1
|
Van Oosterwijck S, Meeus M, van Der Wekken J, Dhondt E, Billens A, Van Oosterwijck J. Physical Activity Is Predictive of Conditioned Pain Modulation in Healthy Individuals: A Cross-Sectional Study. THE JOURNAL OF PAIN 2024; 25:104639. [PMID: 39029881 DOI: 10.1016/j.jpain.2024.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Even in healthy populations, conditioned pain modulation (CPM) magnitude varies. This may be accounted for by (non-)modifiable factors, including physical activity (PA). Yet, little research has thoroughly examined PA and its relation with CPM magnitude in a representative sample. Therefore, the present study investigated the predictive effect of PA on CPM magnitude in 105 healthy adults. PA was assessed during 7 consecutive days by self-report using the International Physical Activity Questionnaire and by monitor-based accelerometry. CPM was examined using a heterotopic noxious-conditioning stimulation protocol during which the effect of a hot water-conditioning stimulus on pressure pain thresholds was evaluated. Comparative, correlation, and hierarchical linear regression analyses were performed. Report-based walking predicts 4.8% of variance in pain-modulatory capacity, moderate PA predicts 10.2% of variance in pain-modulatory capacity, and report-based time spent on total PA predicts 7.0% of variance in pain-modulatory capacity. More metabolic equivalent-minutes/week spent on total PA, including walking and moderate PA, is associated with greater pain-modulatory capacity. The findings of this study add to the limited evidence on the predictive effect of PA on CPM. It urges to consider PA a confounding factor when examining CPM. The current study provides evidence that a physically active lifestyle benefits endogenous pain modulation in healthy adults. Given its potential, walking and moderate-intensity PA might be achievable treatment strategies for pain patients known to have impaired CPM. PERSPECTIVE: The results of this article show that a physically active lifestyle, including larger amounts of walking and moderate activity, predicts greater pain-modulatory capacity. TRIAL REGISTRATION: This study has not been preregistered.
Collapse
Affiliation(s)
- Sophie Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be); Research Foundation - Flanders (FWO), Brussels, Belgium
| | - Mira Meeus
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be); Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jacob van Der Wekken
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evy Dhondt
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be)
| | - Amber Billens
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be)
| | - Jessica Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be); Research Foundation - Flanders (FWO), Brussels, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Syed O, Jancic P, Fink AB, Knezevic NN. Drug Safety and Suicidality Risk of Chronic Pain Medications. Pharmaceuticals (Basel) 2023; 16:1497. [PMID: 37895968 PMCID: PMC10609967 DOI: 10.3390/ph16101497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic pain is one of the main leading causes of disability in the world at present. A variety in the symptomatology, intensity and duration of this phenomenon has led to an ever-increasing demand of pharmacological treatment and relief. This demand for medication, ranging from well-known groups, such as antidepressants and benzodiazepines, to more novel drugs, was followed by a rise in safety concerns of such treatment options. The validity, frequency, and diversity of such concerns are discussed in this paper, as well as their possible effect on future prescription practices. A specific caution is provided towards the psychological safety and toll of these medications, regarding suicidality and suicidal ideation. Most significantly, this paper highlights the importance of pharmacovigilance and underscores the necessity of surveillance programs when considering chronic pain medication.
Collapse
Affiliation(s)
- Osman Syed
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (O.S.); (P.J.); (A.B.F.)
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Predrag Jancic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (O.S.); (P.J.); (A.B.F.)
| | - Adam B. Fink
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (O.S.); (P.J.); (A.B.F.)
- Harborview Medical Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nebojsa Nick Knezevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (O.S.); (P.J.); (A.B.F.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Munawar N, Bitar MS, Masocha W. Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain. Int J Mol Sci 2023; 24:14334. [PMID: 37762636 PMCID: PMC10532078 DOI: 10.3390/ijms241814334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropathic pain is a well-documented phenomenon in experimental and clinical diabetes; however, current treatment is unsatisfactory. Serotoninergic-containing neurons are key components of the descending autoinhibitory pathway, and a decrease in their activity may contribute at least in part to diabetic neuropathic pain (DNP). A streptozotocin (STZ)-treated rat was used as a model for type 1 diabetes mellitus (T1DM). Pain transmission was evaluated using well-established nociceptive-based techniques, including the Hargreaves apparatus, cold plate and dynamic plantar aesthesiometer. Using qRT-PCR, Western blotting, immunohistochemistry, and HPLC-based techniques, we also measured in the central nervous system and peripheral nervous system of diabetic animals the expression and localization of 5-HT1A receptors (5-HT1AR), levels of key enzymes involved in the synthesis and degradation of tryptophan and 5-HT, including tryptophan hydroxylase-2 (Tph-2), tryptophan 2,3-dioxygenase (Tdo), indoleamine 2,3-dioxygenase 1 (Ido1) and Ido2. Moreover, spinal concentrations of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT) and quinolinic acid (QA, a metabolite of tryptophan) were also quantified. Diabetic rats developed thermal hyperalgesia and cold/mechanical allodynia, and these behavioral abnormalities appear to be associated with the upregulation in the levels of expression of critical molecules related to the serotoninergic nervous system, including presynaptic 5-HT1AR and the enzymes Tph-2, Tdo, Ido1 and Ido2. Interestingly, the level of postsynaptic 5-HT1AR remains unaltered in STZ-induced T1DM. Chronic treatment of diabetic animals with 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), a selective 5-HT1AR agonist, downregulated the upregulation of neuronal presynaptic 5-HT1AR, increased spinal release of 5-HT (↑ 5-HIAA/5-HT) and reduced the concentration of QA, decreased mRNA expression of Tdo, Ido1 and Ido2, arrested neuronal degeneration and ameliorated pain-related behavior as exemplified by thermal hyperalgesia and cold/mechanical allodynia. These data show that 8-OH-DPAT alleviates DNP and other components of the serotoninergic system, including the ratio of 5-HIAA/5-HT and 5-HT1AR, and could be a useful therapeutic agent for managing DNP.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait;
| |
Collapse
|
4
|
Bartlett EA, Yttredahl AA, Boldrini M, Tyrer AE, Hill KR, Ananth MR, Milak MS, Oquendo MA, Mann JJ, DeLorenzo C, Parsey RV. In vivo serotonin 1A receptor hippocampal binding potential in depression and reported childhood adversity. Eur Psychiatry 2023; 66:e17. [PMID: 36691786 PMCID: PMC9970152 DOI: 10.1192/j.eurpsy.2023.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Reported childhood adversity (CA) is associated with development of depression in adulthood and predicts a more severe course of illness. Although elevated serotonin 1A receptor (5-HT1AR) binding potential, especially in the raphe nuclei, has been shown to be a trait associated with major depression, we did not replicate this finding in an independent sample using the partial agonist positron emission tomography tracer [11C]CUMI-101. Evidence suggests that CA can induce long-lasting changes in expression of 5-HT1AR, and thus, a history of CA may explain the disparate findings. METHODS Following up on our initial report, 28 unmedicated participants in a current depressive episode (bipolar n = 16, unipolar n = 12) and 19 non-depressed healthy volunteers (HVs) underwent [11C]CUMI-101 imaging to quantify 5-HT1AR binding potential. Participants in a depressive episode were stratified into mild/moderate and severe CA groups via the Childhood Trauma Questionnaire. We hypothesized higher hippocampal and raphe nuclei 5-HT1AR with severe CA compared with mild/moderate CA and HVs. RESULTS There was a group-by-region effect (p = 0.011) when considering HV, depressive episode mild/moderate CA, and depressive episode severe CA groups, driven by significantly higher hippocampal 5-HT1AR binding potential in participants in a depressive episode with severe CA relative to HVs (p = 0.019). Contrary to our hypothesis, no significant binding potential differences were detected in the raphe nuclei (p-values > 0.05). CONCLUSIONS With replication in larger samples, elevated hippocampal 5-HT1AR binding potential may serve as a promising biomarker through which to investigate the neurobiological link between CA and depression.
Collapse
Affiliation(s)
- Elizabeth A Bartlett
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Ashley A Yttredahl
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA
| | - Andrea E Tyrer
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Clinical Genetics Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, OntarioM5S, Canada
| | - Kathryn R Hill
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA
| | - Mala R Ananth
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland20892, USA
| | - Matthew S Milak
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania19104, USA
| | - J John Mann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA.,Department of Radiology, Columbia University, New York, New York10027, USA
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York11794, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York11794, USA.,Department of Radiology, Stony Brook University, Stony Brook, New York11794, USA
| |
Collapse
|
5
|
Fidalgo S, Yeoman MS. Age-Related Changes in Central Nervous System 5-Hydroxytryptamine Signalling and Its Potential Effects on the Regulation of Lifespan. Subcell Biochem 2023; 102:379-413. [PMID: 36600141 DOI: 10.1007/978-3-031-21410-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter in the central nervous system and the periphery. Most 5-HT (~99%) is found in the periphery where it regulates the function of the gastrointestinal (GI) tract and is an important regulator of platelet aggregation. However, the remaining 1% that is found in the central nervous system (CNS) can regulate a range of physiological processes such as learning and memory formation, mood, food intake, sleep, temperature and pain perception. More recent work on the CNS of invertebrate model systems has shown that 5-HT can directly regulate lifespan.This chapter will focus on detailing how CNS 5-HT signalling is altered with increasing age and the potential consequences this has on its ability to regulate lifespan.
Collapse
Affiliation(s)
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
6
|
Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem 2022; 65:10755-10808. [PMID: 35939391 DOI: 10.1021/acs.jmedchem.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and 5-HT receptors (5-HTRs) have crucial roles in various neuropsychiatric disorders and neurodegenerative diseases, making them attractive diagnostic and therapeutic targets. Positron emission tomography (PET) is a noninvasive nuclear molecular imaging technique and is an essential tool in clinical diagnosis and drug discovery. In this context, numerous PET ligands have been developed for "visualizing" 5-HTRs in the brain and translated into human use to study disease mechanisms and/or support drug development. Herein, we present a comprehensive repertoire of 5-HTR PET ligands by focusing on their chemotypes and performance in PET imaging studies. Furthermore, this Perspective summarizes recent 5-HTR-focused drug discovery, including biased agonists and allosteric modulators, which would stimulate the development of more potent and subtype-selective 5-HTR PET ligands and thus further our understanding of 5-HTR biology.
Collapse
Affiliation(s)
- Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Markin AV, Petrova NN. [Prevention of impulsive suicide with antidepressants in outpatients]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:113-115. [PMID: 34405666 DOI: 10.17116/jnevro2021121052113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Self-poisoning is a common method of suicide, for which various medications are used, including antidepressants. A non-systematic review of Russian-language and English-language publications, by keywords, in the databases: ELibrary.ru, PubMed, Cochrane Database of Systematic Reviews. The purpose of the review was to analyze the literature on new risk factors and methods of their reduction in suicides with self-poisoning with antidepressants. Every fifth (20%) self-poisoning performed with antidepressants. In self-poisoning attempts, one drug used in 55% of cases, and more than one drug was used in 45% of cases. Impulsive suicides account for up to half of all suicide cases. Risk factors for impulsive suicides include the presence of impulsive character traits, female gender, young age, and the use of psychostimulants. The WHO Regional Office for Europe's mhGAP-IG guidelines recommend limiting access to a patient at risk of suicide to a weekly dose of an antidepressant. Preferably, the use of antidepressants from the group of SSRIs in small forms of release.
Collapse
Affiliation(s)
- A V Markin
- St. Petersburg State University, Russi, St. Petersburg State University, Russia
| | - N N Petrova
- ZAO «Pharmphirma Sotex», St. Petersburg, Russia
| |
Collapse
|
8
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Cumming P, Gründer G, Brinson Z, Wong DF. Applications, Advances, and Limitations of Molecular Imaging of Brain Receptors. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. G i/o-Protein Coupled Receptors in the Aging Brain. Front Aging Neurosci 2019; 11:89. [PMID: 31105551 PMCID: PMC6492497 DOI: 10.3389/fnagi.2019.00089] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.
Collapse
Affiliation(s)
- Patrícia G de Oliveira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Marta L S Ramos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - António J Amaro
- School of Health Sciences (ESSUA), Universidade de Aveiro, Aveiro, Portugal
| | - Roberto A Dias
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Reduced serotonin receptors and transporters in normal aging adults: a meta-analysis of PET and SPECT imaging studies. Neurobiol Aging 2019; 80:1-10. [PMID: 31055162 DOI: 10.1016/j.neurobiolaging.2019.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 12/31/2022]
Abstract
Alterations in serotonin (5-HT) function have been hypothesized to underlie a range of physiological, emotional, and cognitive changes in older age. Here, we conducted a quantitative synthesis and comparison of the effects of age on 5-HT receptors and transporters from cross-sectional positron emission tomography and single-photon emission computed tomography imaging studies. Random-effects meta-analyses of 31 studies including 1087 healthy adults yielded large negative effects of age in 5-HT-2A receptors (largest in global cortex), moderate negative effects of age in 5-HT transporters (largest in thalamus), and small negative effects of age in 5-HT-1A receptors (largest in parietal cortex). Presynaptic 5-HT-1A autoreceptors in raphe/midbrain, however, were preserved across adulthood. Adult age differences were significantly larger in 5-HT-2A receptors compared with 5-HT-1A receptors. A meta-regression showed that 5-HT target, radionuclide, and publication year significantly moderated the age effects. The findings overall identify reduced serotonergic signal transmission in healthy aging. The evidence for the relative preservation of 5-HT-1A compared with 5-HT-2A receptors may partially explain psychological age differences, such as why older adults use more emotion-focused rather than problem-focused coping strategies.
Collapse
|
12
|
Chakraborty S, Lennon JC, Malkaram SA, Zeng Y, Fisher DW, Dong H. Serotonergic system, cognition, and BPSD in Alzheimer's disease. Neurosci Lett 2019; 704:36-44. [PMID: 30946928 DOI: 10.1016/j.neulet.2019.03.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
Abstract
Behavioral and Psychological Symptoms of Dementia (BPSD), present in almost 90% of patients with Alzheimer's Disease (AD), cause extensive impairment leading to reduced independence and inability to complete activities of daily living. Though BPSD includes a wide range of symptoms, such as agitation, aggression, disinhibition, anxiety, depression, apathy, delusions, and hallucinations. Certain BPSD in AD co-present and can be clustered into distinct domains based on their frequency of co-occurrence. As these BPSD are so pervasive in any stages of AD, the disease may be better characterized as a disorder of heterogeneous degenerative symptoms across a number of symptom domains, with the most prominent domain comprising memory and cognitive deficits. Importantly, there are no FDA-approved drugs to treat these BPSD, and new approaches must be considered to develop effective treatments for AD patients. The biogenic monoamine 5-hydroxytryptamine (5-HT), or serotonin, works as both a neurotransmitter and neuromodulator, which has been tied to cognitive decline and multiple BPSD domains. This review summarizes the evidence for specific serotonergic system alterations across some of the well-studied cognitive, behavioral, and psychiatric domains. Though differences in overall serotonergic transmission occur in AD, circuit-specific alterations in individual 5-HT receptors (5-HTRs) are likely linked to the heterogeneous presentation of BPSD in AD.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Jack C Lennon
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Sridhar A Malkaram
- Department of Biology, West Virginia State University Institute, WV-25112, USA
| | - Yan Zeng
- Brain and Cognition Research Institute, Wuhan University of Science and Technology, China
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
13
|
Steinberg LJ, Rubin-Falcone H, Galfalvy HC, Kaufman J, Miller JM, Sublette ME, Cooper TB, Min E, Keilp JG, Stanley BH, Oquendo MA, Ogden RT, Mann JJ. Cortisol Stress Response and in Vivo PET Imaging of Human Brain Serotonin 1A Receptor Binding. Int J Neuropsychopharmacol 2019; 22:329-338. [PMID: 30927011 PMCID: PMC6499240 DOI: 10.1093/ijnp/pyz009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Abnormalities in the hypothalamic-pituitary-adrenal axis, serotonergic system, and stress response have been linked to the pathogenesis of major depressive disorder. State-dependent hyper-reactivity of the hypothalamic-pituitary-adrenal axis is seen in major depressive disorder, and higher binding to the serotonin 1A receptor is observed as a trait in both currently depressed and remitted untreated major depressive disorder. Here, we sought to examine whether a relationship exists between cortisol secretion in response to a stressor and serotonin 1A receptor binding throughout the brain, both in healthy controls and participants with major depressive disorder. METHODS Research participants included 42 medication-free, depressed subjects and 31 healthy volunteers. Participants were exposed to either an acute, physical stressor (radial artery catheter insertion) or a psychological stressor (Trier Social Stress Test). Levels of serotonin 1A receptor binding on positron emission tomography with [11C]WAY-100635 were also obtained from all participants. The relationship between [11C]WAY-100635 binding and cortisol was examined using mixed linear effects models with group (major depressive disorder vs control), cortisol, brain region, and their interactions as fixed effects and subject as a random effect. RESULTS We found a positive correlation between post-stress cortisol measures and serotonin 1A receptor ligand binding levels across multiple cortical and subcortical regions, independent of diagnosis and with both types of stress. The relationship between [11C]WAY-100635 binding and cortisol was homogenous across all a priori brain regions. In contrast, resting cortisol levels were negatively correlated with serotonin 1A receptor ligand binding levels independently of diagnosis, except in the RN. There was no significant difference in cortisol between major depressive disorder participants and healthy volunteers with either stressor. Similarly, there was no correlation between cortisol and depression severity in either stressor group. CONCLUSIONS This study suggests that there may be a common underlying mechanism that links abnormalities in the serotonin system and hypothalamic-pituitary-adrenal axis hyper-reactivity to stress. Future studies need to determine how hypothalamic-pituitary-adrenal axis dysfunction affects mood to increase the risk of suicide in major depression.
Collapse
Affiliation(s)
- Louisa J Steinberg
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY,Correspondence: Louisa J. Steinberg, MD, PhD, 1051 Riverside Drive, New York, NY 10032 ()
| | - Harry Rubin-Falcone
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY
| | - Hanga C Galfalvy
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Joshua Kaufman
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY
| | - M Elizabeth Sublette
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY
| | - Thomas B Cooper
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY,Nathan S. Kline Institute for Psychiatric Research, New York, NY
| | - Eli Min
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY
| | - John G Keilp
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY
| | - Barbara H Stanley
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY
| | - Maria A Oquendo
- Psychiatry Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - R Todd Ogden
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY,Department of Radiology, Columbia University, New York, NY
| |
Collapse
|
14
|
Metts AV, Rubin-Falcone H, Ogden RT, Lin X, Wilner DE, Burke AK, Sublette ME, Oquendo MA, Miller JM, Mann JJ. Antidepressant medication exposure and 5-HT 1A autoreceptor binding in major depressive disorder. Synapse 2019; 73:e22089. [PMID: 30693567 DOI: 10.1002/syn.22089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE We have previously reported higher brain serotonin 1A (5-HT1A ) autoreceptor binding in antidepressant-naïve patients with Major Depressive Disorder (MDD) compared with healthy volunteers, and a decrease in binding in MDD after selective serotonin reuptake inhibitor (SSRI) treatment. This SSRI effect is also present in rodents administered SSRIs chronically. We therefore sought to determine the duration of antidepressant medication effects on 5-HT1A receptor binding after medication discontinuation. METHODS Positron emission tomography (PET) imaging with the 5-HT1A receptor radioligand [11 C]WAY-100635 was performed in 66 individuals with current DSM-IV MDD to examine relationships between 5-HT1A binding and time since most recent antidepressant treatment. All subjects were medication-free for at least 2 weeks prior to scanning. Thirty-two additional MDD comparison subjects were antidepressant naïve. RESULTS No differences in [11 C]WAY-100635 binding were observed between antidepressant naïve and antidepressant exposed MDD groups in 13 a priori cortical and subcortical regions of interest, including raphe autoreceptors, assessed simultaneously in linear mixed effects models. Furthermore, [11 C]WAY-100635 binding did not correlate with time off antidepressants in the antidepressant exposed patients considering these ROIs. The same results were observed when effects of treatment discontinuation of any psychotropic medication used to treat their depression was examined. CONCLUSION These results indicate that any antidepressant-associated downregulation of 5-HT1A autoreceptor binding reverses within 2 weeks of medication discontinuation. Since this effect is hypothesized to mediate the antidepressant action of SSRIs, and perhaps other antidepressants, it suggests that patients who need ongoing treatment may relapse rapidly when medication is discontinued. Moreover, 2 weeks appears to be a sufficiently long washout of antidepressant medications for a reliable measure of illness-related binding levels.
Collapse
Affiliation(s)
- A V Metts
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - H Rubin-Falcone
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - R T Ogden
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - X Lin
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - D E Wilner
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - A K Burke
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - M E Sublette
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - M A Oquendo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - J M Miller
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - J J Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
15
|
Griffioen G, Matheson GJ, Cervenka S, Farde L, Borg J. Serotonin 5-HT 1A receptor binding and self-transcendence in healthy control subjects-a replication study using Bayesian hypothesis testing. PeerJ 2018; 6:e5790. [PMID: 30479884 PMCID: PMC6241390 DOI: 10.7717/peerj.5790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Objective A putative relationship between markers for the serotonin system and the personality scale self-transcendence (ST) and its subscale spiritual acceptance (SA) has been demonstrated in a previous PET study of 5-HT1A receptor binding in healthy control subjects. The results could however not be replicated in a subsequent PET study at an independent centre. In this study, we performed a replication of our original study in a larger sample using Bayesian hypothesis testing to evaluate relative evidence both for and against this hypothesis. Methods Regional 5-HT1A receptor binding potential (BPND) was examined in 50 healthy male subjects using PET with the radioligand [11C]WAY100635. 5-HT1Aavailability was calculated using the simplified reference tissue model (SRTM) yielding regional BPND. ST and SA were measured using the Temperament and Character Inventory (TCI) questionnaire. Correlations between ST/SA scores and 5-HT1ABPND in frontal cortex, hippocampus and raphe nuclei were examined by calculation of default correlation Bayes factors (BFs) and replication BFs. Results There were no significant correlations between 5-HT1A receptor binding and ST/SA scores. Rather, five of six replication BFs provided moderate to strong evidence for no association between 5-HT1A availability and ST/SA, while the remaining BF provided only weak evidence. Conclusion We could not replicate our previous findings of an association between 5-HT1A availability and the personality trait ST/SA. Rather, the Bayesian analysis provided evidence for a lack of correlation. Further research should focus on whether other components of the serotonin system may be related to ST or SA. This study also illustrates how Bayesian hypothesis testing allows for greater flexibility and more informative conclusions than traditional p-values, suggesting that this approach may be advantageous for analysis of molecular imaging data.
Collapse
Affiliation(s)
- Gina Griffioen
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Capio Psykiatri Stockholm, Stockholm, Sweden
| | - Granville J Matheson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Personalised Healthcare and Biomarkers, AstraZeneca PET Science Centre, Karolinska Institutet, Sweden
| | - Jacqueline Borg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
16
|
Pietrelli A, Matković L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A. Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats. Neurobiol Learn Mem 2018; 155:528-542. [PMID: 29800645 DOI: 10.1016/j.nlm.2018.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
Abstract
Aerobic exercise (AE) benefits brain health and behavior. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known to mediate and shape cognitive processes. Both systems share some actions: BDNF is involved in the maturation and function of 5-HT neurons. In turn, 5-HT is involved in neuroplasticity phenomena mediated by BDNF and stimulated by exercise. The aim of this work was to study the long-term effects of AE on BDNF- 5-HT systems and cognitive function in rats at different ages. A lifelong moderate-intensity aerobic training program was designed, in which aerobically exercised (E) and sedentary control (C) rats were studied at middle (8 months) and old age (18 months) by means of biochemical, immunohistochemical and behavioral assays. The levels and expression of BDNF, 5-HT, serotonin transporter (SERT) and 5-HT1A receptor were determined in selected brain areas involved in memory and learning. Immunopositive cells to neuronal nuclear protein (NeuN) in the hippocampus CA1 area were also quantified. The cognitive function was evaluated by the object recognition test (ORT). Results indicate that AE enhanced spatial and non-spatial memory systems, modulated by age. This outcome temporarily correlated with a significant upregulation of cortical, hippocampal and striatal BDNF levels in parallel with an increase in the number of hippocampal CA1-mature neurons. AE also increased brain and raphe 5-HT levels, as well as the expression of SERT and 5-HT1A receptor in the cortex and hippocampus. Old AE rats showed a highly conserved response, indicating a remarkable protective effect of exercise on both systems. In summary, lifelong AE positively affects BDNF-5-HT systems, improves cognitive function and protects the brain against the deleterious effects of sedentary life and aging.
Collapse
Affiliation(s)
- A Pietrelli
- Universidad de Ciencias Empresariales y Sociales (UCES), Departamento de Investigación en Ciencia Básica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina.
| | - L Matković
- Universidad de Ciencias Empresariales y Sociales (UCES), Departamento de Investigación en Ciencia Básica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - M Vacotto
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina
| | - J J Lopez-Costa
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Buenos Aires, Argentina
| | - N Basso
- CONICET-Universidad de Buenos Aires, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires, Argentina
| | - A Brusco
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Buenos Aires, Argentina
| |
Collapse
|
17
|
Gryglewski G, Seiger R, James GM, Godbersen GM, Komorowski A, Unterholzner J, Michenthaler P, Hahn A, Wadsak W, Mitterhauser M, Kasper S, Lanzenberger R. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage 2018; 176:259-267. [PMID: 29723639 DOI: 10.1016/j.neuroimage.2018.04.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/30/2018] [Accepted: 04/29/2018] [Indexed: 11/16/2022] Open
Abstract
The quantification of big pools of diverse molecules provides important insights on brain function, but is often restricted to a limited number of observations, which impairs integration with other modalities. To resolve this issue, a method allowing for the prediction of mRNA expression in the entire brain based on microarray data provided in the Allen Human Brain Atlas was developed. Microarray data of 3702 samples from 6 brain donors was registered to MNI and cortical surface space using FreeSurfer. For each of 18,686 genes, spatial dependence of transcription was assessed using variogram modelling. Variogram models were employed in Gaussian process regression to calculate best linear unbiased predictions for gene expression at all locations represented in well-established imaging atlases for cortex, subcortical structures and cerebellum. For validation, predicted whole-brain transcription of the HTR1A gene was correlated with [carbonyl-11C]WAY-100635 positron emission tomography data collected from 30 healthy subjects. Prediction results showed minimal bias ranging within ±0.016 (cortical surface), ±0.12 (subcortical regions) and ±0.14 (cerebellum) in units of log2 expression intensity for all genes. Across genes, the correlation of predicted and observed mRNA expression in leave-one-out cross-validation correlated with the strength of spatial dependence (cortical surface: r = 0.91, subcortical regions: r = 0.85, cerebellum: r = 0.84). 816 out of 18,686 genes exhibited a high spatial dependence accounting for more than 50% of variance in the difference of gene expression on the cortical surface. In subcortical regions and cerebellum, different sets of genes were implicated by high spatially structured variability. For the serotonin 1A receptor, correlation between PET binding potentials and predicted comprehensive mRNA expression was markedly higher (Spearman ρ = 0.72 for cortical surface, ρ = 0.84 for subcortical regions) than correlation of PET and discrete samples only (ρ = 0.55 and ρ = 0.63, respectively). Prediction of mRNA expression in the entire human brain allows for intuitive visualization of gene transcription and seamless integration in multimodal analysis without bias arising from non-uniform distribution of available samples. Extension of this methodology promises to facilitate translation of omics research and enable investigation of human brain function at a systems level.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - René Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Gregory Miles James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | | | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
18
|
Verdurand M, Zimmer L. Hippocampal 5-HT1A receptor expression changes in prodromal stages of Alzheimer's disease: Beneficial or deleterious? Neuropharmacology 2017. [DOI: 10.1016/j.neuropharm.2017.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Rohden AI, Benchaya MC, Camargo RS, Moreira TDC, Barros HM, Ferigolo M. Dropout Prevalence and Associated Factors in Randomized Clinical Trials of Adolescents Treated for Depression: Systematic Review and Meta-analysis. Clin Ther 2017; 39:971-992.e4. [DOI: 10.1016/j.clinthera.2017.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
|
20
|
Benmansour S, Arroyo LD, Frazer A. Comparison of the Antidepressant-Like Effects of Estradiol and That of Selective Serotonin Reuptake Inhibitors in Middle-Aged Ovariectomized Rats. Front Aging Neurosci 2016; 8:311. [PMID: 28066235 PMCID: PMC5174113 DOI: 10.3389/fnagi.2016.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/06/2016] [Indexed: 01/04/2023] Open
Abstract
This study investigated the effect of age and that of the post-ovariectomy (OVX) time interval on the antidepressant (AD)-like effects of estradiol (E2) and selective serotonin reuptake inhibitors (SSRIs) in middle-aged (10 month) OVX rats (10m-OVX). Acute or chronic effects of these treatments in 10m-OVX were compared with those (1) in young adult (4-month) OVX rats (4m-OVX) or with older (14-month) OVX rats (14m-OVX), at a short time: 2 weeks post-OVX (+2w) and (2) in 10m-OVX rats after a longer times: 4 or 8 months post-OVX (+4m or +8m). Using in vivo chronoamperometry in the CA3 region of the hippocampus, E2 at 20 pmol, a dose shown previously to inhibit the serotonin transporter (SERT) in 4m-OVX, had no effect in 10m-OVX+2w. A higher dose of E2 (40 pmol) increased T80 value, a measure of serotonin or 5-hydroxytryptamine (5-HT) clearance, and also blocked the ability of fluvoxamine to increase T80. By contrast, estradiol had no effects on SERT function in 10m-OVX+4m, even at a higher dose than 40 pmol. Fluvoxamine slowed 5-HT clearance in 10m-OVX at +2w, +4m and +8m post-OVX as it did in the 4m-OVX. Using the forced swim test, 2 weeks treatment with E2 (5 μg/day), a dose shown previously to induce AD-like effects in 4m-OVX, had no effect in 10m-OVX+2w. However, a higher dose (10 μg/day) of E2 induced an AD-like effect as demonstrated by significantly increased swimming behavior and decreased immobility. This effect was not seen in 10m-OVX+4m. By contrast, significant AD-like effects were obtained in 14m-OVX+2w, thereby demonstrating that the lack of an AD effect of E2 is due to the 4-month hormone withdrawal and not to an age effect. After 2 weeks treatment with the SSRI sertraline, similar AD-like effects were obtained in 10m-OVX tested at +2w, +4m or +8m post-OVX as those found in 4m-OVX. Thus, the potency of estradiol to produce effects consistent with inhibition of the SERT was not only decreased in older rats but its effects were markedly diminished the longer hormonal depletion occurred. By contrast, the ability of SSRIs to inhibit the SERT was not affected either by age or the length of hormonal depletion.
Collapse
Affiliation(s)
- Saloua Benmansour
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Luis D Arroyo
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Alan Frazer
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San AntonioTX, USA; South Texas Veterans Health Care System, San AntonioTX, USA
| |
Collapse
|
21
|
Rangaswamy S, Varshney R, Tiwari AK, Sethi SK, Hemanth kumar BS, Ojha H, Sandeep Kaur‐Ghumaan, Mishra AK. Gd(III)‐DO3A‐SBMPP: An Effort to Develop the MRI Contrast Agent with Enhanced Relaxivity. ChemistrySelect 2016. [DOI: 10.1002/slct.201600814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sandhya Rangaswamy
- Institute of Nuclear Medicine and Allied Sciences Brig. S. K. Mazumdar Marg Delhi 110054 India
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Raunak Varshney
- Institute of Nuclear Medicine and Allied Sciences Brig. S. K. Mazumdar Marg Delhi 110054 India
| | - Anjani K. Tiwari
- Institute of Nuclear Medicine and Allied Sciences Brig. S. K. Mazumdar Marg Delhi 110054 India
| | - Swarndeep K. Sethi
- Institute of Nuclear Medicine and Allied Sciences Brig. S. K. Mazumdar Marg Delhi 110054 India
- Department of Chemistry University of Delhi Delhi 110007 India
| | - B. S. Hemanth kumar
- Institute of Nuclear Medicine and Allied Sciences Brig. S. K. Mazumdar Marg Delhi 110054 India
| | - Himanshu Ojha
- Institute of Nuclear Medicine and Allied Sciences Brig. S. K. Mazumdar Marg Delhi 110054 India
| | | | - Anil K. Mishra
- Institute of Nuclear Medicine and Allied Sciences Brig. S. K. Mazumdar Marg Delhi 110054 India
| |
Collapse
|
22
|
Strupp-Levitsky M, Miller JM, Rubin-Falcone H, Zanderigo F, Milak MS, Sullivan G, Ogden RT, Oquendo MA, DeLorenzo C, Simpson N, Parsey RV, Mann JJ. Lack of association between the serotonin transporter and serotonin 1A receptor: an in vivo PET imaging study in healthy adults. Psychiatry Res 2016; 255:81-86. [PMID: 27567324 PMCID: PMC5175477 DOI: 10.1016/j.pscychresns.2016.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/11/2016] [Accepted: 08/06/2016] [Indexed: 01/12/2023]
Abstract
The serotonin neurotransmitter system is modulated in part by the uptake of synaptically released serotonin (5-HT) by the serotonin transporter (5-HTT), and by specific serotonin autoreceptors such as the somatodendritic 5-HT1A receptor, which can limit serotonin neuron depolarization. However, little is known about how 5-HTT and 5-HT1A are related in vivo. To study this question, we reanalyzed positron emission tomography (PET) data obtained earlier in 40 healthy participants (21 females) using [(11)C]WAY-100635 for quantification of 5-HT1A binding and [(11)C](+)-McN-5652 for quantification of 5-HTT binding. We hypothesized negative correlations between 5-HT1A binding in the raphe nuclei (RN) and 5-HTT binding in RN terminal field regions. Controlling for sex, no significant correlations were found (all p>0.05). Similarly, an exploratory analysis correlating whole-brain voxel-wise 5-HTT binding with 5-HT1A binding in RN identified no significant clusters meeting our a priori statistical threshold. The lack of correlation between 5-HT1A and 5-HTT binding observed in the current study may be due to the different temporal responsiveness of regulatory processes controlling the somatodendritic 5-HT1A receptor and 5-HTT in response to changing availability of intrasynaptic serotonin.
Collapse
Affiliation(s)
- Michael Strupp-Levitsky
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Jeffrey M Miller
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA.
| | - Harry Rubin-Falcone
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Francesca Zanderigo
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Matthew S Milak
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Gregory Sullivan
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - R Todd Ogden
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maria A Oquendo
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Christine DeLorenzo
- Now at Department of Psychiatry, Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Norman Simpson
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| | - Ramin V Parsey
- Now at Department of Psychiatry, Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - J John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive #42, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive #42, New York, NY 10032, USA
| |
Collapse
|
23
|
Abstract
We review the evidence that antidepressants either increase or decrease the risk for suicidal ideation and behavior in adolescents. Meta-analyses of randomized clinical trials (RCTs) indicate a small increased risk for suicidal events in adolescents and young adults, but a protective effect in older adults. In contrast, pharmacoepidemiologic studies show a protective effect across the life span. Explanations for occurrence of suicidal events in younger patients and for the apparent contradiction between RCT and pharmacoepidemiologic studies are offered. Guidance for clinicians is provided on explaining the risk-benefit ratio of antidepressants and how to monitor and attenuate for suicidal risk.
Collapse
Affiliation(s)
- David A Brent
- Western Psychiatric Institute & Clinic, 3811 O'Hara Street, BFT 311, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Deen M, Christensen CE, Hougaard A, Hansen HD, Knudsen GM, Ashina M. Serotonergic mechanisms in the migraine brain - a systematic review. Cephalalgia 2016; 37:251-264. [PMID: 27013238 DOI: 10.1177/0333102416640501] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Migraine is one of the most common and disabling of all medical conditions, affecting 16% of the general population, causing huge socioeconomic costs globally. Current available treatment options are inadequate. Serotonin is a key molecule in the neurobiology of migraine, but the exact role of brain serotonergic mechanisms remains a matter of controversy. Methods We systematically searched PubMed for studies investigating the serotonergic system in the migraine brain by either molecular neuroimaging or electrophysiological methods. Results The literature search resulted in 59 papers, of which 13 were eligible for review. The reviewed papers collectively support the notion that migraine patients have alterations in serotonergic neurotransmission. Most likely, migraine patients have a low cerebral serotonin level between attacks, which elevates during a migraine attack. Conclusion This review suggests that novel methods of investigating the serotonergic system in the migraine brain are warranted. Uncovering the serotonergic mechanisms in migraine pathophysiology could prove useful for the development of future migraine drugs.
Collapse
Affiliation(s)
- Marie Deen
- 1 Danish Headache Center, Department of Neurology, The Neuroscience Centre, Rigshospitalet, Denmark.,2 Neurobiology Research Unit and Center for Experimental Medicine Neuropharmacology, Department of Neurology, The Neuroscience Centre, Rigshospitalet, Denmark.,3 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Casper Emil Christensen
- 1 Danish Headache Center, Department of Neurology, The Neuroscience Centre, Rigshospitalet, Denmark
| | - Anders Hougaard
- 1 Danish Headache Center, Department of Neurology, The Neuroscience Centre, Rigshospitalet, Denmark
| | - Hanne Demant Hansen
- 2 Neurobiology Research Unit and Center for Experimental Medicine Neuropharmacology, Department of Neurology, The Neuroscience Centre, Rigshospitalet, Denmark
| | - Gitte Moos Knudsen
- 2 Neurobiology Research Unit and Center for Experimental Medicine Neuropharmacology, Department of Neurology, The Neuroscience Centre, Rigshospitalet, Denmark.,3 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- 1 Danish Headache Center, Department of Neurology, The Neuroscience Centre, Rigshospitalet, Denmark.,3 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Švob Štrac D, Pivac N, Mück-Šeler D. The serotonergic system and cognitive function. Transl Neurosci 2016; 7:35-49. [PMID: 28123820 PMCID: PMC5017596 DOI: 10.1515/tnsci-2016-0007] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/22/2016] [Indexed: 01/23/2023] Open
Abstract
Symptoms of cognitive dysfunction like memory loss, poor concentration, impaired learning and executive functions are characteristic features of both schizophrenia and Alzheimer’s disease (AD). The neurobiological mechanisms underlying cognition in healthy subjects and neuropsychiatric patients are not completely understood. Studies have focused on serotonin (5-hydroxytryptamine, 5-HT) as one of the possible cognitionrelated biomarkers. The aim of this review is to provide a summary of the current literature on the role of the serotonergic (5-HTergic) system in cognitive function, particularly in AD and schizophrenia. The role of the 5-HTergic system in cognition is modulated by the activity and function of 5-HT receptors (5-HTR) classified into seven groups, which differ in structure, action, and localization. Many 5-HTR are located in the regions linked to various cognitive processes. Preclinical studies using animal models of learning and memory, as well as clinical in vivo (neuroimaging) and in vitro (post-mortem) studies in humans have shown that alterations in 5-HTR activity influence cognitive performance. The current evidence implies that reduced 5-HT neurotransmission negatively influences cognitive functions and that normalization of 5-HT activity may have beneficial effects, suggesting that 5-HT and 5-HTR represent important pharmacological targets for cognition enhancement and restoration of impaired cognitive performance in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
26
|
Moghbel M, Newberg A, Alavi A. Positron emission tomography: ligand imaging. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:229-240. [PMID: 27432668 DOI: 10.1016/b978-0-444-53485-9.00012-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Since it was first used to image the brain in 1976, positron emission tomography (PET) has been utilized in a wide range of neurologic and psychiatric applications. From cerebral metabolism to receptor concentration, various PET imaging techniques involving a host of radiopharmaceuticals have provided insight into countless facets of both the normal and diseased brain. Although the majority of these radiopharmaceuticals are still limited to the realm of research, one PET ligand in particular has gained widespread clinical use: (18)F-fluorodeoxyglucose, a radiolabeled analog of glucose, has become an exceedingly prevalent clinical tool for the measurement of metabolism in organs throughout the body, including the brain. In recent years, a number of novel PET ligands have also made it through the US Food and Drug Administration approval process and been used clinically. However, gaining approval is by no means the only challenge facing these radiopharmaceuticals. Traversing the blood-brain barrier is a formidable obstacle in drug delivery, and accurately modeling tracer kinetics and correcting for the partial-volume effect are among the difficult tasks that remain once the ligand reaches its intended target. Even so, the use of PET imaging in neurology and psychiatry can be expected to expand in the coming years as novel radiopharmaceuticals continue to be developed.
Collapse
Affiliation(s)
- Mateen Moghbel
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Newberg
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University and Hospital, Philadelphia, PA, USA
| | - Abass Alavi
- Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Hagenmuller F, Heekeren K, Meier M, Theodoridou A, Walitza S, Haker H, Rössler W, Kawohl W. The Loudness Dependence of Auditory Evoked Potentials (LDAEP) in individuals at risk for developing bipolar disorders and schizophrenia. Clin Neurophysiol 2015; 127:1342-1350. [PMID: 26639170 DOI: 10.1016/j.clinph.2015.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The Loudness Dependence of Auditory Evoked Potentials (LDAEP) is considered as an indicator of central serotonergic activity. Alteration of serotonergic neurotransmission was reported in bipolar disorders and schizophrenia. In line with previous reports on clinically manifest disorders, we expected a weaker LDAEP in subjects at risk for bipolar disorders and schizophrenia compared to healthy controls. METHODS We analyzed LDAEP of individuals at risk for developing bipolar disorders (n=27), with high-risk status (n=74) and ultra-high-risk status for schizophrenia (n=86) and healthy controls (n=47). RESULTS The LDAEP did not differ between subjects at risk for schizophrenia or bipolar disorders and controls. Among subjects without medication (n=122), the at-risk-bipolar group showed a trend towards a weaker LDAEP than both the high-risk and the ultra-high-risk groups for schizophrenia. CONCLUSIONS The LDAEP did not appear as a vulnerability marker for schizophrenia or bipolar disorders. This suggests that an altered LDAEP may not be measurable until the onset of clinically manifest disorder. However, the hypothesis that pathogenic mechanisms leading to bipolar disorders may differ from those leading to schizophrenia is supported. SIGNIFICANCE This is the first study investigating LDAEP in a population at risk for bipolar disorders.
Collapse
Affiliation(s)
- Florence Hagenmuller
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Magali Meier
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Helene Haker
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Institute of Psychiatry, Laboratory of Neuroscience (LIM 27), University of Sao Paulo, Brazil
| | - Wolfram Kawohl
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
Selvaraj S, Mouchlianitis E, Faulkner P, Turkheimer F, Cowen PJ, Roiser JP, Howes O. Presynaptic Serotoninergic Regulation of Emotional Processing: A Multimodal Brain Imaging Study. Biol Psychiatry 2015; 78:563-571. [PMID: 24882568 PMCID: PMC5322825 DOI: 10.1016/j.biopsych.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND The amygdala is a central node in the brain network that processes aversive emotions and is extensively innervated by dorsal raphe nucleus (DRN) serotonin (5-hydroxytryptamine [5-HT]) neurons. Alterations in DRN 5-HT1A receptor availability cause phenotypes characterized by fearful behavior in preclinical models. However, it is unknown whether 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in humans or whether it modulates connectivity in brain networks involved in emotion processing. To answer this question, we investigated the relationship between DRN 5-HT1A receptor availability and amygdala reactivity to aversive emotion and functional connectivity within the amygdala-cortical network. METHODS We studied 15 healthy human participants who underwent positron emission tomography scanning with [(11)C]CUMI-101, a 5-HT1A partial agonist radioligand, and functional magnetic resonance imaging of brain responses during an incidental emotion processing task including happy, fearful, and neutral faces. Regional estimates of 5-HT1A receptor binding potential (nondisplaceable) were obtained by calculating total volumes of distribution for presynaptic DRN and amygdala. Connectivity between the amygdala and corticolimbic areas was assessed using psychophysiologic interaction analysis with the amygdala as the seed region. RESULTS Analysis of the fear versus neutral contrast revealed a significant negative correlation between amygdala response and DRN binding potential (nondisplaceable) (r = -.87, p < .001). Availability of DRN 5-HT1A receptors positively correlated with amygdala connectivity with middle frontal gyrus, anterior cingulate cortex, bilateral precuneus, and left supramarginal gyrus for fearful (relative to neutral) faces. CONCLUSIONS Our data show that DRN 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in the amygdala and the modulation of amygdala-cortical connectivity.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK,Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elias Mouchlianitis
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK
| | - Paul Faulkner
- Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | | | | | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | - Oliver Howes
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK,Institute of Psychiatry, King’s College London, SE5 8AF, UK
| |
Collapse
|
29
|
Graßnickel V, Illes F, Juckel G, Uhl I. Loudness dependence of auditory evoked potentials (LDAEP) in clinical monitoring of suicidal patients with major depression in comparison with non-suicidal depressed patients and healthy volunteers: A follow-up-study. J Affect Disord 2015; 184:299-304. [PMID: 26120809 DOI: 10.1016/j.jad.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/24/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022]
Abstract
Differences in central serotonergic function due to affective disorders and due to extraordinary situations like suicidality may be visualized using the loudness dependence of auditory evoked potentials (LDAEP). Twenty patients (mean age 43.25 ± 10.85, age range 20-61, 11 male) suffering from a major depressive episode who had either acutely attempted suicide or who had suicidal plans and behavior, which are reflected by item 3 of Hamilton Depression Rating Scale ≥ 3 (suicidality), were included in the study. Furthermore, we intended to compare their LDAEP to those of non-suicidal depressed patients as well as to healthy volunteers, each matched according to age and gender. LDAEP measurement and psychometric tests took place about 2, 5, 9, 16 and 30 days after acute suicidal action or suicide attempts. In contrast to previous results, significant differences in LDAEP could not have been shown in between the suicidal group, or by comparing results of suicidal patients to non-suicidal depressed patients or to healthy volunteers. However, when the LDAEP of non-suicidal depressed patients were compared to healthy volunteers, there was a trend for a higher LDAEP in the healthy volunteers. Further studies are necessary to detect and describe further influences on serotonergic function and confounding factors like medication, smoking, age, gender, comorbidities and methods of suicidal attempts.
Collapse
Affiliation(s)
- Vanessa Graßnickel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr University Bochum, LWL University Hospital Bochum, Alexandrinenstrasse 1-3, 44791 Bochum, Germany.
| | - Franciska Illes
- Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr University Bochum, LWL University Hospital Bochum, Alexandrinenstrasse 1-3, 44791 Bochum, Germany
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr University Bochum, LWL University Hospital Bochum, Alexandrinenstrasse 1-3, 44791 Bochum, Germany
| | - Idun Uhl
- Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr University Bochum, LWL University Hospital Bochum, Alexandrinenstrasse 1-3, 44791 Bochum, Germany
| |
Collapse
|
30
|
Zhao J, Qi XR, Gao SF, Lu J, van Wamelen DJ, Kamphuis W, Bao AM, Swaab DF. Different stress-related gene expression in depression and suicide. J Psychiatr Res 2015; 68:176-85. [PMID: 26228417 DOI: 10.1016/j.jpsychires.2015.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/05/2015] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Suicide occurs in some, but not all depressed patients. So far, it remains unknown whether the studied stress-related candidate genes change in depression, suicide or both. The prefrontal cortex (PFC) is involved in, among other things, impulse control and inhibitory behavior and plays an important role in both suicide and depression. METHODS We have employed qPCR to study 124 anterior cingulate cortex (ACC) and dorsolateral PFC (DLPFC) brain samples, obtained from two brain banks, from: i) young depressed patients (average age 43 years) who committed suicide (MDD-S) and depressed patients who died from causes other than suicide (MDD-NS) and from ii) elderly depressed patients (average age 75 years) who did not commit suicide (DEP). Both cohorts were individually matched with non-psychiatric non-suicide control subjects. We determined the transcript levels of hypothalamic-pituitary-adrenal axis-regulating molecules (corticotropin-releasing hormone (CRH), CRH receptors, CRH binding protein, mineralocorticoid receptor/glucocorticoid receptor), transcription factors that regulate CRH expression, CRH-stimulating cytokines, chaperone proteins, retinoid signaling, brain-derived neurotrophic factor and tropomyosin-related kinase B, cytochrome proteins, nitric oxide synthase (NOS) and monoamines. RESULTS In the MDD-S group, expression levels of CRH and neuronal NOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD) were increased. Other changes were only present in the DEP group, i.e. decreased NIDD, and increased and 5-hydroxytryptamine receptor 1A (5-HT1A) expression levels. Changes were found to be more pronounced in the anterior cingulate cortex than in the dorsolateral PFC. CONCLUSION Depressed patients who committed suicide have different gene expression patterns than depressed patients who died of causes other than suicide.
Collapse
Affiliation(s)
- J Zhao
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - X-R Qi
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - S-F Gao
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - J Lu
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - D J van Wamelen
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - W Kamphuis
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - D F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Genetic Variations in the Serotonergic System Mediate a Combined, Weakened Response to SSRI Treatment: A Proposed Model. eNeuro 2015; 2:eN-TNC-0032-14. [PMID: 26464988 PMCID: PMC4586934 DOI: 10.1523/eneuro.0032-14.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2022] Open
Abstract
Individuals with the short (S) allele in the promoter region of the serotonin transporter gene (5-HTTLPR) show a less favorable response to selective serotonin reuptake inhibitor (SSRI) treatment than individuals with the long (L) allele. Similarly, individuals with the C(-1019)G allele for the mutation found in the promoter region of the serotonin 1A receptor gene (5-HTR1A) have shown blunted responses to SSRI treatment when compared with individuals lacking this polymorphism. While these findings have been replicated across multiple studies, only two studies to date have reported data for a gene-gene interaction associated with response to SSRI treatment. Both of these studies reported a combined effect for these genotypes, with individuals homozygous for the L allele and the C allele (5-HTT(L/L)-1A(C/C)) reporting the most favorable response to SSRI treatment, and individuals homozygous for the S allele and the G allele (5-HTT(S/S)-1A(G/G)) reporting the least favorable response to SSRI treatment. Additionally, no neural mechanisms have been proposed to explain why this gene-gene interaction has been observed. To that end, this article provides a review of the relevant literature associated with these polymorphisms and proposes a feasible model that describes a genotype-dependent modulation of postsynaptic serotonin signaling associated with the 5-HTT and 5-HTR1A genes.
Collapse
|
32
|
Diurnal and seasonal variation of the brain serotonin system in healthy male subjects. Neuroimage 2015; 112:225-231. [DOI: 10.1016/j.neuroimage.2015.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022] Open
|
33
|
Mittur A. Trazodone: properties and utility in multiple disorders. Expert Rev Clin Pharmacol 2014; 4:181-96. [DOI: 10.1586/ecp.10.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Grashorn W, Sprenger C, Forkmann K, Wrobel N, Bingel U. Age-dependent decline of endogenous pain control: exploring the effect of expectation and depression. PLoS One 2013; 8:e75629. [PMID: 24086595 PMCID: PMC3785470 DOI: 10.1371/journal.pone.0075629] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
Although chronic pain affects all age ranges, it is particularly common in the elderly. One potential explanation for the high prevalence of chronic pain in the older population is impaired functioning of the descending pain inhibitory system which can be studied in humans using conditioned pain modulation (CPM) paradigms. In this study we investigated (i) the influence of age on CPM and (ii) the role of expectations, depression and gender as potential modulating variables of an age-related change in CPM. 64 healthy volunteers of three different age groups (young = 20–40 years, middle-aged = 41–60 years, old = 61–80 years) were studied using a classical CPM paradigm that combined moderate heat pain stimuli to the right forearm as test stimuli (TS) and immersion of the contralateral foot into ice water as the conditioning stimulus (CS). The CPM response showed an age-dependent decline with strong CPM responses in young adults but no significant CPM responses in middle-aged and older adults. These age-related changes in CPM responses could not be explained by expectations of pain relief or depression. Furthermore, changes in CPM responses did not differ between men and women. Our results strongly support the notion of a genuine deterioration of descending pain inhibitory mechanisms with age.
Collapse
Affiliation(s)
- Wiebke Grashorn
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail:
| | - Christian Sprenger
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Katarina Forkmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Nathalie Wrobel
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ulrike Bingel
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
35
|
Ostermann J, Uhl I, Köhler E, Juckel G, Norra C. The loudness dependence of auditory evoked potentials and effects of psychopathology and psychopharmacotherapy in psychiatric inpatients. Hum Psychopharmacol 2012; 27:595-604. [PMID: 24446538 DOI: 10.1002/hup.2269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Many studies have provided evidence for the loudness dependence of auditory evoked potentials (LDAEP) as a marker for central serotonergic activity but remained inconclusive for its suitability in clinical use. METHODS A cross-sectional sample of 162 psychiatric inpatients (major depression N = 86, bipolar disorder N = 12, schizophrenia N = 50, and schizoaffective disorder N = 14) and 40 healthy subjects was retrospectively examined for LDAEP and effects of psychopathology and psychopharmacology. RESULTS The LDAEP was weaker in patients with affective disorders than in healthy subjects but did not differentiate between the total patient sample and healthy controls. LDAEP correlated significantly with dimensions of the Brief Symptom Inventory in the total patient sample (depression, paranoid ideation, psychoticism, Global Symptom Index, and Positive Symptom Distress Index), in patients with affective disorders (depression) and with schizophrenia spectrum disorders (depression, psychoticism, Global Symptom Index, and Positive Symptom Distress Index). Similar correlations were found in depressed patients with a single noradrenergic and specific serotonergic antidepressant or serotonin-norepinephrine reuptake inhibitor. There was a negative correlation between dosage of typical antipsychotics and LDAEP. Hypnotics generally led to a lower LDAEP. CONCLUSION The LDAEP in patients is related to severity of psychopathologic syndromes irrespective of diagnosis. Chronic psychopharmacologic treatment may also differentially modulate the LDAEP, but longitudinal studies are needed.
Collapse
Affiliation(s)
- Julia Ostermann
- Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr University Bochum, LWL University Hospital Bochum, Bochum, Germany
| | | | | | | | | |
Collapse
|
36
|
Savli M, Bauer A, Mitterhauser M, Ding YS, Hahn A, Kroll T, Neumeister A, Haeusler D, Ungersboeck J, Henry S, Isfahani SA, Rattay F, Wadsak W, Kasper S, Lanzenberger R. Normative database of the serotonergic system in healthy subjects using multi-tracer PET. Neuroimage 2012; 63:447-59. [PMID: 22789740 DOI: 10.1016/j.neuroimage.2012.07.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 01/13/2023] Open
Abstract
The highly diverse serotonergic system with at least 16 different receptor subtypes is implicated in the pathophysiology of most neuropsychiatric disorders including affective and anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, eating disorders, sleep disturbance, attention deficit/hyperactivity disorder, drug addiction, suicidal behavior, schizophrenia, Alzheimer, etc. Alterations of the interplay between various pre- and postsynaptic receptor subtypes might be involved in the pathogenesis of these disorders. However, there is a lack of comprehensive in vivo values using standardized procedures. In the current PET study we quantified 3 receptor subtypes, including the major inhibitory (5-HT(1A) and 5-HT(1B)) and excitatory (5-HT(2A)) receptors, and the transporter (5-HTT) in the brain of healthy human subjects to provide a database of standard values. PET scans were performed on 95 healthy subjects (age=28.0 ± 6.9 years; 59% males) using the selective radioligands [carbonyl-(11)C]WAY-100635, [(11)C]P943, [(18)F]altanserin and [(11)C]DASB, respectively. A standard template in MNI stereotactic space served for region of interest delineation. This template follows two anatomical parcellation schemes: 1) Brodmann areas including 41 regions and 2) AAL (automated anatomical labeling) including 52 regions. Standard values (mean, SD, and range) for each receptor and region are presented. Mean cortical and subcortical binding potential (BP) values were in good agreement with previously published human in vivo and post-mortem data. By means of linear equations, PET binding potentials were translated to post-mortem binding (provided in pmol/g), yielding 5.89 pmol/g (5-HT(1A)), 23.5 pmol/g (5-HT(1B)), 31.44 pmol/g (5-HT(2A)), and 11.33 pmol/g (5-HTT) being equivalent to the BP of 1, respectively. Furthermore, we computed individual voxel-wise maps with BP values and generated average tracer-specific whole-brain binding maps. This knowledge might improve our interpretation of the alterations taking place in the serotonergic system during neuropsychiatric disorders.
Collapse
Affiliation(s)
- Markus Savli
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rodríguez JJ, Noristani HN, Verkhratsky A. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol 2012; 99:15-41. [DOI: 10.1016/j.pneurobio.2012.06.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/24/2012] [Accepted: 06/22/2012] [Indexed: 01/11/2023]
|
38
|
Matuskey D, Pittman B, Planeta-Wilson B, Walderhaug E, Henry S, Gallezot JD, Nabulsi N, Ding YS, Bhagwagar Z, Malison R, Carson RE, Neumeister A. Age effects on serotonin receptor 1B as assessed by PET. J Nucl Med 2012; 53:1411-4. [PMID: 22851636 DOI: 10.2967/jnumed.112.103598] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Previous imaging studies have suggested that there is an age-related decline in brain serotonin (5-hydroxytryptamine) measures in healthy subjects. This paper addresses whether the availability of 5-hydroxytryptamine receptor 1B (5-HT(1B)) is seen to decrease with aging via PET imaging. METHODS Forty-eight healthy control subjects (mean age ± SD, 30 ± 10 y; age range, 18-61 y; 33 men, 15 women) underwent (11)C-P943 scanning on a high-resolution PET tomograph. Regions were examined with and without gray matter masking, the latter in an attempt to control for age-related gray matter atrophy on nondisplaceable binding potential (BP(ND)) as determined by a validated multilinear reference tissue model. RESULTS 5-HT(1B) BP(ND) decreased in the cortex at an average rate of 8% per decade without and 9% with gray matter masking. A negative association with age was also observed in all individual cortical regions. Differences in the putamen and pallidum (positive association) were significant after adjustment for multiple comparisons. No sex- or race-related effects on 5-HT(1B) BP(ND) were found in any regions. CONCLUSION These findings indicate that age is a relevant factor for 5-HT(1B) in the cortex of healthy adults.
Collapse
Affiliation(s)
- David Matuskey
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Farrell MJ. Age-Related Changes in the Structure and Function of Brain Regions Involved in Pain Processing. PAIN MEDICINE 2012; 13 Suppl 2:S37-43. [DOI: 10.1111/j.1526-4637.2011.01287.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population. Neuropsychopharmacology 2011; 36:2729-40. [PMID: 21849982 PMCID: PMC3230496 DOI: 10.1038/npp.2011.163] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is a need for rigorous positron emission tomography (PET) and endocrine methods to address inconsistencies in the literature regarding age, sex, and reproductive hormone effects on central serotonin (5HT) 1A and 2A receptor binding potential (BP). Healthy subjects (n=71), aged 20-80 years, underwent 5HT1A and 2A receptor imaging using consecutive 90-min PET acquisitions with [(11)C]WAY100635 and [(18)F]altanserin. Logan graphical analysis was used to derive BP using atrophy-corrected distribution volume (V(T)) in prefrontal, mesiotemporal, occipital cortices, and raphe nucleus (5HT1A only). We used multivariate linear regression modeling to examine BP relationships with age, age(2), sex, and hormone concentrations, with post hoc regional significance set at p<0.008. There were small postsynaptic 5HT1A receptor BP increases with age and estradiol concentration in women (p=0.004-0.005) and a tendency for small 5HT1A receptor BP declines with age and free androgen index in men (p=0.05-0.06). Raphe 5HT1A receptor BP decreased 4.5% per decade of age (p=0.05), primarily in men. There was a trend for 15% receptor reductions in prefrontal cortical regions in women relative to men (post hoc p=0.03-0.10). The significant decline in 5HT2A receptor BP relative to age (8% per decade; p<0.001) was not related to sex or hormone concentrations. In conclusion, endocrine standardization minimized confounding introduced by endogenous hormonal fluctuations and reproductive stage and permitted us to detect small effects of sex, age, and endogenous sex steroid exposures upon 5HT1A binding. Reduced prefrontal cortical 5HT1A receptor BP in women vs men, but increased 5HT1A receptor BP with aging in women, may partially explain the increased susceptibility to affective disorders in women during their reproductive years that is mitigated in later life. 5HT1A receptor decreases with age in men might contribute to the known increased risk for suicide in men over age 75 years. Low hormone concentrations in adults <50 years of age may be associated with more extreme 5HT1A receptor BP values, but remains to be studied further. The 5HT2A receptor declines with age were not related to sex or hormone concentrations in this sample. Additional study in clinical populations is needed to further examine the affective role of sex-hormone-serotonin receptor relationships.
Collapse
|
41
|
Madsen K, Haahr MT, Marner L, Keller SH, Baaré WF, Svarer C, Hasselbalch SG, Knudsen GM. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study. J Cereb Blood Flow Metab 2011; 31:1475-81. [PMID: 21364600 PMCID: PMC3130316 DOI: 10.1038/jcbfm.2011.11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Experimental studies indicate that the 5-HT(4) receptor activation influence cognitive function, affective symptoms, and the development of Alzheimer's disease (AD). The prevalence of AD increases with aging, and women have a higher predisposition to both AD and affective disorders than men. This study aimed to investigate sex and age effects on 5-HT(4) receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [(11)C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14 men and 16 women). The output parameter, BP(ND), was modeled using the simplified reference tissue model, and partial volume correction was performed with the Muller-Gartner method. A decline with age of 1% per decade was found only in striatum. Women had a 13% lower 5-HT(4) receptor binding in the limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging contrasts others in subtypes of receptors, which generally decrease with aging.
Collapse
Affiliation(s)
- Karine Madsen
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Berardelli R, Margarito E, Ghiggia F, Picu A, Balbo M, Bonelli L, Giordano R, Karamouzis I, Bo M, Ghigo E, Arvat E. Neuroendocrine effects of citalopram, a selective serotonin re-uptake inhibitor, during lifespan in humans. J Endocrinol Invest 2010; 33:657-62. [PMID: 20414043 DOI: 10.1007/bf03346666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Serotonergic system contributes to the regulation of hypothalamus-pituitary-adrenal axis. In humans, serotonergic agonists increase PRL, ACTH, and cortisol, while serotonin (5HT) influence on GH is controversial. Central 5HT activity and neuroendocrine function change during lifespan. DESIGN To clarify the neuroendocrine response to 5HT across lifespan, we assessed ACTH, cortisol, DHEA, PRL, and GH responses to citalopram (CT) in young adults (YA) (no.=12, 29.2±1.7 yr mean±SEM), middle aged (MA) (no.=12, 54.3±0.9 yr), and elderly (ES) (no.=12, 69.3±0.9 yr) males. All the subjects received placebo (saline iv over 120 min) or CT (20 mg iv over 120 min). Blood samples were taken every 15 min up to 240 min. RESULTS During placebo, ACTH, cortisol, GH, and PRL were similar in all groups while DHEA showed an age-dependent reduction from middle age (p<0.001). During CT, ACTH, and cortisol were higher than during placebo in YA (p<0.05) and even more in MA (p<0.01 vs placebo, p<0.05 vs YA); in ES, the increase of both ACTH and cortisol (p<0.05 vs placebo) was lower than in MA (p<0.05) and higher than in YA (p<0.05 for cortisol only). No changes were observed for DHEA, GH, and PRL in any group. CONCLUSIONS Corticotrope response to CT is age-dependent in normal men, being amplified starting from middle age, suggesting precocious changes in the serotonergic neuroendocrine control during lifespan. CT is a useful tool to evaluate the age-dependent serotonergic function in humans.
Collapse
Affiliation(s)
- R Berardelli
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Corso Dogliotti 14, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lothe A, Boni C, Costes N, Bouvard S, Gorwood P, Lavenne F, Alvarez M, Ryvlin P. 5-HT1A gene promoter polymorphism and [18F]MPPF binding potential in healthy subjects: a PET study. Behav Brain Funct 2010; 6:37. [PMID: 20609217 PMCID: PMC2909987 DOI: 10.1186/1744-9081-6-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/07/2010] [Indexed: 11/21/2022] Open
Abstract
Background Previous Positron Emission Tomography (PET) studies of 5-HT1A receptors have shown an influence of several genetic factors, including the triallelic serotonin transporter gene-linked polymorphic region on the binding potential (BPND) of these receptors. The aim of our study was to investigate the relationship between a 5-HT1A promoter polymorphism and the binding potential of another selective 5-HT1A receptor antagonist, [18F]MPPF, in healthy subjects. Methods Thirty-five volunteers, including 23 women, underwent an [18F]MPPF scan and were genotyped for both the C(-1019)G 5-HT1A promoter polymorphism and the triallelic serotonin transporter gene-linked polymorphic region. We used a simplified reference tissue model to generate parametric images of BPND. Whole brain Statistical Parametric Mapping and raphe nuclei region of interest analyses were performed to look for an association of [18F]MPPF BPND with the C(-1019)G 5-HT1A promoter polymorphism. Results Among the 35 subjects, 5-HT1A promoter genotypes occurred with the following frequencies: three G/G, twenty-one G/C, and eleven C/C. No difference of [18F]MPPF BPND between groups was observed, except for two women who were homozygote carriers for the G allele and showed greater binding potential compared to other age-matched women over the frontal and temporal neocortex. However, the biological relevance of this result remains uncertain due to the very small number of subjects with a G/G genotype. These findings were not modified by excluding individuals carrying the S/S genotype of the serotonin transporter gene-linked polymorphic region. Conclusions We failed to observe an association between the C(-1019)G 5-HT1A promoter polymorphism and [18F]MPPF binding in healthy subjects. However our data suggest that the small number of women homozygote for the G allele might have greater [18F]MPPF BPND relative to other individuals. This finding should be confirmed in a larger sample.
Collapse
|
44
|
Marner L, Gillings N, Madsen K, Erritzoe D, Baaré WFC, Svarer C, Hasselbalch SG, Knudsen GM. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET. Neuroimage 2010; 50:855-61. [PMID: 20096787 DOI: 10.1016/j.neuroimage.2010.01.054] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/04/2010] [Accepted: 01/14/2010] [Indexed: 12/16/2022] Open
Abstract
Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy subjects (20-45 years, 8 males) using the simplified reference tissue model. We tested within our population the effect of age and other demographic factors on the endpoint. In seven subjects, we tested the vulnerability of radioligand binding to a pharmacolological challenge with citalopram, which is expected to increase competition from endogenous serotonin. Given radiotracer administration at a range of specific activities, we were able to use the individual BP(ND) measurements for population-based estimation of the saturation binding parameters; B(max) ranged from 0.3 to 1.6 nM. B(max) was in accordance with post-mortem brain studies (Spearman's r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given the low inter-and intrasubject variation, use of the present method will enable detection of a 15% difference in striatum with only 7-13 subjects in a 2-sample test and with only 4-5 subjects in a paired test. The citalopram challenge did not discernibly alter [(11)C]SB207145 binding. In conclusion, the 5-HT(4) receptor binding in human brain can be reliably assessed with [(11)C]SB207145, which is encouraging for future PET studies of drug occupancy or patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lisbeth Marner
- The Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Influence of escitalopram treatment on 5-HT 1A receptor binding in limbic regions in patients with anxiety disorders. Mol Psychiatry 2009; 14:1040-50. [PMID: 18362913 DOI: 10.1038/mp.2008.35] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is an increasing interest in the underlying mechanisms of the antidepressant and anxiolytic treatment effect associated with changes in serotonergic neurotransmission after treatment with selective serotonin (5-HT) reuptake inhibitors (SSRIs) in humans. The 5-HT(1A) receptor is known to play a crucial role in the pathophysiology of affective disorders, and altered 5-HT(1A) receptor binding has been found in anxiety patients. SSRI treatment raises the 5-HT level in the synaptic cleft and might change postsynaptic receptor densities. Therefore, our study in patients suffering from anxiety disorders investigated the effects of long-term treatment with escitalopram on the 5-HT(1A) receptor. A longitudinal positrone emission tomography (PET) study in 12 patients suffering from anxiety disorders was conducted. Two dynamic PET scans were performed applying the selective 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635. Eight regions of interest were defined a priori (orbitofrontal cortex, amygdala, hippocampus, subgenual cortex, anterior and posterior cingulate cortex, dorsal raphe nucleus and cerebellum as reference). After the baseline PET scan, patients were administered escitalopram (average dose of 11.2+/-6.0 mg day(-1)) for a minimum of 12 weeks. A second PET scan was conducted after 109+/-27 days. 5-HT(1A) receptor binding potentials in 12 patients were assessed by PET applying the Simplified Reference Tissue Model.There was a significant reduction in the 5-HT(1A) receptor binding potential after a minimum of 12 weeks of escitalopram treatment in the hippocampus (P=0.006), subgenual cortex (P=0.017) and posterior cingulate cortex (P=0.034). The significance of the hippocampus region survived the Bonferroni-adjusted threshold for multiple comparisons. These PET data in humans in vivo demonstrate a reduction of the 5-HT(1A) binding potential after SSRI treatment.
Collapse
|
47
|
Miller JM, Brennan KG, Ogden TR, Oquendo MA, Sullivan GM, Mann JJ, Parsey RV. Elevated serotonin 1A binding in remitted major depressive disorder: evidence for a trait biological abnormality. Neuropsychopharmacology 2009; 34:2275-84. [PMID: 19458612 PMCID: PMC2760406 DOI: 10.1038/npp.2009.54] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Several biological abnormalities in major depressive disorder (MDD) persist during episode remission, including altered serotonin neurotransmission, and may reflect underlying pathophysiology. We previously described elevated brain serotonin 1A (5-HT(1A)) receptor binding in antidepressant-naive (AN) subjects with MDD within a major depressive episode (MDE) compared with that in healthy controls using positron emission tomography (PET). In this study, we measured 5-HT(1A) receptor binding in unmedicated subjects with MDD during sustained remission, hypothesizing higher binding compared with that in healthy controls, and binding comparable with currently depressed AN subjects, indicative of a biological trait. We compared 5-HT(1A) binding potential (BP(F)) assessed through PET scanning with [(11)C]WAY-100635 in 15 subjects with recurrent MDD in remission for >or=12 months and off antidepressant medication for >or=6 months, 51 healthy controls, and 13 AN MDD subjects in a current MDE. Metabolite-corrected arterial input functions were acquired for the estimation of BP(F). Remitted depressed subjects had higher 5-HT(1A) BP(F) compared with healthy controls; this group difference did not vary significantly in magnitude across brain regions. 5-HT(1A) BP(F) was comparable in remitted and currently depressed subjects. Elevated 5-HT(1A) BP(F) level among subjects with remitted MDD appears to be a trait abnormality in MDD, which may underlie recurrent MDEs. Future studies should evaluate the role of genetic and environmental factors in producing elevated 5-HT(1A) BP(F) and MDD, and should examine whether 5-HT(1A) BP(F) is a vulnerability factor to MDEs that could have a role in screening high-risk populations for MDD.
Collapse
Affiliation(s)
- Jeffrey M Miller
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, Columbia University, New York, NY 10033, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Møller M, Rodell A, Gjedde A. Parametric mapping of 5HT1A receptor sites in the human brain with the Hypotime method: theory and normal values. J Nucl Med 2009; 50:1229-36. [PMID: 19617338 DOI: 10.2967/jnumed.108.053322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The radioligand [carbonyl-(11)C]WAY-100635 ((11)C-WAY) is a PET tracer of the serotonin 5HT(1A) receptors in the human brain. It is metabolized so rapidly in the circulation that it behaves more as a chemical microsphere than as a tracer subject to continuous exchange between the circulation and brain tissue. Although reference tissue methods are useful as analyses of uptake of some radioligands with indeterminate arterial input functions, their use to analyze (11)C-WAY uptake and binding is challenged by the rapid plasma metabolism, which violates the assumption that regions of interest and reference regions continue to exchange radioligand with the circulation during the entire uptake period. Here, we proposed a method of calculation (Hypotime) that specifically uses the washout rather than the accumulation of (11)C-WAY to determine binding potentials (BP(ND)), without the use of regression analysis. METHODS A total of 19 healthy volunteers (age range, 23-73 y) underwent PET to test the Hypotime application of the chemical microsphere properties of (11)C-WAY to identify regions of binding and nonbinding on the exclusive basis of the rate of washout of (11)C-WAY. RESULTS The results of the Hypotime method were compared with the simplified but multilinearized reference tissue method (MLSRTM). The distribution of receptor BP(ND) obtained with Hypotime was consistent with previous autoradiography of postmortem brain tissue, with the highest values of BP(ND) recorded in the medial temporal lobe and decline of receptor availability with age. The values in the basal ganglia and cerebellum were negligible. The MLSRTM, in contrast, yielded lower BP(ND) in all regions and only weakly revealed the decline with age. CONCLUSION The simple and computationally efficient Hypotime method gave reliable values of BP(ND) without the use of regression. The MLSRTM, on the other hand, appeared to be affected by the early disappearance of the radioligand from the circulation and the associated uncertain late presence of (11)C-WAY in the circulation.
Collapse
Affiliation(s)
- Mette Møller
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|
49
|
Abstract
Serotonin (5-HT) has been intimately linked with global regulation of motor behavior, local control of motoneuron excitability, functional recovery of spinal motoneurons as well as neuronal maturation and aging. Selective degeneration of motoneurons is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Motoneurons that are preferentially affected in ALS are also densely innervated by 5-HT neurons (e.g., trigeminal, facial, ambiguus, and hypoglossal brainstem nuclei as well as ventral horn and motor cortex). Conversely, motoneuron groups that appear more resistant to the process of neurodegeneration in ALS (e.g., oculomotor, trochlear, and abducens nuclei) as well as the cerebellum receive only sparse 5-HT input. The glutamate excitotoxicity theory maintains that in ALS degeneration of motoneurons is caused by excessive glutamate neurotransmission, which is neurotoxic. Because of its facilitatory effects on glutaminergic motoneuron excitation, 5-HT may be pivotal to the pathogenesis and therapy of ALS. 5-HT levels as well as the concentrations 5-hydroxyindole acetic acid (5-HIAA), the major metabolite of 5-HT, are reduced in postmortem spinal cord tissue of ALS patients indicating decreased 5-HT release. Furthermore, cerebrospinal fluid levels of tryptophan, a precursor of 5-HT, are decreased in patients with ALS and plasma concentrations of tryptophan are also decreased with the lowest levels found in the most severely affected patients. In ALS progressive degeneration of 5-HT neurons would result in a compensatory increase in glutamate excitation of motoneurons. Additionally, because 5-HT, acting through presynaptic 5-HT1B receptors, inhibits glutamatergic synaptic transmission, lowered 5-HT activity would lead to increased synaptic glutamate release. Furthermore, 5-HT is a precursor of melatonin, which inhibits glutamate release and glutamate-induced neurotoxicity. Thus, progressive degeneration of 5-HT neurons affecting motoneuron activity constitutes the prime mover of the disease and its progression and treatment of ALS needs to be focused primarily on boosting 5-HT functions (e.g., pharmacologically via its precursors, reuptake inhibitors, selective 5-HT1A receptor agonists/5-HT2 receptor antagonists, and electrically through transcranial administration of AC pulsed picotesla electromagnetic fields) to prevent excessive glutamate activity in the motoneurons. In fact, 5HT1A and 5HT2 receptor agonists have been shown to prevent glutamate-induced neurotoxicity in primary cortical cell cultures and the 5-HT precursor 5-hydroxytryptophan (5-HTP) improved locomotor function and survival of transgenic SOD1 G93A mice, an animal model of ALS.
Collapse
Affiliation(s)
- Reuven Sandyk
- The Carrick Institute for Clinical Ergonomics Rehabilitation, and Applied Neurosciences, School of Engineering Technologies State University of New York at Farmingdale, Farmingdale, New York 11735, USA.
| |
Collapse
|
50
|
Chow TW, Mamo DC, Uchida H, Graff-Guerrero A, Houle S, Smith GS, Pollock BG, Mulsant BH. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults. BMC Med Imaging 2009; 9:12. [PMID: 19580676 PMCID: PMC2722606 DOI: 10.1186/1471-2342-9-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 07/06/2009] [Indexed: 11/25/2022] Open
Abstract
Background Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. Results The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. Conclusion We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples.
Collapse
Affiliation(s)
- Tiffany W Chow
- The Rotman Research Institute of Baycrest Centre for Geriatric Care, Toronto, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|