1
|
Takada M, Pinnawala UC, Hirano S, Imokawa G. The interleukin-1α stimulated expression of the wrinkle-inducing elastase neprilysin in adult human dermal fibroblasts is mediated via the intracellular signaling axis of ERK/JNK/c-Jun/c-Fos/AP-1. J Dermatol 2025; 52:24-34. [PMID: 39482861 DOI: 10.1111/1346-8138.17520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Neprilysin is a skin wrinkle-inducing membrane bound elastase that is expressed abundantly in UV-exposed and in aged dermal fibroblasts. The overexpression of neprilysin is closely associated with enhanced epithelial-mesenchymal cytokine interactions mainly via interleukin (IL)-1α, which has the distinct potential to stimulate the expression of neprilysin by human dermal fibroblasts (HDFs). The over-expression of neprilysin also accelerates the formation of wrinkles, accompanied by disruptions of the three-dimensional architecture of dermal elastic fibers that are responsible for the loss of skin elasticity. Because the signaling pathway(s) that lead to the IL-1α-stimulated expression of neprilysin in HDFs remain unclear, we characterized the signaling pathway involved, including their related transcription factors, in IL-1α-treated HDFs. Since qRT-PCR analysis revealed that the mRNA expression level of neprilysin is stimulated to a stronger extent in adult HDFs (aHDFs) by IL-1α than in neonatal HDFs, we used aHDFs for the signaling analysis. Western blotting analysis of the phosphorylation of signaling factors revealed that IL-1α significantly stimulated the phosphorylation of ERK1/2, RSK, JNK, p38, MSK1, NFkB, c-Jun, ATF-2, CREB, and STAT3. Analysis using various signaling inhibitors demonstrated that inhibiting ERK and JNK but not p38, MSK1, NFkB, or STAT3 significantly abrogated the IL-1α stimulated expression of neprilysin at the mRNA, protein, and enzyme activity levels. Furthermore, silencing c-Fos significantly down-regulated the IL-1α-increased expression of neprilysin at the protein and enzyme activity levels. These findings strongly suggest that the IL-1α-stimulated expression of neprilysin in aHDFs is mediated via the intracellular signaling axis of ERK/JNK/c-Jun/c-Fos/AP-1.
Collapse
Affiliation(s)
- Mariko Takada
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Uma Chandula Pinnawala
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | | | - Genji Imokawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
2
|
Garcia J, Smith SS, Karki S, Drissi H, Hrdlicka HH, Youngstrom DW, Delany AM. miR-433-3p suppresses bone formation and mRNAs critical for osteoblast function in mice. J Bone Miner Res 2021; 36:1808-1822. [PMID: 34004029 DOI: 10.1002/jbmr.4339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of osteoblastic commitment and differentiation. miR-433-3p was previously shown to target Runt-related transcription factor 2 (Runx2) and to be repressed by bone morphogenetic protein (BMP) signaling. Here, we show that miR-433-3p is progressively decreased during osteoblastic differentiation of primary mouse bone marrow stromal cells in vitro, and we confirm its negative regulation of this process. Although repressors of osteoblastic differentiation often promote adipogenesis, inhibition of miR-433-3p did not affect adipocyte differentiation in vitro. Multiple pathways regulate osteogenesis. Using luciferase-3' untranslated region (UTR) reporter assays, five novel miR-433-3p targets involved in parathyroid hormone (PTH), mitogen-activated protein kinase (MAPK), Wnt, and glucocorticoid signaling pathways were validated. We show that Creb1 is a miR-433-3p target, and this transcription factor mediates key signaling downstream of PTH receptor activation. We also show that miR-433-3p targets hydroxysteroid 11-β dehydrogenase 1 (Hsd11b1), the enzyme that locally converts inactive glucocorticoids to their active form. miR-433-3p dampens glucocorticoid signaling, and targeting of Hsd11b1 could contribute to this phenomenon. Moreover, miR-433-3p targets R-spondin 3 (Rspo3), a leucine-rich repeat-containing G-protein coupled receptor (LGR) ligand that enhances Wnt signaling. Notably, Wnt canonical signaling is also blunted by miR-433-3p activity. In vivo, expression of a miR-433-3p inhibitor or tough decoy in the osteoblastic lineage increased trabecular bone volume. Mice expressing the miR-433-3p tough decoy displayed increased bone formation without alterations in osteoblast or osteoclast numbers or surface, indicating that miR-433-3p decreases osteoblast activity. Overall, we showed that miR-433-3p is a negative regulator of bone formation in vivo, targeting key bone-anabolic pathways including those involved in PTH signaling, Wnt, and endogenous glucocorticoids. Local delivery of miR-433-3p inhibitor could present a strategy for the management of bone loss disorders and bone defect repair. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Spenser S Smith
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University and Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Henry H Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Daniel W Youngstrom
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Atalay S, Gęgotek A, Wroński A, Domigues P, Skrzydlewska E. Therapeutic application of cannabidiol on UVA and UVB irradiated rat skin. A proteomic study. J Pharm Biomed Anal 2020; 192:113656. [PMID: 33086172 DOI: 10.1016/j.jpba.2020.113656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022]
Abstract
UV phototherapy used in chronic skin diseases causes redox imbalance and pro-inflammatory reactions, especially in the case of unchanged skin cells. To prevent the harmful effects of UV radiation, cannabidiol (CBD) has been used, which has antioxidant and anti-inflammatory properties. Therefore, the aim of this study was to evaluate the effect of CBD on the metabolism of skin keratinocytes in nude rats exposed to UVA/UVB radiation using a proteomic approach. The results obtained with SDS-PAGE/nanoHPLC/QexactiveOrbiTrap show that exposure of rat's skin to UVA/UVB radiation, as well as the action of CBD, significantly modified the expression of proteins involved in inflammation, redox balance and apoptosis. UVA/UVB radiation significantly increased the expression and biological effectiveness of the nuclear factor associated with erythroid factor 2 (Nrf2) and cytoprotective proteins being products of its transcriptional activity, including superoxide dismutase (Cu,Zn-SOD) and the inflammatory response (nuclear receptor coactivator-3 and paralemmin-3), while CBD treatment counteracted and partially eliminated these changes. Moreover, cannabidiol reversed changes in the UV-induced apoptotic pathways by modifying anti-apoptotic and pro-apoptotic factors (apoptosis regulator Bcl-2 and transforming growth factor-β). The results show that CBD maintains keratinocyte proteostasis and therefore could be suggested as a protective measure in the prevention of UV-induced metabolic changes in epidermal keratinocytes.
Collapse
Affiliation(s)
- Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Adam Wroński
- Dermatological Specialized Center "DERMAL" NZOZ in Bialystok, Poland.
| | - Pedro Domigues
- Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
4
|
Terazawa S, Nakano M, Yamamoto A, Imokawa G. Mycosporine-like amino acids stimulate hyaluronan secretion by up-regulating hyaluronan synthase 2 via activation of the p38/MSK1/CREB/c-Fos/AP-1 axis. J Biol Chem 2020; 295:7274-7288. [PMID: 32284328 PMCID: PMC7247295 DOI: 10.1074/jbc.ra119.011139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that critically supports the physicochemical and mechanical properties of the skin. Here, we demonstrate that mycosporine-like amino acids (MAAs), which typically function as UV-absorbing compounds, can stimulate HA secretion from normal human fibroblasts. MAA-stimulated HA secretion was associated with significantly increased and decreased levels of mRNAs encoding HA synthase 2 (HAS2) and the HA-binding protein involved in HA depolymerization (designated HYBID), respectively. Using immunoblotting, we found that MAAs at 10 and at 25 μg/ml stimulate the phosphorylation of the mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase (ERK)/c-Jun, and mitogen- and stress-activated protein kinase 1 (MSK1) (at Thr-581, Ser-360, and Ser-376, respectively) and activation of cAMP-responsive element-binding protein (CREB) and activating transcription factor 2 (ATF2), but not phosphorylation of JUN N-terminal kinase (JNK) or NF-κB (at Ser-276 or Ser-536, respectively), and increased c-Fos protein levels. Moreover, a p38-specific inhibitor, but not inhibitors of MAPK/ERK kinase (MEK), JNK, or NF-κB, significantly abrogated the increased expression of HAS2 mRNA, accompanied by significantly decreased MAA-stimulated HA secretion. These results suggested that the p38-MSK1-CREB-c-Fos-transcription factor AP-1 (AP-1) or the p38-ATF2 signaling cascade is responsible for the MAA-induced stimulation of HAS2 gene expression. Of note, siRNA-mediated ATF2 silencing failed to abrogate MAA-stimulated HAS2 expression, and c-Fos silencing abolished the increased expression of HAS2 mRNA. Our findings suggest that MAAs stimulate HA secretion by up-regulating HAS2 mRNA levels through activation of an intracellular signaling cascade consisting of p38, MSK1, CREB, c-Fos, and AP-1.
Collapse
Affiliation(s)
- Shuko Terazawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Masahiko Nakano
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan; Cosmetic Research Center, Doctor's Choice Co., Ltd., Tokyo 102-0071, Japan
| | - Akio Yamamoto
- Cosmetic Research Center, Doctor's Choice Co., Ltd., Tokyo 102-0071, Japan
| | - Genji Imokawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan; Research Institute for Biological Functions, Chubu University of Technology, Aichi 487-8501, Japan.
| |
Collapse
|
5
|
Imokawa G. Intracellular Signaling Mechanisms Involved in the Biological Effects of the Xanthophyll Carotenoid Astaxanthin to Prevent the Photo-aging of the Skin in a Reactive Oxygen Species Depletion-independent Manner: The Key Role of Mitogen and Stress-activated Protein Kinase 1. Photochem Photobiol 2018; 95:480-489. [PMID: 30317634 DOI: 10.1111/php.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
In the first review, we summarized the biological effects of the xanthophyll carotenoid astaxanthin (AX) to prevent UV-induced cutaneous inflammation, abnormal keratinization, pigmentation, and wrinkling in a manner independent of the depletion of reactive oxygen species. In this manuscript, we review what is known about the intracellular signaling mechanisms that are involved in those effects in keratinocytes and in melanocytes. Our research has characterized the intracellular stress signaling mechanism(s) that are involved in the up-regulated expression of genes encoding cyclooxygenase (COX2), interleukin (IL)-8, granulocyte macrophage colony stimulatory factor (GM-CSF), and transglutaminase (TGase)1 in UVB-exposed keratinocytes as well as in the stimulated transcription and/or translation of melanogenic factors, including microphthalmia-associated transcription factor (MITF), in stem cell factor (SCF)-treated melanocytes. The results reveal that while the expression of COX2, IL-8, GM-CSF, and TGase1 stimulated by UVB is due to effects primarily via the NFκB pathway, that stimulation can be abrogated by specifically interrupting the p38/MSK1/NFκBp65Ser276 axis. Further, the stimulation of melanogenesis by SCF can be inhibited by disrupting the phosphorylation of MSK1 via the p38, MSK1, CREB, and MITF axis. The sum of these findings provides new evidence for the interruption of ROS depletion independent-signaling by antioxidants.
Collapse
Affiliation(s)
- Genji Imokawa
- Center for Bioscience Research & Education, Utsunomiya University, Tochigi, Japan.,Research Institute for Biological Functions, Chubu University, Aichi, Japan
| |
Collapse
|
6
|
Delcuratolo M, Fertey J, Schneider M, Schuetz J, Leiprecht N, Hudjetz B, Brodbeck S, Corall S, Dreer M, Schwab RM, Grimm M, Wu SY, Stubenrauch F, Chiang CM, Iftner T. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4. PLoS Pathog 2016; 12:e1005366. [PMID: 26727473 PMCID: PMC4699637 DOI: 10.1371/journal.ppat.1005366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022] Open
Abstract
We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. Human Papillomaviruses (HPV) are the etiological agents of cervical cancer and of skin cancer in individuals with the inherited disease epidermodysplasia verruciformis (EV). While the role of the viral oncogenes E6/E7 as drivers of tumorigenesis in cervical cancer has been firmly established, the contribution of the early viral genes in skin cancer is less clear. For EV-associated HPV8 and for the skin cancer model system using cottontail rabbit PV, an important role of the viral E2 protein in tumorigenesis was suggested earlier and regulation of cellular genes by E2 through different mechanisms was demonstrated. We show now that the viral E2 and cellular Brd4 act together to induce the cellular gene c-Fos, which as a member of the AP-1 complex, is involved in the regulation of cellular genes and the viral promoter driving the expression of viral oncogenes. As c-Fos has also been shown to be essential for skin cancer, E2 contributes to tumorigenesis via expression of E6/E7 as well as by increasing c-Fos.
Collapse
Affiliation(s)
- Maria Delcuratolo
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Jasmin Fertey
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Markus Schneider
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Johanna Schuetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Natalie Leiprecht
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Hudjetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Brodbeck
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Silke Corall
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Marcel Dreer
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Roxana Michaela Schwab
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Shwu-Yuan Wu
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Frank Stubenrauch
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Cheng-Ming Chiang
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Thomas Iftner
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
7
|
Terazawa S, Mori S, Nakajima H, Yasuda M, Imokawa G. The UVB-Stimulated Expression of Transglutaminase 1 Is Mediated Predominantly via the NFκB Signaling Pathway: New Evidence of Its Significant Attenuation through the Specific Interruption of the p38/MSK1/NFκBp65 Ser276 Axis. PLoS One 2015; 10:e0136311. [PMID: 26305102 PMCID: PMC4549294 DOI: 10.1371/journal.pone.0136311] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022] Open
Abstract
The influence of ultraviolet B (UVB) radiation on transglutaminase 1 (TGase 1), a major factor that regulates skin keratinization, has not been sufficiently characterized especially at the gene or protein level. Thus, we determined whether UVB affects the expression of TGase 1 in human keratinocytes and clarified the intracellular stress signaling mechanism(s) involved. Exposure of human keratinocytes to UVB significantly up-regulated the expression of TGase 1 at the gene and protein levels. Treatment with inhibitors of p38, MEK, JNK or NFκB significantly abolished the UVB-stimulated protein expression of TGase 1. Treatment with astaxanthin immediately after UVB irradiation did not attenuate the increased phosphorylation of Ser536/Ser468NFκBp65, c-Jun, ATK-2 and CK2, and did not abrogate the increased or diminished protein levels of c-Jun/c-Fos or I-κBα, respectively. However, the same treatment with astaxanthin significantly abolished the UVB-stimulated expression of TGase 1 protein, which was accompanied by the attenuated phosphorylation of Thr565/Ser376/Ser360MSK1, Ser276NFκBp65 and Ser133CREB. The MSK1 inhibitor H89 significantly down-regulated the increased protein expression of TGase 1 in UVB-exposed human keratinocytes, which was accompanied by an abrogating effect on the increased phosphorylation of Ser276NFκBp65 and Ser133CREB but not Thr565/Ser376/Ser360MSK1. Transfection of human keratinocytes with MSK1 siRNA suppressed the UVB-stimulated protein expression of TGase 1. These findings suggest that the UVB-stimulated expression of TGase 1 is mediated predominantly via the NFκB pathway and can be attenuated through a specific interruption of the p38/MSK1/NFκBp65Ser276 axis.
Collapse
Affiliation(s)
- Shuko Terazawa
- Research Institute for Biological Functions, Chubu University, Aichi, Japan
| | - Shingo Mori
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Hiroaki Nakajima
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Michitaka Yasuda
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Genji Imokawa
- Research Institute for Biological Functions, Chubu University, Aichi, Japan
- * E-mail:
| |
Collapse
|
8
|
Dickinson SE, Olson ER, Levenson C, Janda J, Rusche JJ, Alberts DS, Bowden GT. A novel chemopreventive mechanism for a traditional medicine: East Indian sandalwood oil induces autophagy and cell death in proliferating keratinocytes. Arch Biochem Biophys 2014. [PMID: 25004464 DOI: 10.1016/j.abb.2014.06.021.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of the primary components of the East Indian sandalwood oil (EISO) is α-santalol, a molecule that has been investigated for its potential use as a chemopreventive agent in skin cancer. Although there is some evidence that α-santalol could be an effective chemopreventive agent, to date, purified EISO has not been extensively investigated even though it is widely used in cultures around the world for its health benefits as well as for its fragrance and as a cosmetic. In the current study, we show for the first time that EISO-treatment of HaCaT keratinocytes results in a blockade of cell cycle progression as well as a concentration-dependent inhibition of UV-induced AP-1 activity, two major cellular effects known to drive skin carcinogenesis. Unlike many chemopreventive agents, these effects were not mediated through an inhibition of signaling upstream of AP-1, as EISO treatment did not inhibit UV-induced Akt or MAPK activity. Low concentrations of EISO were found to induce HaCaT cell death, although not through apoptosis as annexin V and PARP cleavage were not found to increase with EISO treatment. However, plasma membrane integrity was severely compromised in EISO-treated cells, which may have led to cleavage of LC3 and the induction of autophagy. These effects were more pronounced in cells stimulated to proliferate with bovine pituitary extract and EGF prior to receiving EISO. Together, these effects suggest that EISO may exert beneficial effects upon skin, reducing the likelihood of promotion of pre-cancerous cells to actinic keratosis (AK) and skin cancer.
Collapse
Affiliation(s)
- Sally E Dickinson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States.
| | - Erik R Olson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Corey Levenson
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - Jaroslav Janda
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Jadrian J Rusche
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - David S Alberts
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - G Timothy Bowden
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Dickinson SE, Olson ER, Levenson C, Janda J, Rusche JJ, Alberts DS, Bowden GT. A novel chemopreventive mechanism for a traditional medicine: East Indian sandalwood oil induces autophagy and cell death in proliferating keratinocytes. Arch Biochem Biophys 2014; 558:143-52. [PMID: 25004464 DOI: 10.1016/j.abb.2014.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
One of the primary components of the East Indian sandalwood oil (EISO) is α-santalol, a molecule that has been investigated for its potential use as a chemopreventive agent in skin cancer. Although there is some evidence that α-santalol could be an effective chemopreventive agent, to date, purified EISO has not been extensively investigated even though it is widely used in cultures around the world for its health benefits as well as for its fragrance and as a cosmetic. In the current study, we show for the first time that EISO-treatment of HaCaT keratinocytes results in a blockade of cell cycle progression as well as a concentration-dependent inhibition of UV-induced AP-1 activity, two major cellular effects known to drive skin carcinogenesis. Unlike many chemopreventive agents, these effects were not mediated through an inhibition of signaling upstream of AP-1, as EISO treatment did not inhibit UV-induced Akt or MAPK activity. Low concentrations of EISO were found to induce HaCaT cell death, although not through apoptosis as annexin V and PARP cleavage were not found to increase with EISO treatment. However, plasma membrane integrity was severely compromised in EISO-treated cells, which may have led to cleavage of LC3 and the induction of autophagy. These effects were more pronounced in cells stimulated to proliferate with bovine pituitary extract and EGF prior to receiving EISO. Together, these effects suggest that EISO may exert beneficial effects upon skin, reducing the likelihood of promotion of pre-cancerous cells to actinic keratosis (AK) and skin cancer.
Collapse
Affiliation(s)
- Sally E Dickinson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States.
| | - Erik R Olson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Corey Levenson
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - Jaroslav Janda
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Jadrian J Rusche
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - David S Alberts
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - G Timothy Bowden
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Einspahr JG, Calvert V, Alberts DS, Curiel-Lewandrowski C, Warneke J, Krouse R, Stratton SP, Liotta L, Longo C, Pellacani G, Pellicani G, Prasad A, Sagerman P, Bermudez Y, Deng J, Bowden GT, Petricoin EF. Functional protein pathway activation mapping of the progression of normal skin to squamous cell carcinoma. Cancer Prev Res (Phila) 2012; 5:403-13. [PMID: 22389437 PMCID: PMC3297971 DOI: 10.1158/1940-6207.capr-11-0427] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse phase protein microarray analysis was used to identify cell signaling derangements in squamous cell carcinoma (SCC) compared with actinic keratosis (AK) and upper inner arm (UIA). We analyzed two independent tissue sets with isolation and enrichment of epithelial cells by laser capture microdissection. Set 1 served as a pilot and a means to identify protein pathway activation alterations that could be further validated in a second independent set. Set 1 was comprised of 4 AK, 13 SCC, and 20 UIA. Set 2 included 15 AK, 9 SCCs, and 20 UIAs. Activation of 51 signaling proteins, known to be involved in tumorigenesis, were assessed for set 1 and showed that the MEK-ERK [mitogen-activated protein (MAP)/extracellular signal-regulated (ERK; MEK)] pathway was activated in SCC compared with AK and UIA, and that epidermal growth factor receptor (EGFR) and mTOR pathways were aberrantly activated in SCC. Unsupervised two-way hierarchical clustering revealed that AK and UIA shared a common signaling network activation architecture while SCC was dramatically different. Statistical analysis found that prosurvival signaling through phosphorylation of ASK and 4EBP1 as well as increased Bax and Bak expression was higher in AK compared with UIA. We expanded pathway network activation mapping in set 2 to 101 key signaling proteins, which corroborated activation of MEK-ERK, EGFR, and mTOR pathways through discovery of a number of upstream and downstream signaling molecules within these pathways to conclude that SCC is indeed a pathway activation-driven disease. Pathway activation mapping of SCC compared with AK revealed several interconnected networks that could be targeted with drug therapy for potential chemoprevention and therapeutic applications.
Collapse
Affiliation(s)
- Janine G Einspahr
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yin J, Thomas F, Lang JC, Chaum E. Modulation of oxidative stress responses in the human retinal pigment epithelium following treatment with vitamin C. J Cell Physiol 2011; 226:2025-32. [PMID: 21520054 DOI: 10.1002/jcp.22532] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS) in the retina plays an important role in the development and progression of age-related macular degeneration (AMD). Our previous work has shown that OS can quantitatively regulate the expression of AP-1 family genes in the retinal pigment epithelium (RPE). In this study, we sought to determine whether AP-1 genes can be used as cellular biomarkers of OS to evaluate the efficacy of ascorbate, the major aqueous-phase antioxidant in the blood, in reducing OS in RPE cells in vitro. Human ARPE19 cells were pretreated with increasing levels of ascorbate (0-500 µM) for 3 days which was then removed from the medium. OS was induced 24 h later by the addition of hydrogen peroxide for 1-4 h, to bring the final media concentration of H(2)O(2) to 500 µM. FosB, c-Fos, and ATF3 gene expression was examined from 0 to 24 h after OS. Pretreatment with 200 µM ascorbate maximally reduced the transcriptional OS response of AP-1 genes by up to 87% after 1 and 4 h, compared to controls. One hundred micromolar of ascorbate provided a statistically significant, but far more modest effect. Ascorbate supplementation of 100-200 µM appears to strongly inhibit OS-induced activation of AP-1 in vitro, but pretreatment with higher levels of ascorbate conferred no additional advantage. These studies suggest that there are optimal levels of antioxidant supplementation to the RPE in vitro. Laboratory assays based upon transcription factor biomarkers may be useful to define beneficial molecular responses to new antioxidants, alternative dosing regimens, and to explore therapeutic efficacy in OS models in vitro.
Collapse
Affiliation(s)
- Jinggang Yin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
12
|
Dickinson SE, Olson ER, Zhang J, Cooper SJ, Melton T, Criswell PJ, Casanova A, Dong Z, Hu C, Saboda K, Jacobs ET, Alberts DS, Bowden GT. p38 MAP kinase plays a functional role in UVB-induced mouse skin carcinogenesis. Mol Carcinog 2011; 50:469-78. [PMID: 21268131 DOI: 10.1002/mc.20734] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/20/2010] [Accepted: 12/04/2010] [Indexed: 01/15/2023]
Abstract
UVB irradiation of epidermal keratinocytes results in the activation of the p38 mitogen-activated protein kinase (MAPK) pathway and subsequently activator protein-1 (AP-1) transcription factor activation and cyclooxygenase-2 (COX-2) expression. AP-1 and COX-2 have been shown to play functional roles in UVB-induced mouse skin carcinogenesis. In this study, the experimental approach was to express a dominant negative p38α MAPK (p38DN) in the epidermis of SKH-1 hairless mice and assess UVB-induced AP-1 activation, COX-2 expression, and the skin carcinogenesis response in these mice compared to wild-type littermates. We observed a significant inhibition of UVB-induced AP-1 activation and COX-2 expression in p38DN transgenic mice, leading to a significant reduction of UVB-induced tumor number and growth compared to wild-type littermates in a chronic UVB skin carcinogenesis model. A potential mechanism for this reduction in tumor number and growth rate is an inhibition of chronic epidermal proliferation, observed as reduced Ki-67 staining in p38DN mice compared to wild-type. Although we detected no difference in chronic apoptotic rates between transgenic and nontransgenic mice, analysis of acutely irradiated mice demonstrated that expression of the p38DN transgene significantly inhibited UVB-induced apoptosis of keratinocytes. These results counter the concerns that inhibition of p38 MAPK in a chronic situation could compromise the ability of the skin to eliminate potentially tumorigenic cells. Our data indicate that p38 MAPK is a good target for pharmacological intervention for UV-induced skin cancer in patients with sun damaged skin, and suggest that inhibition of p38 signaling reduces skin carcinogenesis by inhibiting COX-2 expression and proliferation of UVB-irradiated cells.
Collapse
Affiliation(s)
- Sally E Dickinson
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chandramouli A, Mercado-Pimentel ME, Hutchinson A, Gibadulinová A, Olson ER, Dickinson S, Shañas R, Davenport J, Owens J, Bhattacharyya AK, Regan JW, Pastorekova S, Arumugam T, Logsdon CD, Nelson MA. The induction of S100p expression by the Prostaglandin E₂ (PGE₂)/EP4 receptor signaling pathway in colon cancer cells. Cancer Biol Ther 2010; 10:1056-66. [PMID: 20890108 DOI: 10.4161/cbt.10.10.13373] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Prostaglandin E₂ (PGE₂) levels are frequently elevated in colorectal carcinomas. PGE₂ is perceived via four transmembrane G protein coupled receptors (EP1-4), among which the EP4 receptor is most relevant. PGE₂/EP4-receptor interaction activates CREB via the ERK/MEK pathway. However, the downstream target genes activated by this pathway remained to be investigated. METHODOLOGY/PRINICIPAL FINDINGS Here, we have identified S100P (an EF-hand calcium binding protein) as a novel downstream target. We show by realtime RT-PCR that S100P mRNA levels are elevated in 14/17 (82%) colon tumor tissues as compared to paired adjacent normal colonic tissues. S100P expression is stimulated in the presence of PGE₂ in a time dependent manner at mRNA and protein levels in colon, breast and pancreatic cancer cells. Pharmacological and RNAi-mediated inhibition of the EP4 receptor attenuates PGE₂-dependent S100P mRNA induction. RNA(i)-mediated knockdown of CREB inhibits endogenous S100P expression. Furthermore, using luciferase reporter analysis and EMSA we show that mutation and/or deletion of the CRE sequence within the S100P promoter abolished PGE₂-mediated transcriptional induction. Finally, we demonstrate that RNA(i)-mediated knockdown of S100P compromised invadopodia formation, colony growth and motility of colon cancer cells. Interestingly, endogenous knock down of S100P decreases ERK expression levels, suggesting a role for ERK in regulating S100P mediated cell growth and motility. CONCLUSIONS/SIGNIFICANCE Together, our findings show for the first time that S100P expression is regulated by PGE₂/EP4-receptor signaling and may participate in a feedback signaling that perpetuates tumor cell growth and migration. Therefore, our data suggest that dysregulated S100P expression resulting from aberrant PGE₂/EP4 receptor signaling may have important consequences relevant to colon cancer pathogenesis.
Collapse
|
14
|
Olson ER, Melton T, Dickinson SE, Dong Z, Alberts DS, Bowden GT. Quercetin potentiates UVB-Induced c-Fos expression: implications for its use as a chemopreventive agent. Cancer Prev Res (Phila) 2010; 3:876-84. [PMID: 20551291 PMCID: PMC2925138 DOI: 10.1158/1940-6207.capr-09-0220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Quercetin (Qu) is currently being investigated as a chemopreventive agent for several cancers, including nonmelanoma skin cancer induced by UV light. We previously reported that Qu degradation has important consequences on signaling and cell biology. In the current study, we report that Qu induces c-Fos mRNA and protein expression through activation of p38 and cAMP-responsive element binding protein (CREB), and Qu potentiates UVB-induced c-Fos expression. Inclusion of ascorbic acid (AA) in cell culture medium stabilizes Qu and completely prevents both Qu- and UVB-induced p38 and CREB activation, leading to a blockade of c-fos gene expression through reduced CREB/cAMP-responsive element binding. AA stabilizes c-Fos mRNA, increasing steady-state levels even when c-fos gene expression is suppressed, but this has no effect on c-Fos protein levels in either mock- or UVB-irradiated cells. We report that Qu blocks mammalian target of rapamycin signaling and inhibits c-Fos protein expression directly through this mechanism because cotreatment with Qu and AA resulted in the complete suppression of UVB-induced c-Fos protein expression even in the presence of significantly increased mRNA levels. We further confirmed that this was not due to increased protein turnover because inhibition of proteasome activity with MG-132 did not raise c-Fos protein levels in Qu+AA-treated cells. Together, these data indicate that although Qu has been reported to have some beneficial properties as a chemopreventive agent, it is also capable of inducing c-fos expression, a cellular event important for the promotion phase of tumor development, if it is not stabilized.
Collapse
Affiliation(s)
- Erik R Olson
- Arizona Cancer Center, University of Arizona, Tucson, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Wang Z, Iwasaki M, Ficara F, Lin C, Matheny C, Wong SHK, Smith KS, Cleary ML. GSK-3 promotes conditional association of CREB and its coactivators with MEIS1 to facilitate HOX-mediated transcription and oncogenesis. Cancer Cell 2010; 17:597-608. [PMID: 20541704 PMCID: PMC2919232 DOI: 10.1016/j.ccr.2010.04.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 02/23/2010] [Accepted: 04/16/2010] [Indexed: 12/24/2022]
Abstract
Acute leukemias induced by MLL chimeric oncoproteins are among the subset of cancers distinguished by a paradoxical dependence on GSK-3 kinase activity for sustained proliferation. We demonstrate here that GSK-3 maintains the MLL leukemia stem cell transcriptional program by promoting the conditional association of CREB and its coactivators TORC and CBP with homedomain protein MEIS1, a critical component of the MLL-subordinate program, which in turn facilitates HOX-mediated transcription and transformation. This mechanism also applies to hematopoietic cells transformed by other HOX genes, including CDX2, which is highly expressed in a majority of acute myeloid leukemias, thus providing a molecular approach based on GSK-3 inhibitory strategies to target HOX-associated transcription in a broad spectrum of leukemias.
Collapse
MESH Headings
- Animals
- CREB-Binding Protein/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA-Binding Proteins/metabolism
- Down-Regulation/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/physiology
- Glycogen Synthase Kinase 3/antagonists & inhibitors
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Indoles/pharmacology
- Indoles/therapeutic use
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/prevention & control
- Maleimides/pharmacology
- Maleimides/therapeutic use
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Myeloid-Lymphoid Leukemia Protein/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Oncogene Proteins, Fusion/genetics
- Phosphorylation/drug effects
- Phosphorylation/physiology
- Pre-B-Cell Leukemia Transcription Factor 1
- Protein Binding/drug effects
- Protein Binding/physiology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Zhong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, Ph: 650-723-5471, Fax: 650-498-6222
| | - Masayuki Iwasaki
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, Ph: 650-723-5471, Fax: 650-498-6222
| | - Francesca Ficara
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, Ph: 650-723-5471, Fax: 650-498-6222
| | - Chenwei Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, Ph: 650-723-5471, Fax: 650-498-6222
| | - Christina Matheny
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, Ph: 650-723-5471, Fax: 650-498-6222
| | - Stephen H. K. Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, Ph: 650-723-5471, Fax: 650-498-6222
| | - Kevin S. Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, Ph: 650-723-5471, Fax: 650-498-6222
| | - Michael L. Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, Ph: 650-723-5471, Fax: 650-498-6222
| |
Collapse
|
16
|
Rozenberg J, Rishi V, Orosz A, Moitra J, Glick A, Vinson C. Inhibition of CREB function in mouse epidermis reduces papilloma formation. Mol Cancer Res 2009; 7:654-64. [PMID: 19435810 DOI: 10.1158/1541-7786.mcr-08-0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We used a double transgenic tetracycline system to conditionally express A-CREB, a dominant negative protein that prevents the DNA binding and function of cAMP-responsive element binding protein (CREB) family members, in mouse basal epidermis using the keratin 5 promoter. There was no phenotype in the adult. However, following a 7,12-dimethylbenz(a)anthracene (DMBA)/phorbol-12-myristate-13-acetate two-stage skin carcinogenesis experiment, A-CREB-expressing epidermis develop 5-fold fewer papillomas than wild-type controls. However, A-CREB expression one month after DMBA treatment does not prevent papilloma formation, suggesting that CREB functions at an early stage of papilloma formation. Oncogenic H-Ras genes with A-->T mutations in codon 61 were found in wild-type skin but not in A-CREB-expressing skin 2 days after DMBA treatment, suggesting that A-CREB either prevents DMBA mutagenesis or kills oncogenic H-Ras cells. In primary keratinocyte cultures, A-CREB expression induced apoptosis of v-Ras(Ha)-infected cells and suppressed the expression of cell cycle proteins cyclin B1 and cyclin D1. These results suggest that inhibiting CREB function is a valuable cancer prevention strategy.
Collapse
Affiliation(s)
- Julian Rozenberg
- Laboratory of Metabolism, National Cancer Institute, NIH, 37 Convent Drive, Room 2D24, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Zhang J, Bowden GT. UVB irradiation regulates Cox-2 mRNA stability through AMPK and HuR in human keratinocytes. Mol Carcinog 2008; 47:974-83. [PMID: 18449856 DOI: 10.1002/mc.20450] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Considerable evidence has demonstrated that UVB irradiation is a strong carcinogen for nonmelanoma skin cancer. Up-regulation of cyclooxygenase-2 (Cox-2) has been shown to be a crucial event in human keratinocytes in their responses to UVB irradiation. To further understand the molecular mechanisms governing Cox-2 regulation, we found that UVB irradiation significantly increased Cox-2 mRNA stability by inducing cytoplasmic localization and protein abundance of human antigen R (HuR). We also found that AMP-activated kinase (AMPK) mediates these events and that UVB reduces AMPK activity by down-regulating LKB1 kinase. Finally, we propose a novel model in which UVB regulates Cox-2 mRNA stability through the LKB1/AMPK pathway.
Collapse
Affiliation(s)
- Jack Zhang
- Arizona Cancer Center, Tucson, Arizona 85724, USA
| | | |
Collapse
|
18
|
Lee CW, Kim NH, Choi HK, Sun Y, Nam JS, Rhee HJ, Chun J, Huh SO. Lysophosphatidic acid-induced c-fos up-regulation involves cyclic AMP response element-binding protein activated by mitogen- and stress-activated protein kinase-1. J Cell Biochem 2008; 104:785-94. [PMID: 18172855 DOI: 10.1002/jcb.21663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptor-mediated signaling cascades. Recently, we reported that LPA stimulates cAMP response element-binding protein (CREB) through mitogen- and stress-activated protein kinase-1 (MSK1). Previously, LPA has been shown to stimulate c-fos mRNA expression in Rat-2 fibroblast cells via a serum response element binding protein (SRF). However, involvement of CREB in LPA-stimulated c-fos gene expression is not elucidated yet. To investigate the CREB-mediated c-fos activation by LPA, various c-fos promoter-reporter constructs containing wild-type and mutated SRE and CRE were tested for their inducibility by LPA in transient transfection assays. LPA-stimulated c-fos promoter activation was markedly decreased when SRE and CRE were mutated. A dominant negative CREB significantly down-regulated the LPA-stimulated c-fos promoter activation. Chromatin immunoprecipitation assay revealed that LPA induced an increased binding of phosphorylated CREB and CREB-binding protein (CBP) to the CRE region of the endogenous c-fos promoter. Immunoblot analyses with various pharmacological inhibitors further showed that LPA induces up-regulation of c-fos mRNA level by activation of ERK, p38 MAPK, and MSK1. Taken together, our results suggest that CREB plays an important role in up-regulation of c-fos mRNA level in LPA-stimulated Rat-2 fibroblast cells.
Collapse
Affiliation(s)
- Chang-Wook Lee
- Department of Molecular Biology, Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kaleem A, Hoessli DC, Ahmad I, Walker-Nasir E, Nasim A, Shakoori AR. Immediate-early gene regulation by interplay between different post-translational modifications on human histone H3. J Cell Biochem 2008; 103:835-51. [PMID: 17668447 DOI: 10.1002/jcb.21454] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mammalian cells, induction of immediate-early (IE) gene transcription occurs concomitantly with histone H3 phosphorylation on Ser 10 and is catalyzed by mitogen-activated protein kinases (MAPKs). Histone H3 is an evolutionarily conserved protein located in the core of the nucleosome, along with histones H2A, H2B, and H4. The N-terminal tails of histones protrude outside the chromatin structure and are accessible to various enzymes for post-translational modifications (PTM). Phosphorylation, O-GlcNAc modification, and their interplay often induce functional changes, but it is very difficult to monitor dynamic structural and functional changes in vivo. To get started in this complex task, computer-assisted studies are useful to predict the range in which those dynamic structural and functional changes may occur. As an illustration, we propose blocking of phosphorylation by O-GlcNAc modification on Ser 10, which may result in gene silencing in the presence of methylated Lys 9. Thus, alternate phosphorylation and O-GlcNAc modification on Ser 10 in the histone H3 protein may provide an on/off switch to regulate expression of IE genes.
Collapse
Affiliation(s)
- Afshan Kaleem
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | | | | | | | | | | |
Collapse
|
20
|
Halliday GM, Lyons JG. Inflammatory Doses of UV May Not Be Necessary for Skin Carcinogenesis. Photochem Photobiol 2008; 84:272-83. [DOI: 10.1111/j.1751-1097.2007.00247.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Einspahr JG, Timothy Bowden G, Alberts DS, McKenzie N, Saboda K, Warneke J, Salasche S, Ranger-Moore J, Curiel-Lewandrowski C, Nagle RB, Nickoloff BJ, Brooks C, Dong Z, Stratton SP. Cross-validation of Murine UV Signal Transduction Pathways in Human Skin. Photochem Photobiol 2008; 84:463-76. [DOI: 10.1111/j.1751-1097.2007.00287.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Oh JH, Kim A, Park JM, Kim SH, Chung AS. Ultraviolet B-induced matrix metalloproteinase-1 and -3 secretions are mediated via PTEN/Akt pathway in human dermal fibroblasts. J Cell Physiol 2007; 209:775-85. [PMID: 16972255 DOI: 10.1002/jcp.20754] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Matrix Metalloproteinases (MMPs) are crucial enzymes for ultraviolet irradiation-induced photoaging in human skin. Ultraviolet B (UVB) stimulates dermal fibroblasts to increase MMP-1 and -3 expression and extracellular matrix (ECM) degradation in photoaging. We investigated whether phosphatase and tensin homolog (PTEN)/Akt pathway is involved in secretions of MMP-1 and -3 in human dermal fibroblasts. The increase in MMP-1 and -3 expression and secretion occurred along with the increase in PTEN and Akt phosphorylation by UVB irradiation in a dose- and time-dependent manner. However, treatment with a casein kinase 2 inhibitor, 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole, inhibited their phosphorylations and MMP-1 and -3 secretions. Transfection of wild-type PTEN (Wt-PTEN) decreased basal and UVB-induced MMP-1 and -3 secretions, as well as activator protein-1 (AP-1) activity, while transfection of small interference RNA of PTEN (siRNA-PTEN), phosphatase-inactive PTEN (C124S-PTEN), or lipid phosphatase-inactive PTEN (G129E-PTEN) increased basal or UVB-induced MMP-1 and -3 secretions and AP-1 activity. Transfection of constitutively active Akt (Myr-Akt) also increased basal or UVB-induced MMP-1 and -3 secretions, as well as AP-1 activity. However, transfection of kinase-inactive Akt (K179M-Akt) decreased their secretions, but showed no significant change of AP-1 activity without UVB irradiation, and a significant increase of AP-1 activity with UVB irradiation. Treatment with the phosphatidylinositol 3-kinase inhibitors, LY294002 or wortmannin, downregulated basal and UVB-induced MMP-1 and -3 secretions. In conclusion, UVB irradiation increases PTEN and Akt phosphorylation in human dermal fibroblasts, and these inhibition of PTEN and activation of Akt by phosphorylation are involved in UVB-induced MMP-1 and -3 secretions partly through upregulation of AP-1 activity.
Collapse
Affiliation(s)
- Jang-Hee Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea
| | | | | | | | | |
Collapse
|
23
|
Tenbrock K, Juang YT, Leukert N, Roth J, Tsokos GC. The transcriptional repressor cAMP response element modulator alpha interacts with histone deacetylase 1 to repress promoter activity. THE JOURNAL OF IMMUNOLOGY 2006; 177:6159-64. [PMID: 17056544 DOI: 10.4049/jimmunol.177.9.6159] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional repression is a fundamental mechanism of gene regulation. cAMP response element (CRE) modulator (CREM)alpha is an ubiquitously expressed transcription factor and a counterpart of the activator CREB. In T cells, CREM is responsible for the termination of the IL-2 expression by a chromatin-dependent mechanism. We demonstrate in this study that CREMalpha associates with histone deacetylase (HDAC)1 through its H domain, which is located between the kinase inducible and DNA binding domains. The CREMalpha-mediated recruitment of HDAC1 to the CRE sites of the IL-2 and c-Fos promoter causes histone deacetylation and inaccessibility to restriction enzymes and limited transcriptional activity. Importantly, the CRE sites of these promoters are crucial for the activity and binding of HDAC1. Therefore, CREMalpha exerts its repressor activity by a mechanism that involves recruitment of HDAC1, increased deacetylation of histones, and repression of promoter activity.
Collapse
Affiliation(s)
- Klaus Tenbrock
- Department of Pediatrics, Division of Rheumatology, University Hospital, University of Muenster, Röntgenstrasse 21, 48149 Muenster, Germany.
| | | | | | | | | |
Collapse
|
24
|
Zhu M, Zhang Y, Bowden GT. Involvement of mitogen-activated protein kinases and protein kinase C in regulation of antioxidant response element activity in human keratinocytes. Cancer Lett 2006; 244:220-8. [PMID: 16455194 DOI: 10.1016/j.canlet.2005.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 12/07/2005] [Accepted: 12/10/2005] [Indexed: 01/03/2023]
Abstract
Antioxidant response element (ARE) is a unique cis-acting regulatory sequence located in the upstream regions of many genes encoding anticarcinogenic/antioxidant proteins. Induction of ARE dependent genes plays an important role in protection of cells against oxidative damage. However, the signaling mechanism(s) involved in regulating transcription of ARE dependent gene expression has not been clearly defined. In this study, we identified protein kinases that are involved in regulation of ARE activity by using specific pharmacological inhibitors of protein kinases in engineered human HaCaT keratinocytes, which stably express the ARE-driven green fluorescent protein (GFP) as a reporter. When HaCaT/GFP cells were treated with tert-butylhydroquinone (tBHQ), a well-known ARE activator, GFP expression was up-regulated in time and dose dependent manner, indicating that tBHQ activates the ARE in these cells. Treatment of cells with SB202190 (a specific inhibitor of p38), staurosporine (a wide-spectrum inhibitor of PKC) or rottlerin (a specific inhibitor of PKCdelta) all augmented ARE activation by tBHQ. These results suggest that p38 and PKC, especially PKCdelta, play inhibitory roles in ARE activation in human keratinocytes. Furthermore, UVB irradiation minimally affects the basal ARE activity but significantly suppresses tBHQ induced ARE activation, indicating that UVB irradiation interrupts tBHQ signaling. Interestingly, treatment of HaCaT/GFP cells with SP600125 (a specific inhibitor of JNK) could reverse UVB mediated suppression of ARE activation by tBHQ. This suggests that the suppressive effect of UVB on ARE activation by tBHQ is mediated by a JNK pathway(s). These findings provide useful information for developing novel strategies for skin cancer chemoprotection through ARE activation.
Collapse
Affiliation(s)
- Ming Zhu
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | |
Collapse
|
25
|
Zbytek B, Wortsman J, Slominski A. Characterization of a ultraviolet B-induced corticotropin-releasing hormone-proopiomelanocortin system in human melanocytes. Mol Endocrinol 2006; 20:2539-47. [PMID: 16740657 PMCID: PMC1847418 DOI: 10.1210/me.2006-0116] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CRH, the main regulator of the systemic response to stress, is also expressed in the skin where it is incorporated into a local homolog of the hypothalamic-pituitary-adrenal axis. To investigate the mechanisms of the induction of the CRH-proopiomelanocortin (POMC) response in human melanocytes, we used UVB as an epidermal-specific stressor. Human normal melanocytes cultured in vitro were irradiated with graded doses of UVB, and the CRH-POMC responses were measured in cell extracts and/or supernatants. UVB stimulated the CRH promoter, the CRH mRNA expression, and peptide release. The UVB-induced stimulation of the CRH promoter was suppressed by pharmacological inhibitors of protein kinase A or by plasmid overexpressing a dominant mutant cAMP response element (CRE)-binding protein (CREB). UVB also stimulated phosphorylation of CREB, binding of phosphorylated CREB to CRE sites in the CRH promoter, and activity of the reporter gene construct driven by consensus CRE sites. Mutation in the CRE site in the CRH promoter rendered the corresponding reporter gene construct less responsive to UVB in both normal and malignant melanocytes. In addition to CRH effects, UVB activated the POMC promoter, POMC mRNA expression, and ACTH release, whereas an antagonist of the CRH receptor 1 abrogated the UVB-stimulated induction of POMC. In conclusion, UVB induces CRH production in human melanocytes through stimulation of the protein kinase A pathway, with sequential involvement of CRH-CRH receptor 1 in the stimulation of POMC expression.
Collapse
Affiliation(s)
- Blazej Zbytek
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
26
|
Finch JS, Tome ME, Kwei KA, Bowden GT. Catalase reverses tumorigenicity in a malignant cell line by an epidermal growth factor receptor pathway. Free Radic Biol Med 2006; 40:863-75. [PMID: 16520238 DOI: 10.1016/j.freeradbiomed.2005.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/04/2005] [Accepted: 10/10/2005] [Indexed: 11/30/2022]
Abstract
We have used a keratinocyte in vivo/in vitro cell model to test the hypothesis that hydrogen peroxide acts as a signaling molecule, contributing to proliferation and tumorigenesis. A cell line, 6M90, that produces squamous cell carcinoma (SCC), has high levels of ROS and low levels of catalase. A new cell line, MTOC2, generated from parental 6M90 cells by introduction of a Tet-responsive catalase transgene, effectively expressed higher peroxisomal catalase. Increased catalase expression diminished constitutive ROS and enhanced viability after treatment with hydrogen peroxide. Protein tyrosine phosphatase activity was higher in the MTOC2 cells with high catalase, consistent with detection of a lower level of phosphorylation at tyrosine 1068 of the epidermal growth factor receptor (EGF-R). Transcription of downstream c-fos, AP-1 transactivation and cell proliferation were higher in the low catalase cells. An EGF-R inhibitor, AG1478, blocks the higher AP-1 transactivation and cell proliferation of the low catalase 6M90 cells. Tumorigenesis in SCID mice was greatly diminished in the high catalase cells. Our data suggest that hydrogen peroxide functions as a signaling molecule that can modulate activity of a protein tyrosine phosphatase/(s) resulting in phosphorylation of tryrosine/(s) on the EGF-R. Therefore, catalase acts as a tumor-suppressor gene in part by decreasing EGF-R signaling.
Collapse
Affiliation(s)
- Joanne S Finch
- Arizona Cancer Center, University of Arizona, Tucson, 85724, USA
| | | | | | | |
Collapse
|
27
|
Bachelor MA, Cooper SJ, Sikorski ET, Bowden GT. Inhibition of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase decreases UVB-induced activator protein-1 and cyclooxygenase-2 in a SKH-1 hairless mouse model. Mol Cancer Res 2005; 3:90-9. [PMID: 15755875 DOI: 10.1158/1541-7786.mcr-04-0065] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of activator protein-1 (AP-1) and increased expression of cyclooxygenase-2 (COX-2) have been clearly shown to play a functional role in UVB-induced skin tumor promotion. In this study, we examined UVB-induced signal transduction pathways in SKH-1 mouse epidermis leading to increases in COX-2 expression and AP-1 activity. We observed rapid increases in p38 mitogen-activated protein kinase (MAPK) signaling through activation of p38 MAPK and its downstream target, MAPK activated protein kinase-2. UVB also increased phosphatidylinositol 3-kinase (PI3K) signaling as observed through increases in AKT and GSK-3beta phosphorylation. Activation of the p38 MAPK and PI3K pathways results in the phosphorylation of cyclic AMP-responsive element binding protein, which was also observed in UVB-irradiated SKH-1 mice. Topical treatment with SB202190 (a specific inhibitor of p38 MAPK) or LY294002 (a specific inhibitor of PI3K) significantly decreased UVB-induced AP-1 activation by 84% and 68%, respectively, as well as COX-2 expression. Our data show that in mouse epidermis, UVB activation of the p38 MAPK and PI3K pathways leads to AP-1 activation and COX-2 expression.
Collapse
Affiliation(s)
- Michael A Bachelor
- Department of Cell Biology and Anatomy, Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Room 4999, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Every living organism on the surface of the earth is exposed to the ultraviolet (UV) fraction of the sunlight. This electromagnetic energy has both life-giving and life-endangering effects. UV radiation can damage DNA and thus mutagenize several genes involved in the development of the skin cancer. The presence of typical signature of UV-induced mutations on these genes indicates that the ultraviolet-B part of sunlight is responsible for the evolution of cutaneous carcinogenesis. During this process, variable alterations of the oncogenic, tumor-suppressive, and cell-cycle control signaling pathways occur. These pathways include (a) mutated PTCH (in the mitogenic Sonic Hedgehog pathway) and mutated p53 tumor-suppressor gene in basal cell carcinomas, (b) an activated mitogenic ras pathway and mutated p53 in squamous cell carcinomas, and (c) an activated ras pathway, inactive p16, and p53 tumor suppressors in melanomas. This review presents background information about the skin optics, UV radiation, and molecular events involved in photocarcinogenesis.
Collapse
Affiliation(s)
- Mahmoud R Hussein
- Pathology department, Assuit University Hospitals, Assuit University, Assuit, Egypt.
| |
Collapse
|
29
|
van Riggelen J, Buchwalter G, Soto U, De-Castro Arce J, zur Hausen H, Wasylyk B, Rösl F. Loss of Net as Repressor Leads to Constitutive Increased c-fos Transcription in Cervical Cancer Cells. J Biol Chem 2005; 280:3286-94. [PMID: 15548518 DOI: 10.1074/jbc.m409915200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the expression of c-fos in cervical carcinoma cells and in somatic cell hybrids derived therefrom. In malignant cells, c-fos was constitutively expressed even after serum starvation. Dissection of the c-fos promoter showed that expression was mainly controlled by the SRE motif, which was active in malignant cells, but repressed in their non-malignant counterparts. Constitutive SRE activity was not mediated by sustained mitogen-activated protein kinase activity but because of inefficient expression of the ternary complex factor Net, which was either very low or even barely discernible. Chromatin immunoprecipitation assays revealed that Net directly binds to the SRE nucleoprotein complex in non-tumorigenic cells, but not in malignant segregants. Small interfering RNA targeted against Net resulted in enhanced c-fos transcription, clearly illustrating its repressor function. Conversely, stable ectopic expression of Net in malignant cells negatively regulated endogenous c-fos, resulting in a disappearance of the c-Fos protein from the AP-1 transcription complex. These data indicate that loss of Net and constitutive c-fos expression appear to be a key event in the transformation of cervical cancer cells.
Collapse
Affiliation(s)
- Jan van Riggelen
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
He Z, Cho YY, Ma WY, Choi HS, Bode AM, Dong Z. Regulation of Ultraviolet B-induced Phosphorylation of Histone H3 at Serine 10 by Fyn Kinase. J Biol Chem 2005; 280:2446-54. [PMID: 15537652 DOI: 10.1074/jbc.m402053200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ultraviolet B (UVB) induces phosphorylation of histone H3 at serine 10, and mitogen-activated protein kinases are involved in this signal transduction pathway. Here we provide evidence that Fyn kinase, a member of the Src kinase family, is involved in the UVB-induced phosphorylation of histone H3 at serine 10. UVB distinctly increased Fyn kinase activity and phosphorylation. Fyn kinase inhibitors 4-amino-5-(4-chlorophenyl)-7(t-butyl)pyrazol(3,4-d)pyramide and leflunomide, an Src kinase inhibitor, suppressed both UVB-induced phosphorylation of histone H3 at serine 10 and Fyn kinase activity and phosphorylation. UVB-induced phosphorylation of histone H3 at serine 10 was blocked by either a dominant-negative mutant of Fyn (DNM-Fyn) kinase or small interfering RNA of Fyn kinase. UVB-induced phosphorylation and activities of ERKs and protein kinase B/Akt were markedly inhibited by DNM-Fyn kinase. However, DNM-Fyn kinase did not inhibit UVB-induced phosphorylation of p38 MAPK or c-Jun N-terminal kinases. Active Fyn kinase phosphorylated histone H3 at serine 10 in vitro, and the phosphorylated Fyn kinase could translocate into the nucleus of HaCaT cells. These results indicate that Fyn kinase plays a key role in the UVB-induced phosphorylation of histone H3 at serine 10.
Collapse
Affiliation(s)
- Zhiwei He
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- G Tim Bowden
- Department of Cell Biology and Anatomy, Arizona Cancer Center, The University of Arizona, 1515 North Campbell Avenue, Tucson, Arizona 85724-5024, USA.
| |
Collapse
|
32
|
Saxena NK, Saliba G, Floyd JJ, Anania FA. Leptin induces increased alpha2(I) collagen gene expression in cultured rat hepatic stellate cells. J Cell Biochem 2003; 89:311-20. [PMID: 12704794 PMCID: PMC2925439 DOI: 10.1002/jcb.10494] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Leptin is a 16-kDa hormone with an array of biologic actions. We, and others, have demonstrated that leptin is critical to the development of liver fibrogenesis both in vitro and in the lean littermates of ob/ob mice exposed to carbon tetrachloride (CCl(4)). Controversy exists as to whether leptin can act as a direct cytokine in the development of increased collagen expression, and whether ob/ob mice are resistant to potential injury from CCl(4). Here, we provide evidence that strongly suggests that leptin acts to increase nascent production of mRNA for the alpha2(I) collagen gene based upon ribonuclease protection analysis (RPA). Actinomycin D, but not cyclohexamide, or the pan-neutralizing antibody to transforming growth factor beta one (TGFbeta1), significantly diminished the effect of leptin on total alpha2(I) collagen mRNA levels. Further evidence that leptin acts directly on HSCs to alter gene expression in liver wounding is demonstrated by enhanced binding of phosphorylated signal transduction and activator of transcription factor 3 (pStat3) to a cis-inducible element (SIE) oligonucleotide by electrophoretic mobility shift assay (EMSA). This consensus sequence is responsible for production of a critical collagen transcription factor, AP-1. Finally, we have demonstrated from the ob/ob mouse model that these animals are at least as sensitive to CCl(4) as their respective lean animals as assessed by serum alanine aminotransferase (ALT) measurements. Taken together, the current data provide a continued framework that leptin is a profibrogenic cytokine and plays a key role in liver fibrosis.
Collapse
Affiliation(s)
| | | | | | - Frank A. Anania
- Correspondence to: Frank A. Anania, Hepatology Section, Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Room N3W50, 22 South Greene Street, Baltimore, MD 21201.
| |
Collapse
|
33
|
Thompson EJ, Gupta A, Stratton MS, Bowden GT. Mechanism of action of a dominant negative c-jun mutant in inhibiting activator protein-1 activation. Mol Carcinog 2002; 35:157-62. [PMID: 12489106 DOI: 10.1002/mc.10090] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dominant negative c-jun TAM-67 has been shown to inhibit tumor promotion induced by 12-O-tetradecanoylphorbol-13-acetate and okadaic acid (OA). To better understand this phenomenon, we investigated the mechanism of action of TAM-67 in response to OA. To identify the mechanism of action, we used a 6xHis-tagged TAM-67 as well as chimeric constructs of TAM-67 that either cannot bind DNA or cannot heterodimerize with wild-type transcription factors. The results of these studies indicated that TAM-67 acts by blocking or squelching. The results of elecrophoretic mobility-shift assays showed that TAM-67 must act by squelching in response to OA, as TAM-67 cannot be found in DNA-binding complexes. We then identified some of the proteins with which TAM-67 interacts. They include all members of the jun and fos families as well as the cAMP response element binding protein, activating transcription factor-1, activating transcription factor-2, and RelA (p65). Thus, we have shown that TAM-67 squelches the induction of activating transcription factor-1 transactivation in response to OA and that TAM-67 is capable of interacting with proteins that control transactivation by binding to the 12-O-tetradecanoylphorbol-13-acetate response element, cAMP response element and nuclear factor-kappaB sites.
Collapse
Affiliation(s)
- Eric J Thompson
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|