1
|
Chandrasekaran V, Wellens S, Bourguignon A, Djidrovski I, Fransen L, Ghosh S, Mazidi Z, Murphy C, Nunes C, Singh P, Zana M, Armstrong L, Dinnyés A, Grillari J, Grillari-Voglauer R, Leonard MO, Verfaillie C, Wilmes A, Zurich MG, Exner T, Jennings P, Culot M. Evaluation of the impact of iPSC differentiation protocols on transcriptomic signatures. Toxicol In Vitro 2024; 98:105826. [PMID: 38615723 DOI: 10.1016/j.tiv.2024.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicologically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells, hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted transcriptomic approach was employed to understand the effects of differentiation protocols on these cell types. Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model. Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm, endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as standardizable and relevant model systems for in vitro toxicology.
Collapse
Affiliation(s)
- Vidya Chandrasekaran
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Sara Wellens
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Aurore Bourguignon
- BioTalentum Ltd, Gödöllő, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, H-2100, Gödöllő, Hungary
| | - Ivo Djidrovski
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Leonie Fransen
- Toxicology Department, Radiation, Chemical and Environmental Hazards (RCE) Directorate, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Sreya Ghosh
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Zahra Mazidi
- Evercyte GmbH, Vienna, Austria; Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland
| | - Pranika Singh
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Lyle Armstrong
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - András Dinnyés
- BioTalentum Ltd, Gödöllő, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, H-2100, Gödöllő, Hungary
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | | | - Martin O Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards (RCE) Directorate, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Marie-Gabrielle Zurich
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland
| | | | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands.
| | - Maxime Culot
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France.
| |
Collapse
|
2
|
Parrillo L, Spinelli R, Longo M, Zatterale F, Santamaria G, Leone A, Campitelli M, Raciti GA, Beguinot F. The Transcription Factor HOXA5: Novel Insights into Metabolic Diseases and Adipose Tissue Dysfunction. Cells 2023; 12:2090. [PMID: 37626900 PMCID: PMC10453582 DOI: 10.3390/cells12162090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The transcription factor HOXA5, from the HOX gene family, has long been studied due to its critical role in physiological activities in normal cells, such as organ development and body patterning, and pathological activities in cancer cells. Nonetheless, recent evidence supports the hypothesis of a role for HOXA5 in metabolic diseases, particularly in obesity and type 2 diabetes (T2D). In line with the current opinion that adipocyte and adipose tissue (AT) dysfunction belong to the group of primary defects in obesity, linking this condition to an increased risk of insulin resistance (IR) and T2D, the HOXA5 gene has been shown to regulate adipocyte function and AT remodeling both in humans and mice. Epigenetics adds complexity to HOXA5 gene regulation in metabolic diseases. Indeed, epigenetic mechanisms, specifically DNA methylation, influence the dynamic HOXA5 expression profile. In human AT, the DNA methylation profile at the HOXA5 gene is associated with hypertrophic obesity and an increased risk of developing T2D. Thus, an inappropriate HOXA5 gene expression may be a mechanism causing or maintaining an impaired AT function in obesity and potentially linking obesity to its associated disorders. In this review, we integrate the current evidence about the involvement of HOXA5 in regulating AT function, as well as its association with the pathogenesis of obesity and T2D. We also summarize the current knowledge on the role of DNA methylation in controlling HOXA5 expression. Moreover, considering the susceptibility of epigenetic changes to reversal through targeted interventions, we discuss the potential therapeutic value of targeting HOXA5 DNA methylation changes in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Luca Parrillo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Rosa Spinelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Michele Longo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Federica Zatterale
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy;
| | - Alessia Leone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Gregory Alexander Raciti
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| |
Collapse
|
3
|
HOXA5: A crucial transcriptional factor in cancer and a potential therapeutic target. Biomed Pharmacother 2022; 155:113800. [DOI: 10.1016/j.biopha.2022.113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022] Open
|
4
|
Chille E, Strand E, Neder M, Schmidt V, Sherman M, Mass T, Putnam H. Developmental series of gene expression clarifies maternal mRNA provisioning and maternal-to-zygotic transition in a reef-building coral. BMC Genomics 2021; 22:815. [PMID: 34763678 PMCID: PMC8588723 DOI: 10.1186/s12864-021-08114-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maternal mRNA provisioning of oocytes regulates early embryogenesis. Maternal transcripts are degraded as zygotic genome activation (ZGA) intensifies, a phenomenon known as the maternal-to-zygotic transition (MZT). Here, we examine gene expression over nine developmental stages in the Pacific rice coral, Montipora capitata, from eggs and embryos at 1, 4, 9, 14, 22, and 36 h-post-fertilization (hpf), as well as swimming larvae (9d), and adult colonies. RESULTS Weighted Gene Coexpression Network Analysis revealed four expression peaks, identifying the maternal complement, two waves of the MZT, and adult expression. Gene ontology enrichment revealed maternal mRNAs are dominated by cell division, methylation, biosynthesis, metabolism, and protein/RNA processing and transport functions. The first MZT wave occurs from ~4-14 hpf and is enriched in terms related to biosynthesis, methylation, cell division, and transcription. In contrast, functional enrichment in the second MZT wave, or ZGA, from 22 hpf-9dpf, includes ion/peptide transport and cell signaling. Finally, adult expression is enriched for functions related to signaling, metabolism, and ion/peptide transport. Our proposed MZT timing is further supported by expression of enzymes involved in zygotic transcriptional repression (Kaiso) and activation (Sox2), which peak at 14 hpf and 22 hpf, respectively. Further, DNA methylation writing (DNMT3a) and removing (TET1) enzymes peak and remain stable past ~4 hpf, suggesting that methylome programming occurs before 4 hpf. CONCLUSIONS Our high-resolution insight into the coral maternal mRNA and MZT provides essential baseline information to understand parental carryover effects and the sensitivity of developmental success under increasing environmental stress.
Collapse
Affiliation(s)
- Erin Chille
- Department of Biological Sciences, University of Rhode Island, Rhode Island, USA.
| | - Emma Strand
- Department of Biological Sciences, University of Rhode Island, Rhode Island, USA
| | - Mayaan Neder
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- The Interuniversity Institute of Marine Science, 88103, Eilat, Israel
| | | | - Madeleine Sherman
- Department of Biological Sciences, University of Rhode Island, Rhode Island, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Hollie Putnam
- Department of Biological Sciences, University of Rhode Island, Rhode Island, USA
| |
Collapse
|
5
|
Montenegro YHA, de Queiroga Nascimento D, de Assis TO, Santos-Lopes SSD. The epigenetics of the hypothalamic-pituitary-adrenal axis in fetal development. Ann Hum Genet 2019; 83:195-213. [PMID: 30843189 DOI: 10.1111/ahg.12306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/16/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is an important hormonal mechanism of the human body and is extremely programmable during embryonic and fetal development. Analyzing its development in this period is the key to understanding in fact how vulnerabilities of congenital diseases occur and any other changes in the phenotypic and histophysiological aspects of the fetus. The environment in which the mother is exposed during the gestational period can influence this axis. Knowing this, our objective was to analyze in recent research the possible impact of epigenetic programming on the HPA axis and its consequences for fetal development. This review brought together articles from two databases: ScienceDirect and PUBMED researched based on key words such as "epigenetics, HPA axis, cardiovascular disease, and circulatory problems" where it demonstrated full relevance in experimental and scientific settings. A total of 101 articles were selected following the criteria established by the researchers. Thus, it was possible to verify that the development of the HPA axis is directly related to changes that occur in the cardiovascular system, to the cerebral growth and other systems depending on the influence that it receives in the period of fetal formation.
Collapse
|
6
|
CHARGE and Kabuki Syndromes: Gene-Specific DNA Methylation Signatures Identify Epigenetic Mechanisms Linking These Clinically Overlapping Conditions. Am J Hum Genet 2017; 100:773-788. [PMID: 28475860 PMCID: PMC5420353 DOI: 10.1016/j.ajhg.2017.04.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023] Open
Abstract
Epigenetic dysregulation has emerged as a recurring mechanism in the etiology of neurodevelopmental disorders. Two such disorders, CHARGE and Kabuki syndromes, result from loss of function mutations in chromodomain helicase DNA-binding protein 7 (CHD7LOF) and lysine (K) methyltransferase 2D (KMT2DLOF), respectively. Although these two syndromes are clinically distinct, there is significant phenotypic overlap. We therefore expected that epigenetically driven developmental pathways regulated by CHD7 and KMT2D would overlap and that DNA methylation (DNAm) alterations downstream of the mutations in these genes would identify common target genes, elucidating a mechanistic link between these two conditions, as well as specific target genes for each disorder. Genome-wide DNAm profiles in individuals with CHARGE and Kabuki syndromes with CHD7LOF or KMT2DLOF identified distinct sets of DNAm differences in each of the disorders, which were used to generate two unique, highly specific and sensitive DNAm signatures. These DNAm signatures were able to differentiate pathogenic mutations in these two genes from controls and from each other. Analysis of the DNAm targets in each gene-specific signature identified both common gene targets, including homeobox A5 (HOXA5), which could account for some of the clinical overlap in CHARGE and Kabuki syndromes, as well as distinct gene targets. Our findings demonstrate how characterization of the epigenome can contribute to our understanding of disease pathophysiology for epigenetic disorders, paving the way for explorations of novel therapeutics.
Collapse
|
7
|
Sinha P, Singh K, Sachan M. Heterogeneous pattern of DNA methylation in developmentally important genes correlates with its chromatin conformation. BMC Mol Biol 2017; 18:1. [PMID: 28081716 PMCID: PMC5234095 DOI: 10.1186/s12867-016-0078-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/13/2016] [Indexed: 11/13/2022] Open
Abstract
Background DNA methylation is a major epigenetic modification, playing a crucial role in the development and differentiation of higher organisms. DNA methylation is also known to regulate transcription by gene repression. Various developmental genes such as c-mos, HoxB5, Sox11, and Sry show tissue-specific gene expression that was shown to be regulated by promoter DNA methylation. The aim of the present study is to investigate the establishment of chromatin marks (active or repressive) in relation to heterogeneous methylation in the promoter regions of these developmentally important genes. Results Chromatin-immunoprecipitation (ChIP) assays were performed to immuno-precipitate chromatin by antibodies against both active (H3K4me3) and repressive (H3K9me3) chromatin regions. The analysis of ChIP results showed that both the percentage input and fold enrichment of activated chromatin was higher in tissues expressing the respective genes as compared to the tissues not expressing the same set of genes. This was true for all the genes selected for the study (c-mos, HoxB5, Sox11, and Sry). These findings illustrate that inconsistent DNA methylation patterns (sporadic, mosaic and heterogeneous) may also influence gene regulation, thereby resulting in the modulation of chromatin conformation. Conclusions These findings illustrate that various patterns of DNA methylation (asynchronous, mosaic and heterogeneous) correlates with chromatin modification, resulting in the gene regulation.
Collapse
Affiliation(s)
- Puja Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Kiran Singh
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India.
| |
Collapse
|
8
|
High resolution methylation analysis of the HoxA5 regulatory region in different somatic tissues of laboratory mouse during development. Gene Expr Patterns 2017; 23-24:59-69. [DOI: 10.1016/j.gep.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/02/2017] [Accepted: 03/26/2017] [Indexed: 11/18/2022]
|
9
|
Jeannotte L, Gotti F, Landry-Truchon K. Hoxa5: A Key Player in Development and Disease. J Dev Biol 2016; 4:E13. [PMID: 29615582 PMCID: PMC5831783 DOI: 10.3390/jdb4020013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
A critical position in the developmental hierarchy is occupied by the Hox genes, which encode transcription factors. Hox genes are crucial in specifying regional identity along the embryonic axes and in regulating morphogenesis. In mouse, targeted mutations of Hox genes cause skeletal transformations and organ defects that can impair viability. Here, we present the current knowledge about the Hoxa5 gene, a paradigm for the function and the regulation of Hox genes. The phenotypic survey of Hoxa5-/- mice has unveiled its critical role in the regional specification of the skeleton and in organogenesis. Most Hoxa5-/- mice die at birth from respiratory distress due to tracheal and lung dysmorphogenesis and impaired diaphragm innervation. The severity of the phenotype establishes that Hoxa5 plays a predominant role in lung organogenesis versus other Hox genes. Hoxa5 also governs digestive tract morphogenesis, thyroid and mammary glands development, and ovary homeostasis. Deregulated Hoxa5 expression is reported in cancers, indicating Hoxa5 involvement in tumor predisposition and progression. The dynamic Hoxa5 expression profile is under the transcriptional control of multiple cis-acting sequences and trans-acting regulators. It is also modulated by epigenetic mechanisms, implicating chromatin modifications and microRNAs. Finally, lncRNAs originating from alternative splicing and distal promoters encompass the Hoxa5 locus.
Collapse
Affiliation(s)
- Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Florian Gotti
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| |
Collapse
|
10
|
Silfa-Mazara F, Mujahid S, Thomas C, Vong T, Larsson I, Nielsen HC, Volpe MV. Oxygen differentially affects the hox proteins Hoxb5 and Hoxa5 altering airway branching and lung vascular formation. J Cell Commun Signal 2014; 8:231-44. [PMID: 25073509 PMCID: PMC4165823 DOI: 10.1007/s12079-014-0237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/25/2014] [Indexed: 11/26/2022] Open
Abstract
Hoxb5 and Hoxa5 transcription factor proteins uniquely impact lung morphogenesis at the developmental time point when extremely preterm infants are born. The effect of O2 exposure (0.4 FiO2) used in preterm infant care on these Hox proteins is unknown. We used ex vivo fetal mouse lung organ cultures to explore the effects of 0.4 FiO2 on lung airway and vascular formation in the context of Hoxb5 and Hoxa5 expression and regulation. Compared to room air, 48 h (h) 0.4 FiO2 adversely attenuated airway and microvasculature formation while reducing lung growth and epithelial cell volume, and increasing mesenchymal volume. 0.4 FiO2 decreased pro-angiogenic Hoxb5 and VEGFR2 while not altering protein levels of angiostatic Hoxa5. Lungs returned to RA after 24 h 0.4FiO2 had partial structural recovery but remained smaller and less developed. Mesenchymal cell apoptosis increased and proliferation decreased with time in O2 while epithelial cell proliferation significantly increased. Hoxb5 overexpression led to prominent peri-airway VEGFR2 expression and promoted lung vascular and airway patterning. Hoxa5 overexpression had the opposite effects. We conclude that 0.4 FiO2 exposure causes a profound loss of airway and lung microvascular development that occurs partially via reduction in pro-angiogenic Hoxb5 while angiostatic Hoxa5 expression is maintained.
Collapse
Affiliation(s)
- Francheyska Silfa-Mazara
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
| | - Sana Mujahid
- />Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA USA
| | - Courtney Thomas
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
| | - Thxuan Vong
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
| | | | - Heber C. Nielsen
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
- />Tufts University School of Medicine, Boston, MA USA
- />Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA USA
| | - MaryAnn V. Volpe
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
- />Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
11
|
Lindqvist BM, Wingren S, Motlagh PB, Nilsson TK. Whole genome DNA methylation signature of HER2-positive breast cancer. Epigenetics 2014; 9:1149-62. [PMID: 25089541 DOI: 10.4161/epi.29632] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In order to obtain a comprehensive DNA methylation signature of HER2-positive breast cancer (HER2+ breast cancer), we performed a genome-wide methylation analysis on 17 HER2+ breast cancer and compared with ten normal breast tissue samples using the Illumina Infinium HumanMethylation450 BeadChip (450K). In HER2+ breast cancer, we found altered DNA methylation in genes involved in multicellular development, differentiation and transcription. Within these genes, we observed an overrepresentation of homeobox family genes, including several genes that have not been previously reported in relation to cancer (DBX1, NKX2-6, SIX6). Other affected genes included several belonging to the PI3K and Wnt signaling pathways. Notably, HER2, AKT3, HK1, and PFKP, genes for which altered methylation has not been previously reported, were also identified in this analysis. In total, we report 69 candidate biomarker genes with maximum differential methylation in HER2+ breast cancer. External validation of gene expression in a selected group of these genes (n = 13) revealed lowered mean gene expression in HER2+ breast cancer. We analyzed DNA methylation in six top candidate genes (AKR1B1, INA, FOXC2, NEUROD1, CDKL2, IRF4) using EpiTect Methyl II Custom PCR Array and confirmed the 450K array findings. Future clinical studies focusing on these genes, as well as on homeobox-containing genes and HER2, AKT3, HK1, and PFKP, are warranted which could provide further insights into the biology of HER2+ breast cancer.
Collapse
Affiliation(s)
- Breezy M Lindqvist
- School of Health and Medical Sciences; Örebro University; Örebro, Sweden
| | - Sten Wingren
- School of Health and Medical Sciences; Örebro University; Örebro, Sweden
| | - Parviz B Motlagh
- Department of Medical Biosciences/Clinical Chemistry; Umeå University; Umeå, Sweden
| | - Torbjörn K Nilsson
- Department of Medical Biosciences/Clinical Chemistry; Umeå University; Umeå, Sweden
| |
Collapse
|
12
|
Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts. Acta Neuropathol 2014; 128:123-36. [PMID: 24871706 DOI: 10.1007/s00401-014-1297-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
Medulloblastoma is a malignant embryonal brain tumor with highly variable outcome. In order to study the biology of this tumor and to perform preclinical treatment studies, a lot of effort has been put into the generation of appropriate mouse models. The usage of these models, however, has become debatable with the advances in human medulloblastoma subgrouping. This study brings together multiple relevant mouse models and matches genetic alterations and gene expression data of 140 murine tumors with 423 human medulloblastomas in a global way. Using AGDEX analysis and k-means clustering, we show that the Blbp-cre::Ctnnb1(ex3)(Fl/+)Trp53 (Fl/Fl) mouse model fits well to human WNT medulloblastoma, and that, among various Myc- or Mycn-based mouse medulloblastomas, tumors in Glt1-tTA::TRE-MYCN/Luc mice proved to be most specific for human group 3 medulloblastoma. None of the analyzed models displayed a significant match to group 4 tumors. Intriguingly, mice with Ptch1 or Smo mutations selectively modeled SHH medulloblastomas of adulthood, although such mutations occur in all human age groups. We therefore suggest that the infantile or adult gene expression pattern of SHH MBs are not solely determined by specific mutations. This is supported by the observation that human medulloblastomas with PTCH1 mutations displayed more similarities to PTCH1 wild-type tumors of the same age group than to PTCH1-mutated tumors of the other age group. Together, we provide novel insights into previously unrecognized specificity of distinct models and suggest these findings as a solid basis to choose the appropriate model for preclinical studies on medulloblastoma.
Collapse
|
13
|
Zabuga OG, Akhaladze NG, Vaiserman AM. Nutritional programming: Theoretical concepts and experimental evidence. ADVANCES IN GERONTOLOGY 2014. [DOI: 10.1134/s2079057014010159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Riviere G, Wu GC, Fellous A, Goux D, Sourdaine P, Favrel P. DNA methylation is crucial for the early development in the Oyster C. gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:739-53. [PMID: 23877618 DOI: 10.1007/s10126-013-9523-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/04/2013] [Indexed: 05/02/2023]
Abstract
In vertebrates, epigenetic modifications influence gene transcription, and an appropriate DNA methylation is critical in development. Indeed, a precise temporal and spatial pattern of early gene expression is mandatory for a normal embryogenesis. However, such a regulation and its underlying mechanisms remain poorly understood in more distant organisms such as Lophotrochozoa. Thus, despite DNA in the oyster genome being methylated, the role of DNA methylation in development is unknown. To clarify this point, oyster genomic DNA was examined during early embryogenesis and found differentially methylated. Reverse transcriptase quantitative polymerase chain reaction indicated stage-specific levels of transcripts encoding DNA-methyltransferase (DNMT) and methyl-binding domain proteins. In addition, as highlighted by electronic microscopy and immunohistochemistry, the DNMT inhibitor 5-aza-cytidine induced alterations in the quantity and the localisation of methylated DNA and severe dose-dependent development alterations and was lethal after zygotic genome reinitiation. Furthermore, methyl-DNA-immunoprecipitation-quantitative polymerase chain reaction revealed that the transcription level of most of the homeobox gene orthologues examined, but not of the other early genes investigated, was inversely correlated with their specific DNA methylation. Altogether, our results demonstrate that DNA methylation influences gene expression in Crassostrea gigas and is critical for oyster development, possibly by specifically controlling the transcription level of homeobox orthologues. These findings provide evidence for the importance of epigenetic regulation of development in Lophotrochozoans and bring new insights into the early life of C. gigas, one of the most important aquaculture resources worldwide.
Collapse
Affiliation(s)
- Guillaume Riviere
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA) Esplanade de la paix, Université de Caen Basse-Normandie, 14032, Caen Cedex, France,
| | | | | | | | | | | |
Collapse
|
15
|
Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, Song L, Crawford GE, Pradhan S, Lacey M, Ehrlich M. DNA methylation and differentiation: HOX genes in muscle cells. Epigenetics Chromatin 2013; 6:25. [PMID: 23916067 PMCID: PMC3750649 DOI: 10.1186/1756-8935-6-25] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/21/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues. RESULTS In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3' half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site. CONCLUSIONS Our results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5' promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures.
Collapse
Affiliation(s)
- Koji Tsumagari
- Hayward Human Genetics Program and Tulane Cancer Center, Tulane Health Sciences Center, New Orleans LA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu W, Yang N, Pan L, Fu J, Xue X. The expression of HoxB5 and its role in neonatal rats with chronic lung disease. Fetal Pediatr Pathol 2012; 31:11-20. [PMID: 22233504 DOI: 10.3109/15513815.2011.618867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this investigation is to research the expression and effect of HoxB5 during pulmonary injury and to investigate the repairing ability of alveolar epithelial cells in such processes. Eighty neonatal rats were randomly divided into two groups: a group of high concentration of oxygen and the control group. The high oxygen group would inhale 85 to 90% oxygen and the control group would inhale air. The lung tissues on the 1(st), 3(rd), 7(th), 14(th), and 21(st) days would be obtained, in which immunohistochemical assay and Reverse Transcription Polymerase Chain Reaction (RT-PCR) would be performed to test the expressions of proteins and mRNAs of surfactant protein C (SPC) and AQP5. For expression of HoxB5 protein and its mRNA, immunohistochemical assay, western blot, in-situ hybridization, and RT-PCR would be run. The expression of SPC in the group of high concentration of oxygen was significantly reduced on day 3. Its expressions on day 14 and day 21 were significantly higher than those of the control group (p < 0.05). The expression of AQP5 in the group of high concentration of oxygen progressively decreased and such difference with the control group was significant (p < 0.05). The four experimental methods all showed the expression of HoxB5 in the group with high concentration of oxygen gradually decreased since day 7 (p < 0.05). High concentration of oxygen is damaging to alveolar epithelial cells. Although the number of type II alveolar epithelial cells (AECII) increases, its ability to differentiate and transform is significantly reduced and the reduced expression level of HoxB5 is possibly the reason for AECII to lose differentiation function to AECI.
Collapse
Affiliation(s)
- Wei Xu
- Department of Pediatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | |
Collapse
|
17
|
Harris DM, Hazan-Haley I, Coombes K, Bueso-Ramos C, Liu J, Liu Z, Li P, Ravoori M, Abruzzo L, Han L, Singh S, Sun M, Kundra V, Kurzrock R, Estrov Z. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PLoS One 2011; 6:e21250. [PMID: 21731684 PMCID: PMC3120836 DOI: 10.1371/journal.pone.0021250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/25/2011] [Indexed: 01/02/2023] Open
Abstract
Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy.
Collapse
Affiliation(s)
- David M. Harris
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Inbal Hazan-Haley
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kevin Coombes
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carlos Bueso-Ramos
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jie Liu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhiming Liu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ping Li
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Murali Ravoori
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lynne Abruzzo
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lin Han
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sheela Singh
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael Sun
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Vikas Kundra
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Razelle Kurzrock
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zeev Estrov
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Beery AK, Francis DD. Adaptive significance of natural variations in maternal care in rats: a translational perspective. Neurosci Biobehav Rev 2011; 35:1552-61. [PMID: 21458485 PMCID: PMC3104121 DOI: 10.1016/j.neubiorev.2011.03.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 03/12/2011] [Accepted: 03/22/2011] [Indexed: 01/31/2023]
Abstract
A wealth of data from the last fifty years documents the potency of early life experiences including maternal care on developing offspring. A majority of this research has focused on the developing stress axis and stress-sensitive behaviors in hopes of identifying factors impacting resilience and risk-sensitivity. The power of early life experience to shape later development is profound and has the potential to increase fitness of individuals for their environments. Current findings in a rat maternal care paradigm highlight the complex and dynamic relation between early experiences and a variety of outcomes. In this review we propose adaptive hypotheses for alternate maternal strategies and resulting offspring phenotypes, and suggest means of distinguishing between these hypotheses. We also provide evidence underscoring the critical role of context in interpreting the adaptive significance of early experiences. If our goal is to identify risk-factors relevant to humans, we must better explore the role of the social and physical environment in our basic animal models.
Collapse
Affiliation(s)
- Annaliese K Beery
- Robert Wood Johnson Foundation Health & Society Scholars Program, UCSF/UC Berkeley, San Francisco, CA, United States.
| | | |
Collapse
|
19
|
Jackson AA, Burdge GC, Lillicrop KA. Diet, nutrition and modulation of genomic expression in fetal origins of adult disease. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 3:192-208. [PMID: 21474951 PMCID: PMC3085525 DOI: 10.1159/000324356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alan A Jackson
- Institute of Human Nutrition, University of Southampton School of Medicine, Southampton General Hospital, Southampton, UK.
| | | | | |
Collapse
|
20
|
Bens S, Ammerpohl O, Martin-Subero JI, Appari M, Richter J, Hiort O, Werner R, Riepe FG, Siebert R, Holterhus PM. Androgen receptor mutations are associated with altered epigenomic programming as evidenced by HOXA5 methylation. Sex Dev 2011; 5:70-6. [PMID: 21311178 DOI: 10.1159/000323807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2010] [Indexed: 12/24/2022] Open
Abstract
Male external genital differentiation is accompanied by implementation of a long-term, male-specific gene expression pattern indicating androgen programming in cultured genital fibroblasts. We hypothesized the existence of an epigenetic background contributing to this phenomenon. DNA methylation levels in 2 normal scrotal fibroblast strains from 46,XY males compared to 2 labia majora fibroblast strains from 46,XY females with complete androgen insensitivity syndrome (AIS) due to androgen receptor (AR) mutations were analyzed by Illumina GoldenGate methylation arrays®. Results were validated with pyrosequencing in labia majora fibroblast strains from fifteen 46,XY patients and compared to nine normal male scrotal fibroblast strains. HOXA5 showed a significantly higher methylation level in complete AIS. This finding was confirmed by bisulfite pyrosequencing of 14 CpG positions within the HOXA5 promoter in the same strains. Extension of the 2 groups revealed a constant low HOXA5 methylation pattern in the controls in contrast to a highly variable methylation pattern in the AIS patients. HOXA5 represents a candidate gene of androgen-mediated promoter methylation. The constantly low HOXA5 DNA methylation level of normal male scrotal fibroblast strains and the frequently high methylation levels in labia majora fibroblast strains in AIS indicate for the first time that androgen programming in sexual differentiation is not restricted to global gene transcription but also occurs at the epigenetic level.
Collapse
Affiliation(s)
- S Bens
- Institute of Human Genetics, Christian Albrechts University of Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Body fat distribution plays an important role in determining metabolic health. Whereas central obesity is closely associated with the development of CVD and type 2 diabetes, lower body fat appears to be protective and is paradoxically associated with improved metabolic and cardiovascular profiles. Physiological studies have demonstrated that fatty acid handling differs between white adipose tissue depots, with lower body white adipose tissue acting as a more efficient site for long-term lipid storage. The regulatory mechanisms governing these regional differences in function remain to be elucidated. Although the local microenvironment is likely to be a contributing factor, recent findings point towards the tissues being intrinsically distinct at the level of the adipocyte precursor cells (pre-adipocytes). The multi-potent pre-adipocytes are capable of generating cells of the mesenchymal lineage, including adipocytes. Regional differences in the adipogenic and replicative potential of these cells, as well as metabolic and biochemical activity, have been reported. Intriguingly, the genetic and metabolic characteristics of these cells can be retained through multiple generations when the cells are cultured in vitro. The rapidly emerging field of epigenetics may hold the key for explaining regional differences in white adipose tissue gene expression and function. Epigenetics describes the regulation of gene expression that occurs independently of changes in DNA sequence, for instance, DNA methylation or histone protein modification. In this review, we will discuss the contribution of DNA methylation to the determination of cells of adipogenic fate as well as the role DNA methylation may play during adipocyte terminal differentiation.
Collapse
|
22
|
Burdge GC, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 2010; 30:315-39. [PMID: 20415585 DOI: 10.1146/annurev.nutr.012809.104751] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is considerable evidence for induction of differential risk of noncommunicable diseases in humans by variation in the quality of the early life environment. Studies in animal models show that induction and stability of induced changes in the phenotype of the offspring involve altered epigenetic regulation by DNA methylation and covalent modifications of histones. These findings indicate that such epigenetic changes are highly gene specific and function at the level of individual CpG dinucleotides. Interventions using supplementation with folic acid or methyl donors during pregnancy, or folic acid after weaning, alter the phenotype and epigenotype induced by maternal dietary constraint during gestation. This suggests a possible means for reducing risk of induced noncommunicable disease, although the design and conduct of such interventions may require caution. The purpose of this review is to discuss recent advances in understanding the mechanism that underlies the early life origins of disease and to place these studies in a broader life-course context.
Collapse
Affiliation(s)
- Graham C Burdge
- Institute of Human Nutrition, University of Southampton School of Medicine, Southampton, SO16 6YD, United Kingdom.
| | | |
Collapse
|
23
|
Abstract
The rapid increase in incidence of obesity over the past two decades cannot be explained solely by genetic and adult lifestyle factors. There is now considerable evidence that the fetal and early postnatal environments also strongly influence the risk of developing obesity in later life. Initially, human studies showed that low birth weight was associated with an increased risk of obesity but increasingly there is evidence that overnutrition in the early life can also increase susceptibility to future obesity. These findings have now been replicated in animal models, which have shown that both maternal under- and overnutrition can induce persistent changes in gene expression and metabolism. The mechanism by which the maternal nutritional environment induces such changes is beginning to be understood and involves the altered epigenetic regulation of specific genes. In this review, we discuss the recent evidence that shows that early-life environment can induce altered epigenetic regulation leading to the induction of an altered phenotype. The demonstration of a role for altered epigenetic regulation of genes in the developmental induction of obesity opens the possibility that interventions, either through nutrition or specific drugs, may modify long-term obesity risk and combat this rapid rise in obesity.
Collapse
|
24
|
Abstract
Hox genes, a highly conserved subgroup of the homeobox superfamily, have crucial roles in development, regulating numerous processes including apoptosis, receptor signalling, differentiation, motility and angiogenesis. Aberrations in Hox gene expression have been reported in abnormal development and malignancy, indicating that altered expression of Hox genes could be important for both oncogenesis and tumour suppression, depending on context. Therefore, Hox gene expression could be important in diagnosis and therapy.
Collapse
Affiliation(s)
- Nilay Shah
- Nilay Shah and Saraswati Sukumar are at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
25
|
Methylation analyses on promoters of mPer1, mPer2, and mCry1 during perinatal development. Biochem Biophys Res Commun 2010; 391:1742-7. [DOI: 10.1016/j.bbrc.2009.12.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/23/2009] [Indexed: 01/12/2023]
|
26
|
Rohrbeck A, Borlak J. Cancer genomics identifies regulatory gene networks associated with the transition from dysplasia to advanced lung adenocarcinomas induced by c-Raf-1. PLoS One 2009; 4:e7315. [PMID: 19812696 PMCID: PMC2754338 DOI: 10.1371/journal.pone.0007315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/13/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initially dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. METHODOLOGY/PRINCIPAL FINDINGS By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be up-regulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionally, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. CONCLUSIONS/SIGNIFICANCE This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Jürgen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Center for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Ruzov A, Shorning B, Mortusewicz O, Dunican DS, Leonhardt H, Meehan RR. MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos. Development 2009; 136:2277-86. [PMID: 19502488 DOI: 10.1242/dev.032227] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Loss of the of the maintenance methyltransferase xDNMT1 during Xenopus development results in premature transcription and activation of a p53-dependent apoptotic program that accounts for embryo lethality. Here, we show that activation of the apoptotic response is signalled through the methyl-CpG binding protein xMBD4 and the mismatch repair pathway protein xMLH1. Depletion of xMBD4 or xMLH1 increases the survival rate of xDNMT1-depleted embryos, whereas overexpression of these proteins in embryos induces programmed cell death at the onset of gastrulation. MBD4 interacts directly with both DNMT1 and MLH1, leading to recruitment of the latter to heterochromatic sites that are coincident with DNMT1 localisation. Time-lapse microscopy of micro-irradiated mammalian cells shows that MLH1/MBD4 (like DNMT1) can accumulate at DNA damage sites. We propose that xMBD4/xMLH1 participates in a novel G2 checkpoint that is responsive to xDNMT1p levels in developing embryos and cells.
Collapse
Affiliation(s)
- Alexey Ruzov
- Human Genetics Unit, MRC, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
28
|
Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 2009; 88:400-8. [PMID: 19493882 DOI: 10.1177/0022034509335868] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic information is encoded not only by the linear sequence of DNA, but also by epigenetic modifications of chromatin structure that include DNA methylation and covalent modifications of the proteins that bind DNA. These "epigenetic marks" alter the structure of chromatin to influence gene expression. Methylation occurs naturally on cytosine bases at CpG sequences and is involved in controlling the correct expression of genes. DNA methylation is usually associated with triggering histone deacetylation, chromatin condensation, and gene silencing. Differentially methylated cytosines give rise to distinct patterns specific for each tissue type and disease state. Such methylation-variable positions (MVPs) are not uniformly distributed throughout our genome, but are concentrated among genes that regulate transcription, growth, metabolism, differentiation, and oncogenesis. Alterations in MVP methylation status create epigenetic patterns that appear to regulate gene expression profiles during cell differentiation, growth, and development, as well as in cancer. Environmental stressors including toxins, as well as microbial and viral exposures, can change epigenetic patterns and thereby effect changes in gene activation and cell phenotype. Since DNA methylation is often retained following cell division, altered MVP patterns in tissues can accumulate over time and can lead to persistent alterations in steady-state cellular metabolism, responses to stimuli, or the retention of an abnormal phenotype, reflecting a molecular consequence of gene-environment interaction. Hence, DNA epigenetics constitutes the main and previously missing link among genetics, disease, and the environment. The challenge in oral biology will be to understand the mechanisms that modify MVPs in oral tissues and to identify those epigenetic patterns that modify disease pathogenesis or responses to therapy.
Collapse
Affiliation(s)
- S P Barros
- Center for Oral and Systemic Diseases, Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Room 222, CB 7455, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
29
|
Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10:295-304. [PMID: 19308066 DOI: 10.1038/nrg2540] [Citation(s) in RCA: 1592] [Impact Index Per Article: 106.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both DNA methylation and histone modification are involved in establishing patterns of gene repression during development. Certain forms of histone methylation cause local formation of heterochromatin, which is readily reversible, whereas DNA methylation leads to stable long-term repression. It has recently become apparent that DNA methylation and histone modification pathways can be dependent on one another, and that this crosstalk can be mediated by biochemical interactions between SET domain histone methyltransferases and DNA methyltransferases. Relationships between DNA methylation and histone modification have implications for understanding normal development as well as somatic cell reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Ein Kerem, Jerusalem 91120, Israel.
| | | |
Collapse
|
30
|
Nutrition in early life, and risk of cancer and metabolic disease: alternative endings in an epigenetic tale? Br J Nutr 2008; 101:619-30. [PMID: 19079817 DOI: 10.1017/s0007114508145883] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is substantial evidence which shows that constraints in the early life environment are an important determinant of risk of metabolic disease and CVD. There is emerging evidence that higher birth weight, which reflects a more abundant prenatal environment, is associated with increased risk of cancer, in particular breast cancer and childhood leukaemia. Using specific examples from epidemiology and experimental studies, this review discusses the hypothesis that increased susceptibility to CVD, metabolic disease and cancer have a common origin in developmental changes induced in the developing fetus by aspects of the intra-uterine environment including nutrition which involve stable changes to the epigenetic regulation of specific genes. However, the induction of specific disease risk is dependent upon the nature of the environmental challenge and interactions between the susceptibility set by the altered epigenome and the environment throughout the life course.
Collapse
|
31
|
Volpe MV, Wang KTW, Nielsen HC, Chinoy MR. Unique spatial and cellular expression patterns of Hoxa5, Hoxb4, and Hoxb6 proteins in normal developing murine lung are modified in pulmonary hypoplasia. ACTA ACUST UNITED AC 2008; 82:571-84. [PMID: 18553509 DOI: 10.1002/bdra.20481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hox transcription factors modulate signaling pathways controlling organ morphogenesis and maintain cell fate and differentiation in adults. Retinoid signaling, key in regulating Hox expression, is altered in pulmonary hypoplasia. Information on pattern-specific expression of Hox proteins in normal lung development and in pulmonary hypoplasia is minimal. Our objective was to determine how pulmonary hypoplasia alters temporal, spatial, and cellular expression of Hoxa5, Hoxb4, and Hoxb6 proteins compared to normal lung development. METHODS Temporal, spatial, and cellular Hoxa5, Hoxb4, and Hoxb6 expression was studied in normal (untreated) and nitrofen-induced hypoplastic (NT-PH) lungs from gestational day 13.5, 16, and 19 fetuses and neonates using Western blot and immunohistochemistry. RESULTS Modification of protein levels and spatial and cellular Hox expression patterns in NT-PH lungs was consistent with delayed lung development. Distinct protein isoforms were detected for each Hox protein. Expression levels of the Hoxa5 and Hoxb6 protein isoforms changed with development and were altered further in NT-PH lungs. Compared to normal lungs, GD19 and neonatal NT-PH lungs had decreased Hoxb6 and increased Hoxa5 and Hoxb4. Hoxa5 cellular localization changed from mesenchyme to epithelia earlier in normal lungs. Hoxb4 was expressed in mesenchyme and epithelial cells throughout development. Hoxb6 remained mainly in mesenchymal cells around distal airways. CONCLUSIONS Unique spatial and cellular expression of Hoxa5, Hoxb4, and Hoxb6 participates in branching morphogenesis and terminal sac formation. Altered Hox protein temporal and cellular balance of expression either contributes to pulmonary hypoplasia or functions as a compensatory mechanism attempting to correct abnormal lung development and maturation in this condition.
Collapse
Affiliation(s)
- MaryAnn Vitoria Volpe
- Div. of Newborn Medicine, Department of Pediatrics, Tufts Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|
32
|
Sachan M, Raman R. Developmental methylation of the coding region of c-fos occurs perinatally, stepwise and sequentially in the liver of laboratory mouse. Gene 2008; 416:22-9. [PMID: 18442886 DOI: 10.1016/j.gene.2008.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/09/2008] [Accepted: 02/26/2008] [Indexed: 11/26/2022]
Abstract
We have studied the dynamics of de novo DNA methylation of 16 contiguous CpGs in the non-CpG island-coding region of the proto-oncogene c-fos during mouse development by Na-bisulfite sequencing. Methylation commences from 16.5 dpc and occurs in stepwise-manner. In liver 7 sites are methylated between 16.5 dpc and day 5 after birth, but all the sites are completely methylated on 20 dpp and remain so in the adult liver. The present study provides evidence that (1) pattern of methylation of c-fos is distinct from those DNA sequences which methylate pre- and post-implantation, both in terms of the timing and spreading, and (2) spacing of CpGs is an important factor in determining the course of methylation. We suggest that there could be other isoforms of Dnmtases for the c-fos like embryonic genes, not only because they methylate later in development but also because of the difference in kinetics of the reaction, and that the nucleation of certain methylated sites facilitate methylation of neighbouring sites and their maintenance in subsequent cell generations.
Collapse
Affiliation(s)
- Manisha Sachan
- Department of Biotechnology, Institute of Biosciences and Biotechnology, C.S.J.M. University, Kanpur-208024, India
| | | |
Collapse
|
33
|
Wu Q, Lothe RA, Ahlquist T, Silins I, Tropé CG, Micci F, Nesland JM, Suo Z, Lind GE. DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Mol Cancer 2007; 6:45. [PMID: 17623056 PMCID: PMC1964763 DOI: 10.1186/1476-4598-6-45] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 07/10/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The epigenetics of ovarian carcinogenesis remains poorly described. We have in the present study investigated the promoter methylation status of 13 genes in primary ovarian carcinomas (n = 52) and their in vitro models (n = 4; ES-2, OV-90, OVCAR-3, and SKOV-3) by methylation-specific polymerase chain reaction (MSP). Direct bisulphite sequencing analysis was used to confirm the methylation status of individual genes. The MSP results were compared with clinico- pathological features. RESULTS Eight out of the 13 genes were hypermethylated among the ovarian carcinomas, and altogether 40 of 52 tumours were methylated in one or more genes. Promoter hypermethylation of HOXA9, RASSF1A, APC, CDH13, HOXB5, SCGB3A1 (HIN-1), CRABP1, and MLH1 was found in 51% (26/51), 49% (23/47), 24% (12/51), 20% (10/51), 12% (6/52), 10% (5/52), 4% (2/48), and 2% (1/51) of the carcinomas, respectively, whereas ADAMTS1, MGMT, NR3C1, p14ARF, and p16INK4a were unmethylated in all samples. The methylation frequencies of HOXA9 and SCGB3A1 were higher among relatively early-stage carcinomas (FIGO I-II) than among carcinomas of later stages (FIGO III-IV; P = 0.002, P = 0.020, respectively). The majority of the early-stage carcinomas were of the endometrioid histotype. Additionally, HOXA9 hypermethylation was more common in tumours from patients older than 60 years of age (15/21) than among those of younger age (11/30; P = 0.023). Finally, there was a significant difference in HOXA9 methylation frequency among the histological types (P = 0.007). CONCLUSION DNA hypermethylation of tumour suppressor genes seems to play an important role in ovarian carcinogenesis and HOXA9, HOXB5, SCGB3A1, and CRABP1 are identified as novel hypermethylated target genes in this tumour type.
Collapse
Affiliation(s)
- Qinghua Wu
- Department of Pathology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Terje Ahlquist
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Ilvars Silins
- Department of Gynecologic Oncology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Claes G Tropé
- Department of Gynecologic Oncology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Francesca Micci
- Department of Medical Genetics, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Jahn M Nesland
- Department of Pathology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Guro E Lind
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res 2007; 61:5R-10R. [PMID: 17413851 DOI: 10.1203/pdr.0b013e318045bedb] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is now considerable evidence that elements of the heritable or familial component of disease susceptibility are transmitted by nongenomic means, and that environmental influences acting during early development shape disease risk in later life. The underlying mechanisms are thought to involve epigenetic modifications in nonimprinted genes induced by aspects of the developmental environment, which modify gene expression without altering DNA sequences. These changes result in life-long alterations in gene expression. Such nongenomic tuning of phenotype through developmental plasticity has adaptive value because it attempts to match an individual's responses to the environment predicted to be experienced. When the responses are mismatched, disease risk increases. An example of such mismatch is that arising either from inaccurate nutritional cues from the mother or placenta before birth, or from rapid environmental change through improved socioeconomic conditions, which contribute substantially to the increasing prevalence of type-2 diabetes, obesity, and cardiovascular disease. Recent evidence suggests that the effects can be transmitted to more than the immediately succeeding generation, through female and perhaps male lines. Future research into epigenetic processes may permit us to develop intervention strategies.
Collapse
Affiliation(s)
- Keith M Godfrey
- Centre for Developmental Origins of Health and Disease, University of Southampton, UK
| | | | | | | | | |
Collapse
|
35
|
Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007; 97:1064-73. [PMID: 17433129 PMCID: PMC2211425 DOI: 10.1017/s000711450769196x] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prenatal nutritional constraint induces an altered metabolic phenotype in the offspring which in humans confers an increased risk of non-communicable disease. Feeding a protein-restricted (PR) diet to pregnant rats causes hypomethylation of specific gene promoters in the offspring and alters the phenotype. We investigated how altered epigenetic regulation of the hepatic glucocorticoid receptor (GR) 1(10) promoter is induced in the offspring. Rats were fed a control (180 g casein/kg) or a PR (90 g casein/kg) diet throughout pregnancy, and chow during lactation. Offspring were killed at postnatal day 34 (n 5 per maternal dietary group). Methylation-sensitive PCR showed that GR1(10) promoter methylation was 33 % lower (P < 0.001) and GR expression 84 % higher (P < 0.05) in the PR offspring. Reverse transcription-PCR showed that DNA methyltransferase-1 (Dnmt1) expression was 17 % lower (P < 0.05) in PR offspring, while Dnmt3a/b and methyl binding domain protein-2 expression was not altered. Thus hypomethylation of the GR110 promoter may result from lower capacity to methylate hemimethylated DNA during mitosis. Histone modifications which facilitate transcription were increased at the GR1(10) promoter (147-921 %, P < 0.001), while those that suppress methylation were decreased (54 %, P < 0.01) or similar to controls. In human umbilical cord (n 15), there was a 2-fold difference between the highest and lowest level of GR1-CTotal promoter methylation. Dnmt1, but not Dnmt3a, expression predicted 49 % (P = 0.003) of the variation in GR1-CTotal promoter methylation. These findings suggest that induction in the offspring of altered epigenetic regulation of the hepatic GR1(10) promoter, and hence metabolic phenotype, may be due to reduced Dnmt1 expression.
Collapse
Affiliation(s)
- Karen A Lillycrop
- Development and Cell Biology, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | - Jo L Slater-Jefferies
- Developmental Origins of Health and Disease Division, University of Southampton, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, UK
| | - Mark A Hanson
- Developmental Origins of Health and Disease Division, University of Southampton, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, UK
| | - Keith M Godfrey
- Developmental Origins of Health and Disease Division, University of Southampton, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, UK
- MRC Epidemiology Resource Centre, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Alan A Jackson
- Institute of Human Nutrition, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Graham C Burdge
- Developmental Origins of Health and Disease Division, University of Southampton, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, UK
- Corresponding author:- Dr G.C. Burdge, Developmental Origins of Health and Disease Division, University of Southampton, Princess Anne Hospital, Coxford Road, Southampton, SO16 5YA, UK. Telephone +44 (0)23 80594304; FAX +44 (0)23 80594379; E-mail:
| |
Collapse
|
36
|
Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 2007; 97:1036-46. [PMID: 17381976 PMCID: PMC2211525 DOI: 10.1017/s0007114507682920] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is considerable evidence for the induction of different phenotypes by variations in the early life environment, including nutrition, which in man is associated with a graded risk of metabolic disease; fetal programming. It is likely that the induction of persistent changes to tissue structure and function by differences in the early life environment involves life-long alterations to the regulation of gene transcription. This view is supported by both studies of human subjects and animal models. The mechanism which underlies such changes to gene expression is now beginning to be understood. In the present review we discuss the role of changes in the epigenetic regulation of transcription, specifically DNA methylation and covalent modification of histones, in the induction of an altered phenotype by nutritional constraint in early life. The demonstration of altered epigenetic regulation of genes in phenotype induction suggests the possibility of interventions to modify long-term disease risk associated with unbalanced nutrition in early life.
Collapse
Affiliation(s)
- Graham C Burdge
- DOHaD Research Division, University of Southampton, Bassett Cresent East, Southampton, UK.
| | | | | | | |
Collapse
|
37
|
Strathdee G, Sim A, Soutar R, Holyoake TL, Brown R. HOXA5 is targeted by cell-type-specific CpG island methylation in normal cells and during the development of acute myeloid leukaemia. Carcinogenesis 2006; 28:299-309. [PMID: 16861263 DOI: 10.1093/carcin/bgl133] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HOXA5 is a member of the HOX gene family, which is known to play key roles during embryonic development and in differentiation of adult cells. In addition, HOXA5 has been implicated as a tumour suppressor in breast cancer and shown to transactivate the p53 gene. CpG island methylation is a common mechanism of gene inactivation in tumour cells, but is rarely involved in control of cell-type-specific (CTS) expression in normal cells. However, here we demonstrate that HOXA5 is one of a small number of genes whose CTS expression pattern is controlled by CTS CpG island methylation in normal cells. Furthermore, chromatin immunoprecipitation analysis identified novel patterns of histone modifications associated with DNA methylation of HOXA5. High levels of methylation of histone residues (lysine 9 and 36 of histone H3) previously associated with transcriptional repression were present in the unmethylated, actively transcribing state, and were then reduced following DNA methylation and gene inactivation. Alterations to the normal patterns of HOXA5 gene methylation were also observed in tumour cells. Quantitative analysis of HOXA5 methylation identified the presence of limited methylation in all of the breast, lung and ovarian tumours examined. However, methylation levels in these three tumour types were nearly always low and comparable with that detected in the corresponding normal tissue. In contrast, acute myeloid leukaemia (AML) samples frequently (60% of samples) exhibited very high methylation levels, far greater than that seen in normal haematopoietic cells, suggesting a role for hypermethylation of HOXA5 in the development of AML, consistent with its previously identified role in haematopoietic differentiation.
Collapse
Affiliation(s)
- Gordon Strathdee
- Centre for Oncology and Applied Pharmacology, CR-UK Beatson Laboratories, G61 1BD UK.
| | | | | | | | | |
Collapse
|
38
|
Sachan M, Raman R. Developmental methylation of the regulatory region of HoxB5 gene in mouse correlates with its tissue-specific expression. Gene 2006; 380:151-8. [PMID: 16870358 DOI: 10.1016/j.gene.2006.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 05/09/2006] [Accepted: 05/19/2006] [Indexed: 11/15/2022]
Abstract
We have studied the dynamics of de novo CpG methylation in the regulatory region of one of the homeobox gene HoxB5 during mouse development by sodium bisulfite sequencing. Methylation pattern was examined at embryonic day 18.5 and adult in kidney and spleen while in the liver the same exercise has been done in 11.5 dpc, 18.5 dpc, 5 dpp and in adult. In the liver at 11.5 dpc, all the 47 contiguous sites (including a CpG island from 2035 to 2330 bp) at 5' regulatory region of HoxB5 were unmethylated. Random methylation commences from 18.5 dpc and continues in 5 dpp and in the adult. In the kidney at 18.5 dpc, 26 CpGs were examined (excluding the CpG island region) and all of them were unmethylated but the fetal spleen had at least a few sites considerably methylated. In the adult there was a low level methylation in the kidney, on the other hand, in the spleen, all the CpGs were methylated except a few sites and certain sites were totally methylated. Thus in the adult, the level of methylation was much higher than in the fetal stage. On the other hand semi-quantitative RT-PCR revealed that the extent of expression of HoxB5 was higher in embryonic stages than in the adult. Thus HoxB5 is a good paradigm to support that the developmental methylation of HoxB5 and its expression pattern show an inverse correlation.
Collapse
Affiliation(s)
- Manisha Sachan
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
39
|
Meaney MJ, Szyf M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. DIALOGUES IN CLINICAL NEUROSCIENCE 2005. [PMID: 16262207 PMCID: PMC3181727 DOI: 10.31887/dcns.2005.7.2/mmeaney] [Citation(s) in RCA: 499] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early experience permanently alters behavior and physiology. These effects are, in part, mediated by sustained alterations in gene expression in selected brain regions. The critical question concerns the mechanism of these environmental “programming” effects. We examine this issue with an animal model that studies the consequences of variations in mother-infant interactions on the development of individual differences in behavioral and endocrine responses to stress in adulthood. Increased levels of pup licking/grooming by rat mothers in the first week of life alter DNA structure at a glucocorticoid receptor gene promoter in the hippocampus of the offspring. Differences in the DNA methylation pattern between the offspring of high- and low-lickinglgrooming mothers emerge over the first week of life; they are reversed with cross-fostering; they persist into adulthood; and they are associated with altered histone acetylation and transcription factor (nerve growth factor-induced clone A [NGFIA]) binding to the glucocorticoid receptor promoter. DNA methylation alters glucocorticoid receptor expression through modifications of chromatin structure. Pharmacological reversal of the effects on chromatin structure completely eliminates the effects of maternal care on glucocorticoid receptor expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, thus suggesting a causal relation between the maternally induced, epigenetic modification of the glucocorticoid receptor gene and the effects on stress responses in the offspring. These findings demonstrate that the structural modifications of the DNA can be established through environmental programming and that, in spite of the inherent stability of this epigenomic marker, it is dynamic and potentially reversible.
Collapse
Affiliation(s)
- Michael J Meaney
- McGill Program for the Study of Behavior, Genes and Environment, Department of Pharmacology, McGill University, Douglas Hospital Research Centre, Montreal, Quebec, Canada.
| | | |
Collapse
|
40
|
Szyf M, Weaver ICG, Champagne FA, Diorio J, Meaney MJ. Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 2005; 26:139-62. [PMID: 16303171 DOI: 10.1016/j.yfrne.2005.10.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/19/2005] [Accepted: 10/19/2005] [Indexed: 12/26/2022]
Abstract
Increased levels of pup licking/grooming and arched-back nursing by rat mothers over the first week of life alter the epigenome at a glucocorticoid receptor gene promoter in the hippocampus of the offspring. Differences in the DNA methylation pattern between the offspring of High and Low licking/grooming--arched-back mothers emerge over the first week of life, are reversed with cross-fostering, persist into adulthood and are associated with altered histone acetylation and transcription factor (NGFI-A) binding to the glucocorticoid receptor promoter. Central infusion of the adult offspring with the histone deacetylase inhibitor trichostatin A removes the previously defined epigenomic group differences in histone acetylation, DNA methylation, NGFI-A binding, glucocorticoid receptor expression, and hypothalamic-pituitary-adrenal responses to stress, thus suggesting a causal relation between the epigenomic state, glucocorticoid receptor expression and the effects of maternal care on stress responses in the offspring. These findings demonstrate that an epigenomic state of a gene can be established through a behavioral mode of programming and that in spite of the inherent stability of this epigenomic mark, it is dynamic and potentially reversible.
Collapse
Affiliation(s)
- Moshe Szyf
- McGill Program for the Study of Behavior, Genes and Environment, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
41
|
Santos KF, Mazzola TN, Carvalho HF. The prima donna of epigenetics: the regulation of gene expression by DNA methylation. Braz J Med Biol Res 2005; 38:1531-41. [PMID: 16172746 DOI: 10.1590/s0100-879x2005001000010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the mechanisms of DNA methylation, DNA methylation pattern formation and their involvement in gene regulation. Association of DNA methylation with imprinting, embryonic development and human diseases is discussed. Furthermore, besides considering changes in DNA methylation as mechanisms of disease, the role of epigenetics in general and DNA methylation in particular in transgenerational carcinogenesis, in memory formation and behavior establishment are brought about as mechanisms based on the cellular memory of gene expression patterns.
Collapse
Affiliation(s)
- K F Santos
- Departamento de Biologia Celular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | |
Collapse
|
42
|
Ching TT, Maunakea AK, Jun P, Hong C, Zardo G, Pinkel D, Albertson DG, Fridlyand J, Mao JH, Shchors K, Weiss WA, Costello JF. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet 2005; 37:645-51. [PMID: 15895082 DOI: 10.1038/ng1563] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Accepted: 03/22/2005] [Indexed: 11/08/2022]
Abstract
CpG islands are present in one-half of all human and mouse genes and typically overlap with promoters or exons. We developed a method for high-resolution analysis of the methylation status of CpG islands genome-wide, using arrays of BAC clones and the methylation-sensitive restriction enzyme NotI. Here we demonstrate the accuracy and specificity of the method. By computationally mapping all NotI sites, methylation events can be defined with single-nucleotide precision throughout the genome. We also demonstrate the unique expandability of the array method using a different methylation-sensitive restriction enzyme, BssHII. We identified and validated new CpG island loci that are methylated in a tissue-specific manner in normal human tissues. The methylation status of the CpG islands is associated with gene expression for several genes, including SHANK3, which encodes a structural protein in neuronal postsynaptic densities. Defects in SHANK3 seem to underlie human 22q13 deletion syndrome. Furthermore, these patterns for SHANK3 are conserved in mice and rats.
Collapse
Affiliation(s)
- Tsui-Ting Ching
- The Brain Tumor Research Center, Department of Neurological Surgery and the Biomedical Sciences Program, University of California San Francisco, San Franciso, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Watson RE, Curtin GM, Hellmann GM, Doolittle DJ, Goodman JI. Increased DNA methylation in the HoxA5 promoter region correlates with decreased expression of the gene during tumor promotion. Mol Carcinog 2004; 41:54-66. [PMID: 15352125 DOI: 10.1002/mc.20043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Promoter-region DNA methylation inhibits transcription. A two-stage SENCAR (sensitive to mouse carcinogenesis) mouse skin carcinogenicity model was used to examine gene-specific changes in methylation during skin tumor promotion. Analysis was performed on 7,12-dimethylbenz[a]anthracene (DMBA)-initiated skin promoted with 9, 18, 27, or 36 mg cigarette smoke condensate (CSC) for 9 wk, or 27 mg CSC for 9 wk and sacrificed 6 wk afterwards (recovery group). Additionally, tumors arising following promotion with 27 mg CSC for 29 wk were assessed. Gene array analysis identified differentially expressed genes. Expression of HoxA5, a tumor suppressor gene, was decreased following 9 wk of treatment with 27 mg CSC, and returned to control levels during recovery. HoxA5 promoter methylation was measured with the enzymatic regional methylation assay (ERMA). DNA was bisulfite-modified, PCR-amplified with primers containing dam sites, incubated with [14C-methyl] S-adenosyl-L-methionine (SAM) and dam methyltransferase for DNA quantification, then incubated with [3H-methyl] SAM and SssI methylase to quantify methylation status. Higher 3H/14C ratios indicate increased methylation. The 3H/14C ratios of animals promoted with 27 or 36 mg CSC (48.2 +/- 6.9 and 24.2 +/- 6.1, respectively) were higher than the control or recovery group ratios (12.3 +/- 0.1 and 12.6 +/- 0.3, respectively); sequence analysis supported these findings. Increased methylation of p16 or O6 methylguanine methyltranferase (MGMT) was detected in 4/8 (50%) of the tumor samples from mice promoted with 27 mg CSC. These data suggest that increased DNA methylation contributes to the downregulation of HoxA5, and combined with hypermethylation of p16 or MGMT, this might facilitate the clonal expansion of increasingly aberrant cells during promotion.
Collapse
Affiliation(s)
- Rebecca E Watson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
44
|
Weaver ICG, Diorio J, Seckl JR, Szyf M, Meaney MJ. Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann N Y Acad Sci 2004; 1024:182-212. [PMID: 15265782 DOI: 10.1196/annals.1321.099] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Environmental conditions in early life permanently alter the development of glucocorticoid receptor gene expression in the hippocampus and hypothalamic-pituitary-adrenal responses to acute or chronic stress. In part, these effects can involve an activation of ascending serotonergic pathways and subsequent changes in the expression of transcription factors that might drive glucocorticoid receptor expression in the hippocampus. This paper summarizes the evidence in favor of these pathways as well as recent studies describing regulatory targets within the chromatin structure of the promoter region of the rat hippocampal glucocorticoid receptor gene.
Collapse
Affiliation(s)
- Ian C G Weaver
- McGill Program for the Study of Behavior, Genes and Environment, Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
45
|
Weaver ICG, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7:847-54. [PMID: 15220929 DOI: 10.1038/nn1276] [Citation(s) in RCA: 3721] [Impact Index Per Article: 186.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 05/26/2004] [Indexed: 12/28/2022]
Abstract
Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.
Collapse
Affiliation(s)
- Ian C G Weaver
- Douglas Hospital Research Center, 6875 LaSalle Blvd., Montréal, Québec H4H 1R3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sun G, Lewis LE, Huang X, Nguyen Q, Price C, Huang T. TBX5, a gene mutated in Holt-Oram syndrome, is regulated through a GC box and T-box binding elements (TBEs). J Cell Biochem 2004; 92:189-99. [PMID: 15095414 DOI: 10.1002/jcb.20039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
TBX5 is a member of the T-box gene family and encodes a transcription factor that regulates the expression of other gene(s) in the developing heart and limbs. Mutations of TBX5 cause Holt-Oram syndrome (HOS), an autosomal dominant condition characterized by congenital heart defects and limb anomalies. How TBX5 gene expression is regulated is still largely unknown. In order to identify transcription factors regulating TBX5 expression, we examined the 5'-flanking region of the human TBX5 gene. We determined that up to 300 bp of the 5'-flanking region of the TBX5 gene was necessary for promoter activity in mouse cardiomyocyte ECL2 cells. One GC box, three potential T-box-like binding elements (TBE-A, -B, and -C), and one NKX2.5 binding site were identified. Site-directed mutagenesis of the potential binding sites revealed that the GC box, TBE-B, TBE-C, and NKX2.5 are functionally positive for the expression of TBX5. DNA footprint analysis showed that these binding regions are resistant to DNaseI digestion. Electrophoretic mobility shift assays (EMSAs) further demonstrated the protein-DNA interactions at the GC box and the potential TBE-B, TBE-C, and NKX2.5 sites in a sequence-specific manner. The ability of TBX5 to regulate its own promoter was demonstrated by the ability of ectopically expressed human TBX5 to increase reporter expression. We conclude that the GC box, T-box-like binding elements, and NKX2.5 binding site play important roles in the regulation of TBX5 expression, and that TBX5 is likely to be autoregulated as part of the mechanism of its transcription.
Collapse
Affiliation(s)
- Guifeng Sun
- Department of Pediatrics, Division of Human Genetics and Metabolism, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|