci 2011; 34:57-64. [PMID: 21676039 DOI: 10.1111/j.1460-9568.2011.07734.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the mammalian retina, dopamine binding to the dopamine D₄ receptor (D₄R) affects a light-sensitive pool of cyclic AMP by negatively coupling to the type 1 adenylyl cyclase (AC1). AC1 is the primary enzyme controlling cyclic AMP production in dark-adapted photoreceptors. A previous study demonstrated that expression of the gene encoding AC1, Adcy1, is downregulated in mice lacking Drd4, the gene encoding the D₄R. The present investigation provides evidence that D₄R activation entrains the circadian rhythm of Adcy1 mRNA expression. Diurnal and circadian rhythms of Drd4 and Adcy1 mRNA levels were observed in wild-type mouse retina. Also, rhythms in the Ca²⁺-stimulated AC activity and cyclic AMP levels were observed. However, these rhythmic activities were damped or undetectable in mice lacking the D₄R. Pharmacologically activating the D₄R 4 h before its normal stimulation at light onset in the morning advances the phase of the Adcy1 mRNA expression pattern. These data demonstrate that stimulating the D₄R is essential in maintaining the normal rhythmic production of AC1 from transcript to enzyme activity. Thus, dopamine/D₄R signaling is a novel zeitgeber that entrains the rhythm of Adcy1 expression and, consequently, modulates the rhythmic synthesis of cyclic AMP in mouse retina.
Collapse
Affiliation(s)
- Chad R Jackson
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
49
|
Desrivières S, Pronko SP, Lourdusamy A, Ducci F, Hoffman PL, Wodarz N, Ridinger M, Rietschel M, Zelenika D, Lathrop M, Schumann G, Tabakoff B. Sex-specific role for adenylyl cyclase type 7 in alcohol dependence. Biol Psychiatry 2011; 69:1100-8. [PMID: 21481845 PMCID: PMC3094753 DOI: 10.1016/j.biopsych.2011.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/04/2011] [Accepted: 01/28/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Alcohol has been shown to critically modulate cyclic adenosine-3',5' monophosphate (cAMP) signaling. A number of downstream effectors that respond to the cAMP signals (e.g., protein kinase A, cAMP response element binding protein) have, in turn, been examined in relation to alcohol consumption. These studies did not, however, delineate the point at which the actions of alcohol on the cAMP cascade might translate into differences in drinking behavior. To further understand the role of cAMP synthesis in alcohol drinking and dependence, we investigated a specific adenylyl cyclase isoform, adenylyl cyclase (AC) Type 7, whose activity is selectively enhanced by ethanol. METHODS We measured alcohol consumption and preference in mice in which one copy of the Adcy7 gene was disrupted (Adcy7(+/-)). To demonstrate relevance of this gene for alcohol dependence in humans, we tested the association of polymorphisms in the ADCY7 gene with alcohol dependence in a sample of 1703 alcohol-dependent individuals and 1347 control subjects. RESULTS We show that Adcy7(+/-) female mice have higher preference for alcohol than wild-type mice, whereas there is little difference in alcohol consumption or preference between Adcy7(+/-) male mice and wild-type control subjects. In the human sample, we found that single nucleotide polymorphisms in ADCY7 associate with alcohol dependence in women, and these markers are also associated with ADCY7 expression (messenger RNA) levels. CONCLUSIONS These findings implicate adenylyl cyclase Type 7 as a critical component of the molecular pathways contributing to alcohol drinking and the development of alcohol dependence.
Collapse
Affiliation(s)
- Sylvane Desrivières
- Medical Research Council Social, Genetic and Developmental Psychiatry, King's College London, United Kingdom.
| | - Sergey P. Pronko
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Anbarasu Lourdusamy
- Medical Research Council Social, Genetic and Developmental Psychiatry, King's College London, United Kingdom
| | - Francesca Ducci
- Medical Research Council Social, Genetic and Developmental Psychiatry, King's College London, United Kingdom,Institute of Psychiatry, St. George's University of London, United Kingdom
| | - Paula L. Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Norbert Wodarz
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Monika Ridinger
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | | | | | - Gunter Schumann
- Medical Research Council Social, Genetic and Developmental Psychiatry, King's College London, United Kingdom
| | - Boris Tabakoff
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
50
|
Friedlander RS, Moss CE, Mace J, Parker HE, Tolhurst G, Habib AM, Wachten S, Cooper DM, Gribble FM, Reimann F. Role of phosphodiesterase and adenylate cyclase isozymes in murine colonic glucagon-like peptide 1 secreting cells. Br J Pharmacol 2011; 163:261-71. [PMID: 21054345 PMCID: PMC3087130 DOI: 10.1111/j.1476-5381.2010.01107.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/23/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine L-cells after food intake. Increasing GLP-1 signalling either through inhibition of the GLP-1 degrading enzyme dipeptidyl-peptidase IV or injection of GLP-1-mimetics has recently been successfully introduced for the treatment of type 2 diabetes. Boosting secretion from the L-cell has so far not been exploited, due to our incomplete understanding of L-cell physiology. Elevation of cyclic adenosine monophosphate (cAMP) has been shown to be a strong stimulus for GLP-1 secretion and here we investigate the activities of adenylate cyclase (AC) and phosphodiesterase (PDE) isozymes likely to shape cAMP responses in L-cells. EXPERIMENTAL APPROACH Expression of AC and PDE isoforms was quantified by RT-PCR. Single cell responses to stimulation or inhibition of AC and PDE isoforms were monitored with real-time cAMP probes. GLP-1 secretion was assessed by elisa. KEY RESULTS Quantitative PCR identified expression of protein kinase C- and Ca²+-activated ACs, corresponding with phorbolester and cytosolic Ca²+-stimulated cAMP elevation. Inhibition of PDE2, 3 and 4 were found to stimulate GLP-1 secretion from murine L-cells in primary culture. This corresponded with cAMP elevations monitored with a plasma membrane targeted cAMP probe. Inhibition of PDE3 but not PDE2 was further shown to prevent GLP-1 secretion in response to guanylin, a peptide secreted into the gut lumen, which had not previously been implicated in L-cell secretion. CONCLUSIONS AND IMPLICATIONS Our results reveal several mechanisms shaping cAMP responses in GLP-1 secreting cells, with some of the molecular components specifically expressed in L-cells when compared with their epithelial neighbours, thus opening new strategies for targeting these cells therapeutically.
Collapse
Affiliation(s)
- Ronn S Friedlander
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's HospitalCambridge, UK
| | - Catherine E Moss
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's HospitalCambridge, UK
| | - Jessica Mace
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's HospitalCambridge, UK
| | - Helen E Parker
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's HospitalCambridge, UK
| | - Gwen Tolhurst
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's HospitalCambridge, UK
| | - Abdella M Habib
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's HospitalCambridge, UK
| | | | - Dermot M Cooper
- Department of Pharmacology, University of CambridgeCambridge, UK
| | - Fiona M Gribble
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's HospitalCambridge, UK
| | - Frank Reimann
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's HospitalCambridge, UK
| |
Collapse
|