1
|
Abstract
The basic scheme of odor perception and signaling from olfactory cilia to the brain is well understood. However, factors that affect olfactory acuity of an animal, the threshold sensitivity to odorants, are less well studied. Using signal sequence trap screening of a mouse olfactory epithelium cDNA library, we identified a novel molecule, Goofy, that is essential for olfactory acuity in mice. Goofy encodes an integral membrane protein with specific expression in the olfactory and vomeronasal sensory neurons and predominant localization to the Golgi compartment. Goofy-deficient mice display aberrant olfactory phenotypes, including the impaired trafficking of adenylyl cyclase III, stunted olfactory cilia, and a higher threshold for physiological and behavioral responses to odorants. In addition, the expression of dominant-negative form of cAMP-dependent protein kinase results in shortening of olfactory cilia, implying a possible mechanistic link between cAMP and ciliogenesis in the olfactory sensory neurons. These results demonstrate that Goofy plays an important role in establishing the acuity of olfactory sensory signaling.
Collapse
|
2
|
Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W, Markenscoff-Papadimitriou E, Evans ZA, Kheradpour P, Mountoufaris G, Carey C, Barnea G, Kellis M, Lomvardas S. An epigenetic signature for monoallelic olfactory receptor expression. Cell 2011; 145:555-70. [PMID: 21529909 PMCID: PMC3094500 DOI: 10.1016/j.cell.2011.03.040] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 12/29/2022]
Abstract
Constitutive heterochromatin is traditionally viewed as the static form of heterochromatin that silences pericentromeric and telomeric repeats in a cell cycle- and differentiation-independent manner. Here, we show that, in the mouse olfactory epithelium, olfactory receptor (OR) genes are marked in a highly dynamic fashion with the molecular hallmarks of constitutive heterochromatin, H3K9me3 and H4K20me3. The cell type and developmentally dependent deposition of these marks along the OR clusters are, most likely, reversed during the process of OR choice to allow for monogenic and monoallelic OR expression. In contrast to the current view of OR choice, our data suggest that OR silencing takes place before OR expression, indicating that it is not the product of an OR-elicited feedback signal. Our findings suggest that chromatin-mediated silencing lays a molecular foundation upon which singular and stochastic selection for gene expression can be applied.
Collapse
Affiliation(s)
- Angeliki Magklara
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| | - Angela Yen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Bradley M. Colquitt
- Program in Neurosciences, University of California, San Francisco, CA 94158, USA
| | - E. Josephine Clowney
- Program in Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - William Allen
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | - Zoe A. Evans
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| | - Pouya Kheradpour
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - George Mountoufaris
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| | - Catriona Carey
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Stavros Lomvardas
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
- Program in Neurosciences, University of California, San Francisco, CA 94158, USA
- Program in Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Biju KC, Marks DR, Mast TG, Fadool DA. Deletion of voltage-gated channel affects glomerular refinement and odorant receptor expression in the mouse olfactory system. J Comp Neurol 2008; 506:161-79. [PMID: 18022950 DOI: 10.1002/cne.21540] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Olfactory sensory neurons (OSNs) expressing a specific odorant receptor (OR) gene send axonal projections to specific glomeruli, creating a stereotypic olfactory sensory map. Odorant receptor sequence, G-protein cAMP signaling, and axon guidance molecules have been shown to direct axons of OSNs toward central targets in the olfactory bulb (OB). Although the OR sequence may act as one determinant, our objective was to elucidate the extent by which voltage-dependent activity of postsynaptic projection neurons in the OB centrally influences peripheral development and target destination of OSNs. We bred OR-tagged transgenic mice to homozygosity with mice that had a gene-targeted deletion of the Shaker potassium ion channel (Kv1.3) to elucidate how activity modulates synaptic connections that formulate the sensory map. Here we report that the Kv1.3 ion channel, which is predominantly expressed in mitral cells and whose gene-targeted deletion causes a "super-smeller" phenotype, alters synaptic refinement of axonal projections from OSNs expressing P2, M72, and MOR28 ORs. Absence of Kv1.3 voltage-gated activity caused the formation of small, heterogeneous, and supernumerary glomeruli that failed to undergo neural pruning over development. These changes were accompanied by a significant decrease in the number of P2-, M72-, and MOR28-expressing OSNs, which contained an overexpression of OR protein and G-protein G(olf) in the cilia of the olfactory epithelium. These findings suggest that voltage-gated activity of projection neurons is essential to refine primary olfactory projections and that it regulates proper expression of the transduction machinery at the periphery.
Collapse
Affiliation(s)
- K C Biju
- Department of Biological Science, Program in Neuroscience, Biomedical Research Facility, The Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | |
Collapse
|
4
|
Koo JH, Gill S, Pannell LK, Menco BPM, Margolis JW, Margolis FL. The interaction of Bex and OMP reveals a dimer of OMP with a short half-life. J Neurochem 2004; 90:102-16. [PMID: 15198671 DOI: 10.1111/j.1471-4159.2004.02463.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Olfactory marker protein (OMP) participates in the olfactory signal transduction pathway. This is evident from the behavioral and electrophysiological deficits of OMP-null mice, which can be reversed by intranasal infection of olfactory sensory neurons with an OMP-expressing adenovirus. Bex, brain expressed X-linked protein, has been identified as a protein that interacts with OMP. We have now further characterized the interaction of OMP and Bex1/2 by in vitro binding assays and by immuno-coprecipitation experiments. OMP is a 19 kDa protein but these immunoprecipitation studies have revealed the unexpected presence of a 38 kDa band in addition to the expected 19 kDa band. Furthermore, the 38 kDa form was preferentially co-immunoprecipitated with Bex from cell extracts. In-gel tryptic digestion, mass spectrometry, and two-dimensional gel electrophoresis indicate that the 38 kDa protein behaves as a covalently cross-linked OMP-homodimer. The 38 kDa band was also identified in western blots of olfactory epithelium demonstrating its presence in vivo. The stabilities and subcellular localizations of the OMP-monomer and -dimer were studied in transfected cells. These results demonstrated that the OMP-dimer is much less stable than the monomer, and that while the monomer is present both in the nuclear and cytosolic compartments, the dimer is preferentially located in a Triton X-100 insoluble cytoskeletal fraction. These novel observations led us to hypothesize that regulation of the level of the rapidly turning-over OMP-dimer and its interaction with Bex1/2 is critical for OMP function in sensory transduction.
Collapse
Affiliation(s)
- Jae Hyung Koo
- Department of Anatomy & Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
5
|
Baldisseri DM, Margolis JW, Weber DJ, Koo JH, Margolis FL. Olfactory marker protein (OMP) exhibits a beta-clam fold in solution: implications for target peptide interaction and olfactory signal transduction. J Mol Biol 2002; 319:823-37. [PMID: 12054873 DOI: 10.1016/s0022-2836(02)00282-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Olfactory marker protein (OMP) is a ubiquitous, cytoplasmic protein found in mature olfactory receptor neurons of all vertebrates. Electrophysiological and behavioral studies demonstrate that it is a modulator of the olfactory signal transduction pathway. Here, we demonstrate that the solution structure of OMP, as determined by NMR studies, is a single globular domain protein comprised of eight beta-strands forming two beta-sheets oriented orthogonally to one another, thus exhibiting a "beta-clam" or "beta-sandwich" fold: beta-sheet 1 is comprised of beta3-beta8-beta1-beta2 and beta-sheet 2 contains beta6-beta5-beta4-beta7. Insertions include two, long alpha-helices located on opposite sides of the beta-clam and three flexible loops. The juxtaposition of beta-strands beta6-beta5-beta4-beta7-beta2-beta1-beta8-beta3 forms a continuously curved surface and encloses one side of the beta-clam. The "cleft" formed by the two beta-sheets is opposite to the closed end of the beta-clam. Using a peptide titration series, we have identified this cleft as the binding surface for a peptide derived from the Bex1 protein. The highly conserved Omega-loop structure adjacent to the Bex1 peptide-binding surface found in OMP may be the site of additional OMP-protein interactions related to its role in modulating olfactory signal transduction. Thus, the interaction between the OMP and Bex1 proteins could facilitate the interaction between OMP and other components of the olfactory signaling pathway.
Collapse
Affiliation(s)
- Donna M Baldisseri
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | | | |
Collapse
|
6
|
The OMP-lacZ transgene mimics the unusual expression pattern of OR-Z6, a new odorant receptor gene on mouse chromosome 6: implication for locus-dependent gene expression. J Neurosci 2001. [PMID: 11425891 DOI: 10.1523/jneurosci.21-13-04637.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reporter gene expression in the olfactory epithelium of H-lacZ6 transgenic mice mimics the cell-selective expression pattern known for some odorant receptor genes. The transgene construct in these mice consists of the lacZ coding region, driven by the proximal olfactory marker protein (OMP) gene promoter, and shows expression in a zonally confined subpopulation of olfactory neurons. To address mechanisms underlying the odorant receptor-like expression pattern of the lacZ construct, we analyzed the transgene-flanking region and identified OR-Z6, the first cloned odorant receptor gene that maps to mouse chromosome 6. OR-Z6 bears the highest sequence similarity (85%) to a human odorant receptor gene at the syntenic location on human chromosome 7. We analyzed the expression pattern of OR-Z6 in olfactory tissues of H-lacZ6 mice and show that it bears strong similarities to that mapped for beta-galactosidase. Expression of both genes in olfactory neurons is primarily restricted to the same medial subregion of the olfactory epithelium. Axons from both neuronal subpopulations project to the same ventromedial aspect of the anterior olfactory bulbs. Furthermore, colocalization analyses in H-lacZ6 mice demonstrate that OR-Z6-reactive glomeruli receive axonal input from lacZ-positive neurons as well. These results suggest that the expression of both genes is coordinated and that transgene expression in H-lacZ6 mice is regulated by locus-dependent mechanisms.
Collapse
|
7
|
Cummings DM, Emge DK, Small SL, Margolis FL. Pattern of olfactory bulb innervation returns after recovery from reversible peripheral deafferentation. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000605)421:3<362::aid-cne5>3.0.co;2-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Abstract
The establishment of novel animal models using gene targeting and transgenic technology has opened a new area of neuropharmacological research. For the first time, it became possible to alter the expression of a gene in a specific cell type of an intact animal by either overexpression, inhibition or ablation. This review describes the technology and lists the relevant tools, such as reporter genes, suicide genes, immortalizing genes, and promoters, necessary for the targeted expression of these and other genes in specific cells of the central nervous system. In addition, the problem is discussed that the mouse is the species in which this technology is by far the most developed, while the rat has been used as the model species for neuropharmacology during the last century.
Collapse
Affiliation(s)
- M Bader
- Max-Delbrück-Center for Molecular Medicine, Transgenics in Berlin-Buch GmbH, Berlin, Germany
| |
Collapse
|
9
|
Holtmaat AJ, Huizinga CT, Margolis FL, Gispen WH, Verhaagen J. Transgenic expression of B-50/GAP-43 in mature olfactory neurons triggers downregulation of native B-50/GAP-43 expression in immature olfactory neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:197-207. [PMID: 10640691 DOI: 10.1016/s0169-328x(99)00263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adult mammalian olfactory neuroepithelium is an unusual neural tissue, since it maintains its capacity to form new neurons throughout life. Newly formed neurons differentiate in the basal layers of the olfactory neuroepithelium and express B-50/GAP-43, a protein implicated in neurite outgrowth. During maturation these neurons migrate into the upper portion of the epithelium, upregulate expression of olfactory marker protein (OMP) and concomitantly downregulate the expression of B-50/GAP-43. Transgenic mice that exhibit OMP-promoter directed expression of B-50/GAP-43 in mature olfactory neurons display an unexpected decrease in the complement of B-50/GAP-43-positive cells in the lower region of the olfactory epithelium [A.J.G.D. Holtmaat, P.A. Dijkhuizen, A.B. Oestreicher, H. J. Romijn, N.M.T. Van der Lugt, A. Berns, F.L. Margolis, W.H. Gispen, J. Verhaagen, Directed expression of the growth-associated protein B-50/GAP-43 to olfactory neurons in transgenic mice results in changes in axon morphology and extraglomerular growth, J. Neurosci. 15 (1995) 7953-7965]. We have investigated whether the decrement in B-50/GAP-43-positive cells in this region was due to a dislocation of the immature neurons to other regions of the olfactory epithelium or to a downregulation of B-50/GAP-43 synthesis in these immature neurons. In eight of nine independent transgenic mouse lines that express the transgene in different numbers of olfactory neurons, a decline in the number of B-50/GAP-43-expressing neurons in the basal portion of the olfactory neuroepithelium was observed, both at the protein level and the mRNA level. An alternative marker for immature cells, a juvenile form of tubulin, was normally expressed in this location, indicating that the olfactory epithelium of OMP-B-50/GAP-43 transgenic mice contains a normal complement of immature olfactory neurons and that most of these neurons display a downregulation of B-50/GAP-43 expression.
Collapse
Affiliation(s)
- A J Holtmaat
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Abstract
In two previous in vitro experiments, we have shown that dopamine induced apoptosis or differentiation in an olfactory cell line while it reduced mitosis and triggered cell death in human olfactory biopsy cultures. The aims of the present study were to locate precisely D2 dopamine receptors within the olfactory epithelium and to monitor the effect of dopamine on olfactory neuronal differentiation in explant cultures. We show here that D2 dopamine receptors are expressed in supporting cells, neurons and basal cells in the olfactory epithelium. In vitro, dopamine was found to (1) trigger neuronal differentiation and maturation in a dose-dependent manner via D2 dopamine receptors, (2) be active only when not oxidised, (3) act directly on epithelial cells and not through other reactive cells in the underlying lamina propria. Altogether these data indicate that, in parallel to its action in odour processing, dopamine plays a growth factor-like role in the permanent neurogenesis observed in the olfactory epithelium.
Collapse
Affiliation(s)
- F Féron
- Center for Molecular Neurobiology, School of Biomolecular and Biomedical Science, Griffith University, Nathan, Australia.
| | | | | |
Collapse
|
11
|
Michel V, Monnier Z, Cvetkovic V, Math F. Organotypic culture of neuroepithelium attached to olfactory bulb from adult mouse as a tool to study neuronal regeneration after ZnSO4 neuroepithelial trauma. Neurosci Lett 1999; 271:195-8. [PMID: 10507702 DOI: 10.1016/s0304-3940(99)00551-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chemical destruction of the olfactory mucosa leads to a neuronal regeneration. A new organotypic culture model is perfected to improve the regenerating processes study. Explants of neuroepithelium attached to olfactory bulbs were removed from adult mice and cultured, 12 h after ZnSO4 intranasal application. After 3 days in culture, explants showed a necrosis in the olfactory epithelium and a thinning of the olfactory bulb nervous layer. From the fifth day of culture, and mostly the tenth, new cells showed positive immunoreactivity with the olfactory marker protein (OMP), meaning they were regenerating olfactory neurons. Simultaneously, OMP immunoreactivity increased in the nervous and glomerular layers of the olfactory bulb, indicating epithelio-bulbar reconnection. This organotypic culture model could allow further investigations on the regenerating process kinetic.
Collapse
Affiliation(s)
- V Michel
- Laboratoire de Neurosciences, EA 481, Besançon, France.
| | | | | | | |
Collapse
|
12
|
Féron F, Mackay-Sim A, Andrieu JL, Matthaei KI, Holley A, Sicard G. Stress induces neurogenesis in non-neuronal cell cultures of adult olfactory epithelium. Neuroscience 1999; 88:571-83. [PMID: 10197776 DOI: 10.1016/s0306-4522(98)00233-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the basal cells of the olfactory epithelium is a stem cell which divides and whose progeny differentiate into new sensory neurons throughout adult life. Olfactory neurogenesis is highly regulated, for example it is stimulated by epithelial damage. Previous reports implicate several growth factors in progenitor cell proliferation and neuronal differentiation in vitro but these studies differ in growth conditions and age of donors making it difficult to determine precisely the roles of neurogenic stimuli and their sites of action. The aims of the present study were to develop purified basal cell cultures from adult olfactory epithelium and to stimulate neurogenesis in defined growth conditions in order to elucidate the cellular mechanisms by which neurogenesis is stimulated after epithelial damage. We show here that differentiated olfactory sensory neurons arise after biochemical or mechanical stress of rat and mouse olfactory epithelial cell cultures in the absence of growth factors, complex media (e.g., serum, conditioned media, pituitary and hypothalamic extracts), or other cells (e.g., explants, feeder layers of glia, or other non-epithelial cells). Prior to the stress, these cultures contained basal cells and supporting cells but not neurons. After the stress, some cells differentiated into bipolar neurons expressing a number of neuronal proteins including olfactory marker protein. Bromodeoxyuridine experiments show that the differentiated neurons arose from recently divided cells which did not divide again before differentiating. We conclude that stress disrupts cell surface contacts to induce the immediate neuronal precursors to undergo final differentiation into olfactory sensory neurons. This may be a mechanism for enhanced neurogenesis after epithelial damage.
Collapse
Affiliation(s)
- F Féron
- Neuroscience et Systèmes sensoriels, Université Claude Bernard-Lyon, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
13
|
Sowden J, Smith H, Morrison K, Edwards Y. Sequence comparisons and functional studies of the proximal promoter of the carbonic anhydrase 3 (CA3) gene. Gene X 1998; 214:157-65. [PMID: 9651514 DOI: 10.1016/s0378-1119(98)00201-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbonic anhydrase 3 (CA3) is a member of a gene family encoding proteins which catalyse the hydration of CO2 to generate protons and bicarbonate ions for cellular ion transport and pH homeostasis. In mouse embryos CA3 is expressed at high levels in notochord and skeletal muscle and here we demonstrate that this pattern of expression is the same in the developing human embryo. To investigate mechanisms controlling CA3 transcription, we have isolated and compared 2.8kb of sequence flanking exon 1 from the mouse and human genes. Several segments of high sequence identity >80% have been identified, the longest segments of which represent a proximal promoter region and a putative enhancer element. We have shown previously that in cultured cells the human 2.8kb promoter region imposes high level myogenic specific transcription of a reporter gene. However, we now show that while this promoter region directed muscle-specific expression in transgenic mouse embryos this was subject to position effects.
Collapse
Affiliation(s)
- J Sowden
- MRC Human Biochemical Genetics Unit, University College London, Wolfson House, 4 Stephenson Way, London, NW1 2HE, UK
| | | | | | | |
Collapse
|
14
|
Abstract
The failure of regenerating axons to grow within the adult mammalian central nervous system (CNS) does not apply to the olfactory bulb (OB). In this structure, normal and transected olfactory axons are able to enter, regenerate, and reestablish lost synaptic contacts with their targets, throughout the lifetime of the organism. A remarkable difference between an axonal growth-permissive structure such as the OB and the remaining CNS resides in the presence of ensheathing glia in the former. These cells exhibit phenotypic and functional properties known to be involved in the process of axonal elongation that may explain the permissibility of the OB to axonal growth. In addition, transplants of ensheathing glia were successfully used to promote axonal regeneration within the injured adult CNS. The axonal growth-promoting properties of ensheathing glia make the study of this cell type interesting to provide an insight into the mechanisms underlying the process of axonal regeneration. Therefore, in this article we review the developmental, morphologic, immunocytochemical, and functional properties presented by this unique glial cell type, and correlate them with the axonal growth-promoting ability of ensheathing glia. In addition, we provide some evidence of the potentiality that ensheathing glia might have as a promoter of axonal regeneration within the injured nervous system.
Collapse
Affiliation(s)
- A Ramón-Cueto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| | | |
Collapse
|