1
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
2
|
Wang Y, Liang Y, Yuan Z, Mai W, Leng Y, Zhang R, Chen J, Lai C, Chen H, Wu X, Sheng C, Zhang Q. Cadmium facilitates the formation of large lipid droplets via PLCβ2-DAG-DGKε-PA signal pathway in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115610. [PMID: 37866036 DOI: 10.1016/j.ecoenv.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCβ2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCβ2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCβ2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCβ2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCβ2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zansheng Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yang Leng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Runze Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jiayan Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Caiyong Lai
- Department of Urology, The sixth affiliated hospital of Jinan University, Dongguan 523570, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China.
| | - Chao Sheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China.
| |
Collapse
|
3
|
Li Z, Wu D, Guo Y, Mao W, Zhao N, Zhao M, Jin H. Phthalate metabolites in paired human serum and whole blood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153792. [PMID: 35150672 DOI: 10.1016/j.scitotenv.2022.153792] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Presence of phthalate metabolites (PMs) in human serum has been well documented. However, the distribution pattern of PMs in different human blood matrixes remains not well known. To investigate this, paired serum and whole blood samples were collected from 145 adults (76 males and 69 females) in Quzhou, China, and analyzed for nine PMs in this study. All PMs had high detection frequencies (> 70%) in human serum and whole blood, except mono benzyl phthalate. Total concentrations of detected PMs in serum and whole blood were 0.70-61 ng/mL (mean 12 ng/mL) and 1.6-33 ng/mL (7.5 ng/mL), respectively. Mono methyl phthalate (MMP), mono (2-ethylhexyl) phthalate, and mono butyl phthalate were consistently the predominant PMs in human serum and whole blood, with the mean concentrations of 3.4 and 2.0 ng/mL, 3.3 and 2.1 ng/mL, and 2.8 and 1.8 ng/mL, respectively. Females had higher mean serum concentrations of PMs, except MBP, than males. Youngest age group (20-30 years) consistently had the lowest mean whole blood levels of all PMs. For the first time, the distribution pattern of PMs in human blood was evaluated based on the calculated partitioning coefficient (Kp) between serum and whole blood. MMP had the highest mean Kp value (1.6; 10th-90th percentile: 1.0-2.2), while mono (2-ethyl-5-oxohexyl) phthalate had the lowest mean Kp value (0.63; 10th-90th percentile: 0.25-1.3). These results help better understand the occurrence of PMs in human blood.
Collapse
Affiliation(s)
- Zhenming Li
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dexin Wu
- Hangzhou Xinjing Environmental Technology Co., Ltd., Hangzhou 310007, PR China
| | - Yu Guo
- Focused Photonics (Hangzhou) Inc., 459 Qianmo Road, Hangzhou 311000, PR China
| | - Weili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, PR China
| | - Nan Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hangbiao Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
4
|
Mechanism of Action of an Environmentally Relevant Organochlorine Mixture in Repressing Steroid Hormone Biosynthesis in Leydig Cells. Int J Mol Sci 2022; 23:ijms23073997. [PMID: 35409357 PMCID: PMC8999779 DOI: 10.3390/ijms23073997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Within Leydig cells, steroidogenesis is induced by the pituitary luteinizing hormone (LH). The binding of LH to its receptor increases cAMP production, which then activates the expression of genes involved in testosterone biosynthesis. One of these genes codes for the steroidogenic acute regulatory (STAR) protein. STAR is part of a complex that shuttles cholesterol, the precursor of all steroid hormones, through the mitochondrial membrane where steroidogenesis is initiated. Organochlorine chemicals (OCs) are environmental persistent organic pollutants that are found at high concentrations in Arctic areas. OCs are known to affect male reproductive health by decreasing semen quality in different species, including humans. We previously showed that an environmentally relevant mixture of OCs found in Northern Quebec disrupts steroidogenesis by decreasing STAR protein levels without affecting the transcription of the gene. We hypothesized that OCs might affect STAR protein stability. To test this, MA-10 Leydig cell lines were incubated for 6 h with vehicle or the OCs mixture in the presence or absence of 8Br-cAMP with or without MG132, an inhibitor of protein degradation. We found that MG132 prevented the OC-mediated decrease in STAR protein levels following 8Br-cAMP stimulation. However, progesterone production was still decreased by the OC mixture, even in the presence of MG132. This suggested that proteins involved in steroid hormone production in addition to STAR are also affected by the OC mixture. To identify these proteins, a whole cell approach was used and total proteins from MA-10 Leydig cells exposed to the OC mixture with or without stimulation with 8Br-cAMP were analyzed by 2D SDS-PAGE and LC-MS/MS. Bioinformatics analyses revealed that several proteins involved in numerous biological processes are affected by the OC mixture, including proteins involved in mitochondrial transport, lipid metabolism, and steroidogenesis.
Collapse
|
5
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Hales BF, Robaire B. Phthalates and Alternative Plasticizers Differentially affect Phenotypic Parameters in Gonadal Somatic and Germ Cell Lines. Biol Reprod 2021; 106:613-627. [PMID: 34792101 DOI: 10.1093/biolre/ioab216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The developmental and reproductive toxicity associated with exposure to phthalates has motivated a search for alternatives. However, there is limited knowledge regarding the adverse effects of some of these chemicals. We used high-content imaging to compare the effects of mono (2-ethylhexyl) phthalate (MEHP) with six alternative plasticizers: di-2-ethylhexyl terephthalate (DEHTP); diisononyl-phthalate (DINP); di-isononylcyclohexane-1,2-dicarboxylate (DINCH); 2-ethylhexyl adipate (DEHA); 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB) and di-iso-decyl-adipate (DIDA). A male germ spermatogonial cell line (C18-4), a Sertoli cell line (TM4) and two steroidogenic cell lines (MA-10 Leydig and KGN granulosa) were exposed for 48h to each chemical (0.001-100 μM). Cell images were analyzed to assess cytotoxicity and effects on phenotypic endpoints. Only MEHP (100 μM) was cytotoxic and only in C18-4 cells. However, several plasticizers had distinct phenotypic effects in all four cell lines. DINP increased Calcein intensity in C18-4 cells, whereas DIDA induced oxidative stress. In TM4 cells, MEHP, and DINCH affected lipid droplet numbers, while DEHTP and DINCH increased oxidative stress. In MA-10 cells, MEHP increased lipid droplet areas and oxidative stress; DINP decreased the number of lysosomes, while DINP, DEHA and DIDA altered mitochondrial activity. In KGN cells, MEHP, DINP and DINCH increased the number of lipid droplets, whereas DINP decreased the number of lysosomes, increased oxidative stress and affected mitochondria. The Toxicological Priority Index (ToxPi) provided a visual illustration of the cell line specificity of the effects on phenotypic parameters. The lowest administered equivalent doses were observed for MEHP. We propose that this approach may assist in screening alternative plasticizers.
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada, KIA 0K9
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada, KIA 0K9
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada. H3G 1Y6
| |
Collapse
|
6
|
Traore K, More P, Adla A, Dogbey G, Papadopoulos V, Zirkin B. MEHP induces alteration of mitochondrial function and inhibition of steroid biosynthesis in MA-10 mouse tumor Leydig cells. Toxicology 2021; 463:152985. [PMID: 34627990 PMCID: PMC11436285 DOI: 10.1016/j.tox.2021.152985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in manufacturing. Previous studies have shown that mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of DEHP, has inhibitory effects on luteinizing hormone (LH)-stimulated steroid biosynthesis by Leydig cells. The molecular mechanisms underlying its effects, however, remain unclear. In the present study, we examined the effects of MEHP on changes in mitochondrial function in relationship to reduced progesterone formation by MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with MEHP (0-300 μM for 24 h) resulted in dose-dependent inhibition of LH-stimulated progesterone biosynthesis. Biochemical analysis data revealed that the levels of the mature steroidogenic acute regulatory protein (STAR), a protein that works at the outer mitochondrial membrane to facilitate the translocation of cholesterol for steroid formation, was significantly reduced in response to MEHP exposures. MEHP also caused reductions in MA-10 cell mitochondrial membrane potential (ΔΨm) and mitochondrial respiration as evidenced by decreases in the ability of the mitochondria to consume molecular oxygen. Additionally, significant increases in the generation of mitochondrial superoxide were observed. Taken together, these results indicate that MEHP inhibits steroid formation in MA-10 cells at least in part by its effects on mitochondrial function.
Collapse
Affiliation(s)
- Kassim Traore
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, South Lillington, NC 27556, United States.
| | - Prajakta More
- Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, South Lillington, NC 27556, United States
| | - Akhil Adla
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, South Lillington, NC 27556, United States
| | - Godwin Dogbey
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, South Lillington, NC 27556, United States
| | - Vassilios Papadopoulos
- Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| |
Collapse
|
7
|
Enangue Njembele AN, Tremblay JJ. Mechanisms of MEHP Inhibitory Action and Analysis of Potential Replacement Plasticizers on Leydig Cell Steroidogenesis. Int J Mol Sci 2021; 22:ijms222111456. [PMID: 34768887 PMCID: PMC8584274 DOI: 10.3390/ijms222111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.
Collapse
Affiliation(s)
- Annick N. Enangue Njembele
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46254)
| |
Collapse
|
8
|
Park CG, Sung B, Ryu CS, Kim YJ. Mono-(2-ethylhexyl) phthalate induces oxidative stress and lipid accumulation in zebrafish liver cells. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108704. [PMID: 31927120 DOI: 10.1016/j.cbpc.2020.108704] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
The purpose of the present study was to examine the antioxidant and oxidative stress changes in zebrafish liver (ZFL) cells in the presence of mono-(2-ethylhexyl) phthalate (MEHP). When reactive oxygen species (ROS) and antioxidant levels were measured by immunoassay, significant differences were observed between MEHP-treated and control cells, while catalase levels did not change in any group. MEHP-treated cells had higher levels of ROS, glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione, and superoxide dismutase (SOD) than control cells. However, lower levels of lipid peroxidation were observed in MEHP-treated cells compared to control cells. After 24 h of MEHP treatment, ROS, SOD, GPx, and GST activity increased in a dose-dependent manner. Cellular lipid droplet formation and endoplasmic reticulum stress were both induced in the presence of MEHP. These findings demonstrated the potential impacts of the association of MEHP with adverse outcomes in fish liver. Future studies will focus on clarifying the molecular mechanism of phthalate toxicity via oxidative stress and peroxisome proliferator activated receptor as the major mechanistic pathway.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, JRC-APT, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Baeckkyoung Sung
- Environmental Safety Group, JRC-APT, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science and Technology, 34113 Daejeon, Korea
| | - Chang Seon Ryu
- Environmental Safety Group, JRC-APT, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany.
| | - Young Jun Kim
- Environmental Safety Group, JRC-APT, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science and Technology, 34113 Daejeon, Korea.
| |
Collapse
|
9
|
Li X, Duan Y, Sun H, Zhang P, Xu J, Hua X, Jin L, Li M. Human exposure levels of PAEs in an e-waste recycling area: Get insight into impacts of spatial variation and manipulation mode. ENVIRONMENT INTERNATIONAL 2019; 133:105143. [PMID: 31630067 DOI: 10.1016/j.envint.2019.105143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Phthalic acid esters (PAEs) are one important category of additives in plastics, which are ubiquitous products of e-waste recycling areas, where PAEs are released to the environment intensively and higher exposure level is expected for the employees. This study investigated human exposure levels of PAEs in an e-waste recycling area (Ziya Circular Economy Park (ZCEP) in Tianjin, China) with intending to explore the impacts of residence spatial variation and dismantling manipulation mode. We collected 157 urine samples from three sites around ZCEP with different distances from the core dismantling site and urinary phthalate metabolites (mPAEs) concentrations were measured and were compared among these three sites. The exposure levels of PAEs exhibited spatial variation according to the distance from the core dismantling site, and urinary median ∑mPAEs concentrations (389 ng/mL) of the employees in ZCEP were significantly higher than those of residents in Ziya town (285 ng/mL) and the downtown of Jinghai district (207 ng/mL) (p < 0.05). Moreover, PAEs exposure levels were significantly affected by the manipulation modes in the e-waste recycling area and the urinary median ∑mPAEs concentrations in the employees of family workshops (401 ng/mL) were significantly higher than those in plants with centralized management (298 ng/mL). There were obvious differences on the urinary median mPAEs concentrations between subgroups based on age, BMI, and sex; however, no significant statistical associations were found between PAEs exposure levels and these socio-demographic indices (p > 0.05). Besides, there was no correlation between exposure levels of different PAEs and their physicochemical parameters like the logKow (p > 0.05).
Collapse
Affiliation(s)
- Xiaoying Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China; Department of Environmental Science and Engineering, Dalian Maritime University, Dalian, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Canada
| | - Jiaping Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xia Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Litao Jin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Mengqi Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Bremer S, Cortvrindt R, Daston G, Eletti B, Mantovani A, Maranghi F, Pelkonen O, Ruhdel I, Spielmann H. 3.11. Reproductive and Developmental Toxicity. Altern Lab Anim 2019; 33 Suppl 1:183-209. [PMID: 16194149 DOI: 10.1177/026119290503301s17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Susanne Bremer
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, 21020 Ispra (VA), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhou C, Zaman N, Li Y, Martinez-Arguelles DB, Papadopoulos V, Zirkin B, Traore K. Redox regulation of hormone sensitive lipase: Potential role in the mechanism of MEHP-induced stimulation of basal steroid synthesis in MA-10 Leydig cells. Reprod Toxicol 2019; 85:19-25. [PMID: 30648648 PMCID: PMC11472792 DOI: 10.1016/j.reprotox.2018.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate (DEHP), is a plasticizer with endocrine disruptor activity that has been shown to stimulate basal steroid biosynthesis in Leydig cells. The mechanism by which it does so is unknown. Using MA-10 mouse tumor Leydig cells, we assessed the effects of MEHP on reactive oxygen species (ROS) levels, and on the signal transduction pathways that mobilize cholesterol. Exposure to 0-300 μM MEHP stimulated basal progesterone production in a dose-dependent manner. Progesterone stimulation was correlated with increases in the phosphorylation of hormone-sensitive lipase (HSL; aka cholesteryl ester hydrolase), which is involved in the production of free cholesterol, and of steroidogenic acute regulatory (STAR) protein expression. Co-treating MA-10 cells with MEHP and the ROS scavenger N-acetyl cysteine (NAC) blocked the activation of HSL, blunted MEHP-induced STAR, and reduced basal progesterone formation. These observations suggest that ROS generation by MEHP leads to activation of HSL and increase in STAR which, together, result in increased free-cholesterol bioavailability and progesterone formation.
Collapse
Affiliation(s)
- Christine Zhou
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Ninad Zaman
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Yunbo Li
- Department of Pharmacology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Daniel B Martinez-Arguelles
- Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Vassilios Papadopoulos
- Deparment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kassim Traore
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC 27546, USA.
| |
Collapse
|
12
|
Di Nisio A, Foresta C. Water and soil pollution as determinant of water and food quality/contamination and its impact on male fertility. Reprod Biol Endocrinol 2019; 17:4. [PMID: 30611299 PMCID: PMC6321708 DOI: 10.1186/s12958-018-0449-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Over the past two decades, public health has focused on the identification of environmental chemical factors that are able to adversely affect hormonal function, known as endocrine disruptors (EDs). EDs mimic naturally occurring hormones like estrogens and androgens which can in turn interfere with the endocrine system. As a consequence, EDs affect human reproduction as well as post and pre-natal development. In fact, infants can be affected already at prenatal level due to maternal exposure to EDs. In particular, great attention has been given to those chemicals, or their metabolites, that have estrogenic properties or antagonistic effects on the activity of androgen or even inhibiting their production. These compounds have therefore the potential of interfering with important physiological processes, such as masculinization, morphological development of the urogenital system and secondary sexual traits. Animal and in vitro studies have supported the conclusion that endocrine-disrupting chemicals affect the hormone-dependent pathways responsible for male gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, epidemiological studies have reported an overall decline of male fertility and an increased incidence of diseases or congenital malformations of the male reproductive system. The majority of studies point towards an association between exposure to EDs and male and/or female reproductive system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants has yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Despite the lack of consistency in the results of so many studies investigating endocrine-disrupting properties of many different classes of chemicals, the overall conclusion points toward a positive association between exposure to EDs and reproductive system. Future studies should focus on a uniform systems to examine human populations with regard to the exposure to specific EDs and the direct effect on the reproductive system.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy.
| |
Collapse
|
13
|
Jiang L, Wang L, Fang T, Papadopoulos V. Disruption of ergosterol and tryptophan biosynthesis, as well as cell wall integrity pathway and the intracellular pH homeostasis, lead to mono-(2-ethylhexyl)-phthalate toxicity in budding yeast. CHEMOSPHERE 2018; 206:643-654. [PMID: 29783050 DOI: 10.1016/j.chemosphere.2018.05.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/13/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are substances in the environment, food, and consumer products that interfere with hormone homeostasis, metabolism or reproduction in humans and animals. One such EDC, the plasticizer di-(2-ethylhexyl)-phthalate (DEHP), exerts its function through its principal bioactive metabolite, mono-(2-ethylhexyl)-phthalate (MEHP). To fully understand the effects of MEHP on cellular processes and metabolism as well as to assess the impact of genetic alteration on the susceptibility to MEHP-induced toxicity, we screened MEHP-sensitive mutations on a genome-scale in the eukaryotic model organism Saccharomyces cerevisiae. We identified a total of 96 chemical-genetic interactions between MEHP and gene mutations in this study. In response to MEHP treatment, most of these gene mutants accumulated higher intracellular MEHP content, which correlated with their MEHP sensitivity. Twenty-seven of these genes are involved in the metabolism, twenty-two of them play roles in protein sorting, and ten of them regulate ion homeostasis. Functional categorization of these genes indicated that the biosynthetic pathways of both ergosterol and tryptophan, as well as cell wall integrity and the intracellular pH homeostasis, were involved in the protective response of yeast cells to the MEHP toxicity. Our study demonstrated that a collection of yeast gene deletion mutants is useful for a functional toxicogenomic analysis of EDCs, which could provide important clues to the effects of EDCs on higher eukaryotic organisms.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Litong Wang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Li X, Sun H, Yao Y, Zhao Z, Qin X, Duan Y, Wang L. Distribution of Phthalate Metabolites between Paired Maternal-Fetal Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6626-6635. [PMID: 29754483 DOI: 10.1021/acs.est.8b00838] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phthalic acid esters (PAEs) are readily metabolized to phthalate metabolites (mPAEs) in the human body. The occurrence of mPAEs in adult human samples is well documented; however, the maternal-fetal transmission of mPAEs has seldom been studied. In this study, 78 paired maternal-fetal samples, including maternal urine (MU), maternal serum (MS), cord serum (CS), and amniotic fluid (AF), were collected from pregnant women in Tianjin, China. Seven mPAEs were detected in MS, CS, and AF, whereas all 11 investigated mPAEs were found in MU. The median concentration of ∑mPAEs was the highest in MU (128 ng/mL, with a range of 20.2-973 ng/mL), and proceeded in the order of CS (44.9, 13.9-315 ng/mL), MS (24.6, 3.75-156 ng/mL), and AF (10.4, 7.69-79.8 ng/mL). The values of ∑mPAEs and several individual mPAEs were significantly correlated between MU and MS, with generally higher concentrations in MU, which indicated that urinary mPAEs is a good indicator of PAEs' exposure in adults. Notably, the median CS:MS ratios of ∑mPAEs (1.58) were higher than 1, indicating that fetuses were exposed to mPAEs before birth. Significant correlations were also observed between MS and CS, which suggested that mPAEs in MS provide an indication of the fetal exposure. This study presents the first systematic analysis of the distribution and transmission of various mPAEs between mothers and fetuses.
Collapse
Affiliation(s)
- Xiaoying Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Zhen Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Xiaolei Qin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|
15
|
Svechnikov K, Savchuk I, Morvan ML, Antignac JP, Le Bizec B, Söder O. Phthalates Exert Multiple Effects on Leydig Cell Steroidogenesis. Horm Res Paediatr 2018; 86:253-263. [PMID: 26559938 DOI: 10.1159/000440619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Humans are significantly exposed to phthalates via food packaging, cosmetics and medical devices such as tubings and catheters. Testicular Leydig cells (LCs) are suggested to be among the main targets of phthalate toxicity in the body. However, their sensitivity to phthalates is species-dependent. This paper describes the response of the LCs from different species (mouse, rat and human) to phthalate exposure in different experimental paradigms (in vivo, ex vivo and in vitro), with particular focus on mechanisms of phthalate action on LC steroidogenesis. A comprehensive analysis of the impact of phthalate diesters and phthalate monoesters on LCs in different stages of their development is presented and possible mechanisms of phthalates action are discussed. Finally novel, not yet fully elucidated sites of action of phthalate monoesters on the backdoor pathway of 5α-dihydrotestosterone biosynthesis in immature mouse LCs and their effects on steroidogenesis and redox state in adult mouse LCs are reported.
Collapse
Affiliation(s)
- Konstantin Svechnikov
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Karolinska Institute and University Hospital, Q2:08, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Liu L, Wang H, Tian M, Zhang J, Panuwet P, D'Souza PE, Barr DB, Huang Q, Xia Y, Shen H. Phthalate metabolites related to infertile biomarkers and infertility in Chinese men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:291-300. [PMID: 28810198 DOI: 10.1016/j.envpol.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Although in vitro and in vivo laboratory studies have demonstrated androgen and anti-androgen effects on male reproduction from phthalate exposures, human studies still remain inconsistent. Therefore, a case-control study (n = 289) was conducted to evaluate the associations between phthalate exposures, male infertility risks, and changes in metabolomic biomarkers. Regional participants consisted of fertile (n = 150) and infertile (n = 139) males were recruited from Nanjing Medical University' affiliated hospitals. Seven urinary phthalate metabolites were measured using HPLC-MS/MS. Associations between levels of phthalate metabolites, infertility risks, and infertility-related biomarkers were statistically evaluated. MEHHP, one of the most abundant DEHP oxidative metabolites was significantly lower in cases than in controls (p = 0.039). When using the 1st quartile range as a reference, although statistically insignificant for odds ratios (ORs) of the 2nd, 3rd, and 4th quartiles (OR (95% CI) = 1.50 (0.34-6.48), 0.70 (0.14-3.52) and 0.42 (0.09-2.00), respectively), the MEHHP dose-dependent trend of infertility risk expressed as OR decreased significantly (p = 0.034). More interestingly, most of the phthalate metabolites, including MEHHP, were either positively associated with fertile prevention metabolic biomarkers or negatively associated with fertile hazard ones. Phthalate metabolism, along with their activated infertility-related biomarkers, may contribute to a decreased risk of male infertility at the subjects' ongoing exposure levels. Our results may be illustrated by the low-dose related androgen effect of phthalates and can improve our understanding of the controversial epidemiological results on this issue.
Collapse
Affiliation(s)
- Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Laboratory of Exposure Assessment and Development for Environmental Research, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Heng Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhejiang, Zhoushan, 316021, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Parinya Panuwet
- Laboratory of Exposure Assessment and Development for Environmental Research, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Priya Esilda D'Souza
- Laboratory of Exposure Assessment and Development for Environmental Research, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Dana Boyd Barr
- Laboratory of Exposure Assessment and Development for Environmental Research, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Yankai Xia
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| |
Collapse
|
17
|
Boisvert A, Jones S, Issop L, Erythropel HC, Papadopoulos V, Culty M. In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity. ENVIRONMENTAL RESEARCH 2016; 150:496-512. [PMID: 27423704 DOI: 10.1016/j.envres.2016.06.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates target mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health.
Collapse
Affiliation(s)
- Annie Boisvert
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Steven Jones
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Leeyah Issop
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Hanno C Erythropel
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada H4A 3J1.
| |
Collapse
|
18
|
Yaghjyan L, Ghita GL, Dumont-Driscoll M, Yost RA, Chang SH. Maternal exposure to di-2-ethylhexylphthalate and adverse delivery outcomes: A systematic review. Reprod Toxicol 2016; 65:76-86. [PMID: 27412369 PMCID: PMC5067201 DOI: 10.1016/j.reprotox.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/25/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023]
Abstract
Adverse pregnancy outcomes, including preterm delivery, short gestational age, and abnormal birth weight, remain a public health concern. The evidence on the association of the most common phthalate, di-2-ethylhexyl phthalate (DEHP) with adverse pregnancy outcomes remains equivocal. This systematic review summarizes published studies that investigated the association of DEHP with preterm delivery, gestational age, and birthweight. A comprehensive literature search found 15 relevant studies, most of which evaluated more than one outcome (four studies for preterm delivery, nine studies for gestational age, and ten studies for birthweight). Studies varied greatly with respect to study design, exposure assessment, analytical methods, and direction of the associations. We identified important methodological concerns which could have resulted in selection bias and exposure misclassification and contributed to null findings and biased associations. Given limitations of the previous studies discussed in this review, more thorough investigation of these associations is warranted to advance our scientific knowledge.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL 32610, USA.
| | - Gabriela L Ghita
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL 32610, USA.
| | - Marilyn Dumont-Driscoll
- Department of Pediatrics, University of Florida, College of Medicine, 1699 SW 16th Avenue, Gainesville, FL 32608, USA.
| | - Richard A Yost
- Department of Chemistry, College of Liberal Arts and Sciences, 125 Buckman Dr., Gainesville FL 32611, USA.
| | - Su-Hsin Chang
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Absalan F, Saremy S, Mansori E, Taheri Moghadam M, Eftekhari Moghadam AR, Ghanavati R. Effects of Mono-(2-Ethylhexyl) Phthalate and Di-(2-Ethylhexyl) Phthalate Administrations on Oocyte Meiotic Maturation, Apoptosis and Gene Quantification in Mouse Model. CELL JOURNAL 2016; 18:503-513. [PMID: 28042535 PMCID: PMC5086329 DOI: 10.22074/cellj.2016.4717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/07/2016] [Indexed: 11/05/2022]
Abstract
Objective Phthalates, which are commonly used to render plastics into soft and flexible
materials, have also been determined as developmental and reproductive toxicants in
human and animals. The purpose of this study was to evaluate the effect of mono-(2-
ethylhexyl) phthalate (MEHP) and di-(2-ethylhexyl) phthalate (DEHP) oral administrations
on maturation of mouse oocytes, apoptosis and gene transcription levels.
Materials and Methods In this experimental study, immature oocytes recovered from
Naval Medical Research Institute (NMRI) mouse strain (6-8 weeks), were divided into
seven different experimental and control groups. Control group oocytes were retrieved
from mice that received only normal saline. The experimental groups I, II or III oocytes
were retrieved from mice treated with 50, 100 or 200 µl DEHP (2.56 µM) solution, respectively.
The experimental groups IV, V or VI oocytes were retrieved from mouse exposed to
50, 100 or 200 µl MEHP (2.56 µM) solution, respectively. Fertilization and embryonic development
were carried out in OMM and T6 medium. Apoptosis was assessed by annexin
V-FITC/Dead Cell Apoptosis Kit, with PI staining. In addition, the mRNA levels of Pou5f1,
Ccna1 and Asah1 were examined in oocytes. Finally, mouse embryo at early blastocyst
stage was stained with acridine-orange (AO) and ethidium-bromide (EB), in order to access their viability.
Results The proportion of oocytes that progressed up to metaphase II (MII) and 2-cells
embryo formation stage was significantly decreased by exposure to MEHP or DEHP, in a
dose-dependent manner. Annexin V and PI positive oocytes showed greater quantity in
the treated mice than control. Quantitative reverse transcriptase-polymerase chain
reaction (qRT-PCR) revealed that expression levels of Pou5f1, Asah1 and Ccna1 were significantly
lower in the treated mouse oocytes than control. The total cell count for blastocyst
developed from the treated mouse oocytes was lower than the controls.
Conclusion These results indicate that oral administration of MEHP and DEHP could
negatively affect mouse oocyte meiotic maturation and development in vivo, suggesting
that phthalates could be risk factors for mammalians’ reproductive health. Additionally,
phthalate-induced changes in Pou5f1, Asah1 and Ccna1 transcription level could explain
in part, the reduced developmental ability of mouse-treated oocytes.
Collapse
Affiliation(s)
- Forouzan Absalan
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Saremy
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansori
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Taheri Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Reza Eftekhari Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razie Ghanavati
- Department of Molecular Biology and Development, Faculty of Medicine, Kazerun Islamic Azad University, Kazerun, Iran
| |
Collapse
|
20
|
Zhu Y, Hua R, Zhou Y, Li H, Quan S, Yu Y. Chronic exposure to mono-(2-ethylhexyl)-phthalate causes endocrine disruption and reproductive dysfunction in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2117-2124. [PMID: 26762230 DOI: 10.1002/etc.3369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/12/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
Phthalic acid esters are frequently detected in aquatic environments. In the present study, zebrafish were exposed to low concentrations (0 µg/L, 0.46 µg/L, 4.0 µg/L, and 37.5 µg/L) of mono-(2-ethylhexyl) phthalate (MEHP) for 81 d, and the effects on reproduction, gamete quality, plasma vitellogenin (VTG), sex steroids, and transcriptional profiles of key genes involved in steroidogenesis were investigated. The results demonstrated that egg production and sperm quality were decreased after exposure to MEHP, which also resulted in reduced egg diameter and eggshell as well as decreased egg protein content. Significant inductions in plasma testosterone and 17β-estradiol (E2) were observed in females, which might have resulted from up-regulation of CYP19a and 17β-HSD gene transcription in the ovary. A significant increase in plasma E2 along with a decrease in plasma 11-keto testosterone was also observed in males, which was accompanied by up-regulation of CYP19a and inhibition of CYP11b transcription in the testis. In addition, plasma vitellogenin levels were significantly increased after MEHP exposure in both sexes. Moreover, continuous MEHP exposure in the F1 embryos resulted in worse hatching rates and increased malformation rates compared with embryos without MEHP exposure. Taken together, these results demonstrate that MEHP has the potential to cause reproductive dysfunction and impair the development of offspring. However, it should be noted that most of the significant effects were observed at higher concentrations, and MEHP at typically measured concentrations may not have major effects on fish reproduction and development. Environ Toxicol Chem 2016;35:2117-2124. © 2016 SETAC.
Collapse
Affiliation(s)
- Yongtong Zhu
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Hua
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Zhou
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Li
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Song Quan
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhong Yu
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Yaghjyan L, Carlsson NP, Ghita GL, Chang SH. Associations of individual characteristics and lifestyle factors with metabolism of di-2-ethylhexyl phthalate in NHANES 2001-2012. ENVIRONMENTAL RESEARCH 2016; 149:23-31. [PMID: 27174780 PMCID: PMC5536839 DOI: 10.1016/j.envres.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Previous studies suggest that a higher ratio of primary to secondary metabolites of di-2-ethylhexyl phthalate (DEHP), reflective of a slower DEHP conversion rate, is associated with a greater physiologic effect. We examined associations of several individual characteristics and lifestyle factors with the ratio of mono-2-ethylhexyl phthalate to mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHP:MEHHP) and %MEHP (the ratio of MEHP to the sum of the secondary metabolites). METHODS We used the data from the National Health and Nutrition Examination Survey, 2001-2012. The study included adults with BMI<30 and no diabetes. Pregnant women were excluded. We examined associations of age, race, gender, Body Mass Index, smoking, alcohol and caffeine consumption, medication use, cancer history, and menopausal status and postmenopausal hormone use (in women) with MEHP:MEHHP and %MEHP using multivariable linear regression. The values for %MEHP were log-transformed in the analysis. RESULTS In multivariable analysis, non-Caucasian individuals had higher %MEHP (non-Hispanic Blacks: β=0.114, 95% Confidence interval [CI]: 0.050, 0.177; Hispanic: β=0.089, 95% CI: 0.024, 0.154; other race: β=0.126, 95% CI: 0.033, 0.219). Age was inversely associated with MEHP:MEHHP (β=-0.001, 95% CI: -0.002, -0.001) and %MEHP (β=-0.006, 95% CI: -0.008, -0.004). Overweight individuals had lower MEHP: MEHHP and lower %MEHP (β=-0.035, 95% CI: 0.062, -0.008 and β=-0.104, 95% CI: -0.162, -0.046, respectively). Alcohol consumption was inversely associated with %MEHP among men (p-trend=0.03). CONCLUSIONS Individual and lifestyle characteristics are associated with differences in DEHP metabolism. Understanding underlying biological mechanisms could help to identify individuals at a greater risk of adverse effects from DEHP exposure.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, USA.
| | - Nils P Carlsson
- Division of Public Health Sciences, Department of Surgery, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO, USA.
| | - Gabriela L Ghita
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, USA.
| | - Su-Hsin Chang
- Division of Public Health Sciences, Department of Surgery, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO, USA.
| |
Collapse
|
22
|
Jones S, Boisvert A, Naghi A, Hullin-Matsuda F, Greimel P, Kobayashi T, Papadopoulos V, Culty M. Stimulatory effects of combined endocrine disruptors on MA-10 Leydig cell steroid production and lipid homeostasis. Toxicology 2016; 355-356:21-30. [PMID: 27181934 DOI: 10.1016/j.tox.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/20/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Previous work in our laboratory demonstrated that in-utero exposure to a mixture of the phytoestrogen Genistein (GEN), and plasticizer DEHP, induces short- and long-term alterations in testicular gene and protein expression different from individual exposures. These studies identified fetal and adult Leydig cells as sensitive targets for low dose endocrine disruptor (ED) mixtures. To further investigate the direct effects and mechanisms of toxicity of GEN and DEHP, MA-10 mouse tumor Leydig cells were exposed in-vitro to varying concentrations of GEN and MEHP, the principal bioactive metabolite of DEHP. Combined 10μM GEN+10μM MEHP had a stimulatory effect on basal progesterone production. Consistent with increased androgenicity, the mRNA of steroidogenic and cholesterol mediators Star, Cyp11a, Srb1 and Hsl, as well as upstream orphan nuclear receptors Nr2f2 and Sf1 were all significantly increased uniquely in the mixture treatment group. Insl3, a sensitive marker of Leydig endocrine disruption and cell function, was significantly decreased by combined GEN+MEHP. Lipid analysis by high-performance thin layer chromatography demonstrated the ability of combined 10μM combined GEN+MEHP, but not individual exposures, to increase levels of several neutral lipids and phospholipid classes, indicating a generalized deregulation of lipid homeostasis. Further investigation by qPCR analysis revealed a concomitant increase in cholesterol (Hmgcoa) and phospholipid (Srebp1c, Fasn) mediator mRNAs, suggesting the possible involvement of upstream LXRα agonism. These results suggest a deregulation of MA-10 Leydig function in response to a combination of GEN+MEHP. We propose a working model for GEN+MEHP doses relevant to human exposure involving LXR agonism and activation of other transcription factors. Taken more broadly, this research highlights the importance of assessing the impact of ED mixtures in multiple toxicological models across a range of environmentally relevant doses.
Collapse
Affiliation(s)
- Steven Jones
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrada Naghi
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, RIKEN Institute, Wakoshi, Saitama, Japan; INSERM UMR1060, University Lyon 1, Villeurbanne, France
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN Institute, Wakoshi, Saitama, Japan
| | | | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Motohashi M, Wempe MF, Mutou T, Okayama Y, Kansaku N, Takahashi H, Ikegami M, Asari M, Wakui S. In utero-exposed di(n-butyl) phthalate induce dose dependent, age-related changes of morphology and testosterone-biosynthesis enzymes/associated proteins of Leydig cell mitochondria in rats. J Toxicol Sci 2016; 41:195-206. [PMID: 26961603 DOI: 10.2131/jts.41.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Female pregnant Sprague-Dawley rats were intragastrically (ig) administered di(n-butyl) phthalate (DBP) at four doses (0, 10, 50 and 100 mg/kg) during gestation days (GD) 12-21 (n = 5 per group). The age-related morphological changes of Leydig cell mitochondrion (LC-Mt) and testosterone biosynthesis enzymes/associated genes/proteins expression levels were investigated. As compared to the control (no DBP), the 10 mg, and 50 mg DBP dose groups, the 100 mg DBP dose group at weeks 5 and 7 showed a significant amount of small LC-Mt. Thereafter, from weeks 9 to 17, the LC-Mt size and quantity in the 100 mg DBP dose group increased and became statistically similar to the other dose groups; hence, dose and time-dependent LC-Mt changes were observed. Throughout the study, the 100 mg DBP dose group had significantly lower testosterone levels. In addition, the 100 mg DBP dose group displayed lower StAR (StAR, steroidogenic acute regulatory protein) and P450scc (CYP11a1, cholesterol side-chain cleavage enzyme) levels at weeks 5 and 7, but they became statistically similar to all other dose groups at weeks 9 to 17; in contrast, the SR-B1 (Sarb1, scavenger receptor class B member 1) levels were similar for all DBP dose groups. The rats in utero 100 mg DBP /kg/day (GD 12-21) exposure results from this study indicate a dose-dependent, age-related morphological change in LC-Mt which are linked to reductions in testosterone biosynthesis genes / proteins expression, specifically StAR and P450scc.
Collapse
Affiliation(s)
- Masaya Motohashi
- Department of Toxicology, Azabu University School of Veterinary Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Smith CA, Farmer K, Lee H, Holahan MR, Smith JC. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13542-59. [PMID: 26516880 PMCID: PMC4627048 DOI: 10.3390/ijerph121013542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022]
Abstract
Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl) phthalate (DEHP) disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females.
Collapse
Affiliation(s)
- Catherine A Smith
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, 325 LSRB, Ottawa ON, K1S 5B6, Canada.
| | - Kyle Farmer
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, 325 LSRB, Ottawa ON, K1S 5B6, Canada.
| | - Hyunmin Lee
- Department of Chemistry, Carleton University, Ottawa, 1125 Colonel By Drive, SC-226, Ottawa, ON, K1S5B6, Canada.
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, 325 LSRB, Ottawa ON, K1S 5B6, Canada.
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, 1125 Colonel By Drive, SC-226, Ottawa, ON, K1S5B6, Canada.
| |
Collapse
|
25
|
Tirinato L, Liberale C, Di Franco S, Candeloro P, Benfante A, La Rocca R, Potze L, Marotta R, Ruffilli R, Rajamanickam VP, Malerba M, De Angelis F, Falqui A, Carbone E, Todaro M, Medema JP, Stassi G, Di Fabrizio E. Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 2015; 33:35-44. [PMID: 25186497 PMCID: PMC4311668 DOI: 10.1002/stem.1837] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
Abstract
The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label-free Raman spectroscopy and it directly correlates with well-accepted CR-CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR-CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR-CSCs. Stem Cells2015;33:35–44
Collapse
Affiliation(s)
- Luca Tirinato
- PSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia; BioNEM Lab, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Savchuk I, Söder O, Svechnikov K. Mono-2-ethylhexyl phthalate stimulates androgen production but suppresses mitochondrial function in mouse leydig cells with different steroidogenic potential. Toxicol Sci 2015; 145:149-56. [PMID: 25677926 DOI: 10.1093/toxsci/kfv042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous studies have reported on testicular toxicity of phthalates in different experimental paradigms and showed that Leydig cells (LCs) were one of the main targets of phthalate actions. Adverse effects of phthalates on LCs steroidogenesis have been attributed to their metabolites, monophthalates. This study focuses on investigation whether LCs responsiveness to monophthalates action is associated with their potential to produce androgens. We found that of 3 monophthalates investigated [ie, mono-2-ethylhexyl phthalate (MEHP), mono-n-butyl phthalate, and mono-n-benzyl phthalate] only MEHP caused biological effects on the mouse LCs function. This monophthalate stimulated basal steroidogenesis associated with upregulation of StAR protein expression with no effect on hCG-stimulated androgen production by LCs from CBA/Lac and C57BL/6j mouse genotypes were observed. Further, MEHP attenuated ATP production and increased superoxide generation by both phenotypes of mouse LCs that indicated on mitochondrial dysfunction induced by the monophthalate. All together, our data indicate that MEHP-mediated stimulation of steroidogenesis and perturbation in mitochondrial function are not associated with the capacity of the LCs to synthesize androgens. We suggest that this effect of MEHP observed in LCs of rodent origin needs to be taken into consideration in analysis of earlier start of puberty in boys and may highlight a possible influence of phthalates on reproductive health in males.
Collapse
Affiliation(s)
- Iuliia Savchuk
- Department of Woman and Child Health, Pediatric Endocrinology Unit Q2:08, Karolinska Institute and University Hospital, Astrid Lindgren Children's Hospital, SE-17176 Stockholm, Sweden
| | - Olle Söder
- Department of Woman and Child Health, Pediatric Endocrinology Unit Q2:08, Karolinska Institute and University Hospital, Astrid Lindgren Children's Hospital, SE-17176 Stockholm, Sweden
| | - Konstantin Svechnikov
- Department of Woman and Child Health, Pediatric Endocrinology Unit Q2:08, Karolinska Institute and University Hospital, Astrid Lindgren Children's Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
27
|
Martinez-Arguelles DB, Papadopoulos V. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland. Front Endocrinol (Lausanne) 2015; 6:29. [PMID: 25788893 PMCID: PMC4349159 DOI: 10.3389/fendo.2015.00029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/18/2015] [Indexed: 12/18/2022] Open
Abstract
Humans are continuously exposed to hundreds of man-made chemicals that pollute the environment in addition to multiple therapeutic drug treatments administered throughout life. Some of these chemicals, known as endocrine disruptors (EDs), mimic endogenous signals, thereby altering gene expression, influencing development, and promoting disease. Although EDs are eventually removed from the market or replaced with safer alternatives, new evidence suggests that early-life exposure leaves a fingerprint on the epigenome, which may increase the risk of disease later in life. Epigenetic changes occurring in early life in response to environmental toxicants have been shown to affect behavior, increase cancer risk, and modify the physiology of the cardiovascular system. Thus, exposure to an ED or combination of EDs may represent a first hit to the epigenome. Only limited information is available regarding the effect of ED exposure on adrenal function. The adrenal gland controls the stress response, blood pressure, and electrolyte homeostasis. This endocrine organ therefore has an important role in physiology and is a sensitive target of EDs. We review herein the effect of ED exposure on the adrenal gland with particular focus on in utero exposure to the plasticizer di(2-ethylehyl) phthalate. We discuss the challenges associated with identifying the mechanism mediating the epigenetic origins of disease and availability of biomarkers that may identify individual or population risks.
Collapse
Affiliation(s)
- Daniel B. Martinez-Arguelles
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Daniel B. Martinez-Arguelles and Vassilios Papadopoulos, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montréal, QC H3G 1A4, Canada e-mail: ;
| | - Vassilios Papadopoulos
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Daniel B. Martinez-Arguelles and Vassilios Papadopoulos, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montréal, QC H3G 1A4, Canada e-mail: ;
| |
Collapse
|
28
|
Meltzer D, Martinez-Arguelles DB, Campioli E, Lee S, Papadopoulos V. In utero exposure to the endocrine disruptor di(2-ethylhexyl) phthalate targets ovarian theca cells and steroidogenesis in the adult female rat. Reprod Toxicol 2014; 51:47-56. [PMID: 25530038 DOI: 10.1016/j.reprotox.2014.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/02/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is an endocrine disruptor used in industry as an additive to polyvinyl chloride-based products. Pregnant dams were gavaged with oil, 1, 20, 50, or 300mg of DEHP/kg/day from gestational day 14 until birth in order to characterize the effects of DEHP in the adult female offspring. In utero exposure to DEHP resulted in reduced estrogen levels at proestrus. Theca cell layer thickness was decreased starting at 50mg DEHP/kg/day dose. Follicle-stimulating hormone levels were significantly increased at proestrus and estrus. F1 reproduction using a known breeder was not affected. F3 generation showed a decreased pregnancy rate and weight, and increased litter size in the animals exposed to 20mg DEHP/kg/day. The data presented herein suggest that in utero exposure to DEHP targets the theca cell layer and decreases the estrus cycle steroid surge, but despite these effects, does not cause infertility.
Collapse
Affiliation(s)
- Deborah Meltzer
- Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Daniel B Martinez-Arguelles
- Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada; Departments of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Enrico Campioli
- Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada; Departments of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Sunghoon Lee
- Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1A4, Canada; Departments of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1A4, Canada.
| |
Collapse
|
29
|
Martinez-Arguelles DB, Campioli E, Lienhart C, Fan J, Culty M, Zirkin BR, Papadopoulos V. In utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate induces long-term changes in gene expression in the adult male adrenal gland. Endocrinology 2014; 155:1667-78. [PMID: 24564399 DOI: 10.1210/en.2013-1921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plasticizer di-(2-ethylhexyl) phthalate (DEHP) is used to add flexibility to polyvinylchloride polymers and as a component of numerous consumer and medical products. DEHP and its metabolites have been detected in amniotic fluid and umbilical cord blood, suggesting fetal exposure. In the present study, we used an in utero exposure model in which pregnant rat dams were exposed to 1- to 300-mg DEHP/kg·d from gestational day 14 until birth. We previously reported that this window of exposure to environmentally relevant doses of DEHP resulted in reduced levels of serum testosterone and aldosterone in adult male offspring and that the effects on aldosterone were sustained in elderly rats and resulted in decreased blood pressure. Here, we characterized the long-term effects of in utero DEHP exposure by performing global gene expression analysis of prepubertal (postnatal d 21) and adult (postnatal d 60) adrenal glands. We found that the peroxisome proliferator-activated receptor and lipid metabolism pathways were affected by DEHP exposure. Expression of 2 other DEHP targets, hormone-sensitive lipase and phosphoenolpyruvate carboxykinase 1 (Pck1), correlated with reduced aldosterone levels and may account for the inhibitory effect of DEHP on adrenal steroid formation. The angiotensin II and potassium pathways were up-regulated in response to DEHP. In addition, the potassium intermediate/small conductance calcium-activated channel Kcnn2 and 2-pore-domain potassium channel Knck5 were identified as DEHP targets. Based on this gene expression analysis, we measured fatty acid-binding protein 4 and phosphoenolpyruvate carboxykinase 1 in sera from control and DEHP-exposed rats and identified both proteins as putative serum biomarkers of in utero DEHP exposure. These results shed light on molecular targets that mediate DEHP long-term effects and, in doing so, provide means by which to assess past DEHP exposure.
Collapse
Affiliation(s)
- D B Martinez-Arguelles
- Research Institute of the McGill University Health Centre (M.C.); Departments of Medicine (D.B.M.-A., E.C., C.L., J.F., M.C., V.P.), Pharmacology and Therapeutics (D.B.M.-A., E.C., C.L., J.F., M.C., V.P.), and Biochemistry (V.P.), McGill University, Montreal, Québec, Canada H3G 1A4; and Department of Biochemistry and Molecular Biology (B.R.Z.), Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
30
|
Albert O, Jégou B. A critical assessment of the endocrine susceptibility of the human testis to phthalates from fetal life to adulthood. Hum Reprod Update 2013; 20:231-49. [DOI: 10.1093/humupd/dmt050] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Martinez-Arguelles DB, Campioli E, Culty M, Zirkin BR, Papadopoulos V. Fetal origin of endocrine dysfunction in the adult: the phthalate model. J Steroid Biochem Mol Biol 2013; 137:5-17. [PMID: 23333934 DOI: 10.1016/j.jsbmb.2013.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 11/16/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer with endocrine disrupting properties that is found ubiquitously in the environment as well as in human amniotic fluid, umbilical cord blood, human milk, semen, and saliva. It is used in the industry to add flexibility to polyvinyl chloride-derived plastics and its wide spread use and presence has resulted in constant human exposure through fetal development and postnatal life. Epidemiological studies have suggested an association between phthalate exposures and human reproductive effects in infant and adult populations. The effects of fetal exposure to phthalates on the male reproductive system were unequivocally shown on animal models, principally rodents, in which short term deleterious reproductive effects are well established. By contrast, information on the long term effects of DEHP in utero exposure on gonadal function are scarce, while its potential effects on other organs are just starting to emerge. The present review focuses on these novel findings, which suggest that DEHP exerts more complex and broader disruptive effects on the endocrine system and metabolism than previously thought. This article is part of a Special Issue entitled "CSR 2013".
Collapse
Affiliation(s)
- D B Martinez-Arguelles
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
32
|
Zhou L, Beattie MC, Lin CY, Liu J, Traore K, Papadopoulos V, Zirkin BR, Chen H. Oxidative stress and phthalate-induced down-regulation of steroidogenesis in MA-10 Leydig cells. Reprod Toxicol 2013; 42:95-101. [PMID: 23969005 DOI: 10.1016/j.reprotox.2013.07.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 07/15/2013] [Accepted: 07/31/2013] [Indexed: 02/02/2023]
Abstract
Previous studies have shown that phthalate exposure can suppress steroidogenesis. However, the affected components of the steroidogenic pathway, and the mechanisms involved, remain uncertain. We show that incubating MA-10 Leydig cells with mono-(2-ethylhexyl) phthalate (MEHP) resulted in reductions in luteinizing hormone (LH)-stimulated cAMP and progesterone productions. cAMP did not decrease in response to MEHP when the cells were incubated with cholera toxin or forskolin. Incubation of MEHP-treated cells with dibutyryl-cAMP, 22-hydroxycholesterol or pregnenolone inhibited the reductions in progesterone. Increased levels of reactive oxygen species (ROS) occurred in response to MEHP. In cells in which intracellular glutathione was depleted by buthionine sulfoximine pretreatment, the increases in ROS and decreases in progesterone in response to MEHP treatment were exacerbated. These results indicate that MEHP inhibits MA-10 Leydig cell steroidogenesis by targeting LH-stimulated cAMP production and cholesterol transport, and that a likely mechanism by which MEHP acts is through increased oxidative stress.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Heger NE, Hall SJ, Sandrof MA, McDonnell EV, Hensley JB, McDowell EN, Martin KA, Gaido KW, Johnson KJ, Boekelheide K. Human fetal testis xenografts are resistant to phthalate-induced endocrine disruption. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1137-43. [PMID: 22511013 PMCID: PMC3440087 DOI: 10.1289/ehp.1104711] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 04/17/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates. OBJECTIVES In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response. METHODS Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points. RESULTS Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression. CONCLUSIONS Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis.
Collapse
Affiliation(s)
- Nicholas E Heger
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Johnson KJ, Heger NE, Boekelheide K. Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent. Toxicol Sci 2012; 129:235-48. [PMID: 22700540 DOI: 10.1093/toxsci/kfs206] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For over 15 years, reproductive toxicologists have explored the physiological outcomes and mechanism of fetal phthalate exposure to determine the risk posed to human male reproductive health. This review examines the fetal male reproductive system response to phthalate exposure across species including rat, mouse, and human, with emphasis on the testis. In the rat, in utero phthalate exposure causes male reproductive tract malformations, in large part, by targeting the testis and inhibiting fetal Leydig cell hormone production. Despite mouse phthalate pharmacokinetics being similar to the rat, inhibition of fetal Leydig cell hormone synthesis is not observed in the mouse. The species-specific differences in testicular response following in utero phthalate exposure and the discordant reaction of the rodent fetal testis when exposed to phthalates ex vivo versus in vivo have made determining risk to humans difficult, yet critically important. The recent use of fetal testis xenotransplants to study phthalate toxicity suggests that the human fetal testis responds like the mouse fetal testis; it appears refractory to phthalate-induced inhibition of testosterone production. Although this result is unfulfilling from the perspective of identifying environmental contributions to human reproductive maldevelopment, it has important implications for phthalate risk assessment.
Collapse
Affiliation(s)
- Kamin J Johnson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | |
Collapse
|
35
|
Piché CD, Sauvageau D, Vanlian M, Erythropel HC, Robaire B, Leask RL. Effects of di-(2-ethylhexyl) phthalate and four of its metabolites on steroidogenesis in MA-10 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 79:108-115. [PMID: 22236953 DOI: 10.1016/j.ecoenv.2011.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Phthalate plasticizers are used in the plastics industry to aid in processing and impart flexibility to plastics. Due to the broad use of plastics, and the tendency of plasticizers to leach out of polymers, plasticizers have become ubiquitous in the environment. Concerns about the testicular toxicity of phthalate plasticizers, in particular di-(2-ethylhexyl) phthalate (DEHP), have arisen due to their ability to cause male reproductive tract abnormalities in animal models. It has been assumed that the DEHP metabolite, mono-(2-ethylhexyl) phthalate (MEHP), is the active compound, however, metabolites such as 2-ethylhexanol, 2-ethylhexanal and 2-ethylhexanoic acid, have not been thoroughly investigated. The aim of this study was to evaluate the anti-androgenic potential of these metabolites in vitro with a mouse Leydig tumor cell line, MA-10 cells. DEHP, MEHP and 2-ethylhexanal were found to decrease cell viability, as well as steroidogenic potential. The latter was assessed using an enzyme-linked immunosorbent assay (ELISA) to quantify steroid production and quantitative real-time polymerase chain reaction (qRT-PCR) to assess gene expression analysis of key steroidogenic enzymes. 2-Ethylhexanal proved to be the most potent steroidogenic disruptor, offering intriguing implications in the search for the mechanism of phthalate testicular toxicity. Overall, the study suggests the involvement of multiple active metabolites in the testicular toxicity of DEHP.
Collapse
Affiliation(s)
- Carlie D Piché
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2
| | - Dominic Sauvageau
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2; Department of Chemical and Materials Engineering, University of Alberta, 9107 116 Sreet, Edmonton, AB, Canada T6G 2V4
| | - Marie Vanlian
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2
| | - Hanno C Erythropel
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, Canada H3G 1Y6
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, Canada H3A 2B2.
| |
Collapse
|
36
|
Campioli E, Batarseh A, Li J, Papadopoulos V. The endocrine disruptor mono-(2-ethylhexyl) phthalate affects the differentiation of human liposarcoma cells (SW 872). PLoS One 2011; 6:e28750. [PMID: 22205965 PMCID: PMC3244402 DOI: 10.1371/journal.pone.0028750] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/14/2011] [Indexed: 01/04/2023] Open
Abstract
Esters of phthalic acid (phthalates) are largely used in industrial plastics, medical devices, and pharmaceutical formulations. They are easily released from plastics into the environment and can be found in measurable levels in human fluids. Phthalates are agonists for peroxisome proliferator-activated receptors (PPARs), through which they regulate translocator protein (TSPO; 18 kDa) transcription in a tissue-specific manner. TSPO is a drug- and cholesterol-binding protein involved in mitochondrial respiration, steroid formation, and cell proliferation. TSPO has been shown to increase during differentiation and decrease during maturation in mouse adipocytes. The purpose of this study was to establish the effect of mono-(2-ethylhexyl) phthalate (MEHP) on the differentiation of human SW 872 preadipocyte cells, and examine the role of TSPO in the process. After 4 days of treatment with 10 µM MEHP, we observed changes in the transcription of acetyl-CoA carboxylase alpha, adenosine triphosphate citrate lyase, glucose transporters 1 and 4, and the S100 calcium binding protein B, all of which are markers of preadipocyte differentiation. These observed gene expression changes coincided with a decrease in cellular proliferation without affecting cellular triglyceride content. Taken together, these data suggest that MEHP exerts a differentiating effect on human preadipocytes. Interestingly, MEHP was able to temporarily increase TSPO mRNA levels through the PPAR-α and β/δ pathways. These results suggest that TSPO can be considered an important player in the differentiation process itself, or alternatively a factor whose presence is essential for adipocyte development.
Collapse
Affiliation(s)
- Enrico Campioli
- Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Amani Batarseh
- Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jiehan Li
- Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
37
|
Erkekoglu P, Zeybek ND, Giray B, Asan E, Arnaud J, Hincal F. Reproductive toxicity of di(2-ethylhexyl) phthalate in selenium-supplemented and selenium-deficient rats. Drug Chem Toxicol 2011; 34:379-89. [DOI: 10.3109/01480545.2010.547499] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Svechnikova K, Svechnikova I, Söder O. Gender-Specific Adverse Effects of Mono-Ethylhexyl Phthalate on Steroidogenesis in Immature Granulosa Cells and Rat Leydig cell Progenitors in vitro. Front Endocrinol (Lausanne) 2011; 2:9. [PMID: 22649361 PMCID: PMC3355864 DOI: 10.3389/fendo.2011.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/07/2011] [Indexed: 11/30/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate, one of the phthalates most widely distributed in the environment, causes reproductive toxicity that is attributable to the action of its primary metabolite, mono-(2-ethylhexyl) phthalate (MEHP). Here, we have investigated the effects of MEHP on steroidogenesis by primary cultures of rat Leydig cell progenitors and immature granulosa cells. This phthalate stimulated basal steroidogenesis and steroidogenic acute regulatory protein (StAR) expression in both types of steroidogenic cells. However, when MEHP was incubated with (Bu)(2)cAMP, steroid production was increased in granulosa cells and suppressed in Leydig cell progenitors, a process associated with up-regulation of StAR expression. Our data suggest that MEHP exerts gender-specific adverse effects on the hormonal function of the developing gonads. This may be involved in the development of pathological conditions including disorders of prenatal sex development that may attenuate future reproductive health.
Collapse
Affiliation(s)
- Konstantin Svechnikova
- Department of Woman and Child Health, Pediatric Endocrinology Unit, Karolinska Institute and University HospitalStockholm, Sweden
- *Correspondence: Konstantin Svechnikov, Department of Woman and Child Health, Pediatric Endocrinology Unit, Q2:08, Karolinska Institute and Hospital, Astrid Lindgren Children's Hospital, S-17176 Stockholm, Sweden. e-mail:
| | - Irina Svechnikova
- Department of Woman and Child Health, Pediatric Endocrinology Unit, Karolinska Institute and University HospitalStockholm, Sweden
| | - Olle Söder
- Department of Woman and Child Health, Pediatric Endocrinology Unit, Karolinska Institute and University HospitalStockholm, Sweden
| |
Collapse
|
39
|
Evaluating the effects of immunotoxicants using carbon fiber microelectrode amperometry. Anal Bioanal Chem 2010; 398:2979-85. [DOI: 10.1007/s00216-010-4263-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 11/25/2022]
|
40
|
Fan J, Traore K, Li W, Amri H, Huang H, Wu C, Chen H, Zirkin B, Papadopoulos V. Molecular mechanisms mediating the effect of mono-(2-ethylhexyl) phthalate on hormone-stimulated steroidogenesis in MA-10 mouse tumor Leydig cells. Endocrinology 2010; 151:3348-62. [PMID: 20463053 PMCID: PMC2903930 DOI: 10.1210/en.2010-0010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Di-(2-ethylhexyl) phthalate, a widely used plasticizer, and its active metabolite, mono-(2-ethylhexyl) phthalate (MEHP), have been shown to exert adverse effects on the reproductive tract in developing and adult animals. As yet, however, the molecular mechanisms by which they act are uncertain. In the present study, we address the molecular and cellular mechanisms underlying the effects of MEHP on basal and human chorionic gonadotropin (hCG)-stimulated steroid production by MA-10 Leydig cells, using a systems biology approach. MEHP induced dose-dependent decreases in hCG-stimulated steroid formation. Changes in mRNA and protein expression in cells treated with increasing concentrations of MEHP in the presence or absence of hCG were measured by gene microarray and protein high-throughput immunoblotting analyses, respectively. Expression profiling indicated that low concentrations of MEHP induced the expression of a number of genes that also were expressed after hCG stimulation. Cross-comparisons between the hCG and MEHP treatments revealed two genes, Anxa1 and AR1. We suggest that these genes may be involved in a new self-regulatory mechanism of steroidogenesis. The MEHP-induced decreases in hCG-stimulated steroid formation were paralleled by increases in reactive oxygen species generation, with the latter mediated by the Cyp1a1 gene and its network. A model for the mechanism of MEHP action on MA-10 Leydig cell steroidogenesis is proposed.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Clewell RA, Campbell JL, Ross SM, Gaido KW, Clewell HJ, Andersen ME. Assessing the relevance of in vitro measures of phthalate inhibition of steroidogenesis for in vivo response. Toxicol In Vitro 2010; 24:327-34. [DOI: 10.1016/j.tiv.2009.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
|
42
|
Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 2009; 30:883-925. [PMID: 19887492 DOI: 10.1210/er.2009-0016] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Masculinization depends on adequate production of testosterone by the fetal testis within a specific "masculinization programming window." Disorders resulting from subtle deficiencies in this process are common in humans, and environmental exposures/lifestyle could contribute causally because common therapeutic and environmental compounds can affect steroidogenesis. This evidence derives mainly from rodent studies, but because there are major species differences in regulation of steroidogenesis in the fetal testis, this may not always be a guide to potential effects in the human. In addition to direct study of the effects of compounds on steroidogenesis, information also derives from study of masculinization disorders that result from mutations in genes in pathways regulating steroidogenesis. This review addresses this issue by critically reviewing the comparative timing of production and regulation of steroidogenesis in the fetal testis of humans and of rodents and its susceptibility to disruption; where there is limited information for the fetus, evidence from effects on steroidogenesis in the adult testis is considered. There are a number of fundamental regulatory differences between the human and rodent fetal testis, most notably in the importance of paracrine vs. endocrine drives during masculinization such that inactivating LH receptor mutations block masculinization in humans but not in rodents. Other large differences involve the steroidogenic response to estrogens and GnRH analogs and possibly phthalates, whereas for other compounds there may be differences in sensitivity to disruption (ketoconazole). This comparison identifies steroidogenic targets that are either vulnerable (mitochondrial cholesterol transport, CYP11A, CYP17) or not (cholesterol uptake) to chemical interference.
Collapse
Affiliation(s)
- Hayley M Scott
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | |
Collapse
|
43
|
Laguë E, Tremblay JJ. Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology 2008; 149:4688-94. [PMID: 18499751 DOI: 10.1210/en.2008-0310] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like 3 (INSL3) is a small peptide produced by testicular Leydig cells throughout embryonic and postnatal life and by theca and luteal cells of the adult ovary. During fetal life, INSL3 regulates testicular descent in males, whereas in adults, it acts as an antiapoptotic factor for germ cells in males and as a follicle selection and survival factor in females. Despite its considerable roles in the reproductive system, the mechanisms that regulate Insl3 expression remain poorly understood. There is accumulating evidence suggesting that androgens might regulate Insl3 expression in Leydig cells, but transcriptional data are still lacking. We now report that testosterone does increase Insl3 mRNA levels in a Leydig cell line and primary Leydig cells. We also show that testosterone activates the activity of the Insl3 promoter from different species. In addition, the testosterone-stimulating effects on Insl3 mRNA levels and promoter activity require the androgen receptor. We have mapped the testosterone-responsive element to the proximal Insl3 promoter region. This region, however, lacks a consensus androgen response element, suggesting an indirect mechanism of action. Finally we show that mono-(2-ethylhexyl) phthalate, a widely distributed endocrine disruptor with antiandrogenic activity previously shown to inhibit Insl3 expression in vivo, represses Insl3 transcription, at least in part, by antagonizing testosterone/androgen receptor action. All together our data provide important new insights into the regulation of Insl3 transcription in Leydig cells and the mode of action of phthalates.
Collapse
Affiliation(s)
- Eric Laguë
- Department of Reproduction, Perinatal, and Child Health, Centre Hospitalier Universitaire of Québec Research Centre, CHUL Room T1-49, 2705 Laurier Boulevard, Québec City, Québec, Canada G1V 4G2
| | | |
Collapse
|
44
|
Inhibitory effects of mono-ethylhexyl phthalate on steroidogenesis in immature and adult rat Leydig cells in vitro. Reprod Toxicol 2008; 25:485-90. [DOI: 10.1016/j.reprotox.2008.05.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/11/2008] [Accepted: 05/13/2008] [Indexed: 11/22/2022]
|
45
|
Saraiva KLA, Silva VAD, Torres DDOC, Donato MAM, Peres NG, Souza JRBD, Peixoto CA. Changes in mouse Leydig cells ultrastructure and testosterone secretion after diethylcarbamazine administration. Micron 2008; 39:580-6. [PMID: 17681769 DOI: 10.1016/j.micron.2007.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/15/2007] [Accepted: 06/17/2007] [Indexed: 11/26/2022]
Abstract
Diethylcarbamazine (DEC) has been proven to be highly effective against lymphatic filariasis, although its effect on vertebrate cells remains uncertain. Mice Leydig cells after treatment with 200mg/kg of DEC for 12 days showed numerous lipid droplets, degenerated mitochondria, residual bodies and several giant whorl-like smooth endoplasmic reticulum, some of them encircling large lipids droplets. Treatment with lower dosages showed similar alterations on Leydig cells and the morphological effects decreased directly proportional to the drug concentration. Serum testosterone levels were significantly lower only in 200 mg/kg DEC-treated group when compared to the controls. However, no significant changes were observed in the pregnancy rates and offspring number of DEC-treated male-mated female mice in any doses studied. The results obtained in the present study are consistent with the hypothesis that DEC has some effects on mice Leydig cells, although they were not sufficient enough to interfere with the rodent fertility.
Collapse
Affiliation(s)
- Karina Lidianne Alcântara Saraiva
- Departamento de Biologia Celular e Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (FIOCRUZ), e Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Culty M, Thuillier R, Li W, Wang Y, Martinez-Arguelles DB, Benjamin CG, Triantafilou KM, Zirkin BR, Papadopoulos V. In Utero Exposure to Di-(2-ethylhexyl) Phthalate Exerts Both Short-Term and Long-Lasting Suppressive Effects on Testosterone Production in the Rat1. Biol Reprod 2008; 78:1018-28. [DOI: 10.1095/biolreprod.107.065649] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
47
|
Gunnarsson D, Leffler P, Ekwurtzel E, Martinsson G, Liu K, Selstam G. Mono-(2-ethylhexyl) phthalate stimulates basal steroidogenesis by a cAMP-independent mechanism in mouse gonadal cells of both sexes. Reproduction 2008; 135:693-703. [DOI: 10.1530/rep-07-0460] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phthalates are widely used as plasticizers in a number of daily-life products. In this study, we investigated the influence of mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of the frequently used plasticizer di-(2-ethylhexyl) phthalate (DEHP), on gonadal steroidogenesisin vitro. MEHP (25–100 μM) stimulated basal steroid synthesis in a concentration-dependent manner in immortalized mouse Leydig tumor cells (MLTC-1). The stimulatory effect was also detected in KK-1 granulosa tumor cells. MEHP exposure did not influence cAMP or StAR protein levels and induced a gene expression profile of key steroidogenic proteins different from the one induced by human chorionic gonadotropin (hCG). Simultaneous treatment with MEHP and a p450scc inhibitor (aminoglutethimide) indicated that MEHP exerts its main stimulatory effect prior to pregnenolone formation. MEHP (10–100 μM) up-regulated hormone-sensitive lipase and 3-hydroxy-3-methylglutaryl coenzyme A reductase, suggesting that MEHP increases the amount of cholesterol available for steroidogenesis. Our data suggest that MEHP, besides its known inhibitory effect on hCG action, can directly stimulate gonadal steroidogenesis in both sexes through a cAMP- and StAR-independent mechanism. The anti-steroidogenic effect of DEHP has been proposed to cause developmental disorders such as hypospadias and cryptorchidism, whereas a stimulation of steroid synthesis may prematurely initiate the onset of puberty and theoretically affect the hypothalamic–pituitary–gonadal axis.
Collapse
|
48
|
Ragnvaldsson D, Brochu S, Wingfors H. Pressurized liquid extraction with water as a tool for chemical and toxicological screening of soil samples at army live-fire training ranges. JOURNAL OF HAZARDOUS MATERIALS 2007; 142:418-24. [PMID: 17030090 DOI: 10.1016/j.jhazmat.2006.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 08/15/2006] [Accepted: 08/17/2006] [Indexed: 05/12/2023]
Abstract
Significant discrepancies in the results of risk assessments based on chemical and toxicity analyses of soils may arise through differences in the efficiency of the extraction or leaching methods used. A rapid technique that may be used in the screening phase of live-fire training ranges and suitable for extracting explosive residues is pressurized liquid extraction (PLE) with water. Therefore, PLE and the commonly used batch leaching method EN-124 57-2 were compared for their utility to extract specific residues from soil samples collected from the Canadian Forces Base (CFB) Petawawa, Ontario. After extraction the cytotoxicity of the samples were assessed in the L-929 growth inhibition assay. The PLE method yielded extracts suitable for direct use in the toxicity assay within 20 min as compared to 24h for the batch leaching method. Analysis of the extracts showed that the PLE water extracts tended to give higher recoveries of explosive residues and the resulting exposure concentrations were confirmed by higher cytotoxicities. Furthermore, gas chromatography-mass spectrometry analyses showed that the samples contained significant amounts of several munition-related stabilizers and plasticizers of toxicological significance in addition to the analysed explosive residues. In conclusion, PLE using water is a promising extraction technique for both chemical and toxicological screening of soil samples from areas that may be contaminated with explosive residues.
Collapse
Affiliation(s)
- D Ragnvaldsson
- Department of Threat Assessment, Division of NBC-Defence, Swedish Defence Research Agency, FOI, SE-90182 Umeå, Sweden
| | | | | |
Collapse
|
49
|
Saraiva KLA, Silva VAJ, Dias ESF, Peixoto CA. Morphological changes in the testis induced by diethylcarbamazine. Reprod Toxicol 2006; 22:754-9. [PMID: 17005367 DOI: 10.1016/j.reprotox.2006.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 06/02/2006] [Accepted: 07/18/2006] [Indexed: 11/17/2022]
Abstract
Diethylcarbamazine (DEC) had been proved to be highly effective against lymphatic filariasis, however its effect on vertebrate cells remains uncertain. After 12 days treatment with DEC, most of the Leydig cells were hypertrophied with several lipid droplets, and others had no nucleus and presented characteristic steatosis features. Vacuolization of Sertoli cells was also noted. Ultrastructural analyses of DEC-treated testes revealed spermatogonies with morphological characteristics of apoptosis, as shrinkage of cytoplasm and increased chromosomal density. In addition, Leydig cells showed numerous lipid droplets scattered throughout the cytoplasm, multivesicular bodies and giant whorl-like smooth endoplasmic reticulum. Several spermatids presented vacuolated mitochondriae, which were disorganized in relation to the microtubular axis of the flagellae. These results indicate that DEC probably affects the microtubular function, however the present data does not exclude the possibility that DEC also can act directly on enzymatic hormonal pathways.
Collapse
Affiliation(s)
- Karina Lidianne Alcântara Saraiva
- Departamento de Biologia Celular e Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (FIOCRUZ), e Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
50
|
Mantovani A, Maranghi F. Risk assessment of chemicals potentially affecting male fertility. Contraception 2005; 72:308-13. [PMID: 16181977 DOI: 10.1016/j.contraception.2005.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/06/2005] [Indexed: 01/12/2023]
Abstract
Male reproductive toxicity involves a broad range of targets and mechanisms such as direct effects on the seminiferous epithelium and/or on Leydig and Sertoli cells supporting spermatogenesis, epididymal sperm maturation as well as endocrine disruption. Direct effects on spermatogenesis may be adequately revealed through both reproduction and repeated-dose toxicity studies; however, more research is needed on early markers of effect and on long-term sequelae of short-term exposures. Endocrine-related mechanisms are particularly relevant to subtle, but persistent effects on reproductive development due to altered early programming; the two-generation study is the test of choice, whereas targeted studies on the prepubertal phase are also desirable. Studies using in vitro methods as well as toxicogenomics are increasing; although gaps exist and much validation work is needed, in perspective, such approaches may be important in order to select compound, understand mechanisms, as well identify biomarkers of potential use also in human studies.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | |
Collapse
|