1
|
Gao Y, Zhang H, Hu Y. Baseline serum glutamate: Implications for diagnosis and prediction in mild cognitive impairment and Alzheimer's disease of the Alzheimer's Disease Neuroimaging Initiative. J Clin Neurosci 2024; 129:110828. [PMID: 39265358 DOI: 10.1016/j.jocn.2024.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/28/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Numerous studies have highlighted a close link between metabolic imbalances and Alzheimer's Disease (AD). The advancement of metabolomics has recently enabled the exploration of characteristic metabolic changes associated with AD. Studies indicate that serum glutamate (Glu) levels may correlate with mild cognitive impairment (MCI) and AD. This study aims to further elucidate the characteristics of baseline serum Glu levels in MCI and AD. METHODS This study included 783 participants from the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) cohort, categorized into cognitively normal (CN, n = 224), stable MCI (sMCI, n = 181), progressive MCI (pMCI, n = 193), and AD (n = 185). The study aimed to analyze the diagnostic value of baseline serum Glu, to explore its predictive capability for the progression from CN to MCI or AD, and from MCI to AD, and to analyze the relationship between serum Glu and cerebrospinal fluid (CSF) biomarkers and cognitive functions in different diagnostic groups. RESULTS Compared to the CN and sMCI groups, the pMCI group showed significantly lower levels of serum Glu, and the AD group also had lower Glu levels compared to the sMCI group. However, serum Glu did not show significant diagnostic value for MCI and AD. Lower levels of serum Glu could predict the progression from MCI to AD. CONCLUSION Serum Glu levels can predict the progression from MCI to AD, suggesting that it could provide new insights into the pathophysiological mechanisms of AD. However, serum Glu may not be an ideal peripheral biomarker for AD.
Collapse
Affiliation(s)
- Ying Gao
- Department of General Medical Wards Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy. Chongqing 400014, China
| | - Hua Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuming Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Li W, Zhong Q, Deng N, Wang H, Ouyang J, Guan Z, Zhou X, Li K, Sun X, Wang Y. Identification of a novel prognostic model for gastric cancer utilizing glutamine-related genes. Heliyon 2024; 10:e37985. [PMID: 39386842 PMCID: PMC11462029 DOI: 10.1016/j.heliyon.2024.e37985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Glutamine metabolism presents a promising avenue for cancer prevention and treatment, but the underlying mechanisms in gastric cancer (GC) progression remain elusive. Methods The TCGA-STAD and GEO GSE62254 datasets, containing gene expression, clinical information, and survival outcomes of GC, were meticulously examined. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to excavate a key module (MEturquoise), which was used to intersect with glutamine metabolism-related genes (GMRGs) and differentially expressed genes (DEGs) to identify differentially expressed GMRGs (DE-GMRGs). LASSO and Cox Univariate analyses were implemented to determine risk model genes. Correlation of the risk model with clinical parameters, pathways, and tumor immune microenvironments, was analyzed, and its prognostic independence was validated by Cox analyses. Finally, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to validate the expression levels of MYB, LRFN4, LMNB2, and SLC1A5 in GC and para-carcinoma tissue. Results The excavation of 4521 DEGs led to the discovery of the key MEturquoise module, which exhibited robust correlations with GC traits. The intersection analysis identified 42 DE-GMRGs, among which six genes showed consistency. Further LASSO analysis established MYB, LRFN4, LMNB2, and SLC1A5 as pivotal risk model genes. The risk model demonstrated associations with oncogenic and metabolism-related pathways, inversely correlating with responses to immune checkpoint blockade therapies. This risk model, together with "age", was validated to be an independent prognostic factor for GC. RT-qPCR result indicated that MYB, LRFN4, LMNB2, and SLC1A5 expressions were remarkably up-regulated in GC tissues comparison with para-carcinoma tissue. Conclusion The present study has generated a novel risk module containing four DE-GMRGs for predicting the prognosis and the response to immune checkpoint blockade treatments for GC. This risk model provides new insights into the involvement of glutamine metabolism in GC, warranting further investigation.
Collapse
Affiliation(s)
- Weidong Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Qixing Zhong
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Naisheng Deng
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Haitao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Jun Ouyang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Zhifen Guan
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Xinhao Zhou
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Kai Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Xueying Sun
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, 1142, New Zealand
| | - Yao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| |
Collapse
|
3
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
4
|
Nasser J, Mehravar S, Pimentel M, Lim J, Mathur R, Boustany A, Rezaie A. Elemental Diet as a Therapeutic Modality: A Comprehensive Review. Dig Dis Sci 2024; 69:3344-3360. [PMID: 39001958 PMCID: PMC11415405 DOI: 10.1007/s10620-024-08543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
Elemental diets have been employed for the management of various diseases for over 50 years, with several mechanisms mediating their beneficial effects. Yet, they are underutilized due to poor palatability, access, cost, and lack of awareness regarding their clinical efficacy. Therefore, in this review, we aimed to systematically search and review the literature to summarize the formulation variability, mechanisms of action, clinical applications, and tolerability of the elemental diets in gastrointestinal diseases. While large prospective trials are lacking, elemental diets appear to exhibit objective and subjective clinical benefit in several diseases, including eosinophilic esophagitis, eosinophilic gastroenteritis, inflammatory bowel diseases, small intestinal bacterial overgrowth, intestinal methanogen overgrowth, chemoradiotherapy-associated mucositis, and celiac disease. Although some data support the long-term use of elemental diets as an add-on supplement for chronic pancreatitis and Crohn's disease, most of the literature on exclusive elemental diets focuses on inducing remission. Therefore, subsequent treatment strategies for maintaining remission need to be adopted in chronic/relapsing diseases. Several mechanistic pathways were identified to mediate the effects of elemental diets, including food additive and allergen-free content, high passive absorption rate, and anti-inflammatory properties. High rates of intolerance up to 40% are seen in the trials where exclusive elemental diets were administered orally due to poor organoleptic acceptability; however, when tolerated, adverse events were rare. Other limitations of elemental diets are cost, access, and lifestyle/social restrictions. Moreover, judicious use is advised in presence of a concomitant restrictive food intake disorders. Elemental diets offer a potentially highly efficacious dietary intervention with minor side effects. Palatability, cost, access, and social restrictions are common barriers of use. Prospective clinical trials are needed to elucidate the role of elemental formulas in the management of individual diseases.
Collapse
Affiliation(s)
- Jason Nasser
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 700 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 700 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 700 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Jane Lim
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 700 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 700 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Antoine Boustany
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 700 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA.
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Selle PH, Macelline SP, Toghyani M, Liu SY. The potential of glutamine supplementation in reduced-crude protein diets for chicken-meat production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:49-56. [PMID: 39022775 PMCID: PMC466976 DOI: 10.1016/j.aninu.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 07/20/2024]
Abstract
This review explores the potential of including glutamine, a so-called non-essential amino acid, in the formulation of reduced-crude protein (CP) diets for broiler chickens. There is a precedent for benefits when including glycine and serine in reduced-CP diets. Fundamentally this is due to decreases in non-essential amino acid concentrations in reduced-CP diets - an unavoidable consequence of reducing CP without amino acid supplementation. The situation for glutamine is complicated because analysed dietary concentrations are very rarely provided as standard assays do not differentiate between glutamine and glutamate and are reported on a combined basis as glutamic acid. The dietary requirement for glutamic acid is approximately 36.3 g/kg but it is increasingly unlikely that this requirement will be met as dietary CP levels are progressively reduced. Glutamine is an abundant and versatile amino acid and constitutes 50.5 mg/g of whole-body chicken protein and is the dominant free amino acid in systemic plasma where it has been shown to provide 22.6% (139.9 of 620.3 μg/mL) of the total in birds offered 215 g/kg CP, wheat-based diets. In addition to dietary intakes, glutamine biosynthesis is derived mainly from the condensation of glutamate and ammonia (NH3) catalysed by glutamine synthetase, a reaction that is pivotal to NH3 detoxification. Glutamate and NH3 are converted to glutamine by phosphate-dependent glutaminase in the reciprocal reaction; thus, glutamine and glutamate are interchangeable amino acids. However, the rate of glutamine biosynthesis may not be adequate in rapidly growing broiler chickens and exogenous and endogenous glutamine levels are probably insufficient in birds offered reduced-CP diets. The many functional roles of glutamine, including NH3 detoxification and maintenance of acid-base homeostasis, then become relevant. Twenty feeding studies were identified where dietary glutamine supplementation, usually 10 g/kg, was evaluated in birds kept under thermoneutral conditions. On balance, the outcomes were positive, but the average dietary CP was 213 g/kg across the twenty feeding studies, which indicates that CP and, in turn, glutamine concentrations would have been adequate. This suggests that glutamine inclusions in reduced-CP diets hold potential and consideration is given to how this may be best confirmed.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Shemil P. Macelline
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Mehdi Toghyani
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Sonia Yun Liu
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
6
|
Dzubanova M, Benova A, Ferencakova M, Coupeau R, Tencerova M. Nutrition and Bone Marrow Adiposity in Relation to Bone Health. Physiol Res 2024; 73:S107-S138. [PMID: 38752771 PMCID: PMC11412336 DOI: 10.33549/physiolres.935293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Bone remodeling is energetically demanding process. Energy coming from nutrients present in the diet contributes to function of different cell type including osteoblasts, osteocytes and osteoclasts in bone marrow participating in bone homeostasis. With aging, obesity and osteoporosis the function of key building blocks, bone marrow stromal cells (BMSCs), changes towards higher accumulation of bone marrow adipose tissue (BMAT) and decreased bone mass, which is affected by diet and sex dimorphism. Men and women have unique nutritional needs based on physiological and hormonal changes across the life span. However, the exact molecular mechanisms behind these pathophysiological conditions in bone are not well-known. In this review, we focus on bone and BMAT physiology in men and women and how this approach has been taken by animal studies. Furthermore, we discuss the different diet interventions and impact on bone and BMAT in respect to sex differences. We also discuss the future perspective on precision nutrition with a consideration of sex-based differences which could bring better understanding of the diet intervention in bone health and weight management.
Collapse
Affiliation(s)
- M Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
7
|
Hu M, Du Y, Li W, Zong X, Du W, Sun H, Liu H, Zhao K, Li J, Farooq MZ, Wu J, Xu Q. Interplay of Food-Derived Bioactive Peptides with Gut Microbiota: Implications for Health and Disease Management. Mol Nutr Food Res 2024:e2400251. [PMID: 39097954 DOI: 10.1002/mnfr.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Indexed: 08/06/2024]
Abstract
Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.
Collapse
Affiliation(s)
- Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyue Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomei Zong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Jianxiong Li
- Wuhan Jason Biotech Co., Ltd., Wuhan, 430070, China
| | - Muhammad Zahid Farooq
- Department of Animal Science, University of Veterinary and Animal Science, Lahore, 54000, Pakistan
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
9
|
Wang X, Lu Y, He J, Li X, Xu Y, Ren L, Li H. Untargeted metabolomics reveals the mechanism of amantadine toxicity on Laminaria japonica. Front Physiol 2024; 15:1448259. [PMID: 39113936 PMCID: PMC11303324 DOI: 10.3389/fphys.2024.1448259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The antiviral agent amantadine is frequently detected in seawater and marine organisms. Because of increasing concentrations, amantadine has become a contaminant of emerging concern. This compound has toxic effects on the brown algae Laminaria japonica. The effects of amantadine on the biological processes of L. japonica and the corresponding toxic mechanisms remain unclear. In this study, amantadine toxicity on L. japonica was investigated using histopathological and physiological characteristics combined with metabolomics analysis. Changes in metabolites were determined by untargeted metabolomics after exposure to 107 ng/L amantadine for 72 h. The catalase activity in the exposure group slightly increased, whereas the superoxide dismutase activity greatly decreased. An increase in the malondialdehyde concentration was observed after amantadine exposure, which suggested that lipid peroxidation and cell damage occurred. Metabolomics analysis showed that there were 406 differentially expressed metabolites after amantadine exposure. These were mainly phospholipids, amino acids, purines, and their derivatives. Inhibition of the glycerophospholipid metabolism affected the lipid bilayer and cell structure, which was aligned with changes in histological observation. Changes in amino acids led to perturbation of protein synthesis and induced oxidative stress through interference with glutathione metabolism and tyrosine metabolism. Amantadine also interfered with energy metabolism in L. japonica by disturbing the tricarboxylic acid cycle and purine metabolism. The results of this study provide new insights into the mechanism of amantadine toxicity on L. japonica.
Collapse
Affiliation(s)
- Xiaohan Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Yao Lu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Jinxia He
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xiaojie Li
- Shandong Oriental Ocean Technology Co. Ltd., Yantai, China
| | - Yingjiang Xu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Lihua Ren
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Huanjun Li
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| |
Collapse
|
10
|
Koppaka R, Shah KK, Maiti S. Multifaceted Enhancement of L-Leucine-Enriched Ovine Bone Graft: Physicochemical Characteristics and Osteogenic Potential for Improved Guided Bone Regeneration. Cureus 2024; 16:e64416. [PMID: 39131038 PMCID: PMC11317117 DOI: 10.7759/cureus.64416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Small compounds like L-leucine can boost bone regrowth by blocking certain effects, sparking cell reactions through signaling sequences. This research explored how combining L-leucine with hyaluronic acid on the developed novel graft material affects the bone's ability to conduct bone-building processes. Material and methods This study was designed as an in-vitro experiment, where a novel bone graft was formulated by integrating L-leucine with hyaluronic acid and incorporated into a hydroxyapatite-based ovine bone graft material. The sintering procedure was modified to include the amino acid L-arginine. Comprehensive examinations were executed using methodologies such as scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy (FTIR), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and bone formation assay. These analyses were juxtaposed with the characteristics of the commercially accessible unaltered Bio-Oss, focusing on their physicochemical properties. The properties were compared with a commercially available bone graft material. Results The sintered hydroxyapatite/L-leucine graft displayed an interconnected pore structure, indicating that higher sintering and consolidation affected hydroxyapatite, as observed through scanning electron microscopy. X-ray diffraction (XRD) analysis confirmed hydroxyapatite in the sintered ovine bone samples, affirming their suitability for various biomedical applications. In the bone formation assay, optical density (OD) values were 61% for the hydroxyapatite/L-arginine graft, 58% for the Bio-Oss group, and 51% for the control group. The MTT assay, which assesses cell viability and metabolic activity, demonstrated biocompatibility and cell growth for all samples at 24 hours. Conclusion The research noted beneficial outcomes by incorporating L-leucine into the novel bone graft material with hyaluronic acid for bone grafting, demonstrating enhanced compatibility with existing bone tissue. However, the specific advantages of this combined approach are not fully known. It is essential to conduct more studies to uncover how this synergy works, assess its prolonged impacts, carry out clinical tests, and enhance the effectiveness of this blend for practical applications in bone graft surgeries.
Collapse
Affiliation(s)
- Rahul Koppaka
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Khushali K Shah
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Subhabrata Maiti
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
11
|
Wang X, Kang J, Li X, Wu P, Huang Y, Duan Y, Feng J, Wang J. Codonopsis pilosula water extract delays D-galactose-induced aging of the brain in mice by activating autophagy and regulating metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118016. [PMID: 38462027 DOI: 10.1016/j.jep.2024.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.
Collapse
Affiliation(s)
- Xuewen Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Jiachao Kang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xuechan Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Pingmin Wu
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yong Huang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yongqiang Duan
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Jing Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Li YS, Yang RR, Li XY, Liu WW, Zhao YM, Zu MM, Gao YH, Huo MQ, Jiang YT, Li BY. Fluoride impairs vascular smooth muscle A7R5 cell lines via disrupting amino acids metabolism. J Transl Med 2024; 22:528. [PMID: 38824544 PMCID: PMC11143695 DOI: 10.1186/s12967-024-05350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 μmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Fluorides/pharmacology
- Rats, Sprague-Dawley
- Cell Line
- Amino Acids/metabolism
- Cell Proliferation/drug effects
- Rats
- Cell Movement/drug effects
- Male
- Aorta/pathology
- Aorta/drug effects
- Aorta/metabolism
- Metabolomics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Gene Regulatory Networks/drug effects
Collapse
Affiliation(s)
- Yan-Shu Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Ru-Ru Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xin-Ying Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Wei-Wei Liu
- Weihai Municipal Hospital, Weihai, 264299, Shandong Province, China
| | - Yi-Ming Zhao
- Xinyi Center for Disease Control and Prevention, Xinyi, China
| | - Ming-Man Zu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Yi-Hong Gao
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Min-Qi Huo
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Yu-Ting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Bing-Yun Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China.
| |
Collapse
|
13
|
Zhu Z, Zhang Y, Li J, Han Y, Wang L, Zhang Y, Geng H, Zheng Y, Wang X, Sun C, Li B, Chen P. Mass spectrometry imaging-based metabolomics highlights spatial metabolic alterations in three types of liver injuries. J Pharm Biomed Anal 2024; 242:116030. [PMID: 38382318 DOI: 10.1016/j.jpba.2024.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Liver's distinctive function renders it highly susceptible to diverse damage sources. Characterizing the metabolic profiles and spatial signatures in different liver injuries is imperative for early diagnosis and etiology-oriented treatment. In this comparative study, we conducted whole-body spatial metabolomics on zebrafish with liver injury induced by ethanol (EtOH), acetaminophen (APAP), and thioacetamide (TAA). The two specific levels, the whole-body and liver-specific metabolic profiles, as well as their regional distributions, were systematically mapped in situ by mass spectrometry imaging, which is distinct from conventional LC-MS and GC-MS methods. We found that liver injury regions exhibited more pronounced metabolic reprogramming than the entire organism, leading to significant alterations in eight fatty acids, three phospholipids, and four low-molecular-weight metabolites. More importantly, fatty acids as well as small molecule metabolites including glutamine, glutamate, taurine and malic acid displayed contrasting changes between alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). In addition, phospholipids, including Lyso PC (16:0) and Lyso PE (18:0), demonstrated notable down-regulation in all damaged liver, whereas PC (34:1) underwent upregulation. This study not only deepens insights into distinct potential biomarkers for liver injuries, but also underscores spatial metabolomics as a powerful tool to elucidate possible pathogenic mechanisms in other metabolic diseases.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhao Han
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yaqi Zhang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Haoyuan Geng
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yurong Zheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Baoguo Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Panpan Chen
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
14
|
Ao T, Liu A, Soko WC, Bi H. Impact of the rearing environment on the metabolism of shrimps and tracing the origins and species of shrimps using specific metabolites. Analyst 2024; 149:2887-2897. [PMID: 38568716 DOI: 10.1039/d4an00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Herein, the link between rearing environmental condition and metabolism was explored. Metabolite fingerprint datasets of black tiger shrimp (Penaeus monodon) from three production sites were collected and studied using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and HPLC-MS/MS. Two compounds, benzisothiazolinone and hippuric acid, were identified to be potentially related to pollution in the rearing environment and showed different abundances in the analysed shrimp samples with different origins. Furthermore, metabolomic analysis on three shrimp species, black tiger shrimp, kuruma shrimp (Penaeus japonicus) and sword shrimp (Parapenaeopsis hardwickii), under an identical rearing environment was also conducted. Two compounds, diethanolamine and benzisothiazolinone, potentially linked with pollution in the rearing environment were identified. The present protocol holds promise to be extended to the studies of exploring the relationship between rearing environmental conditions and metabolism. Furthermore, the analysis of single-blind samples was conducted. The results show that specific metabolites can be utilized as markers for tracing the origins of shrimp samples. The present protocol holds potential for application in tracing the origin and species of certain seafoods.
Collapse
Affiliation(s)
- Tongtala Ao
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China.
| | - Aolin Liu
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China.
| | - Winnie C Soko
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China.
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China.
| |
Collapse
|
15
|
Tu Z, Yang J, Fan C. The role of different nutrients in the prevention and treatment of cardiovascular diseases. Front Immunol 2024; 15:1393378. [PMID: 38799425 PMCID: PMC11116626 DOI: 10.3389/fimmu.2024.1393378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular health is a hot topic around the world, and as the incidence of cardiovascular disease increases each year, people are increasingly focusing on the management of their heart health. Dietary and lifestyle changes as non-pharmacological treatments have been increasingly recognized as important in the prevention of cardiovascular disease and in reducing the risk of cardiovascular accidents. Awareness of different nutrients and their effects on cardiovascular health is important for establishing a good dietary pattern. This review summarizes the effects of the five major nutrients in the daily diet, namely carbohydrates, proteins, dietary fats, vitamins, and minerals, on cardiovascular health, and aims to provide a more comprehensive understanding of the effects of a healthy dietary pattern on cardiovascular health.
Collapse
Affiliation(s)
| | | | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Ziki RA, Colnot S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep 2024; 6:101077. [PMID: 38699532 PMCID: PMC11063524 DOI: 10.1016/j.jhepr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 05/05/2024] Open
Abstract
The reprogramming of glutamine metabolism is a key event in cancer more generally and in hepatocellular carcinoma (HCC) in particular. Glutamine consumption supplies tumours with ATP and metabolites through anaplerosis of the tricarboxylic acid cycle, while glutamine production can be enhanced by the overexpression of glutamine synthetase. In HCC, increased glutamine production is driven by activating mutations in the CTNNB1 gene encoding β-catenin. Increased glutamine synthesis or utilisation impacts tumour epigenetics, oxidative stress, autophagy, immunity and associated pathways, such as the mTOR (mammalian target of rapamycin) pathway. In this review, we will discuss studies which emphasise the pro-tumoral or tumour-suppressive effect of glutamine overproduction. It is clear that more comprehensive studies are needed as a foundation from which to develop suitable therapies targeting glutamine metabolic pathways, depending on the predicted pro- or anti-tumour role of dysregulated glutamine metabolism in distinct genetic contexts.
Collapse
Affiliation(s)
- Razan Abou Ziki
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| | - Sabine Colnot
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| |
Collapse
|
17
|
Feng J, Wang Y, Xiang S, Luo Y, Xu Y, Wang Y, Cao Y, Zhou M, Zhao C. Applying GC-MS based serum metabolomic profiling to characterize two traditional Chinese medicine subtypes of diabetic foot gangrene. Front Mol Biosci 2024; 11:1384307. [PMID: 38725871 PMCID: PMC11079259 DOI: 10.3389/fmolb.2024.1384307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Traditional Chinese medicine (TCM) has a long history and particular advantages in the diagnosis and treatment of diabetic foot gangrene (DFG). Patients with DFG are mainly divided into two subtypes, tendon lesion with edema (GT) and ischemic lesion without edema (GI), which are suitable for different medical strategies. Metabolomics has special significance in unravelling the complexities of multifactorial and multisystemic disorders. This study acquired the serum metabolomic profiles of two traditional Chinese medicine subtypes of DFG to explore potential molecular evidence for subtype characterization, which may contribute to the personalized treatment of DFG. A total of 70 participants were recruited, including 20 with DM and 50 with DFG (20 with GI and 30 with GT). Conventional gas chromatography-mass spectrometry (GC-MS) followed by orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as untargeted metabolomics approaches to explore the serum metabolomic profiles. Kyoto encyclopedia of genes and genomes (KEGG) and MetaboAnalyst were used to identify the related metabolic pathways. Compared with DM patients, the levels of 14 metabolites were altered in the DFG group, which were also belonged to the differential metabolites of GI (13) and GT (7) subtypes, respectively. Among these, urea, α-D-mannose, cadaverine, glutamine, L-asparagine, D-gluconic acid, and indole could be regarded as specific potential metabolic markers for GI, as well as L-leucine for GT. In the GI subtype, D-gluconic acid and L-asparagine are positively correlated with activated partial thromboplastin time (APTT) and fibrinogen (FIB). In the GT subtype, L-leucine is positively correlated with the inflammatory marker C-reactive protein (CRP). Arginine and proline metabolism, glycine, serine and threonine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis are the most important metabolic pathways associated with GI. The main metabolic pathways related to GT include pyrimidine metabolism, glutathione metabolism, biosynthesis of valine, leucine, and isoleucine, as well as valine, serine, and isoleucine with metabolites. The results of this study indicate that patients with different DFG subtypes have distinct metabolic profiles, which reflect the pathological characteristics of each subtype respectively. These findings will help us explore therapeutic targets for DFG and develop precise treatment strategies.
Collapse
Affiliation(s)
- Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengmin Xiang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Luo
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongcheng Xu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuzhen Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Xiang X, Li Q, Wan J, Chen C, Guo M, He Z, Wang D, Zhao X, Xu L. The role of amino acid metabolism in autoimmune hepatitis. Biomed Pharmacother 2024; 173:116452. [PMID: 38503235 DOI: 10.1016/j.biopha.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory chronic liver disease with persistent and recurrent immune-mediated liver injury. The exact cause of AIH is still not fully understood, but it is believed to be primarily due to an abnormal activation of the immune system, leading to autoimmune injury caused by the breakdown of autoimmune tolerance. Although the pathogenesis of AIH remains unclear, recent studies have shown that abnormalities in amino acid metabolism play significant roles in its development. These abnormalities in amino acid metabolism can lead to remodeling of metabolic processes, activation of signaling pathways, and immune responses, which may present new opportunities for clinical intervention in AIH. In this paper, we first briefly outline the recent progress of clinically relevant research on AIH, focusing on the role of specific amino acid metabolism (including glutamine, cysteine, tryptophan, branched-chain amino acids, etc.) and their associated metabolites, as well as related pathways, in the development of AIH. Furthermore, we discuss the scientific issues that remain to be resolved regarding amino acid metabolism, AIH development and related clinical interventions, with the aim of contributing to the future development of amino acid metabolism-based as a new target for the clinical diagnosis and treatment of AIH.
Collapse
Affiliation(s)
- Xiaorong Xiang
- Nanshan Class, Zunyi Medical University, Zunyi 563000, China; Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Qihong Li
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Jiajia Wan
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Chao Chen
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Mengmeng Guo
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Zhixu He
- Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China
| | - Donghong Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Xu Zhao
- Medical College of Guizhou University, Guiyang 550025, China.
| | - Lin Xu
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China; Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China.
| |
Collapse
|
19
|
Meier L, Bruginski E, Marafiga JR, Caus LB, Pasquetti MV, Calcagnotto ME, Campos FR. Hippocampal metabolic profile during epileptogenesis in the pilocarpine model of epilepsy. Biomed Chromatogr 2024; 38:e5820. [PMID: 38154955 DOI: 10.1002/bmc.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
Temporal lobe epilepsy (TLE) is a common form of refractory epilepsy in adulthood. The metabolic profile of epileptogenesis is still poorly investigated. Elucidation of such a metabolic profile using animal models of epilepsy could help identify new metabolites and pathways involved in the mechanisms of epileptogenesis process. In this study, we evaluated the metabolic profile during the epileptogenesis periods. Using a pilocarpine model of epilepsy, we analyzed the global metabolic profile of hippocampal extracts by untargeted metabolomics based on ultra-performance liquid chromatography-high-resolution mass spectrometry, at three time points (3 h, 1 week, and 2 weeks) after status epilepticus (SE) induction. We demonstrated that epileptogenesis periods presented different hippocampal metabolic profiles, including alterations of metabolic pathways of amino acids and lipid metabolism. Six putative metabolites (tryptophan, N-acetylornithine, N-acetyl-L-aspartate, glutamine, adenosine, and cholesterol) showed significant different levels during epileptogenesis compared to their respective controls. These putative metabolites could be associated with the imbalance of neurotransmitters, mitochondrial dysfunction, and cell loss observed during both epileptogenesis and epilepsy. With these findings, we provided an overview of hippocampal metabolic profiles during different stages of epileptogenesis that could help investigate pathways and respective metabolites as predictive tools in epilepsy.
Collapse
Affiliation(s)
- Letícia Meier
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Estevan Bruginski
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francinete Ramos Campos
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
20
|
Zhang B, Zhou N, Zhang Z, Wang R, Chen L, Zheng X, Feng W. Study on the Neuroprotective Effects of Eight Iridoid Components Using Cell Metabolomics. Molecules 2024; 29:1497. [PMID: 38611777 PMCID: PMC11013420 DOI: 10.3390/molecules29071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.
Collapse
Affiliation(s)
- Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Ruifeng Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Long Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou 450046, China
| |
Collapse
|
21
|
Kabil MF, Azzazy HMES, Nasr M. Recent progress on polySarcosine as an alternative to PEGylation: Synthesis and biomedical applications. Int J Pharm 2024; 653:123871. [PMID: 38301810 DOI: 10.1016/j.ijpharm.2024.123871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
22
|
Xing X, Sun Q, Wang R, Wang Y, Wang R. Impacts of glutamate, an exercise-responsive metabolite on insulin signaling. Life Sci 2024; 341:122471. [PMID: 38301875 DOI: 10.1016/j.lfs.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
AIMS Disruption of the insulin signaling pathway leads to insulin resistance (IR). IR is characterized by impaired glucose and lipid metabolism. Elevated levels of circulating glutamate are correlated with metabolic indicators and may potentially predict the onset of metabolic diseases. Glutamate receptor antagonists have significantly enhanced insulin sensitivity, and improved glucose and lipid metabolism. Exercise is a well-known strategy to combat IR. The aims of our narrative review are to summarize preclinical and clinical findings to show the correlations between circulating glutamate levels, IR and metabolic diseases, discuss the causal role of excessive glutamate in IR and metabolic disturbance, and present an overview of the exercise-induced alteration in circulating glutamate levels. MATERIALS AND METHODS A literature search was conducted to identify studies on glutamate, insulin signaling, and exercise in the PubMed database. The search covered articles published from December 1955 to January 2024, using the search terms of "glutamate", "glutamic acid", "insulin signaling", "insulin resistance", "insulin sensitivity", "exercise", and "physical activity". KEY FINDINGS Elevated levels of circulating glutamate are correlated with IR. Excessive glutamate can potentially hinder the insulin signaling pathway through various mechanisms, including the activation of ectopic lipid accumulation, inflammation, and endoplasmic reticulum stress. Glutamate can also modify mitochondrial function through Ca2+ and induce purine degradation mediated by AMP deaminase 2. Exercise has the potential to decrease circulating levels of glutamate, which can be attributed to accelerated glutamate catabolism and enhanced glutamate uptake. SIGNIFICANCE Glutamate may act as a mediator in the exercise-induced improvement of insulin sensitivity.
Collapse
Affiliation(s)
- Xiaorui Xing
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Qin Sun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
23
|
Kang JB, Son HK, Park DJ, Jin YB, Koh PO. Chlorogenic acid regulates the expression of protein phosphatase 2A subunit B in the cerebral cortex of a rat stroke model and glutamate-exposed neurons. Lab Anim Res 2024; 40:8. [PMID: 38429854 PMCID: PMC10905799 DOI: 10.1186/s42826-024-00196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Ischemic stroke is a serious neurological disorder caused by blockages in cerebral artery. Protein phosphatase 2A (PP2A) is a phosphatase that performs a critical role in cell signaling and growth. PP2A subunit B acts as a neuroprotective agent in the nerve system. Chlorogenic acid, which is mainly found in roasted coffee, has antioxidant, anti-inflammatory, and anti-apoptotic effects. We hypothesized that chlorogenic acid modulates PP2A subunit B expression in ischemic stroke models and glutamate-mediated neurons. Middle artery occlusion (MCAO) surgery was operated and chlorogenic acid (30 mg/kg) or phosphate buffer saline was treated 2 h after MCAO. The cerebral cortex was collected 24 h after surgery and the change of PP2A subunit B expression was analyzed. Glutamate and/or chlorogenic acid were treated in cultured neurons, further study was performed. RESULTS A decrease in PP2A subunit B expression in MCAO animals was identified. Chlorogenic acid alleviated this decrease due to ischemic injury. Moreover, the number of PP2A subunit B-positive cells in the ischemic cerebral cortex was significantly decreased, chlorogenic acid alleviated this decrease. We also found protective effects of chlorogenic acid in neurons exposed to glutamate. Glutamate decreased the expression of PP2A subunit B and chlorogenic acid mitigated this decrease. Our results elucidated that chlorogenic acid performs neuroprotective functions and attenuates the reduction of PP2A subunit B by brain damage and glutamate-mediated excitotoxicity. CONCLUSIONS We showed that chlorogenic acid attenuated the decrease of PP2A subunit B in ischemic injury and neurons exposed to glutamate. Since PP2A subunit B contributes to the protection of brain tissue, we can suggest that chlorogenic acid preserves neurons by modulating PP2A subunit B during ischemic damage.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Hyun-Kyoung Son
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Dong-Ju Park
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Yeung-Bae Jin
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea.
| |
Collapse
|
24
|
Lan ZF, Yao W, Xie YC, Chen W, Zhu YY, Chen JQ, Zhou XY, Huang JQ, Wu MS, Chen JX. Oral Troxerutin Alleviates Depression Symptoms in Mice by Modulating Gut Microbiota and Microbial Metabolism. Mol Nutr Food Res 2024; 68:e2300603. [PMID: 38072646 DOI: 10.1002/mnfr.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
SCOPE A growing body of evidence suggests that the harmful gut microbiota in depression patients can play a role in the progression of depression. There is limited research on troxerutin's impact on the central nervous system (CNS), especially in depression. The study finds that troxerutin effectively alleviates depression and anxiety-like behavior in mice by increasing the abundance of beneficial bacteria like Lactobacillus and Firmicutes while decreasing the abundance of harmful bacteria like Proteobacteria, Bacteroides, and Actinobacteria in the gut. Furthermore, the research reveals that troxerutin regulates various metabolic pathways in mice, including nucleotide metabolism, caffeine metabolism, purine metabolism, arginine biosynthesis, histidine metabolism, 2-oxocarboxylic acid metabolism, biosynthesis of amino acids, glycine, serine and threonine metabolism, and Arginine and proline metabolism. CONCLUSIONS In conclusion, the study provides compelling evidence for the antidepressant efficacy of troxerutin. Through the investigation of the role of intestinal microorganisms and metabolites, the study identifies these factors as key players in troxerutin's ability to prevent depression. Troxerutin achieves its neuroprotective effects and effectively prevents depression and anxiety by modulating the abundance of gut microbiota, including Proteobacteria, Bacteroides, and Actinobacteria, as well as regulating metabolites such as creatine.
Collapse
Affiliation(s)
- Zhi-Fang Lan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yi-Ci Xie
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Wushisi Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yin-Ying Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jia-Qi Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xing-Yi Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Man-Si Wu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
25
|
Fang QY, Wang YP, Zhang RQ, Fan M, Feng LX, Guo XD, Cheng CR, Zhang XW, Liu X. Carnosol ameliorated cancer cachexia-associated myotube atrophy by targeting P5CS and its downstream pathways. Front Pharmacol 2024; 14:1291194. [PMID: 38249348 PMCID: PMC10799341 DOI: 10.3389/fphar.2023.1291194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Carnosol exhibited ameliorating effects on muscle atrophy of mice developed cancer cachexia in our previous research. Method: Here, the ameliorating effects of carnosol on the C2C12 myotube atrophy result from simulated cancer cachexia injury, the conditioned medium of the C26 tumor cells or the LLC tumor cells, were observed. To clarify the mechanisms of carnosol, the possible direct target proteins of carnosol were searched using DARTS (drug affinity responsive target stability) assay and then confirmed using CETSA (cellular thermal shift assay). Furthermore, proteomic analysis was used to search its possible indirect target proteins by comparing the protein expression profiles of C2C12 myotubes under treatment of C26 medium, with or without the presence of carnosol. The signal network between the direct and indirect target proteins of carnosol was then constructed. Results: Our results showed that, Delta-1-pyrroline-5-carboxylate synthase (P5CS) might be the direct target protein of carnosol in myotubes. The influence of carnosol on amino acid metabolism downstream of P5CS was confirmed. Carnosol could upregulate the expression of proteins related to glutathione metabolism, anti-oxidant system, and heat shock response. Knockdown of P5CS could also ameliorate myotube atrophy and further enhance the ameliorating effects of carnosol. Discussion: These results suggested that carnosol might ameliorate cancer cachexia-associated myotube atrophy by targeting P5CS and its downstream pathways.
Collapse
Affiliation(s)
- Qiao-Yu Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Qin Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Li-Xing Feng
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China
| | - Xiao-Dong Guo
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Ru Cheng
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - Xiong-Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Wang Y, Liu L, Liu X, Wang Y, Yang W, Zhao W, Zhao G, Cui H, Wen J. Identification of characteristic aroma compounds in chicken meat and their metabolic mechanisms using gas chromatography-olfactometry, odor activity values, and metabolomics. Food Res Int 2024; 175:113782. [PMID: 38129007 DOI: 10.1016/j.foodres.2023.113782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Aroma has an important influence on the aroma quality of chicken meat. This study aimed to identify the characteristic aroma substances in chicken meat and elucidate their metabolic mechanisms. Using gas chromatography-olfactometry and odor activity values, we identified nonanal, octanal, and dimethyl tetrasulfide as the basic characteristic aroma compounds in chicken meat, present in several breeds. Hexanal, 1-octen-3-ol, (E)-2-nonenal, heptanal, and (E,E)-2,4-decadienal were breed-specific aroma compounds found in native Chinese chickens but not in the meat of white-feathered broilers. Metabolomics analysis showed that L-glutamine was an important metabolic marker of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol. Exogenous supplementation experiments found that L-glutamine increased the content of D-glucosamine-6-P and induced the degradation of L-proline, L-arginine, and L-lysine to enhance the Maillard reaction and promote the formation of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol, thus improving the aroma profile of chicken meat.
Collapse
Affiliation(s)
- Yanke Wang
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Yidong Wang
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beijing 100107, China.
| | - Wenjuan Zhao
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
27
|
Ramadan FA, Arani G, Jafri A, Thompson T, Bland VL, Renquist B, Raichlen DA, Alexander GE, Klimentidis YC. Mendelian Randomization of Blood Metabolites Suggests Circulating Glutamine Protects Against Late-Onset Alzheimer's Disease. J Alzheimers Dis 2024; 98:1069-1078. [PMID: 38489176 DOI: 10.3233/jad-231063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background Late-onset Alzheimer's disease (LOAD) represents a growing health burden. Previous studies suggest that blood metabolite levels influence risk of LOAD. Objective We used a genetics-based study design which may overcome limitations of other epidemiological studies to assess the influence of metabolite levels on LOAD risk. Methods We applied Mendelian randomization (MR) to evaluate bi-directional causal effects using summary statistics from the largest genome-wide association studies (GWAS) of 249 blood metabolites (n = 115,082) and GWAS of LOAD (ncase = 21,982, ncontrol = 41,944). Results MR analysis of metabolites as exposures revealed a negative association of genetically-predicted glutamine levels with LOAD (Odds Ratio (OR) = 0.83, 95% CI = 0.73, 0.92) that was consistent in multiple sensitivity analyses. We also identified a positive association of genetically-predicted free cholesterol levels in small LDL (OR = 1.79, 95% CI = 1.36, 2.22) on LOAD. Using genetically-predicted LOAD as the exposure, we identified associations with phospholipids to total lipids ratio in large LDL (OR = 0.96, 95% CI = 0.94, 0.98), but not with glutamine, suggesting that the relationship between glutamine and LOAD is unidirectional. Conclusions Our findings support previous evidence that higher circulating levels of glutamine may be a target for protection against LOAD.
Collapse
Affiliation(s)
- Ferris A Ramadan
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Gayatri Arani
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Ayan Jafri
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Tingting Thompson
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Victoria L Bland
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Benjamin Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - David A Raichlen
- Department of Biological Sciences and Anthropology, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Gene E Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Yann C Klimentidis
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
29
|
Jia Y, Zou K, Zou L. Research progress of metabolomics in cervical cancer. Eur J Med Res 2023; 28:586. [PMID: 38093395 PMCID: PMC10717910 DOI: 10.1186/s40001-023-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Cervical cancer threatens women's health seriously. In recent years, the incidence of cervical cancer is on the rise, and the age of onset tends to be younger. Prevention, early diagnosis and specific treatment have become the main means to change the prognosis of cervical cancer patients. Metabolomics research can directly reflect the changes of biochemical processes and microenvironment in the body, which can provide a comprehensive understanding of the changes of metabolites in the process of disease occurrence and development, and provide new ways for the prevention and diagnosis of diseases. OBJECTIVES The aim of this study is to review the metabolic changes in cervical cancer and the application of metabolomics in the diagnosis and treatment. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2022. RESULTS With the emergence of metabolomics, metabolic regulation and cancer research are further becoming a focus of attention. By directly reflecting the changes in the microenvironment of the body, metabolomics research can provide a comprehensive understanding of the patterns of metabolites in the occurrence and development of diseases, thus providing new ideas for disease prevention and diagnosis. CONCLUSION With the continuous, in-depth research on metabolomics research technology, it will bring more benefits in the screening, diagnosis and treatment of cervical cancer with its advantages of holistic and dynamic nature.
Collapse
Affiliation(s)
- Yuhan Jia
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Kun Zou
- Department of Radiotherapy, The First Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Lijuan Zou
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
30
|
Mu F, Lin R, Lu X, Zhao M, Zhao J, Huang S, Guo C, Guan Y, Zhang H, Xi M, Wang J, Tang H. Protective effect and mechanism of styrax on ischemic stroke rats: metabonomic insights by UPLC-Q/TOF-MS analysis. PHARMACEUTICAL BIOLOGY 2023; 61:1318-1331. [PMID: 37621078 PMCID: PMC10461497 DOI: 10.1080/13880209.2023.2246501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT Styrax is used for prevention and treatment of cerebrovascular diseases. However, the underlying mechanism remains unclear. OBJECTIVE To elucidate styrax's anti-ischemic stroke protective effects and underlying mechanisms. MATERIALS AND METHODS An ischemic-stroke rat model was established based on middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were randomly assigned to the following groups (n = 10) and administered intragastrically once a day for 7 consecutive days: sham, model, nimodipine (24 mg/kg), styrax-L (0.1 g/kg), styrax-M (0.2 g/kg) and styrax-H (0.4 g/kg). Neurological function, biochemical assessment, and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS)-based serum metabonomics were used to elucidate styrax's cerebral protective effects and mechanisms. Pearson correlation and western blot analyses were performed to verify. RESULTS The addition of 0.4 g/kg styrax significantly reduced cerebral infarct volume and neurobehavioral abnormality score. Different doses of styrax also decrease MDA, TNF-α, IL-6, and IL-1β, and increase SOD and GSH-Px in ischemic-stroke rats (p < 0.05; MDA, p < 0.05 only at 0.4 g/kg dose). Biochemical indicators and metabolic-profile analyses (PCA, PLS-DA, and OPLS-DA) also supported styrax's protective effects. Endogenous metabolites (22) were identified in ischemic-stroke rats, and these perturbations were reversible via styrax intervention, which is predominantly involved in energy metabolism, glutathione and glutamine metabolism, and other metabolic processes. Additionally, styrax significantly upregulated phosphorylated AMP-activated protein kinase and glutaminase brain-tissue expression. CONCLUSION Styrax treatment could ameliorate ischemic-stroke rats by intervening with energy metabolism and glutamine metabolism. This can help us understand the mechanism of styrax, inspiring more clinical application and promotion.
Collapse
Affiliation(s)
- Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
- Department of Chinese Materia Medica and Natural Medicines, Fourth Military Medical University, Xi’an, P.R. China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Xueyan Lu
- Reproductive Medical Center, Tangdu Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Jiaxin Zhao
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Shaojie Huang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Haiyue Zhang
- Department of Health Statistics, School of Preventive Medicine, Fourth Military Medical University, Xi’an, P.R. China
| | - Miaomiao Xi
- TANK Medicinal Biology Institute of Xi’an, P.R. China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, Fourth Military Medical University, Xi’an, P.R. China
| |
Collapse
|
31
|
Gopal K, Abdualkader AM, Li X, Greenwell AA, Karwi QG, Altamimi TR, Saed C, Uddin GM, Darwesh AM, Jamieson KL, Kim R, Eaton F, Seubert JM, Lopaschuk GD, Ussher JR, Al Batran R. Loss of muscle PDH induces lactic acidosis and adaptive anaplerotic compensation via pyruvate-alanine cycling and glutaminolysis. J Biol Chem 2023; 299:105375. [PMID: 37865313 PMCID: PMC10692893 DOI: 10.1016/j.jbc.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada
| | - Xiaobei Li
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qutuba G Karwi
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Tariq R Altamimi
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Christina Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Golam M Uddin
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada.
| |
Collapse
|
32
|
Li XY, Zeng ZX, Cheng ZX, Wang YL, Yuan LJ, Zhai ZY, Gong W. Common pathogenic bacteria-induced reprogramming of the host proteinogenic amino acids metabolism. Amino Acids 2023; 55:1487-1499. [PMID: 37814028 PMCID: PMC10689525 DOI: 10.1007/s00726-023-03334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Apart from cancer, metabolic reprogramming is also prevalent in other diseases, such as bacterial infections. Bacterial infections can affect a variety of cells, tissues, organs, and bodies, leading to a series of clinical diseases. Common Pathogenic bacteria include Helicobacter pylori, Salmonella enterica, Mycobacterium tuberculosis, Staphylococcus aureus, and so on. Amino acids are important and essential nutrients in bacterial physiology and support not only their proliferation but also their evasion of host immune defenses. Many pathogenic bacteria or opportunistic pathogens infect the host and lead to significant changes in metabolites, especially the proteinogenic amino acids, to inhibit the host's immune mechanism to achieve its immune evasion and pathogenicity. Here, we review the regulation of host metabolism, while host cells are infected by some common pathogenic bacteria, and discuss how amino acids of metabolic reprogramming affect bacterial infections, revealing the potential adjunctive application of amino acids alongside antibiotics.
Collapse
Affiliation(s)
- Xiao-Yue Li
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zi-Xin Zeng
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zhi-Xing Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Yi-Lin Wang
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Liang-Jun Yuan
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zhi-Yong Zhai
- Shenzhen Hospital, Southern Medical University, Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101, China.
| | - Wei Gong
- Shenzhen Hospital, Southern Medical University, Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101, China.
| |
Collapse
|
33
|
Feng HG, Wu CX, Zhong GC, Gong JP, Miao CM, Xiong B. Integrative analysis reveals that SLC38A1 promotes hepatocellular carcinoma development via PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism. J Cancer Res Clin Oncol 2023; 149:15879-15898. [PMID: 37673823 DOI: 10.1007/s00432-023-05360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
Although hepatocellular carcinoma (HCC) is rather frequent, little is known about the molecular pathways underlying its development, progression, and prognosis. In the current study, we comprehensively analyzed the deferentially expressed metabolism-related genes (MRGs) in HCC based on TCGA datasets attempting to discover the potentially prognostic genes in HCC. The up-regulated MRGs were further subjected to analyze their prognostic values and protein expressions. Twenty-seven genes were identified because their high expressions were significant in OS, PFS, DFS, DSS, and HCC tumor samples. They were then used for GO, KEGG, methylation, genetics changes, immune infiltration analyses. Moreover, we established a prognostic model in HCC using univariate assays and LASSO regression based on these MRGs. Additionally, we also found that SLC38A1, an amino acid metabolism closely related transporter, was a potential prognostic gene in HCC, and its function in HCC was further studied using experiments. We found that the knockdown of SLC38A1 notably suppressed the growth and migration of HCC cells. Further studies revealed that SLC38A1 modulated the development of HCC cells by regulating PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism. In conclusion, this study identified the potentially prognostic MRGs in HCC and uncovered that SLC38A1 regulated HCC development and progression by regulating PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism, which might provide a novel marker and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Hua-Guo Feng
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Chuan-Xin Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Chun-Mu Miao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China
| | - Bin Xiong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 74 Linjiang Road, Chongqing, China.
| |
Collapse
|
34
|
Fan X, Wang Y, Tang C, Zhang X, He J, Buttino I, Yan X, Liao Z. Metabolic profiling of Mytilus coruscus mantle in response of shell repairing under acute acidification. PLoS One 2023; 18:e0293565. [PMID: 37889901 PMCID: PMC10610157 DOI: 10.1371/journal.pone.0293565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Mytilus coruscus is an economically important marine bivalve mollusk found in the Yangtze River estuary, which experiences dramatic pH fluctuations due to seasonal freshwater input and suffer from shell fracture or injury in the natural environment. In this study, we used intact-shell and damaged-shell M. coruscus and performed metabolomic analysis, free amino acids analysis, calcium-positive staining, and intracellular calcium level tests in the mantle to investigate whether the mantle-specific metabolites can be induced by acute sea-water acidification and understand how the mantle responds to acute acidification during the shell repair process. We observed that both shell damage and acute acidification induced alterations in phospholipids, amino acids, nucleotides, organic acids, benzenoids, and their analogs and derivatives. Glycylproline, spicamycin, and 2-aminoheptanoic acid (2-AHA) are explicitly induced by shell damage. Betaine, aspartate, and oxidized glutathione are specifically induced by acute acidification. Our results show different metabolic patterns in the mussel mantle in response to different stressors, which can help elucidate the shell repair process under ocean acidification. furthermore, metabolic processes related to energy supply, cell function, signal transduction, and amino acid synthesis are disturbed by shell damage and/or acute acidification, indicating that both shell damage and acute acidification increased energy consumption, and disturb phospholipid synthesis, osmotic regulation, and redox balance. Free amino acid analysis and enzymatic activity assays partially confirmed our findings, highlighting the adaptation of M. coruscus to dramatic pH fluctuations in the Yangtze River estuary.
Collapse
Affiliation(s)
- Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Changsheng Tang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| |
Collapse
|
35
|
Ye C, Chen C, Zhang K, Wu X, Cai WF, Feng M, Yu X. Solar/periodate-triggered rapid inactivation of Microcystis aeruginosa by interrupting the Calvin-Benson cycle. ENVIRONMENT INTERNATIONAL 2023; 180:108204. [PMID: 37776621 DOI: 10.1016/j.envint.2023.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Frequent outbreak of cyanobacteria is a serious problem for drinking water treatment. The microcystins released from Microcystis aeruginosa (M. aeruginosa) could cause irreversible damage to human health. Catalyst-free solar/periodate (PI) system has recently presented great potential for bacterial inactivation, whereas the application potential and underlying mechanisms of the effective M. aeruginosa control remain unclear. Our work delineated the key role of ROS that inactivating/harmless disposing M. aeruginosa in the simulated sunlight (SSL)/PI system. Singlet oxygen may specifically cause DNA damage but maintain membrane integrity, preventing the risk of microcystins leakage. The SSL/PI 300 μM system could also effectively inhibit M. aeruginosa recovery for >7 days and completely degrade microcystin-LR (50.0 μg/L) within 30 min. Non-targeted metabolomic analysis suggested that the SSL/PI system inactivated M. aeruginosa mainly by interrupting the Calvin-Benson cycle, which damaged the metabolic flux of glycolysis and its downstream pathways such as the oxidative PPP pathway and glutathione metabolism. Furthermore, the activated PI system exhibited an even better algal inhibition under natural sunlight irradiation, evidenced by the seriously damaged cell membrane of M. aeruginosa. Overall, this study reported the comprehensive mechanisms of algal control and application potentials of solar/PI systems. The findings facilitated the development of emerging algicidal technology and its application in controlling environmental harmful algae.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chenlan Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xu Wu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Feng Cai
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian 361103. China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
36
|
Xing X, Duan Y, Wang Y, Wang J, Yang Z, Shao L, Li L, Lai J. The Association between Macrosomia and Amino Acids' Levels in Maternal and Cord Sera: A Case-Control Study. Nutrients 2023; 15:3440. [PMID: 37571377 PMCID: PMC10421079 DOI: 10.3390/nu15153440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This study aims to explore the relationship between macrosomia and amino acids in maternal and cord sera. METHODS In the case-control study, 78 pairs of mothers and newborns were recruited from December 2016 to November 2019. Participants were divided into the macrosomia group (BW ≥ 4000 g, n = 39) and the control group (BW between 2500 g and 3999 g, n = 39) according to the birth weight (BW) of newborns. Maternal vein blood samples were collected before delivery and cord vein blood samples were collected after birth. The levels of amino acids in maternal and cord sera were measured by liquid chromatography and mass spectrometry (LC-MS/MS) in the year 2021. The difference in amino acid levels in maternal and cord sera between the two groups was compared, and the contribution of each amino acid to the difference between the two groups was analyzed. Unconditional logistic regression analysis was used to test the relationship between macrosomia and amino acids. RESULTS In maternal serum during the antepartum, the levels of asparagine, glutamine, methionine, alanine, and threonine in the macrosomia group were higher but arginine was lower than that in the control group (p < 0.05). In cord serum, the levels of lysine, histidine, phenylalanine, arginine, tryptophan, valine, isoleucine, glutamate, tyrosine, and total essential amino acid (EAA) in the macrosomia group were lower while glutamine was higher than that in the control group (p < 0.05). The ratios of EAA, valine, threonine, methionine, tryptophan, and alanine in maternal serum to those in cord serum were higher, while the ratio of glutamine was lower in the macrosomia group (p < 0.05). Arginine and threonine in maternal serum and glutamate, glutamine, and histidine in cord serum were associated with macrosomia (p < 0.05). CONCLUSION Most of the amino acid levels in the maternal sera of the macrosomia group are higher than those in the control group, while most of the amino acids' levels in the cord sera of the macrosomia group are lower than those in the control group. The ratios of some amino acids in maternal serum to those in cord serum were different between the two groups. Arginine and threonine in maternal serum and glutamate, glutamine, and histidine in cord serum are closely related to macrosomia.
Collapse
Affiliation(s)
- Xinxin Xing
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Yifan Duan
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Ye Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Jie Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Zhenyu Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Lijun Shao
- Beijing Health Bio Technology Co., Ltd., Beijing 102200, China; (L.S.); (L.L.)
| | - Lin Li
- Beijing Health Bio Technology Co., Ltd., Beijing 102200, China; (L.S.); (L.L.)
| | - Jianqiang Lai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| |
Collapse
|
37
|
Sedaka R, Huang J, Yamaguchi S, Lovelady C, Hsu JS, Shinde S, Kasztan M, Crossman DK, Saigusa T. Accelerated cystogenesis by dietary protein load is dependent on, but not initiated by kidney macrophages. Front Med (Lausanne) 2023; 10:1173674. [PMID: 37538309 PMCID: PMC10394241 DOI: 10.3389/fmed.2023.1173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Background Disease severity of autosomal dominant polycystic kidney disease (ADPKD) is influenced by diet. Dietary protein, a recognized cyst-accelerating factor, is catabolized into amino acids (AA) and delivered to the kidney leading to renal hypertrophy. Injury-induced hypertrophic signaling in ADPKD results in increased macrophage (MФ) activation and inflammation followed by cyst growth. We hypothesize that the cystogenesis-prompting effects of HP diet are caused by increased delivery of specific AA to the kidney, ultimately stimulating MФs to promote cyst progression. Methods Pkd1flox/flox mice with and without Cre (CAGG-ER) were given tamoxifen to induce global gene deletion (Pkd1KO). Pkd1KO mice were fed either a low (LP; 6%), normal (NP; 18%), or high (HP; 60%) protein diet for 1 week (early) or 6 weeks (chronic). Mice were then euthanized and tissues were used for histology, immunofluorescence and various biochemical assays. One week fed kidney tissue was cell sorted to isolate tubular epithelial cells for RNA sequencing. Results Chronic dietary protein load in Pkd1KO mice increased kidney weight, number of kidney infiltrating and resident MФs, chemokines, cytokines and cystic index compared to LP diet fed mice. Accelerated cyst growth induced by chronic HP were attenuated by liposomal clodronate-mediated MФ depletion. Early HP diet fed Pkd1KO mice had larger cystic kidneys compared to NP or LP fed counterparts, but without increases in the number of kidney MФs, cytokines, or markers of tubular injury. RNA sequencing of tubular epithelial cells in HP compared to NP or LP diet group revealed increased expression of sodium-glutamine transporter Snat3, chloride channel Clcnka, and gluconeogenesis marker Pepck1, accompanied by increased excretion of urinary ammonia, a byproduct of glutamine. Early glutamine supplementation in Pkd1KO mice lead to kidney hypertrophy. Conclusion Chronic dietary protein load-induced renal hypertrophy and accelerated cyst growth in Pkd1KO mice is dependent on both infiltrating and resident MФ recruitment and subsequent inflammatory response. Early cyst expansion by HP diet, however, is relient on increased delivery of glutamine to kidney epithelial cells, driving downstream metabolic changes prior to inflammatory provocation.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shinobu Yamaguchi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Caleb Lovelady
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jung-Shan Hsu
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sejal Shinde
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malgorzata Kasztan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takamitsu Saigusa
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Li S, Zhu C, Zhao Q, Zhang ZM, Sun P, Li Z. Ynamide Coupling Reagent for the Chemical Cross-Linking of Proteins in Live Cells. ACS Chem Biol 2023; 18:1405-1415. [PMID: 37231651 DOI: 10.1021/acschembio.3c00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) is a powerful method for the study of protein structure and protein-protein interactions (PPIs). However, the chemical probes used in the CXMS are limited to bidentate reactive warheads, and the available zero-length cross-linkers are restricted to 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). To alleviate this issue, an efficient coupling reagent, sulfonyl ynamide, was developed as a new zero-length cross-linker that can connect high-abundance carboxyl residues (D/E) with lysine (K) to form amide bonds in the absence of any catalyst. Significant improvement in the cross-linking efficiency and specificity in comparison with traditional EDC/NHS was achieved with model proteins, which includes inter- and intramolecular conjugations. The cross-linked structures were validated by X-ray crystallography. Importantly, this coupling reagent can be successfully used to capture interacting proteins in the whole proteome and can be a useful reagent for probing potential protein-protein interactions in situ.
Collapse
Affiliation(s)
- Shengrong Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chengjun Zhu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qian Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Pinghua Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), MOE Key Laboratory of Tumor Molecular Biology, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
39
|
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci 2023; 17:1131683. [PMID: 37138769 PMCID: PMC10150069 DOI: 10.3389/fncel.2023.1131683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
This analytical review summarizes literature data and our own research on HSP70-dependent mechanisms of neuroprotection and discusses potential pharmacological agents that can influence HSP70 expression to improve neurological outcomes and effective therapy. The authors formed a systemic concepts of the role of HSP70-dependent mechanisms of endogenous neuroprotection aimed at stopping the formation of mitochondrial dysfunction, activation of apoptosis, desensitization of estrogen receptors, reduction of oxidative and nitrosative stress, prevention of morpho-functional changes in brain cells during cerebral ischemia, and experimentally substantiated new target links for neuroprotection. Heat shock proteins (HSPs) are an evolutionarily integral part of the functioning of all cells acting as intracellular chaperones that support cell proteostasis under normal and various stress conditions (hyperthermia, hypoxia, oxidative stress, radiation, etc.). The greatest curiosity in conditions of ischemic brain damage is the HSP70 protein, as an important component of the endogenous neuroprotection system, which, first of all, performs the function of intracellular chaperones and ensures the processes of folding, holding and transport of synthesized proteins, as well as their degradation, both under normoxic conditions and stress-induced denaturation. A direct neuroprotective effect of HSP70 has been established, which is realized through the regulation the processes of apoptosis and cell necrosis due to a long-term effect on the synthesis of antioxidant enzymes, chaperone activity, and stabilization of active enzymes. An increase in the level of HSP70 leads to the normalization of the glutathione link of the thiol-disulfide system and an increase in the resistance of cells to ischemia. HSP 70 is able to activate and regulate compensatory ATP synthesis pathways during ischemia. It was found that in response to the cerebral ischemia formation, HIF-1a is expressed, which initiates the launch of compensatory mechanisms for energy production. Subsequently, the regulation of these processes switches to HSP70, which "prolongs" the action of HIF-1a, and also independently maintains the expression of mitochondrial NAD-dependent malate dehydrogenase activity, thereby maintaining the activity of the malate-aspartate shuttle mechanism for a long time. During ischemia of organs and tissues, HSP70 performs a protective function, which is realized through increased synthesis of antioxidant enzymes, stabilization of oxidatively damaged macromolecules, and direct anti-apoptotic and mitoprotective action. Such a role of these proteins in cellular reactions during ischemia raises the question of the development of new neuroprotective agents which are able to provide modulation/protection of the genes encoding the synthesis of HSP 70 and HIF-1a proteins. Numerous studies of recent years have noted the important role of HSP70 in the implementation of the mechanisms of metabolic adaptation, neuroplasticity and neuroprotection of brain cells, so the positive modulation of the HSP70 system is a perspective concept of neuroprotection, which can improve the efficiency of the treatment of ischemic-hypoxic brain damage and be the basis for substantiating of the feasibility of using of HSP70 modulators as promising neuroprotectors.
Collapse
Affiliation(s)
- Igor F. Belenichev
- Department of Pharmacology and Medical Formulation With Course of Normal Physiology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena G. Aliyeva
- Department of Medical Biology, Parasitology and Genetics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena O. Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Nina V. Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
40
|
Ji YJ, Kim HD, Lee ES, Jang GY, Seong HA. Heat Treatment Enhances the Neuroprotective Effects of Crude Ginseng Saponin by Increasing Minor Ginsenosides. Int J Mol Sci 2023; 24:ijms24087223. [PMID: 37108384 PMCID: PMC10138965 DOI: 10.3390/ijms24087223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Ginsenoside is the primary active substance of ginseng and has many pharmacological effects, such as anti-cancer, immune, regulating sugar and lipid metabolism, and antioxidant effects. It also protects the nervous and cardiovascular systems. This study analyzes the effects of thermal processing on the bioactivities of crude ginseng saponin. Heat treatment increased the contents of minor ginsenosides in crude saponins, such as Rg3, and heat-treated crude ginseng saponin (HGS) had better neuroprotective effects than non-treated crude saponin (NGS). HGS reduced glutamate-induced apoptosis and reactive oxygen species generation in pheochromocytoma 12 (PC12) cells, significantly more than NGS. HGS protected PC12 cells against glutamate-induced oxidative stress by upregulating Nrf2-mediated antioxidant signaling and downregulating MAPK-mediated apoptotic signaling. HGS has the potential for the prevention and treatment of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Hyung Don Kim
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eun Suk Lee
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
41
|
Deng L, Li W, Liu W, Liu Y, Xie B, Groenen MAM, Madsen O, Yang X, Tang Z. Integrative metabolomic and transcriptomic analysis reveals difference in glucose and lipid metabolism in the longissimus muscle of Luchuan and Duroc pigs. Front Genet 2023; 14:1128033. [PMID: 37091786 PMCID: PMC10118036 DOI: 10.3389/fgene.2023.1128033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Luchuan pig, an obese indigenous Chinese porcine breed, has a desirable meat quality and reproductive capacity. Duroc, a traditional western breed, shows a faster growth rate, high feed efficiency and high lean meat rate. Given the unique features these two porcine breeds have, it is of interest to investigate the underlying molecular mechanisms behind their distinctive nature. In this study, the metabolic and transcriptomic profiles of longissimus dorsi muscle from Duroc and Luchuan pigs were compared. A total of 609 metabolites were identified, 77 of which were significantly decreased in Luchuan compared to Duroc, and 71 of which were significantly elevated. Most differentially accumulated metabolites (DAMs) upregulated in Luchuan were glycerophospholipids, fatty acids, oxidized lipids, alcohols, and amines, while metabolites downregulated in Luchuan were mostly amino acids, organic acids and nucleic acids, bile acids and hormones. From our RNA-sequencing (RNA-seq) data we identified a total of 3638 differentially expressed genes (DEGs), 1802 upregulated and 1836 downregulated in Luchuan skeletal muscle compared to Duroc. Combined multivariate and pathway enrichment analyses of metabolome and transcriptome results revealed that many of the DEGs and DAMs are associated with critical energy metabolic pathways, especially those related to glucose and lipid metabolism. We examined the expression of important DEGs in two pathways, AMP-activated protein kinase (AMPK) signaling pathway and fructose and mannose metabolism, using Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Genes related to glucose uptake, glycolysis, glycogen synthesis, fatty acid synthesis (PFKFB1, PFKFB4, MPI, TPI1, GYS1, SLC2A4, FASN, IRS1, ULK1) are more activated in Luchuan, while genes related to fatty acid oxidation, cholesterol synthesis (CPT1A, HMGCR, FOXO3) are more suppressed. Energy utilization can be a decisive factor to the distinctive metabolic, physiological and nutritional characteristics in skeletal muscle of the two breeds we studied. Our research may facilitate future porcine breeding projects and can be used to reveal the potential molecular basis of differences in complex traits between various breeds.
Collapse
Affiliation(s)
- Liyan Deng
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Branch, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The Key Laboratory of Livestock and Poultry Bioomics of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Wangchang Li
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Branch, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The Key Laboratory of Livestock and Poultry Bioomics of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| | - Weiwei Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Branch, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The Key Laboratory of Livestock and Poultry Bioomics of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yanwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Branch, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The Key Laboratory of Livestock and Poultry Bioomics of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bingkun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, China
| | - Martien A. M. Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Branch, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The Key Laboratory of Livestock and Poultry Bioomics of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| |
Collapse
|
42
|
Lu Q, Feng Q, Yu J, Tong L, Zhang J, Sun J, Zhao J, Xiong Z. Metabolomics and serum pharmacochemistry revealed the preventive mechanism of Gushudan in kidney-yang-deficiency-syndrome rats. Biomed Chromatogr 2023; 37:e5569. [PMID: 36527197 DOI: 10.1002/bmc.5569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Kidney-yang-deficiency-syndrome (KYDS) is a metabolic disease caused by neuroendocrine disorder. Gushudan (GSD) is a traditional Chinese medicine prescription with the effect of nourishing kidney and strengthening bones. In this study, the mechanism of preventive effect of GSD on KYDS was explored by integrating metabolomics and serum pharmacochemistry. Reversed-phase/hydrophilic interaction chromatography-ultra-high-performance liquid chromatography-Quadrupole-Orbitrap high-resolution mass spectrometry (RP/HILIC-UHPLC-Q-Orbitrap HRMS)-based serum metabolomics indicated metabolic disturbances of KYDS rats, and 50 potential biomarkers including l-threonine, succinic acid and phytosphingosine were obtained, which were mainly involved in alanine, aspartate and glutamate metabolism, citrate cycle (tricarboxylic acid cycle) and glycerophospholipid metabolism, among others. Serum pharmacochemistry identified 29 prototypical ingredients and 9 metabolites of GSD after administration, such as icaritin and xanthotoxol. The combination of 10 serum migration ingredients in GSD, including icaritin and osthole, with 7 important targets, including AKT serine/threonine kinase 1 (AKT1) and MAPK14, was found to be key for GSD to prevent KYDS in the network pharmacology study. This study provided a new idea for the research of pathogenesis of diseases and the pharmacodynamic mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qing Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, China
| | - Qisheng Feng
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, China
| | - Jiaxin Yu
- Sunwah International Business School, Liaoning University, Shenyang, Liaoning Province, China
| | - Lin Tong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, China
| | - Jing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, China
| | - Jinghan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, China
| |
Collapse
|
43
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|
44
|
Henao‐Restrepo J, López‐Murillo C, Valderrama‐Carmona P, Orozco‐Santa N, Gomez J, Gutiérrez‐Vargas J, Moraga R, Toledo J, Littau JL, Härtel S, Arboleda‐Velásquez JF, Sepulveda‐Falla D, Lopera F, Cardona‐Gómez GP, Villegas A, Posada‐Duque R. Gliovascular alterations in sporadic and familial Alzheimer's disease: APOE3 Christchurch homozygote glioprotection. Brain Pathol 2023; 33:e13119. [PMID: 36130084 PMCID: PMC10041169 DOI: 10.1111/bpa.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In response to brain insults, astrocytes become reactive, promoting protection and tissue repair. However, astroglial reactivity is typical of brain pathologies, including Alzheimer's disease (AD). Considering the heterogeneity of the reactive response, the role of astrocytes in the course of different forms of AD has been underestimated. Colombia has the largest human group known to have familial AD (FAD). This group carries the autosomal dominant and fully penetrant mutation E280A in PSEN1, which causes early-onset AD. Recently, our group identified an E280A carrier who did not develop FAD. The individual was homozygous for the Christchurch mutation R136S in APOE3 (APOEch). Remarkably, APOE is the main genetic risk factor for developing sporadic AD (SAD) and most of cerebral ApoE is produced by astroglia. Here, we characterized astrocyte properties related to reactivity, glutamate homeostasis, and structural integrity of the gliovascular unit (GVU), as factors that could underlie the pathogenesis or protection of AD. Specifically, through histological and 3D microscopy analyses of postmortem samples, we briefly describe the histopathology and cytoarchitecture of the frontal cortex of SAD, FAD, and APOEch, and demonstrate that, while astrodegeneration and vascular deterioration are prominent in SAD, FAD is characterized by hyperreactive-like glia, and APOEch displays the mildest astrocytic and vascular alterations despite having the highest burden of Aβ. Notably, astroglial, gliovascular, and vascular disturbances, as well as brain cell death, correlate with the specific astrocytic phenotypes identified in each condition. This study provides new insights into the potential relevance of the gliovasculature in the development and protection of AD. To our knowledge, this is the first study assessing the components of the GVU in human samples of SAD, FAD, and APOEch.
Collapse
Affiliation(s)
- Julián Henao‐Restrepo
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Carolina López‐Murillo
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Pablo Valderrama‐Carmona
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Natalia Orozco‐Santa
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Johana Gomez
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Johanna Gutiérrez‐Vargas
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Health Sciences FacultyRemington University CorporationMedellínColombia
| | - Renato Moraga
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jorge Toledo
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jessica Lisa Littau
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of Neuropathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steffen Härtel
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Joseph F. Arboleda‐Velásquez
- Schepens Eye Research Institute of Mass Eye and Ear, Department of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of Neuropathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Gloria Patricia Cardona‐Gómez
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Andrés Villegas
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Rafael Posada‐Duque
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
45
|
Akyuz E, Celik BR, Aslan FS, Sahin H, Angelopoulou E. Exploring the Role of Neurotransmitters in Multiple Sclerosis: An Expanded Review. ACS Chem Neurosci 2023; 14:527-553. [PMID: 36724132 DOI: 10.1021/acschemneuro.2c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Although emerging evidence has shown that changes in neurotransmitter levels in the synaptic gap may contribute to the pathophysiology of MS, their specific role has not been elucidated yet. In this review, we aim to analyze preclinical and clinical evidence on the structural and functional changes in neurotransmitters in MS and critically discuss their potential role in MS pathophysiology. Preclinical studies have demonstrated that alterations in glutamate metabolism may contribute to MS pathophysiology, by causing excitotoxic neuronal damage. Dysregulated interaction between glutamate and GABA results in synaptic loss. The GABAergic system also plays an important role, by regulating the activity and plasticity of neural networks. Targeting GABAergic/glutamatergic transmission may be effective in fatigue and cognitive impairment in MS. Acetylcholine (ACh) and dopamine can also affect the T-mediated inflammatory responses, thereby being implicated in MS-related neuroinflammation. Also, melatonin might affect the frequency of relapses in MS, by regulating the sleep-wake cycle. Increased levels of nitric oxide in inflammatory lesions of MS patients may be also associated with axonal neuronal degeneration. Therefore, neurotransmitter imbalance may be critically implicated in MS pathophysiology, and future studies are needed for our deeper understanding of their role in MS.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Betul Rana Celik
- Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Feyza Sule Aslan
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Humeyra Sahin
- School of Medicine, Bezmialem Vakif University, Istanbul, Turkey, 34093
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 115 27
| |
Collapse
|
46
|
Potential Therapies Targeting the Metabolic Reprogramming of Diabetes-Associated Breast Cancer. J Pers Med 2023; 13:jpm13010157. [PMID: 36675817 PMCID: PMC9861470 DOI: 10.3390/jpm13010157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, diabetes-associated breast cancer has become a significant clinical challenge. Diabetes is not only a risk factor for breast cancer but also worsens its prognosis. Patients with diabetes usually show hyperglycemia and hyperinsulinemia, which are accompanied by different glucose, protein, and lipid metabolism disorders. Metabolic abnormalities observed in diabetes can induce the occurrence and development of breast cancer. The changes in substrate availability and hormone environment not only create a favorable metabolic environment for tumorigenesis but also induce metabolic reprogramming events required for breast cancer cell transformation. Metabolic reprogramming is the basis for the development, swift proliferation, and survival of cancer cells. Metabolism must also be reprogrammed to support the energy requirements of the biosynthetic processes in cancer cells. In addition, metabolic reprogramming is essential to enable cancer cells to overcome apoptosis signals and promote invasion and metastasis. This review aims to describe the major metabolic changes in diabetes and outline how cancer cells can use cellular metabolic changes to drive abnormal growth and proliferation. We will specifically examine the mechanism of metabolic reprogramming by which diabetes may promote the development of breast cancer, focusing on the role of glucose metabolism, amino acid metabolism, and lipid metabolism in this process and potential therapeutic targets. Although diabetes-associated breast cancer has always been a common health problem, research focused on finding treatments suitable for the specific needs of patients with concurrent conditions is still limited. Most studies are still currently in the pre-clinical stage and mainly focus on reprogramming the glucose metabolism. More research targeting the amino acid and lipid metabolism is needed.
Collapse
|
47
|
Yuan H, Liu C, Wang X, Huang T, Liu D, Huang S, Wu Z, Liu Y, Yin P, Yang B. Association between aberrant amino acid metabolism and nonchromosomal modifications fetal structural anomalies: A cohort study. Front Endocrinol (Lausanne) 2023; 14:1072461. [PMID: 36909308 PMCID: PMC9998993 DOI: 10.3389/fendo.2023.1072461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND More than half of the cases of fetal structural anomalies have no known cause with standard investigations like karyotype testing and chromosomal microarray. The differential metabolic profiles of amniotic fluid (AF) and maternal blood may reveal valuable information about the physiological processes of fetal development, which may provide valuable biomarkers for fetal health diagnostics. METHODS This cohort study of singleton-pregnant women had indications for amniocentesis, including structural anomalies and a positive result from maternal serum screening or non-invasive prenatal testing, but did not have any positive abnormal karyotype or chromosomal microarray analysis results. A total of 1580 participants were enrolled between June 2021 and March 2022. Of the 1580 pregnant women who underwent amniocentesis, 294 were included in the analysis. There were 137 pregnant women in the discovery cohort and 157 in the validation cohort. RESULTS High-coverage untargeted metabolomic analysis of AF revealed distinct metabolic signatures with 321 of the 602 metabolites measured (53%) (false discovery rate, q < 0.005), among which amino acids predominantly changed in structural anomalies. Targeted metabolomics identified glutamate and glutamine as novel predictive markers for structural anomalies, their vital role was also confirmed in the validation cohort with great predictive ability, and the area under the receiver operating characteristic curves (AUCs) were 0.862 and 0.894 respectively. And AUCs for glutamine/glutamate were 0.913 and 0.903 among the two cohorts. CONCLUSIONS Our results suggested that the aberrant glutamine/glutamate metabolism in AF is associated with nonchromosomal modificantions fetal structural anomalies. Based on our findings, a novel screening method could be established for the nonchromosomal modificantions fetal structural anomalies. And the results also indicate that monitoring fetal metabolic conditions (especially glutamine and glutamine metabolism) may be helpful for antenatal diagnosis and therapy.
Collapse
Affiliation(s)
- Huizhen Yuan
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Chang Liu
- Chinese Academy of Sciences Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Key Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xinrong Wang
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Tingting Huang
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Danping Liu
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Shuhui Huang
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Zeming Wu
- iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian, China
| | - Yanqiu Liu
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- *Correspondence: Bicheng Yang, ; Yanqiu Liu, ; Peiyuan Yin,
| | - Peiyuan Yin
- Key Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Bicheng Yang, ; Yanqiu Liu, ; Peiyuan Yin,
| | - Bicheng Yang
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- *Correspondence: Bicheng Yang, ; Yanqiu Liu, ; Peiyuan Yin,
| |
Collapse
|
48
|
Jiao Q, Mu Y, Deng J, Yao X, Zhao X, Liu X, Li X, Jiang X, Zhang F. Direct toxicity of the herbicide florasulam against Chlorella vulgaris: An integrated physiological and metabolomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114135. [PMID: 36201917 DOI: 10.1016/j.ecoenv.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Herbicides are the agents of choice for use in weed control; however, they can enter the aquatic environment, with potentially serious consequences for non-target organisms. Despite the possible deleterious effects, little information is available regarding the ecotoxicity of the herbicide florasulam toward aquatic organisms. Accordingly, in this study, we investigated the toxic effect of florasulam on the freshwater microalga Chlorella vulgaris and sought to identify the underlying mechanisms. For this, we employed a growth inhibition toxicity test, and then assessed the changes in physiological and metabolomic parameters, including photosynthetic pigment content, antioxidant system, intracellular structure and complexity, and metabolite levels. The results showed that treatment with florasulam for 96 h at the concentration of 2 mg/L, 2.84 mg/L, and 6 mg/L in medium significantly inhibited algal growth and photosynthetic pigment content. Moreover, the levels of reactive oxygen species were also increased, resulting in oxidative damage and the upregulation of the activities of several antioxidant enzymes. Transmission electron microscopic and flow cytometric analysis further demonstrated that exposure to florasulam (6 mg/L) for 96 h disrupted the cell structure of C. vulgaris, characterized by the loss of cell membrane integrity and alterations in cell morphology. Changes in amino acid metabolism, carbohydrate metabolism, and the antioxidant system were also observed and contributed to the suppressive effect of florasulam on the growth of this microalga. Our findings regarding the potential risks of florasulam in aquatic ecosystems provide a reference for the safe application of this herbicide in the environment.
Collapse
Affiliation(s)
- Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yuelin Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaoyan Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
49
|
Metabolic Abnormalities Linked to Auditory Pathways in ApoE-Knockout HEI-OC1 Cells: A Transcription-Metabolism Co-Analysis. Biomolecules 2022; 12:biom12091217. [PMID: 36139057 PMCID: PMC9496352 DOI: 10.3390/biom12091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid transporter protein apolipoprotein E (APOE) has contributed to functional studies of various organ functions. Animals with ApoE knockout (KO) have been used to study atherosclerosis and hyperlipidemia while an increasing number of researchers have recently focused on the association of ApoE with hearing loss. A study found that ApoE KO mice experience sensorineural hearing loss and hair cell loss, but the exact mechanism is unclear. To explore the potential relationship between ApoE and hearing loss, we used HEI-OC1 cells (House Ear Institute-Organ of Corti) with Corti apparatus properties to reveal cell changes after ApoE knockout by combined transcriptome and metabolomic analysis. We found that glutamate deficiency, caused by reduced expression of glutamine transporter proteins, was a key correlate of basal metabolism and that inadequate glutamate causes apoptosis by reducing the cells’ resistance to external damage. Our study provides a reference mechanism for hearing loss due to ApoE KO.
Collapse
|
50
|
The role of branched chain amino acids metabolic disorders in tumorigenesis and progression. Biomed Pharmacother 2022; 153:113390. [DOI: 10.1016/j.biopha.2022.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
|