1
|
Mihalj D, Bukatova S, Reichova A, Havranek T, Bacova Z, Szeiffova Bacova B, Bakos J. Developmental effects of oxytocin on GABAergic neurons in the olfactory brain regions. Neuroscience 2024; 555:184-193. [PMID: 39094821 DOI: 10.1016/j.neuroscience.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Oxytocin affects social recognition, interactions, and behavior in adults. Despite growing data on the role of oxytocin in the sensory systems, its effects on early olfactory system development remain poorly understood. The present study aimed to investigate the developmental impact of oxytocin on selected parameters of the GABAergic system in olfactory brain regions. We found a significant increase in the expression of GABAergic markers and scaffolding proteins in the olfactory bulb during the early stages of development in both male and female rats, regardless of oxytocin treatment administered on postnatal days 2 and 3 (P2 and P3, 5 µg/pup). Oxytocin administration markedly reduced the expression of the scaffolding protein Gephyrin in male rats and it led to a significant increase in the number of GABAergic synaptic puncta in the piriform cortex of male rats at P5, P7, and P9. Our data suggest that the developmental action of oxytocin in relation to the GABAergic system may represent a mechanism by which the plasticity and maturation of olfactory brain regions are regulated.
Collapse
Affiliation(s)
- Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Szeiffova Bacova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
2
|
Umino A, Iwama H, Umino M, Shimazu D, Kiuchi Y, Nishikawa T. Effects of Quinolinate-Induced Lesion of the Medial Prefrontal Cortex on Prefrontal and Striatal Concentrations of D-Serine in the Rat. Neurochem Res 2022; 47:2728-2740. [PMID: 35604516 DOI: 10.1007/s11064-022-03627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
D-Serine has been shown to play an important role in the expression and control of a variety of brain functions by acting as the endogenous coagonist for the N-methyl-D-aspartate type glutamate receptor (NMDAR), at least, in the forebrain. To obtain further insight into the still debatable cellular localization of the D-amino acid, we have examined the effects of the selective destruction of the neuronal cell bodies by quinolinate on the tissue or extracellular D-serine concentrations in the medial prefrontal cortex of the rat. A local quinolinate infusion into the bilateral medial prefrontal cortex produced a cortical lesion with a marked (- 65%) and non-significant alteration (- 5%) in the cortical and striatal tissue D-serine concentrations, respectively, 7 days post-infusion. In vivo microdialysis experiments in the right prefrontal lesion site 9 days after the quinolinate application revealed that the basal extracellular D-serine levels were also dramatically reduced (- 64%). A prominent reduction in the tissue levels of GABA in the interneurons of the prefrontal cortex (- 78%) without significant changes in those in the striatum (+ 12%) verified that a major lesion part was confined to the cortical portion. The lack of a significant influence of the prefrontal quinolinate lesion on its dopamine concentrations in the mesocortical dopamine projections suggests that the nerve terminals and axons in the lesion site may be spared. These findings are consistent with the perikarya-selective nature of the present quinolinate-induced lesion and further support the view that neuronal cell bodies of intrinsic neurons in the prefrontal cortical region contain substantial amounts of D-serine, which may sustain the basal extracellular concentrations of D-serine.
Collapse
Affiliation(s)
- Asami Umino
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan.,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan
| | - Hisayuki Iwama
- Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.,Kanagawa Psychiatric Center, Yokohama-shi, Kanagawa, 233-0006, Japan
| | - Masakazu Umino
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan.,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Dai Shimazu
- Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.,Musashishinjo-Kokorono Clinic, Kawasaki-shi, Kanagawa, 211-0044, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Toru Nishikawa
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan. .,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.
| |
Collapse
|
3
|
Barbieri Caus L, Pasquetti MV, Seminotti B, Woontner M, Wajner M, Calcagnotto ME. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I. J Neurosci Res 2021; 100:992-1007. [PMID: 34713466 DOI: 10.1002/jnr.24980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/11/2022]
Abstract
Glutaric acidemia type I (GA-I) is an inborn error of metabolism of lysine, hydroxylysine, and tryptophan, caused by glutaryl-CoA-dehydrogenase (GCDH) deficiency, characterized by the buildup of toxic organic acids predominantly in the brain. After acute catabolic states, patients usually develop striatal degeneration, but the mechanisms behind this damage are still unknown. Quinolinic acid (QA), a metabolite of the kynurenine pathway, increases especially during infections/inflammatory processes, and could act synergically with organic acids, contributing to the neurological features of GA-I. The aim of this study was to investigate whether QA increases seizure susceptibility and modifies brain oscillation patterns in an animal model of GA-I, the Gcdh-/- mice taking high-lysine diet (Gcdh-/- -Lys). Therefore, the characteristics of QA-induced seizures and changes in brain oscillatory patterns were evaluated by video-electroencephalography (EEG) analysis recorded in Gcdh-/- -Lys, Gcdh+/+ -Lys, and Gcdh-/- -N (normal diet) animals. We found that the number of seizures per animal was similar for all groups receiving QA, Gcdh-/- -Lys-QA, Gcdh+/+ -Lys-QA, and Gcdh-/- -N-QA. However, severe seizures were observed in the majority of Gcdh-/- -Lys-QA mice (82%), and only in 25% of Gcdh+/+ -Lys-QA and 44% of Gcdh-/- -N-QA mice. All Gcdh-/- -Lys animals developed spontaneous recurrent seizures (SRS), but Gcdh-/- -Lys-QA animals had increased number of SRS, higher mortality rate, and significant predominance of lower frequency oscillations on EEG. Our results suggest that QA plays an important role in the neurological features of GA-I, as Gcdh-/- -Lys mice exhibit increased susceptibility to intrastriatal QA-induced seizures and long-term changes in brain oscillations.
Collapse
Affiliation(s)
- Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bianca Seminotti
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Woontner
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Moacir Wajner
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
O'Connell AB, Kuchel TR, Perumal SR, Sherwood V, Neumann D, Finnie JW, Hemsley KM, Morton AJ. Longitudinal Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging in Sheep (Ovis aries) With Quinolinic Acid Lesions of the Striatum: Time-Dependent Recovery of N-Acetylaspartate and Fractional Anisotropy. J Neuropathol Exp Neurol 2021; 79:1084-1092. [PMID: 32743645 DOI: 10.1093/jnen/nlaa053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Indexed: 12/19/2022] Open
Abstract
We created an excitotoxic striatal lesion model of Huntington disease (HD) in sheep, using the N-methyl-d-aspartate receptor agonist, quinolinic acid (QA). Sixteen sheep received a bolus infusion of QA (75 µL, 180 mM) or saline, first into the left and then (4 weeks later) into the right striatum. Magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) of the striata were performed. Metabolite concentrations and fractional anisotropy (FA) were measured at baseline, acutely (1 week after each surgery) and chronically (5 weeks or greater after the surgeries). There was a significant decrease in the neuronal marker N-acetylaspartate (NAA) and in FA in acutely lesioned striata of the QA-lesioned sheep, followed by a recovery of NAA and FA in the chronically lesioned striata. NAA level changes indicate acute death and/or impairment of neurons immediately after surgery, with recovery of reversibly impaired neurons over time. The change in FA values of the QA-lesioned striata is consistent with acute structural disruption, followed by re-organization and glial cell infiltration with time. Our study demonstrates that MRS and DTI changes in QA-sheep are consistent with HD-like pathology shown in other model species and that the MR investigations can be performed in sheep using a clinically relevant human 3T MRI scanner.
Collapse
Affiliation(s)
- Adam B O'Connell
- Pre-Clinical, Imaging and Research Laboratories (PIRL), South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia.,School of Medical Specialties, University of Adelaide, Adelaide, South Australia
| | - Timothy R Kuchel
- Pre-Clinical, Imaging and Research Laboratories (PIRL), South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia
| | - Sunthara R Perumal
- Pre-Clinical, Imaging and Research Laboratories (PIRL), South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia
| | | | - Daniel Neumann
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, SAHMRI, Adelaide, Australia.,Childhood Dementia Research Group, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - John W Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide and SA Pathology, Adelaide, Australia
| | - Kim M Hemsley
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, SAHMRI, Adelaide, Australia.,Childhood Dementia Research Group, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| |
Collapse
|
5
|
Lavisse S, Inoue K, Jan C, Peyronneau MA, Petit F, Goutal S, Dauguet J, Guillermier M, Dollé F, Rbah-Vidal L, Van Camp N, Aron-Badin R, Remy P, Hantraye P. [18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain. Eur J Nucl Med Mol Imaging 2014; 42:478-94. [PMID: 25488184 DOI: 10.1007/s00259-014-2962-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/12/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE We aimed to characterize pharmacologically the TSPO- radioligand [(18)F]DPA-714 in the brain of healthy cynomolgus monkeys and evaluate the cellular origin of its binding in a model of neurodegeneration induced by intrastriatal injection of quinolinic acid (QA). METHODS [(18)F]DPA-714 PET images were acquired before and at 2, 7, 14, 21, 49, 70, 91 days after putaminal lesioning. Blocking and displacement studies were carried out (PK11195). Different modelling approaches estimated rate constants and V T (total distribution volume) which was used to measure longitudinal changes in the lesioned putamen. Sections for immunohistochemical labelling were prepared at the same time-points to evaluate correlations between in vivo [(18)F]DPA-714 binding and microglial/astrocytic activation. RESULTS [(18)F]DPA-714 showed a widespread distribution with a higher signal in the thalamus and occipital cortex and lower binding in the cerebellum. TSPO was expressed throughout the whole brain and about 73 % of [(18)F]DPA-714 binding was specific for TSPO in vivo. The one-tissue compartment model (1-TCM) provided good and reproducible estimates of V T and rate constants, and V T values from the 1-TCM and the Logan approach were highly correlated (r (2) = 0.85). QA lesioning induced an increase in V T, which was +17 %, +54 %, +157 % and +39 % higher than baseline on days 7, 14, 21 and 91 after QA injection, respectively. Immunohistochemistry revealed an early microglial and a delayed astrocytic activation after QA injection. [(18)F]DPA-714 binding matched TSPO immunopositive areas and showed a stronger colocalization with CD68 microglia than with GFAP-activated astrocytes. CONCLUSION [(18)F]DPA-714 binds to TSPO with high specificity in the primate brain under normal conditions and in the QA model. This tracer provides a sensitive tool for assessing neuroinflammation in the human brain.
Collapse
Affiliation(s)
- S Lavisse
- CEA, I2BM, MIRCen, 18 route du Panorama, 92260, Fontenay-aux-Roses, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M, Pessoa-Pureur R. Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 2014; 281:2061-73. [DOI: 10.1111/febs.12762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/03/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Carolina G. Fernandes
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Márcio F. Dutra
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Biologia Celular, Embriologia e Genética; Centro Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC Brasil
| | - Pablo Pandolfo
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Neurobiologia; Instituto de Biologia; Universidade Federal Fluminense; Niterói RJ Brasil
| | - Fernanda Ferreira
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Bárbara O. de Lima
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Lisiane Porciúncula
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Moacir Wajner
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| |
Collapse
|
7
|
Zhang Z, Lu C, Liu X, Su J, Dai W, Yan S, Lu A, Zhang W. Global and Targeted Metabolomics Reveal That Bupleurotoxin, a Toxic Type of Polyacetylene, Induces Cerebral Lesion by Inhibiting GABA Receptor in Mice. J Proteome Res 2013; 13:925-33. [DOI: 10.1021/pr400968c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongxiao Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Cheng Lu
- Institute
of Basic
Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing 100700, PR China
| | - Xinru Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Juan Su
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Weixing Dai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Aiping Lu
- Institute
of Basic
Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing 100700, PR China
- School of Chinese
Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
8
|
Kumar P, Kalonia H, Kumar A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur J Pharmacol 2012; 674:265-74. [DOI: 10.1016/j.ejphar.2011.11.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 11/12/2011] [Accepted: 11/16/2011] [Indexed: 11/29/2022]
|
9
|
Young SZ, Taylor MM, Bordey A. Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur J Neurosci 2011; 33:1123-32. [PMID: 21395856 DOI: 10.1111/j.1460-9568.2011.07611.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Adult neurogenesis occurs in two privileged microenvironments, the hippocampal subgranular zone of the dentate gyrus and the subventricular zone (SVZ) along the lateral ventricle. This review focuses on accumulating evidence suggesting that the activity of specific brain regions or bodily states influences SVZ cell proliferation and neurogenesis. Neuromodulators such as dopamine and serotonin have been shown to have long-range effects through neuronal projections into the SVZ. Local γ-aminobutyric acid and glutamate signaling have demonstrated effects on SVZ proliferation and neurogenesis, but an extra-niche source of these neurotransmitters remains to be explored and options will be discussed. There is also accumulating evidence that diseases and bodily states such as Alzheimer's disease, seizures, sleep and pregnancy influence SVZ cell proliferation. With such complex behavior and environmentally-driven factors that control subregion-specific activity, it will become necessary to account for overlapping roles of multiple neurotransmitter systems on neurogenesis when developing cell therapies or drug treatments.
Collapse
Affiliation(s)
- Stephanie Z Young
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, FMB 422, New Haven, CT 06520-8082, USA
| | | | | |
Collapse
|
10
|
Rekik L, Daguin-Nerrière V, Petit JY, Brachet P. γ-Aminobutyric acid type B receptor changes in the rat striatum and substantia nigra following intrastriatal quinolinic acid lesions. J Neurosci Res 2011; 89:524-35. [PMID: 21290407 DOI: 10.1002/jnr.22574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 12/16/2023]
Abstract
Changes in the regional distribution of the metabotropic GABA type B receptors (GABA(B)) were investigated in a rat model of Huntington's disease. Animals received a unilateral intrastriatal injection of quinolinic acid (QA), and GABA(B) immunoreactivity was monitored 3, 11, and 21 days postinjection in the striatum and substantia nigra (SN). Two antibodies, recognizing either the GABA(B1) or the GABA(B2) receptor subtypes, were used. QA injection rapidly induced a protracted increase in GABA(B1) or GABA(B2) immunoreactivity in the lesioned striatum, despite the neuronal loss. In the SN, a continuous increase in GABA(B1) and GABA(B2) immunoreactivity was observed at all time points in the ipsilateral pars reticulata (SNr), whereas the pars compacta (SNc) was unaffected by this phenomenon. This increase was supported by a densitometric analysis. At day 21 postlesion induction, intensely labeled stellate cells and processes were found in the ipsilateral SNr, in addition to immunoreactive neurons. Double labeling of GABA(B1) and glial fibrillary acidic protein (GFAP) showed that the stellate cells were reactive astrocytes. Hence, part of the sustained increase in GABA(B) immunoreactivity that takes place in the SNr and possibly the striatum may be ascribed to reactive astrocytes. It is suggested that GABA(B) receptors are up-regulated in these reactive astrocytes and that agonists might influence the extent of this astroglial reaction.
Collapse
Affiliation(s)
- Letaïef Rekik
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | | | | | | |
Collapse
|
11
|
Richards G, Messer J, Waldvogel HJ, Gibbons HM, Dragunow M, Faull RL, Saura J. Up-regulation of the isoenzymes MAO-A and MAO-B in the human basal ganglia and pons in Huntington's disease revealed by quantitative enzyme radioautography. Brain Res 2011; 1370:204-14. [DOI: 10.1016/j.brainres.2010.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/16/2022]
|
12
|
Picazo O, Becerril-Montes A, Huidobro-Perez D, Garcia-Segura LM. Neuroprotective actions of the synthetic estrogen 17alpha-ethynylestradiol in the hippocampus. Cell Mol Neurobiol 2010; 30:675-82. [PMID: 20044777 DOI: 10.1007/s10571-009-9490-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 12/15/2009] [Indexed: 12/23/2022]
Abstract
17alpha-ethynylestradiol (EE2), a major constituent of many oral contraceptives, is similar in structure to 17beta-estradiol, which has neuroprotective properties in several animal models. This study explored the potential neuroprotective actions of EE2 against kainic and quinolinic acid toxicity in the hippocampus of adult ovariectomized Wistar rats. A decrease in the number of Nissl-stained neurons and the induction of vimentin immunoreactivity in astrocytes was observed in the hilus of the dentate gyrus of the hippocampus after the administration of either kainic acid or quinolinic acid. EE2 prevented the neuronal loss and the induction of vimentin immunoreactivity induced by kainic acid at low (1 microg/rat) and high (10-100 microg/rat) doses and exerted a protection against quinolinic acid toxicity at a low dose (1 microg/rat) only. These observations demonstrate that EE2 exerts neuroprotective actions against excitotoxic insults. This finding is relevant for the design of new neuroprotective estrogenic compounds.
Collapse
Affiliation(s)
- Ofir Picazo
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón Col. Sto. Tomás, 11340 Mexico DF, Mexico
| | | | | | | |
Collapse
|
13
|
Velloso NA, Dalmolin GD, Gomes GM, Rubin MA, Canas PM, Cunha RA, Mello CF. Spermine improves recognition memory deficit in a rodent model of Huntington's disease. Neurobiol Learn Mem 2009; 92:574-80. [PMID: 19632348 DOI: 10.1016/j.nlm.2009.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 11/18/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder associated with motor and cognitive impairment. Intrastriatal administration of quinolinic acid (QA) causes neurodegeneration, glial proliferation and cognitive impairment in animals, which are similar to these seen in human HD. Since polyamines improve memory in cognitive tasks, we now tested if the post-training intrastriatal administration of spermine, an agonist of the polyamine site at the NMDA receptor, reverses the deficits in the object recognition task induced by QA. Bilateral striatal injections of QA (180 or 360 nmol/site) caused object recognition impairment, neuronal death and reactive astrogliosis. A single injection of spermine (0.1 and 1 nmol/site), 5 days after QA injection, reversed QA-induced impairment of object recognition task. Spermine (0.1 nmol/site) also inhibited QA-induced reactive astrogliosis measured by a semi-quantitative determination of GFAP immunolabelling, but did not alter neuronal death, measured by a semi-quantitative determination of fluoro-Jade C staining. These results suggest that polyamine binding sites may be considered a novel therapeutic target to prevent reactive astrogliosis and mnemonic deficits in HD.
Collapse
Affiliation(s)
- Nádia A Velloso
- Department of Chemistry, Center of Exact and Natural Sciences, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Borgonovo J, Seltzer A, Sosa MA. Acute intrastriatal administration of quinolinic acid affects the expression of the coat protein AP-2 and its interaction with membranes. J Neural Transm (Vienna) 2009; 116:1201-8. [PMID: 19597933 DOI: 10.1007/s00702-009-0262-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/27/2009] [Indexed: 11/26/2022]
Abstract
Clathrin-coated vesicle endocytosis is thought to be crucial for the maintenance of synaptic transmission and for the cell plasticity at the nervous system. In this study, we demonstrated that acute intrastriatal administration of quinolinic acid (QUIN), an agonist of the N-methyl-D: -aspartate receptor, induces a decrease of the coat protein AP-2 expression and affects their interaction with membranes. By western blot analysis we observed that at 24 h after QUIN intrastriatal injection, alpha1 subunit of AP-2 and alpha2, at lesser extent, were reduced in the striatal membranes. The decrease of both subunits expression was extended to 48 h after treatment, although the soluble proteins were mostly affected. Other areas of the brain were not affected by the treatment, except the cerebellum, where a significant increase of soluble AP-2 (both subunits) was observed at 48 h after injection. Another coat protein, as the phosphoprotein AP-180, was not affected by the injection of QUIN. We also confirmed that QUIN injection causes increasing loss of striatal neurons after the administration of the toxin. We concluded that QUIN may affect the endocytotic machinery of the striatum, by inducing changes in the AP-2 behaviour. Consequently, the internalization of NMDAR and/or AMPAR may be affected, by QUIN, contributing to the excitotoxic effect of the drug.
Collapse
Affiliation(s)
- Janina Borgonovo
- Laboratorio de Biología y Fisiología Celular Dr. Francisco Bertini, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | |
Collapse
|
15
|
Allen K, Waldvogel H, Glass M, Faull R. Cannabinoid (CB1), GABAA and GABAB receptor subunit changes in the globus pallidus in Huntington's disease. J Chem Neuroanat 2009; 37:266-81. [DOI: 10.1016/j.jchemneu.2009.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
16
|
Hauber W, Sommer S. Prefrontostriatal circuitry regulates effort-related decision making. Cereb Cortex 2009; 19:2240-7. [PMID: 19131436 DOI: 10.1093/cercor/bhn241] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The anterior cingulate cortex (ACC), the basolateral amygdala (BLA), and the dopamine in the nucleus accumbens (NAc) are part of a neural system that is critically involved in making decisions on how much effort to invest for rewards. In the present study, we sought to identify functional interactions between ACC and NAc regulating effort-based decision making. Rats were tested in a T-maze cost-benefit task in which they could either choose to climb a barrier to obtain a large reward (LR) in one arm or a small reward in the other arm without a barrier. Experiment 1 revealed that bilateral excitotoxic lesions of the core subregion of the NAc impaired effort-based decision making, that is, reduced the preference for the high effort-LR option when having the choice to obtain a low reward with little effort. Experiment 2 showed that disconnection of the ACC and NAc core using an asymmetrical excitotoxic lesion procedure impaired effort-based decision making. The present data provide evidence that effort-based decision making is governed by an interconnected neural system that requires serial information transfer between ACC and NAc core.
Collapse
Affiliation(s)
- Wolfgang Hauber
- Abteilung Tierphysiologie, Biologisches Institute, Universität Stuttgart, Stuttgart, Germany.
| | | |
Collapse
|
17
|
Tiagabine, a GABA uptake inhibitor, attenuates 3-nitropropionic acid-induced alterations in various behavioral and biochemical parameters in rats. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:835-43. [PMID: 18234412 DOI: 10.1016/j.pnpbp.2007.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 01/21/2023]
Abstract
Huntington's disease is an incurable, adult-onset, dominantly inherited neurodegenerative disease. The clinical symptoms of the disease are primarily related to the progressive death of medium spiny gamma-amino butyric acid (GABAergic) neurons in the striatum and the deep layers of the cortex. Further in the later stage of life, the degeneration extends to a variety of brain regions, including the hypothalamus and hippocampus. Various GABAergic agents are being attempted for the treatment of Huntington's disease. Tiagabine [(R)-N-(4, 4-di-(3-methylthien-2-yl) but-3-enyl) nipecotic acid], a GABA uptake inhibitor, widely used in the treatment of seizures, is suggested to have neuroprotective properties. However, none of the study has elucidated its effect in the treatment of Huntington's disease and related pathologies. We explored whether tiagabine may attenuate various behavioral and biochemical alterations induced by systemic administration of 3-nitropropionic acid (an inhibitor of complex II of the electron transport chain), an accepted experimental animal model of Huntington's disease phenotype. Intraperitoneal administration of 3-nitropropionic acid (20 mg/kg., i.p.) for 4 days produced hypolocomotion, muscle incoordination and memory deficit. Daily treatment with tiagabine (5 and 10 mg/kg., i.p.) 30 min prior to 3-nitropropionic acid administration for a total of 4 days, significantly improved the 3-nitropropionic acid-induced motor and cognitive impairment. Biochemical analysis of the whole brain revealed that systemic 3-nitropropionic acid administration significantly increased lipid peroxidation, nitrite levels, total RNA levels and decreased reduced glutathione and succinate dehydrogenase activity which was reversed by daily treatment with tiagabine. Further, there was a decrease in adrenal ascorbic acid levels following daily administration of 3-nitropropionic acid, which was reversed by administration of tiagabine. The results of the present study indicate that tiagabine (5 and 10 mg/kg., i.p.) significantly reversed 3-nitropropionic acid-induced alterations in various behavioral and biochemical parameters and it could be a therapeutic agent for the treatment of Huntington's disease.
Collapse
|
18
|
Kells AP, Connor B. AAV-mediated expression of Bcl-xL or XIAP fails to induce neuronal resistance against quinolinic acid-induced striatal lesioning. Neurosci Lett 2008; 436:326-30. [PMID: 18406531 DOI: 10.1016/j.neulet.2008.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 03/04/2008] [Accepted: 03/17/2008] [Indexed: 11/26/2022]
Abstract
Apoptotic mechanisms have been proposed to contribute to the selective loss of medium spiny striatal projection neurons in Huntington's disease (HD). This raises the question as to whether enhancing the expression of anti-apoptotic factors in vulnerable striatal projection neurons can reduce their susceptibility to neurotoxic processes occurring in the HD brain. In this study AAV 1/2 vectors encoding either the anti-apoptotic factor Bcl-xL or XIAP were used to transduce striatal neurons prior to an intrastriatal injection of the excitotoxic glutamate analogue quinolinic acid (QA). AAV 1/2 vector treated rats were observed in behavioural tests undertaken to assess whether anti-apoptotic factor expression provided amelioration of motor function impairment following unilateral QA-induced striatal lesioning. AAV-XIAP treated rats displayed complete amelioration of an ipsilateral forelimb use bias relative to control animals. However, neither AAV-XIAP nor AAV-Bcl-xL treated rats demonstrated an improvement in sensorimotor neglect compared to control animals. Furthermore, we did not observe a significant reduction of QA-induced pathology in assessed neuronal populations of the basal ganglia. These results indicate that sole enhancement of XIAP or Bcl-xL is not sufficient to counteract QA-induced excitotoxic insult of striatal neurons.
Collapse
Affiliation(s)
- Adrian P Kells
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | | |
Collapse
|
19
|
Galvan A, Wichmann T. GABAergic circuits in the basal ganglia and movement disorders. PROGRESS IN BRAIN RESEARCH 2007; 160:287-312. [PMID: 17499121 DOI: 10.1016/s0079-6123(06)60017-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GABA is the major inhibitory neurotransmitter in the basal ganglia, and GABAergic pathways dominate information processing in most areas of these structures. It is therefore not surprising that abnormalities of GABAergic transmission are key elements in pathophysiologic models of movement disorders involving the basal ganglia. These include hypokinetic diseases such as Parkinson's disease, and hyperkinetic diseases, such as Huntington's disease or hemiballism. In this chapter, we will briefly review the major anatomic features of the GABAergic pathways in the basal ganglia, and then describe in greater detail the changes of GABAergic transmission, which are known to occur in movement disorders.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Neurology, School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
20
|
Bauer A, Zilles K, Matusch A, Holzmann C, Riess O, von Hörsten S. Regional and subtype selective changes of neurotransmitter receptor density in a rat transgenic for the Huntington's disease mutation. J Neurochem 2005; 94:639-50. [PMID: 16033418 DOI: 10.1111/j.1471-4159.2005.03169.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is an autosomal dominantly inherited progressive neurodegenerative disorder caused by a CAG/polyglutamine repeat expansion in the gene encoding the huntingtin protein. We have recently generated a rat model transgenic for HD, which displays a slowly progressive phenotype resembling the human adult-onset type of disease. In this study we systematically assessed the distribution and density of 17 transmitter receptors in the brains of 2-year-old rats using quantitative multi-tracer autoradiography and high-resolution positron emission tomography. Heterozygous animals expressed increased densities of M(2) acetylcholine (increase of 148 +/- 16% of controls; p > 0.001; n = 7), nicotine (increase of 149 +/- 16% of controls; p > 0.01; n = 6), and alpha(2) noradrenergic receptors (increase of 141 +/- 15% of controls; p > 0.001; n = 6), respectively. Densities of these receptors were decreased in homozygous animals. Decreases of receptor density in both hetero- and homozygous animals were found for M1 acetylcholine, 5-HT 2A serotonin, A 2A adenosine, D1 and D2 dopamine, and GABA(A) receptors, respectively. Other investigated receptor systems showed small changes or were not affected. The present data suggest that the moderate increase of CAG/polyglutamine repeat expansions in the present rat model of Huntington's disease is characterized by subtype-selective and region-specific changes of neuroreceptor densities. In particular, there is evidence for a contribution of predominantly presynaptically localized cholinergic and noradrenergic receptors in the response to Huntington's disease pathology.
Collapse
Affiliation(s)
- Andreas Bauer
- Institute of Medicine, Research Center Jülich, Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Block F, Dihné M, Loos M. Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol 2005; 75:342-65. [PMID: 15925027 DOI: 10.1016/j.pneurobio.2005.03.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/15/2005] [Accepted: 03/31/2005] [Indexed: 11/22/2022]
Abstract
Focal brain lesions can lead to metabolic and structural changes in areas distant from but connected to the lesion site. After focal ischemic or excitotoxic lesions of the cortex and/or striatum, secondary changes have been observed in the thalamus, substantia nigra pars reticulata, hippocampus and spinal cord. In all these regions, inflammatory changes characterized by activation of microglia and astrocytes appear. In the thalamus, substantia nigra pars reticulata and hippocampus, an expression of proinflammatory cytokine like tumor necrosis factor-alpha and interleukin-1beta is induced. However, time course of expression and cellular localisation differ between these regions. Neuronal damage has consistently been observed in the thalamus, substantia nigra and spinal cord. It can be present in the hippocampus depending on the procedure of induction of focal cerebral ischemia. This secondary neuronal damage has been linked to antero- and retrograde degeneration. Anterograde degeneration is associated with somewhat later expression of cytokines, which is localised in neurons. In case of retrograde degeneration, the expression of cytokines is earlier and is localised in astrocytes. Pharmacological intervention aiming at reducing expression of tumor necrosis factor-alpha leads to reduction of secondary neuronal damage. These first results suggest that the inflammatory changes in remote areas might be involved in the pathogenesis of secondary neuronal damage.
Collapse
Affiliation(s)
- F Block
- Department of Neurology UK Aachen, Pauwelsstr. 30, D-52057 Aachen, Germany.
| | | | | |
Collapse
|
22
|
Kleppner SR, Tobin AJ. GABA signalling: therapeutic targets for epilepsy, Parkinson's disease and Huntington's disease. Expert Opin Ther Targets 2005; 5:219-39. [PMID: 15992178 DOI: 10.1517/14728222.5.2.219] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Temporal lobe epilepsy (TLE), Parkinson's disease (PD) and Huntington's disease (HD) are neurodegenerative disorders that involve disruptions in gamma-amino butyric acid (GABA) signalling. GABA is the major inhibitory neurotransmitter in the central nervous system (CNS). TLE seizures reflect excess excitation, which may result from local inhibitory circuit dysfunction. PD devastates the input to striatal GABAergic neurones and HD destroys striatal GABAergic neurones. Controlling GABA delivery to specific brain areas should benefit each of these diseases. The molecules responsible for GABA release and signalling are ideal targets for new therapies. In this paper, we discuss the role of GABA in the circuitry affected by each of these diseases and suggest potential sites for intervention. GABA is unique among neurotransmitters because it can be synthesised by either of two related enzymes. Intracellular GABA is found throughout the cytosol and in synaptic vesicles. GABA can be released either through exocytosis, or via the plasma membrane transporter. The synthesising enzyme probably determines the intracellular location and hence the mechanism for GABA release. Directing GABA synthesis, degradation, transport or receptors can control GABA signalling. We propose that new drugs and devices aimed at GABA synthesis, release and binding will offer novel and highly effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- S R Kleppner
- Department of Physiological Science, Brain Research Institute, University of California, Los Angeles, CA 90095-1761, USA.
| | | |
Collapse
|
23
|
Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 2004; 9:682-8. [PMID: 15120329 DOI: 10.1016/j.ymthe.2004.02.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 02/23/2004] [Indexed: 11/23/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder that results in the progressive loss of GABAergic medium spiny projection neurons in the striatum. Neurotrophic factors have demonstrated neuroprotective actions on striatal neurons, suggesting that increased neurotrophic factor expression may prevent or reduce neuronal loss in the HD brain. We investigated whether enhanced expression of brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor (GDNF), achieved by adeno-associated viral (AAV) vector-mediated gene delivery, could protect striatal neurons in the quinolinic acid (QA) rodent model of HD. Adult Wistar rats received unilateral intrastriatal injections of AAV-BDNF, AAV-GDNF, AAV-GFP, or PBS. Three weeks later, the rats were lesioned with QA, a toxin that induces striatal neuron death by an excitotoxic process. Both AAV-BDNF and AAV-GDNF significantly reduced the loss of both NeuN- and calbindin-immunopositive striatal neurons 2 weeks after lesion compared to controls. AAV-BDNF also provided significant neurotrophic support to NOS-immunopositive striatal interneurons, while AAV-GDNF-treated rats demonstrated significant protection of parvalbumin-immunopositive striatal interneurons compared to controls. These results indicate that AAV-mediated gene transfer of BDNF or GDNF into the striatum provides neuronal protection in a rodent model of HD.
Collapse
Affiliation(s)
- Adrian P Kells
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
24
|
Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RLM, Connor B. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 2004; 127:319-32. [PMID: 15262322 DOI: 10.1016/j.neuroscience.2004.04.061] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2004] [Indexed: 11/19/2022]
Abstract
The presence of ongoing neurogenesis in the adult mammalian brain raises the exciting possibility that endogenous progenitor cells may be able to generate new neurons to replace cells lost through brain injury or neurodegenerative disease. We have recently demonstrated increased cell proliferation and the generation of new neurons in the Huntington's disease human brain. In order to better understand the potential role of endogenous neuronal replacement in neurodegenerative disorders and extend our initial observations in the human Huntington's disease brain, we examined the effect of striatal cell loss on neurogenesis in the subventricular zone (SVZ) of the adult rodent forebrain using the quinolinic acid (QA) lesion rat model of Huntington's disease. Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (BrdU) labeling and immunocytochemistry for cell type-specific markers. BrdU labeling demonstrated increased cell proliferation in the SVZ ipsilateral to the QA-lesioned striatum, resulting in expansion of the SVZ in the lesioned hemisphere. Quantification revealed that QA lesion-induced striatal cell loss produced a significant increase in the area of BrdU-immunoreactivity in the SVZ ipsilateral to the lesioned hemisphere between 1 and 14 days post-lesion compared with sham-lesioned animals, with the greatest increase observed at 7 days post-lesion. These changes were associated with an increase in cells in the anterior SVZ ipsilateral to the lesioned striatum expressing the antigenic marker for SVZ neuroblasts, doublecortin (Dcx). Importantly, we observed Dcx-positive cells extending from the SVZ into the QA-lesioned striatum where a subpopulation of newly generated cells expressed markers for immature and mature neurons. This study demonstrates that loss of GABAergic medium spiny projection neurons following QA striatal lesioning of the adult rat brain increases SVZ neurogenesis, leading to the putative migration of neuroblasts to damaged areas of the striatum and the formation of new neurons.
Collapse
Affiliation(s)
- A S Tattersfield
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
25
|
Fritschy JM, Brünig I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 2003; 98:299-323. [PMID: 12782242 DOI: 10.1016/s0163-7258(03)00037-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
gamma-Aminobutyric acid(A) (GABA(A)) receptors mediate most of the fast inhibitory neurotransmission in the CNS. They represent a major site of action for clinically relevant drugs, such as benzodiazepines and ethanol, and endogenous modulators, including neuroactive steroids. Alterations in GABA(A) receptor expression and function are thought to contribute to prevalent neurological and psychiatric diseases. Molecular cloning and immunochemical characterization of GABA(A) receptor subunits revealed a multiplicity of receptor subtypes with specific functional and pharmacological properties. A major tenet of these studies is that GABA(A) receptor heterogeneity represents a key factor for fine-tuning of inhibitory transmission under physiological and pathophysiological conditions. The aim of this review is to highlight recent findings on the regulation of GABA(A) receptor expression and function, focusing on the mechanisms of sorting, targeting, and synaptic clustering of GABA(A) receptor subtypes and their associated proteins, on trafficking of cell-surface receptors as a means of regulating synaptic (and extrasynaptic) transmission on a short-time basis, on the role of endogenous neurosteroids for GABA(A) receptor plasticity, and on alterations of GABA(A) receptor expression and localization in major neurological disorders. Altogether, the findings presented in this review underscore the necessity of considering GABA(A) receptor-mediated neurotransmission as a dynamic and highly flexible process controlled by multiple mechanisms operating at the molecular, cellular, and systemic level. Furthermore, the selected topics highlight the relevance of concepts derived from experimental studies for understanding GABA(A) receptor alterations in disease states and for designing improved therapeutic strategies based on subtype-selective drugs.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
26
|
Blum D, Galas MC, Gall D, Cuvelier L, Schiffmann SN. Striatal and Cortical Neurochemical Changes Induced by Chronic Metabolic Compromise in the 3-Nitropropionic Model of Huntington's Disease. Neurobiol Dis 2002; 10:410-26. [PMID: 12270701 DOI: 10.1006/nbdi.2002.0512] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we aimed to determine the time-course of neurochemical changes occurring following metabolic impairments produced by 3-nitropropionic (3NP) acid in a rat model of Huntington's disease. We found that the occurrence of striatal lesions was accompanied by (1) strong transcriptional alterations within the degenerative lateral striatum, (2) receptor upregulations within the preserved medial striatum, and (3) transcriptional increases within the unaltered cerebral cortex. These phenomena were preceded by transcriptional modifications in striatal subareas prone to degeneration even before the lesion was visible but not in the overlying cortex, known to be spared in this model. Of great interest, the density of A(2A) receptor binding sites, located on striato-pallidal neurons, was (1) downregulated at the time of worsening of symptoms and (2) strongly upregulated within the spared medial striatum after the lesion occurrence. This study therefore highlights the differential neurochemical responses produced by 3NP depending on the fate of the metabolically inhibited area and strongly suggests the involvement of A(2A) receptors in the development of striatal pathology under metabolic compromise.
Collapse
Affiliation(s)
- David Blum
- Laboratoire de Neurophysiologie, ULB-Erasme, CP601, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
27
|
Fujiyama F, Stephenson FA, Bolam JP. Synaptic localization of GABA(A) receptor subunits in the substantia nigra of the rat: effects of quinolinic acid lesions of the striatum. Eur J Neurosci 2002; 15:1961-75. [PMID: 12099902 DOI: 10.1046/j.1460-9568.2002.02017.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inhibitory amino acid, gamma-aminobutyric acid (GABA), plays a critical role in the substantia nigra (SN) in health and disease. GABA transmission is controlled in part by the type(s) of GABA receptor expressed, their subunit composition and their location in relation to GABA release sites. In order to define the subcellular localization of GABA(A) receptors in the SN in normal and pathological conditions, sections of SN from control rats and rats that had received quinolinic acid lesions of the striatum were immunolabelled using the postembedding immunogold technique with antibodies against subunits of the GABA(A) receptor. Immunolabelling for alpha1, beta2/3 and gamma2 subunits was primarily located at symmetrical synapses. Double-labelling revealed that beta2/3 subunit-positive synapses were formed by terminals that were enriched in GABA. Colocalization of alpha1, beta2/3 and gamma2 subunits occurred at individual symmetrical synapses, some of which were identified as degenerating terminals derived from the striatum. In the SN ipsilateral to the striatal lesion there was a significant elevation of immunolabelling for beta2/3 subunits of the GABA(A) receptor at symmetrical synapses, but not of GluR2/3 subunits of the AMPA receptor at asymmetrical synapses. It was concluded that fast GABA(A)-mediated transmission occurs primarily at symmetrical synapses within the SN, that different receptor subunits coexist at individual synapses and that the upregulation of GABA(A) receptors following striatal lesions is expressed as increased receptor density at synapses. The upregulation of GABA(A) receptors in Huntington's disease and its models is thus likely to lead to an increased efficiency of transmission at intact GABAergic synapses in the SN and may partly underlie the motor abnormalities of this disorder.
Collapse
Affiliation(s)
- Fumino Fujiyama
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, OX1 3TH, UK
| | | | | |
Collapse
|
28
|
Tkác I, Keene CD, Pfeuffer J, Low WC, Gruetter R. Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo (1)H NMR spectroscopy. J Neurosci Res 2001; 66:891-8. [PMID: 11746416 DOI: 10.1002/jnr.10112] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrastriatal injection of quinolinic acid (QA) provides an animal model of Huntington disease. In vivo (1)H NMR spectroscopy was used to measure the neurochemical profile non-invasively in seven animals 5 days after unilateral injection of 150 nmol of QA. Concentration changes of 16 metabolites were measured from 22 microl volume at 9.4 T. The increase of glutamine ((+25 +/- 14)%, mean +/- SD, n = 7) and decrease of glutamate (-12 +/- 5)%, N-acetylaspartate (-17 +/- 6)%, taurine (-14 +/- 6)% and total creatine (-9 +/- 3%) were discernible in each individual animal (P < 0.005, paired t-test). Metabolite concentrations in control striata were in excellent agreement with biochemical literature. The change in glutamate plus glutamine was not significant, implying a shift in the glutamate-glutamine interconversion, consistent with a metabolic defect at the level of neuronal-glial metabolic trafficking. The most significant indicator of the lesion, however, were the changes in glutathione ((-19 +/- 9)%, P < 0.002)), consistent with oxidative stress. From a comparison with biochemical literature we conclude that high-resolution in vivo (1)H NMR spectroscopy accurately reflects the neurochemical changes induced by a relatively modest dose of QA, which permits one to longitudinally follow mitochondrial function, oxidative stress and glial-neuronal metabolic trafficking as well as the effects of treatment in this model of Huntington disease.
Collapse
Affiliation(s)
- I Tkác
- Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|