1
|
Prifti MV, Nuga O, Dulay RO, Patel NC, Kula T, Libohova K, Jackson-Butler A, Tsou WL, Richardson K, Todi SV. Insights into dentatorubral-pallidoluysian atrophy from a new Drosophila model of disease. Neurobiol Dis 2025; 207:106834. [PMID: 39921111 PMCID: PMC11969221 DOI: 10.1016/j.nbd.2025.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disorder that presents with ataxia, dementia and epilepsy. As a member of the polyglutamine family of diseases, DRPLA is caused by abnormal CAG triplet expansion beyond 48 repeats in the protein-coding region of ATROPHIN 1 (ATN1), a transcriptional co-repressor. To better understand DRPLA, we generated new Drosophila lines that can be induced to express full-length, human ATN1 with a normal (Q7) or pathogenic (Q88) repeat in a variety of cells, including neuronal, glial or any other type of tissue. Expression of ATN1 is toxic, with the polyglutamine-expanded version being consistently more problematic than wild-type ATN1. Fly motility, longevity and internal structures are negatively impacted by pathogenic ATN1. RNA-seq identified altered protein quality control and immune pathways in the presence of pathogenic ATN1. Based on these data, we conducted genetic experiments that confirmed the role of protein quality control components that ameliorate or exacerbate ATN1 toxicity. Hsc70-3, a chaperone, arose as a likely suppressor of toxicity. VCP (a proteasome-related AAA ATPase), Rpn11 (a proteasome-related deubiquitinase) and select DnaJ proteins (co-chaperones) were inconsistently protective, depending on the tissues where they were expressed. Lastly, informed by RNA-seq data that exercise-related genes may also be involved in this model of DRPLA, we conducted short-term exercise, which improved overall fly motility. This new model of DRPLA will prove important to understanding this understudied disease and will help to identify therapeutic targets for it.
Collapse
Affiliation(s)
- Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Oluwademilade Nuga
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Ryan O Dulay
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Nikhil C Patel
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Truman Kula
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | | | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Kristin Richardson
- Department of Pharmacology, Wayne State University School of Medicine, USA.
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA.
| |
Collapse
|
2
|
Cerejo C, De Cleene N, Mandler E, Schwarzová K, Labrecque S, Mahlknecht P, Krismer F, Djamshidian A, Seppi K, Heim B. Optical Coherence Tomography in Huntington's Disease-A Potential Future Biomarker for Neurodegeneration? Neurol Int 2025; 17:13. [PMID: 39852777 PMCID: PMC11767877 DOI: 10.3390/neurolint17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder for which, until now, only symptomatic treatment has been available. Lately, there have been multiple ongoing clinical trials targeting therapeutic agents for preventing disease onset or slowing disease progression in HD. These studies are in constant need of reliable biomarkers for neurodegeneration in HD. In recent years, retinal biomarkers have attracted significant attention in neurodegenerative disorders. Likewise, optical coherence tomography (OCT) is being evaluated as a potential biomarker in HD. In this article, we review the existing literature on OCT as a biomarker for neurodegeneration in HD.
Collapse
Affiliation(s)
- Clancy Cerejo
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Nicolas De Cleene
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Elias Mandler
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Katarina Schwarzová
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Samuel Labrecque
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Philipp Mahlknecht
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
- Department of Neurology, Hospital Kufstein, Kufstein 6330, Austria
| | - Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
3
|
Prifti MV, Nuga O, Dulay RO, Patel NC, Kula T, Libohova K, Jackson-Butler A, Tsou WL, Richardson K, Todi SV. Insights into Dentatorubral-Pallidoluysian Atrophy from a new Drosophila model of disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627083. [PMID: 39713465 PMCID: PMC11661066 DOI: 10.1101/2024.12.05.627083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disorder that presents with ataxia, dementia and epilepsy. As a member of the polyglutamine family of diseases, DRPLA is caused by abnormal CAG triplet expansion beyond 48 repeats in the protein-coding region of ATROPHIN 1 (ATN1), a transcriptional co-repressor. To better understand DRPLA, we generated new Drosophila lines that express full-length, human ATN1 with a normal (Q7) or pathogenic (Q88) repeat. Expression of ATN1 is toxic, with the polyglutamine-expanded version being consistently more problematic than wild-type ATN1. Fly motility, longevity and internal structures are negatively impacted by pathogenic ATN1. RNA-seq identified altered protein quality control and immune pathways in the presence of pathogenic ATN1. Based on these data, we conducted genetic experiments that confirmed the role of protein quality control components that ameliorate or exacerbate ATN1 toxicity. Hsc70-3, a chaperone, arose as a likely suppressor of toxicity. VCP (a proteasome-related AAA ATPase), Rpn11 (a proteasome-related deubiquitinase) and select DnaJ proteins (co-chaperones) were inconsistently protective, depending on the tissues where they were expressed. Lastly, informed by RNA-seq data that exercise-related genes may also be involved in this model of DRPLA, we conducted short-term exercise, which improved overall fly motility. This new model of DRPLA will prove important to understanding this understudied disease and will help to identify therapeutic targets for it.
Collapse
|
4
|
Yadav S, Graham A, Al Hammood F, Garbark C, Vasudevan D, Pandey U, Asara JM, Rajasundaram D, Parkhitko AA. Unique tau- and synuclein-dependent metabolic reprogramming in neurons distinct from normal aging. Aging Cell 2024; 23:e14277. [PMID: 39137949 PMCID: PMC11561663 DOI: 10.1111/acel.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Neuronal cells are highly specialized cells and have a specific metabolic profile to support their function. It has been demonstrated that the metabolic profiles of different cells/tissues undergo significant reprogramming with advancing age, which has often been considered a contributing factor towards aging-related diseases including Alzheimer's (AD) and Parkinson's (PD) diseases. However, it is unclear if the metabolic changes associated with normal aging predispose neurons to disease conditions or a distinct set of metabolic alterations happen in neurons in AD or PD which might contribute to disease pathologies. To decipher the changes in neuronal metabolism with age, in AD, or in PD, we performed high-throughput steady-state metabolite profiling on heads in wildtype Drosophila and in Drosophila models relevant to AD and PD. Intriguingly, we found that the spectrum of affected metabolic pathways is dramatically different between normal aging, Tau, or Synuclein overexpressing neurons. Genetic targeting of the purine and glutamate metabolism pathways, which were dysregulated in both old age and disease conditions partially rescued the neurodegenerative phenotype associated with the overexpression of wildtype and mutant tau. Our findings support a "two-hit model" to explain the pathological manifestations associated with AD where both aging- and Tau/Synuclein- driven metabolic reprogramming events cooperate with each other, and targeting both could be a potent therapeutic strategy.
Collapse
Affiliation(s)
- Shweta Yadav
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Aidan Graham
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Farazdaq Al Hammood
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Chris Garbark
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Deepika Vasudevan
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Udai Pandey
- Department of Pediatrics, Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Andrey A. Parkhitko
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Prange SE, Bhakta IN, Sysoeva D, Jean GE, Madisetti A, Le HHN, Duong LU, Hwu PT, Melton JG, Thompson-Peer KL. Dendrite injury triggers neuroprotection in Drosophila models of neurodegenerative disease. Sci Rep 2024; 14:24766. [PMID: 39433621 PMCID: PMC11494097 DOI: 10.1038/s41598-024-74670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Dendrite defects and loss are early cellular alterations observed across neurodegenerative diseases that play a role in early disease pathogenesis. Dendrite degeneration can be modeled by expressing pathogenic polyglutamine disease transgenes in Drosophila neurons in vivo. Here, we show that we can protect against dendrite loss in neurons modeling neurodegenerative polyglutamine diseases through injury to a single primary dendrite branch. We find that this neuroprotection is specific to injury-induced activation of dendrite regeneration: neither injury to the axon nor injury just to surrounding tissues induces this response. We show that the mechanism of this regenerative response is stabilization of the actin (but not microtubule) cytoskeleton. We also demonstrate that this regenerative response may extend to other neurodegenerative diseases. Together, we provide evidence that activating dendrite regeneration pathways has the potential to slow-or even reverse-dendrite loss in neurodegenerative disease.
Collapse
Affiliation(s)
- Sydney E Prange
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, Irvine, CA, USA
| | - Isha N Bhakta
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Daria Sysoeva
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Grace E Jean
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Anjali Madisetti
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Hieu H N Le
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ly U Duong
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Patrick T Hwu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Jaela G Melton
- Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, Irvine, CA, USA.
- Reeve-Irvine Research Center, Irvine, CA, USA.
| |
Collapse
|
6
|
Gouravani M, Fekrazad S, Mafhoumi A, Ashouri M, DeBuc DC. Optical coherence tomography measurements in Huntington's disease: a systematic review and meta-analysis. J Neurol 2024; 271:6471-6484. [PMID: 39187741 PMCID: PMC11447008 DOI: 10.1007/s00415-024-12634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND A connection has been established between ocular structural changes and various neurodegenerative diseases. Several studies utilizing optical coherence tomography (OCT) have detected signs of ocular structural alterations among individuals with Huntington's disease (HD). The inconsistent results reported in the literature regarding alterations in the retina and choroid encouraged us to conduct this systematic review and meta-analysis to accumulate the findings. METHODS A systematic search was carried out in three electronic databases (PubMed, Embase, Scopus) to find studies reporting OCT measurements in HD cases compared with healthy controls (HC). A fixed-effects or random-effects meta-analysis was conducted according to the detected heterogeneity level. Furthermore, subgroup and sensitivity analyses, meta-regression, and quality assessment were performed. RESULTS Eleven studies were included in the systematic review and 9 studies with a total population of 452 participants (241 cases, and 211 HC) underwent meta-analysis. Results of the analysis denoted that subfoveal choroid had a significantly reduced thickness in HD eyes compared to HC (p < 0.0001). Moreover, our analysis indicated that HD cases had a significantly thinner average (p = 0.0130) and temporal peripapillary retinal nerve fiber layer (pRNFL) (p = 0.0012) than HC. However, subjects with pre-HD had insignificant differences in average (p = 0.44) and temporal pRNFL thickness (p = 0.33) with the HC group. CONCLUSION Results of the current systematic review and meta-analysis revealed the significant thinning of average and temporal pRNFL and subfoveal choroid in HD compared to HC. However, OCT currently might be considered insensitive to be applied in the pre-HD population at least until further longitudinal investigations considering variables such as the duration between OCT measurement and disease onset validating OCT as a routine diagnostic tool in HD clinics.
Collapse
Affiliation(s)
- Mahdi Gouravani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Fekrazad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Network for Photomedicine and Photodynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asma Mafhoumi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ashouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delia Cabrera DeBuc
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Sujkowski A, Ranxhi B, Bangash ZR, Chbihi ZM, Prifti MV, Qadri Z, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of spinocerebellar ataxia type 7. Sci Rep 2024; 14:14332. [PMID: 38906973 PMCID: PMC11192756 DOI: 10.1038/s41598-024-65172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Bedri Ranxhi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zoya R Bangash
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zachary M Chbihi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zaina Qadri
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Nadir Alam
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Haga-Yamanaka S, Nunez-Flores R, Scott CA, Perry S, Chen ST, Pontrello C, Nair MG, Ray A. Plasticity of gene expression in the nervous system by exposure to environmental odorants that inhibit HDACs. eLife 2024; 12:RP86823. [PMID: 38411140 PMCID: PMC10942631 DOI: 10.7554/elife.86823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Eukaryotes respond to secreted metabolites from the microbiome. However, little is known about the effects of exposure to volatiles emitted by microbes or in the environment that we are exposed to over longer durations. Using Drosophila melanogaster, we evaluated a yeast-emitted volatile, diacetyl, found at high levels around fermenting fruits where they spend long periods of time. Exposure to the diacetyl molecules in headspace alters gene expression in the antenna. In vitro experiments demonstrated that diacetyl and structurally related volatiles inhibited conserved histone deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure caused modulation of gene expression in the mouse brain, therefore showing potential as a neuro-therapeutic. Using two separate disease models previously known to be responsive to HDAC inhibitors, we evaluated the physiological effects of volatile exposure. Diacetyl exposure halted proliferation of a neuroblastoma cell line in culture. Exposure to diacetyl vapors slowed progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression, and physiology in animals.
Collapse
Affiliation(s)
- Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
| | - Rogelio Nunez-Flores
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
- Division of Biomedical Sciences, University of CaliforniaRiversideUnited States
| | - Christi A Scott
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
| | - Sarah Perry
- Genetics, Genomics and Bioinformatics Program, University of CaliforniaRiversideUnited States
| | - Stephanie Turner Chen
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
| | - Crystal Pontrello
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
| | - Meera G Nair
- Division of Biomedical Sciences, University of CaliforniaRiversideUnited States
| | - Anandasankar Ray
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
- Genetics, Genomics and Bioinformatics Program, University of CaliforniaRiversideUnited States
| |
Collapse
|
9
|
Joseph S, Robbins CB, Haystead A, Hemesath A, Allen A, Kundu A, Ma JP, Scott BL, Moore KPL, Agrawal R, Gunasan V, Stinnett SS, Grewal DS, Fekrat S. Characterizing differences in retinal and choroidal microvasculature and structure in individuals with Huntington's Disease compared to healthy controls: A cross-sectional prospective study. PLoS One 2024; 19:e0296742. [PMID: 38289919 PMCID: PMC10826956 DOI: 10.1371/journal.pone.0296742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE To characterize retinal and choroidal microvascular and structural changes in patients who are gene positive for mutant huntingtin protein (mHtt) with symptoms of Huntington's Disease (HD). METHODS This study is a cross-sectional comparison of patients who are gene positive for mHtt and exhibit symptoms of HD, either motor manifest or prodromal (HD group), and cognitively normal individuals without a family history of HD (control group). HD patients were diagnosed by Duke movement disorder neurologists based on the Unified Huntington's Disease Rating Scale (UHDRS). Fovea and optic nerve centered OCT and OCTA images were captured using Zeiss Cirrus HD-5000 with AngioPlex. Outcome metrics included central subfield thickness (CST), peripapillary retinal nerve fiber layer (pRNFL) thickness, ganglion cell-inner plexiform layer (GCIPL) thickness, and choroidal vascularity index (CVI) on OCT, and foveal avascular zone (FAZ) area, vessel density (VD), perfusion density (PD), capillary perfusion density (CPD), and capillary flux index (CFI) on OCTA. Generalized estimating equation (GEE) models were used to account for inter-eye correlation. RESULTS Forty-four eyes of 23 patients in the HD group and 77 eyes of 39 patients in the control group were analyzed. Average GCIPL thickness and FAZ area were decreased in the HD group compared to controls (p = 0.001, p < 0.001). No other imaging metrics were significantly different between groups. CONCLUSIONS Patients in the HD group had decreased GCIPL thickness and smaller FAZ area, highlighting the potential use of retinal biomarkers in detecting neurodegenerative changes in HD.
Collapse
Affiliation(s)
- Suzanna Joseph
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States of America
- iMIND Research Group, Durham, NC, United States of America
| | - Cason B. Robbins
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States of America
- iMIND Research Group, Durham, NC, United States of America
| | - Alice Haystead
- iMIND Research Group, Durham, NC, United States of America
| | - Angela Hemesath
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States of America
- iMIND Research Group, Durham, NC, United States of America
| | - Ariana Allen
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States of America
- iMIND Research Group, Durham, NC, United States of America
| | - Anita Kundu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States of America
- iMIND Research Group, Durham, NC, United States of America
| | - Justin P. Ma
- iMIND Research Group, Durham, NC, United States of America
| | - Burton L. Scott
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States of America
| | - Kathryn P. L. Moore
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States of America
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vithiya Gunasan
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sandra S. Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States of America
- iMIND Research Group, Durham, NC, United States of America
| | - Dilraj S. Grewal
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States of America
- iMIND Research Group, Durham, NC, United States of America
| | - Sharon Fekrat
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States of America
- iMIND Research Group, Durham, NC, United States of America
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
10
|
Haga-Yamanaka S, Nuñez-Flores R, Scott CA, Perry S, Chen ST, Pontrello C, Nair MG, Ray A. Plasticity of gene expression in the nervous system by exposure to environmental odorants that inhibit HDACs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529339. [PMID: 36865229 PMCID: PMC9980067 DOI: 10.1101/2023.02.21.529339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Eukaryotes are often exposed to microbes and respond to their secreted metabolites, such as the microbiome in animals or commensal bacteria in roots. Little is known about the effects of long-term exposure to volatile chemicals emitted by microbes, or other volatiles that we are exposed to over a long duration. Using the model system Drosophila melanogaster, we evaluate a yeast emitted volatile, diacetyl, found in high levels around fermenting fruits where they spend long periods of time. We find that exposure to just the headspace containing the volatile molecules can alter gene expression in the antenna. Experiments showed that diacetyl and structurally related volatile compounds inhibited human histone-deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused wide changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure causes modulation of gene expression in the brain, therefore has potential as a therapeutic. Using two separate disease models known to be responsive to HDAC-inhibitors, we evaluated physiological effects of volatile exposure. First, we find that the HDAC inhibitor also halts proliferation of a neuroblastoma cell line in culture as predicted. Next, exposure to vapors slows progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that unbeknown to us, certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression and physiology in animals.
Collapse
Affiliation(s)
- Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Rogelio Nuñez-Flores
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Christi Ann Scott
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA 92521, USA
| | - Sarah Perry
- Genetics, Genomics and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - Stephanie Turner Chen
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA 92521, USA
| | - Crystal Pontrello
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Meera Goh Nair
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Anandasankar Ray
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA 92521, USA
- Genetics, Genomics and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Barwell T, Seroude L. Polyglutamine disease in peripheral tissues. Hum Mol Genet 2023; 32:3303-3311. [PMID: 37642359 DOI: 10.1093/hmg/ddad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
This year is a milestone anniversary of the discovery that Huntington's disease is caused by the presence of expanded polyglutamine repeats in the huntingtin gene leading to the formation of huntingtin aggregates. 30 years have elapsed and there is still no cure and the only FDA-approved treatment to alleviate the debilitating locomotor impairments presents several adverse effects. It has long been neglected that the huntingtin gene is almost ubiquitously expressed in many tissues outside of the nervous system. Growing evidence indicates that these peripheral tissues can contribute to the symptoms of the disease. New findings in Drosophila have shown that the selective expression of mutant huntingtin in muscle or fat is sufficient to cause detrimental effects in the absence of any neurodegeneration. In addition, it was discovered that a completely different tissue distribution of Htt aggregates in Drosophila muscles is responsible for a drastic aggravation of the detrimental effects. This review examines the peripheral tissues that express huntingtin with an added focus on the nature and distribution of the aggregates, if any.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
12
|
Sujkowski AL, Ranxhi B, Prifti MV, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of Spinocerebellar Ataxia type 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566106. [PMID: 37986914 PMCID: PMC10659390 DOI: 10.1101/2023.11.07.566106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
|
13
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
14
|
Barwell T, Raina S, Page A, MacCharles H, Seroude L. Juvenile and adult expression of polyglutamine expanded huntingtin produce distinct aggregate distributions in Drosophila muscle. Hum Mol Genet 2023; 32:2656-2668. [PMID: 37369041 DOI: 10.1093/hmg/ddad098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
While Huntington's disease (HD) is widely recognized as a disease affecting the nervous system, much evidence has accumulated to suggest peripheral or non-neuronal tissues are affected as well. Here, we utilize the UAS/GAL4 system to express a pathogenic HD construct in the muscle of the fly and characterize the effects. We observe detrimental phenotypes such as a reduced lifespan, decreased locomotion and accumulation of protein aggregates. Strikingly, depending on the GAL4 driver used to express the construct, we saw different aggregate distributions and severity of phenotypes. These different aggregate distributions were found to be dependent on the expression level and the timing of expression. Hsp70, a well-documented suppressor of polyglutamine aggregates, was found to strongly reduce the accumulation of aggregates in the eye, but in the muscle, it did not prevent the reduction of the lifespan. Therefore, the molecular mechanisms underlying the detrimental effects of aggregates in the muscle are distinct from the nervous system.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Sehaj Raina
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Austin Page
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Hayley MacCharles
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
15
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
16
|
Yusuff T, Chang YC, Sang TK, Jackson GR, Chatterjee S. Codon-optimized TDP-43 mediates neurodegeneration in a Drosophila model of ALS/FTLD. Front Genet 2023; 14:881638. [PMID: 36968586 PMCID: PMC10034021 DOI: 10.3389/fgene.2023.881638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Transactive response DNA binding protein-43 (TDP-43) is known to mediate neurodegeneration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The exact mechanism by which TDP-43 exerts toxicity in the brains, spinal cord, and lower motor neurons of affected patients remains unclear. In a novel Drosophila melanogaster model, we report gain-of-function phenotypes due to misexpression of insect codon-optimized version of human wild-type TDP-43 (CO-TDP-43) using both the binary GAL4/UAS system and direct promoter fusion constructs. The CO-TDP-43 model showed robust tissue specific phenotypes in the adult eye, wing, and bristles in the notum. Compared to non-codon optimized transgenic flies, the CO-TDP-43 flies produced increased amount of high molecular weight protein, exhibited pathogenic phenotypes, and showed cytoplasmic aggregation with both nuclear and cytoplasmic expression of TDP-43. Further characterization of the adult retina showed a disruption in the morphology and function of the photoreceptor neurons with the presence of acidic vacuoles that are characteristic of autophagy. Based on our observations, we propose that TDP-43 has the propensity to form toxic protein aggregates via a gain-of-function mechanism, and such toxic overload leads to activation of protein degradation pathways such as autophagy. The novel codon optimized TDP-43 model is an excellent resource that could be used in genetic screens to identify and better understand the exact disease mechanism of TDP-43 proteinopathies and find potential therapeutic targets.
Collapse
Affiliation(s)
- Tanzeen Yusuff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| | - Ya-Chu Chang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Kang Sang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - George R. Jackson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
- National Parkinson’s Disease Research Education and Clinical Center, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Shreyasi Chatterjee
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| |
Collapse
|
17
|
Saade-Lemus S, Videnovic A. Sleep Disorders and Circadian Disruption in Huntington's Disease. J Huntingtons Dis 2023; 12:121-131. [PMID: 37424473 PMCID: PMC10473087 DOI: 10.3233/jhd-230576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Sleep and circadian alterations are common in patients with Huntington's disease (HD). Understanding the pathophysiology of these alterations and their association with disease progression and morbidity can guide HD management. We provide a narrative review of the clinical and basic-science studies centered on sleep and circadian function on HD. Sleep/wake disturbances among HD patients share many similarities with other neurodegenerative diseases. Overall, HD patients and animal models of the disease present with sleep changes early in the clinical course of the disease, including difficulties with sleep initiation and maintenance leading to decreased sleep efficiency, and progressive deterioration of normal sleep architecture. Despite this, sleep alterations remain frequently under-reported by patients and under-recognized by health professionals. The degree of sleep and circadian alterations has not consistently shown to be CAG dose-dependent. Evidence based treatment recommendations are insufficient due to lack of well-designed intervention trials. Approaches aimed at improving circadian entrainment, such as including light therapy, and time-restricted feeding have demonstrated a potential to delay symptom progression in some basic HD investigations. Larger study cohorts, comprehensive assessment of sleep and circadian function, and reproducibility of findings are needed in future in order to better understand sleep and circadian function in HD and to develop effective treatments.
Collapse
Affiliation(s)
- Sandra Saade-Lemus
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Liu CQ, Qu XC, He MF, Liang DH, Xie SM, Zhang XX, Lin YM, Zhang WJ, Wu KC, Qiao JD. Efficient strategies based on behavioral and electrophysiological methods for epilepsy-related gene screening in the Drosophila model. Front Mol Neurosci 2023; 16:1121877. [PMID: 37152436 PMCID: PMC10157486 DOI: 10.3389/fnmol.2023.1121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction With the advent of trio-based whole-exome sequencing, the identification of epilepsy candidate genes has become easier, resulting in a large number of potential genes that need to be validated in a whole-organism context. However, conducting animal experiments systematically and efficiently remains a challenge due to their laborious and time-consuming nature. This study aims to develop optimized strategies for validating epilepsy candidate genes using the Drosophila model. Methods This study incorporate behavior, morphology, and electrophysiology for genetic manipulation and phenotypic examination. We utilized the Gal4/UAS system in combination with RNAi techniques to generate loss-of-function models. We performed a range of behavioral tests, including two previously unreported seizure phenotypes, to evaluate the seizure behavior of mutant and wild-type flies. We used Gal4/UAS-mGFP flies to observe the morphological alterations in the brain under a confocal microscope. We also implemented patch-clamp recordings, including a novel electrophysiological method for studying synapse function and improved methods for recording action potential currents and spontaneous EPSCs on targeted neurons. Results We applied different techniques or methods mentioned above to investigate four epilepsy-associated genes, namely Tango14, Klp3A, Cac, and Sbf, based on their genotype-phenotype correlation. Our findings showcase the feasibility and efficiency of our screening system for confirming epilepsy candidate genes in the Drosophila model. Discussion This efficient screening system holds the potential to significantly accelerate and optimize the process of identifying epilepsy candidate genes, particularly in conjunction with trio-based whole-exome sequencing.
Collapse
Affiliation(s)
- Chu-Qiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - De-Hai Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ming Xie
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xi-Xing Zhang
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Yong-Miao Lin
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ka-Chun Wu
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing-Da Qiao, ; orcid.org/0000-0002-4693-8390
| |
Collapse
|
19
|
Clabough EBD, Aspili C, Fussy WS, Ingersoll JD, Kislyakov A, Li ES, Su MJ, Wiles DB, Watson TE, Willy AJ, Thomas Vinyard H, Mollica Iii PJ, Taylor JV, Smith CW, Roark DA, Tabrani ZP, Thomas HL, Shin M, Venton BJ, Hayes D, Sipe CW. Huntingtin Plays a Role in the Physiological Response to Ethanol in Drosophila. J Huntingtons Dis 2023; 12:241-252. [PMID: 37661891 DOI: 10.3233/jhd-230581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Huntingtin (htt) protein is an essential regulator of nervous system function through its various neuroprotective and pro-survival functions, and loss of wild-type htt function is implicated in the etiology of Huntington's disease. While its pathological role is typically understood as a toxic gain-of-function, some neuronal phenotypes also result from htt loss. Therefore, it is important to understand possible roles for htt in other physiological circumstances. OBJECTIVE To elucidate the role of htt in the context of ethanol exposure, we investigated how loss of htt impacts behavioral and physiological responses to ethanol in Drosophila. METHODS We tested flies lacking htt for ethanol sensitivity and tolerance, preference for ethanol using capillary feeder assays, and recovery of mobility after intoxication. Levels of dopamine neurotransmitter and numbers of dopaminergic cells in brains lacking dhtt were also measured. RESULTS We found that dhtt-null flies are both less sensitive and more tolerant to ethanol exposure in adulthood. Moreover, flies lacking dhtt are more averse to alcohol than controls, and they recover mobility faster following acute ethanol intoxication. We showed that dhtt mediates these effects at least in part through the dopaminergic system, as dhtt is required to maintain normal levels of dopamine in the brain and normal numbers of dopaminergic cells in the adult protocerebrum. CONCLUSIONS Our results demonstrate that htt regulates the physiological response to ethanol and indicate a novel neuroprotective role for htt in the dopaminergic system, raising the possibility that it may be involved more generally in the response to toxic stimuli.
Collapse
Affiliation(s)
- Erin B D Clabough
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Christia Aspili
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - William S Fussy
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - James D Ingersoll
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Amy Kislyakov
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth S Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Meng-Jiuan Su
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Dustin B Wiles
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Thomas E Watson
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Aaron J Willy
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - H Thomas Vinyard
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | | | - James V Taylor
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Cody W Smith
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Dallas A Roark
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Zachary P Tabrani
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Harris L Thomas
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, USA
| | - Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - B Jill Venton
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - David Hayes
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
- Department of Biology, Kansas State University, Manhattan, KS, USA
| | - Conor W Sipe
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
20
|
Nitta Y, Sugie A. Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly (Austin) 2022; 16:275-298. [PMID: 35765969 PMCID: PMC9336468 DOI: 10.1080/19336934.2022.2087484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/09/2023] Open
Abstract
The use of Drosophila in neurodegenerative disease research has contributed to the identification of modifier genes for the pathology. The basis for neurodegenerative disease occurrence in Drosophila is the conservation of genes across species and the ability to perform rapid genetic analysis using a compact brain. Genetic findings previously discovered in Drosophila can reveal molecular pathologies involved in human neurological diseases in later years. Disease models using Drosophila began to be generated during the development of genetic engineering. In recent years, results of reverse translational research using Drosophila have been reported. In this review, we discuss research on neurodegenerative diseases; moreover, we introduce various methods for quantifying neurodegeneration in Drosophila.
Collapse
Affiliation(s)
- Yohei Nitta
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
21
|
Bonini NM. A perspective on Drosophila genetics and its insight into human neurodegenerative disease. Front Mol Biosci 2022; 9:1060796. [PMID: 36518845 PMCID: PMC9743296 DOI: 10.3389/fmolb.2022.1060796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 09/07/2023] Open
Abstract
Drosophila has been long appreciated as a classic genetic system for its ability to define gene function in vivo. Within the last several decades, the fly has also emerged as a premiere system for modeling and defining mechanisms of human disease by expressing dominant human disease genes and analyzing the effects. Here I discuss key aspects of this latter approach that first intrigued me to focus my laboratory research on this idea. Differences between the loss-of-function vs. the gain-of-function approach are raised-and the insight of these approaches for appreciating mechanisms that contribute to human neurodegenerative disease. The application of modifier genetics, which is a prominent goal of models of human disease, has implications for how specific genes or pathways intersect with the dominant disease-associated mechanisms. Models of human disease will continue to reveal unanticipated insight into fundamental cellular processes-insight that might be harder to glean from classical genetic methodologies vs modifier genetics of disease.
Collapse
Affiliation(s)
- Nancy M. Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Gómez-Jaramillo L, Cano-Cano F, González-Montelongo MDC, Campos-Caro A, Aguilar-Diosdado M, Arroba AI. A New Perspective on Huntington's Disease: How a Neurological Disorder Influences the Peripheral Tissues. Int J Mol Sci 2022; 23:6089. [PMID: 35682773 PMCID: PMC9181740 DOI: 10.3390/ijms23116089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a toxic, aggregation-prone expansion of CAG repeats in the HTT gene with an age-dependent progression that leads to behavioral, cognitive and motor symptoms. Principally affecting the frontal cortex and the striatum, mHTT disrupts many cellular functions. In fact, increasing evidence shows that peripheral tissues are affected by neurodegenerative diseases. It establishes an active crosstalk between peripheral tissues and the brain in different neurodegenerative diseases. This review focuses on the current knowledge of peripheral tissue effects in HD animal and cell experimental models and identifies biomarkers and mechanisms involved or affected in the progression of the disease as new therapeutic or early diagnostic options. The particular changes in serum/plasma, blood cells such as lymphocytes, immune blood cells, the pancreas, the heart, the retina, the liver, the kidney and pericytes as a part of the blood-brain barrier are described. It is important to note that several changes in different mouse models of HD present differences between them and between the different ages analyzed. The understanding of the impact of peripheral organ inflammation in HD may open new avenues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Gómez-Jaramillo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Fátima Cano-Cano
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - María del Carmen González-Montelongo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Antonio Campos-Caro
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Departamento de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Ana I. Arroba
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| |
Collapse
|
23
|
Mazur-Michałek I, Kowalska K, Zielonka D, Leśniczak-Staszak M, Pietras P, Szaflarski W, Isalan M, Mielcarek M. Structural Abnormalities of the Optic Nerve and Retina in Huntington's Disease Pre-Clinical and Clinical Settings. Int J Mol Sci 2022; 23:5450. [PMID: 35628260 PMCID: PMC9141007 DOI: 10.3390/ijms23105450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. HD-related pathological remodelling has been reported in HD mouse models and HD carriers. In this study, we studied structural abnormalities in the optic nerve by employing Spectral Domain Optical Coherence Tomography (SD-OCT) in pre-symptomatic HD carriers of Caucasian origin. Transmission Electron Microscopy (TEM) was used to investigate ultrastructural changes in the optic nerve of the well-established R6/2 mouse model at the symptomatic stage of the disease. We found that pre-symptomatic HD carriers displayed a significant reduction in the retinal nerve fibre layer (RNFL) thickness, including specific quadrants: superior, inferior and temporal, but not nasal. There were no other significant irregularities in the GCC layer, at the macula level and in the optic disc morphology. The ultrastructural analysis of the optic nerve in R6/2 mice revealed a significant thinning of the myelin sheaths, with a lamellar separation of the myelin, and a presence of myelonoid bodies. We also found a significant reduction in the thickness of myelin sheaths in peripheral nerves within the choroids area. Those ultrastructural abnormalities were also observed in HD photoreceptor cells that contained severely damaged membrane disks, with evident vacuolisation and swelling. Moreover, the outer segment of retinal layers showed a progressive disintegration. Our study explored structural changes of the optic nerve in pre- and clinical settings and opens new avenues for the potential development of biomarkers that would be of great interest in HD gene therapies.
Collapse
Affiliation(s)
- Iwona Mazur-Michałek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (K.K.); (M.L.-S.); (P.P.); (W.S.)
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (K.K.); (M.L.-S.); (P.P.); (W.S.)
| | - Daniel Zielonka
- Department of Public Health, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (K.K.); (M.L.-S.); (P.P.); (W.S.)
| | - Paulina Pietras
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (K.K.); (M.L.-S.); (P.P.); (W.S.)
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (K.K.); (M.L.-S.); (P.P.); (W.S.)
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Michal Mielcarek
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
24
|
Rahul, Siddique YH. Drosophila: A Model to Study the Pathogenesis of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:259-277. [PMID: 35040399 DOI: 10.2174/1871527320666210809120621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Human Central Nervous System (CNS) is the complex part of the human body, which regulates multiple cellular and molecular events taking place simultaneously. Parkinsons Disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). The pathological hallmarks of PD are loss of dopaminergic neurons in the substantianigra (SN) pars compacta (SNpc) and accumulation of misfolded α-synuclein, in intra-cytoplasmic inclusions called Lewy bodies (LBs). So far, there is no cure for PD, due to the complexities of molecular mechanisms and events taking place during the pathogenesis of PD. Drosophila melanogaster is an appropriate model organism to unravel the pathogenicity not only behind PD but also other NDs. In this context as numerous biological functions are preserved between Drosophila and humans. Apart from sharing 75% of human disease-causing genes homolog in Drosophila, behavioral responses like memory-based tests, negative geotaxis, courtship and mating are also well studied. The genetic, as well as environmental factors, can be studied in Drosophila to understand the geneenvironment interactions behind the disease condition. Through genetic manipulation, mutant flies can be generated harboring human orthologs, which can prove to be an excellent model to understand the effect of the mutant protein on the pathogenicity of NDs.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| |
Collapse
|
25
|
Sujkowski A, Richardson K, Prifti MV, Wessells RJ, Todi SV. Endurance exercise ameliorates phenotypes in Drosophila models of spinocerebellar ataxias. eLife 2022; 11:e75389. [PMID: 35170431 PMCID: PMC8871352 DOI: 10.7554/elife.75389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Endurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, spinocerebellar ataxias type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. In this study, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, with no benefit to SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Further mechanistic investigation indicates that the exercise-inducible protein, Sestrin (Sesn), suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements partially depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
| | - Kristin Richardson
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
| | - Robert J Wessells
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
- Department of Neurology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
26
|
Karwacka M, Olejniczak M. Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools. Cells 2022; 11:cells11030517. [PMID: 35159326 PMCID: PMC8834129 DOI: 10.3390/cells11030517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine (polyQ) diseases, including Huntington’s disease, are a group of late-onset progressive neurological disorders caused by CAG repeat expansions. Although recently, many studies have investigated the pathological features and development of polyQ diseases, many questions remain unanswered. The advancement of new gene-editing technologies, especially the CRISPR-Cas9 technique, has undeniable value for the generation of relevant polyQ models, which substantially support the research process. Here, we review how these tools have been used to correct disease-causing mutations or create isogenic cell lines with different numbers of CAG repeats. We characterize various cellular models such as HEK 293 cells, patient-derived fibroblasts, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and animal models generated with the use of genome-editing technology.
Collapse
|
27
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
28
|
Huelsmeier J, Walker E, Bakthavachalu B, Ramaswami M. A C-terminal ataxin-2 disordered region promotes Huntingtin protein aggregation and neurodegeneration in Drosophila models of Huntington’s disease. G3 GENES|GENOMES|GENETICS 2021; 11:6385240. [PMID: 34718534 PMCID: PMC8664476 DOI: 10.1093/g3journal/jkab355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022]
Abstract
The Ataxin-2 (Atx2) protein contributes to the progression of neurodegenerative phenotypes in animal models of amyotrophic lateral sclerosis (ALS), type 2 spinocerebellar ataxia (SCA-2), Parkinson’s disease, and Huntington’s disease (HD). However, because the Atx2 protein contains multiple separable activities, deeper understanding requires experiments to address the exact mechanisms by which Atx2 modulates neurodegeneration (ND) progression. Recent work on two ALS models, C9ORF72 and FUS, in Drosophila has shown that a C-terminal intrinsically disordered region (cIDR) of Atx2 protein, required for assembly of ribonucleoprotein (RNP) granules, is essential for the progression of neurodegenerative phenotypes as well as for accumulation of protein inclusions associated with these ALS models. Here, we show that the Atx2-cIDR also similarly contributes to the progression of degenerative phenotypes and accumulation of Huntingtin protein aggregates in Drosophila models of HD. Because Huntingtin is not an established component of RNP granules, these observations support a recently hypothesized, unexpected protein-handling function for RNP granules, which could contribute to the progression of Huntington’s disease and, potentially, other proteinopathies.
Collapse
Affiliation(s)
- Joern Huelsmeier
- School of Genetics and Microbiology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Emily Walker
- School of Genetics and Microbiology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Baskar Bakthavachalu
- School of Basic Science, Indian Institute of Technology, Mandi, Suran 175075, India
| | - Mani Ramaswami
- School of Genetics and Microbiology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| |
Collapse
|
29
|
Yefimova MG, Béré E, Cantereau-Becq A, Meunier-Balandre AC, Merceron B, Burel A, Merienne K, Ravel C, Becq F, Bourmeyster N. Myelinosome Organelles in the Retina of R6/1 Huntington Disease (HD) Mice: Ubiquitous Distribution and Possible Role in Disease Spreading. Int J Mol Sci 2021; 22:ijms222312771. [PMID: 34884576 PMCID: PMC8657466 DOI: 10.3390/ijms222312771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Visual deficit is one of the complications of Huntington disease (HD), a fatal neurological disorder caused by CAG trinucleotide expansions in the Huntingtin gene, leading to the production of mutant Huntingtin (mHTT) protein. Transgenic HD R6/1 mice expressing human HTT exon1 with 115 CAG repeats recapitulate major features of the human pathology and exhibit a degeneration of the retina. Our aim was to gain insight into the ultrastructure of the pathological HD R6/1 retina by electron microscopy (EM). We show that the HD R6/1 retina is enriched with unusual organelles myelinosomes, produced by retinal neurons and glia. Myelinosomes are present in all nuclear and plexiform layers, in the synaptic terminals of photoreceptors, in the processes of retinal neurons and glial cells, and in the subretinal space. In vitro study shows that myelinosomes secreted by human retinal glial Müller MIO-M1 cells transfected with EGFP-mHTT-exon1 carry EGFP-mHTT-exon1 protein, as revealed by immuno-EM and Western-blotting. Myelinosomes loaded with mHTT-exon1 are incorporated by naive neuronal/neuroblastoma SH-SY5Y cells. This results in the emergence of mHTT-exon1 in recipient cells. This process is blocked by membrane fusion inhibitor MDL 28170. Conclusion: Incorporation of myelinosomes carrying mHTT-exon1 in recipient cells may contribute to HD spreading in the retina. Exploring ocular fluids for myelinosome presence could bring an additional biomarker for HD diagnostics.
Collapse
Affiliation(s)
- Marina G. Yefimova
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Pr. Thorez, 194233 St. Petersburg, Russia
- Laboratoire de Biologie de la Reproduction-CECOS, Hopital SUD, 16 Bd de Bulgarie, CEDEX, 35000 Rennes, France;
- Correspondence:
| | - Emile Béré
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Anne Cantereau-Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Annie-Claire Meunier-Balandre
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
| | - Bruno Merceron
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Agnès Burel
- Plateforme Mric TEM, BIOSIT UMS 34 80, Université de Rennes 1, 2 Av. Pr. Léon Bernard, CEDEX, 35043 Rennes, France;
| | - Karine Merienne
- Laboratory of Cognitive and Adaptive Neurosciences (LNCA), University of Strasbourg, 67000 Strasbourg, France;
- CNRS UMR 7364, 67000 Strasbourg, France
| | - Célia Ravel
- Laboratoire de Biologie de la Reproduction-CECOS, Hopital SUD, 16 Bd de Bulgarie, CEDEX, 35000 Rennes, France;
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
| | - Nicolas Bourmeyster
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Service de Biochimie, CHU de Poitiers, 1, Rue de la Milétrie, 86021 Poitiers, France
| |
Collapse
|
30
|
Banerjee S, Benji S, Liberow S, Steinhauer J. Using Drosophila melanogaster To Discover Human Disease Genes: An Educational Primer for Use with "Amyotrophic Lateral Sclerosis Modifiers in Drosophila Reveal the Phospholipase D Pathway as a Potential Therapeutic Target". Genetics 2020; 216:633-641. [PMID: 33158986 PMCID: PMC7648582 DOI: 10.1534/genetics.120.303495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/28/2020] [Indexed: 01/11/2023] Open
Abstract
Since the dawn of the 20th century, the fruit fly Drosophila melanogaster has been used as a model organism to understand the nature of genes and how they control development, behavior, and physiology. One of the most powerful experimental approaches employed in Drosophila is the forward genetic screen. In the 21st century, genome-wide screens have become popular tools for identifying evolutionarily conserved genes involved in complex human diseases. In the accompanying article "Amyotrophic Lateral Sclerosis Modifiers in Drosophila Reveal thePhospholipase DPathway as a Potential Therapeutic Target," Kankel and colleagues describe a forward genetic modifier screen to discover factors that contribute to the severe neurodegenerative disease amyotrophic lateral sclerosis (ALS). This primer briefly traces the history of genetic screens in Drosophila and introduces students to ALS. We then provide a set of guided reading questions to help students work through the data presented in the research article. Finally, several ideas for literature-based research projects are offered as opportunities for students to expand their appreciation of the potential scope of genetic screens. The primer is intended to help students and instructors thoroughly examine a current study that uses forward genetics in Drosophila to identify human disease genes.
Collapse
Affiliation(s)
| | | | - Sarah Liberow
- Biology Department, Yeshiva University, New York 10033
| | | |
Collapse
|
31
|
Chatterjee M, Steffan JS, Lukacsovich T, Marsh JL, Agrawal N. Serine residues 13 and 16 are key modulators of mutant huntingtin induced toxicity in Drosophila. Exp Neurol 2020; 338:113463. [PMID: 32941796 DOI: 10.1016/j.expneurol.2020.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Poly-glutamine expansion near the N-terminus of the huntingtin protein (HTT) is the prime determinant of Huntington's disease (HD) pathology; however, post-translational modifications and protein context are also reported to influence poly-glutamine induced HD toxicity. The impact of phosphorylating serine 13/16 of mutant HTT (mHTT) on HD has been documented in cell culture and murine models. However, endogenous processing of the human protein in mammalian systems complicates the interpretations. Therefore, to study the impact of S13/16 phosphorylation on the subcellular behavior of HTT under a controlled genetic background with minimal proteolytic processing of the human protein, we employed Drosophila as the model system. We ectopically expressed full-length (FL) and exon1 fragment of human HTT with phosphomimetic and resistant mutations at serines 13 and 16 in different neuronal populations. Phosphomimetic mHTT aggravates and the phosphoresistant mutation ameliorates mHTT-induced toxicity in the context of both FL- and exon1- mHTT in Drosophila although in all cases FL appears less toxic than exon1. Our observations strongly indicate that the phosphorylation status of S13/16 can affect HD pathology in Drosophila and these residues can be potential targets for affecting HD pathogenesis.
Collapse
Affiliation(s)
- Megha Chatterjee
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92697-1705, USA
| | - Tamas Lukacsovich
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, USA
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
32
|
Tsai HY, Wu SC, Li JC, Chen YM, Chan CC, Chen CH. Loss of the Drosophila branched-chain α-ketoacid dehydrogenase complex results in neuronal dysfunction. Dis Model Mech 2020; 13:dmm044750. [PMID: 32680850 PMCID: PMC7473638 DOI: 10.1242/dmm.044750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an inherited error in the metabolism of branched-chain amino acids (BCAAs) caused by a severe deficiency of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which ultimately leads to neurological disorders. The limited therapies, including protein-restricted diets and liver transplants, are not as effective as they could be for the treatment of MSUD due to the current lack of molecular insights into the disease pathogenesis. To address this issue, we developed a Drosophila model of MSUD by knocking out the dDBT gene, an ortholog of the human gene encoding the dihydrolipoamide branched chain transacylase (DBT) subunit of BCKDH. The homozygous dDBT mutant larvae recapitulate an array of MSUD phenotypes, including aberrant BCAA accumulation, developmental defects, poor mobile behavior and disrupted L-glutamate homeostasis. Moreover, the dDBT mutation causes neuronal apoptosis during the developmental progression of larval brains. The genetic and functional evidence generated by in vivo depletion of dDBT expression in the eye indicates severe impairment of retinal rhabdomeres. Further, the dDBT mutant shows elevated oxidative stress and higher lipid peroxidation accumulation in the larval brain. Therefore, we conclude from in vivo evidence that the loss of dDBT results in oxidative brain damage that may lead to neuronal cell death and contribute to aspects of MSUD pathology. Importantly, when the dDBT mutants were administrated with Metformin, the aberrances in BCAA levels and motor behavior were ameliorated. This intriguing outcome strongly merits the use of the dDBT mutant as a platform for developing MSUD therapies.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Hui-Ying Tsai
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Jian-Chiuan Li
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu-Min Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of physiology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chun-Hong Chen
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| |
Collapse
|
33
|
C. elegans Models to Study the Propagation of Prions and Prion-Like Proteins. Biomolecules 2020; 10:biom10081188. [PMID: 32824215 PMCID: PMC7464663 DOI: 10.3390/biom10081188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
A hallmark common to many age-related neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), is that patients develop proteinaceous deposits in their central nervous system (CNS). The progressive spreading of these inclusions from initially affected sites to interconnected brain areas is reminiscent of the behavior of bona fide prions in transmissible spongiform encephalopathies (TSEs), hence the term prion-like proteins has been coined. Despite intensive research, the exact mechanisms that facilitate the spreading of protein aggregation between cells, and the associated loss of neurons, remain poorly understood. As population demographics in many countries continue to shift to higher life expectancy, the incidence of neurodegenerative diseases is also rising. This represents a major challenge for healthcare systems and patients’ families, since patients require extensive support over several years and there is still no therapy to cure or stop these diseases. The model organism Caenorhabditis elegans offers unique opportunities to accelerate research and drug development due to its genetic amenability, its transparency, and the high degree of conservation of molecular pathways. Here, we will review how recent studies that utilize this soil dwelling nematode have proceeded to investigate the propagation and intercellular transmission of prions and prion-like proteins and discuss their relevance by comparing their findings to observations in other model systems and patients.
Collapse
|
34
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
35
|
Yon M, Decoville M, Sarou-Kanian V, Fayon F, Birman S. Spatially-resolved metabolic profiling of living Drosophila in neurodegenerative conditions using 1H magic angle spinning NMR. Sci Rep 2020; 10:9516. [PMID: 32528106 PMCID: PMC7289880 DOI: 10.1038/s41598-020-66218-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Drosophila flies are versatile animal models for the study of gene mutations in neuronal pathologies. Their small size allows performing in vivo Magic Angle Spinning (MAS) experiments to obtain high-resolution 1H nuclear magnetic resonance (NMR) spectra. Here, we use spatially-resolved 1H high-resolution MAS NMR to investigate in vivo metabolite contents in different segments of the fly body. A comparative study of metabolic changes was performed for three neurodegenerative disorders: two cell-specific neuronal and glial models of Huntington disease (HD) and a model of glutamate excitotoxicity. It is shown that these pathologies are characterized by specific and sometimes anatomically localized variations in metabolite concentrations. In two cases, the modifications of 1H MAS NMR spectra localized in fly heads were significant enough to allow the creation of a predictive model.
Collapse
Affiliation(s)
- Maxime Yon
- CEMHTI UPR3079, CNRS, Université d'Orléans, F-45071, Orléans, France
| | | | | | - Franck Fayon
- CEMHTI UPR3079, CNRS, Université d'Orléans, F-45071, Orléans, France
| | - Serge Birman
- GCRN-LPC UMR8249, CNRS, ESPCI Paris, PSL Research University, F-75005, Paris, France
| |
Collapse
|
36
|
Xu F, Kula-Eversole E, Iwanaszko M, Hutchison AL, Dinner A, Allada R. Circadian Clocks Function in Concert with Heat Shock Organizing Protein to Modulate Mutant Huntingtin Aggregation and Toxicity. Cell Rep 2020; 27:59-70.e4. [PMID: 30943415 PMCID: PMC7237104 DOI: 10.1016/j.celrep.2019.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/24/2019] [Accepted: 03/02/2019] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases commonly involve the disruption of circadian rhythms. Studies indicate that mutant Huntingtin (mHtt), the cause of Huntington’s disease (HD), disrupts circadian rhythms often before motor symptoms are evident. Yet little is known about the molecular mechanisms by which mHtt impairs circadian rhythmicity and whether circadian clocks can modulate HD pathogenesis. To address this question, we used a Drosophila HD model. We found that both environmental and genetic perturbations of the circadian clock alter mHtt-mediated neurodegeneration. To identify potential genetic pathways that mediate these effects, we applied a behavioral platform to screen for clock-regulated HD suppressors, identifying a role for Heat Shock Protein 70/90 Organizing Protein (Hop). Hop knockdown paradoxically reduces mHtt aggregation and toxicity. These studies demonstrate a role for the circadian clock in a neurodegenerative disease model and reveal a clock-regulated molecular and cellular pathway that links clock function to neurodegenerative disease. Disruption of circadian rhythms is frequently observed across a range of neurodegenerative diseases. Here, Xu et al. demonstrate that perturbation of circadian clocks alters the toxicity of the mutant Huntingtin protein, the cause of Huntington’s disease (HD). Moreover, they reveal a key mechanistic link between the clock and HD.
Collapse
Affiliation(s)
- Fangke Xu
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | | - Marta Iwanaszko
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alan L Hutchison
- Medical Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Aaron Dinner
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
37
|
Alexander-Floyd J, Haroon S, Ying M, Entezari AA, Jaeger C, Vermulst M, Gidalevitz T. Unexpected cell type-dependent effects of autophagy on polyglutamine aggregation revealed by natural genetic variation in C. elegans. BMC Biol 2020; 18:18. [PMID: 32093691 PMCID: PMC7038566 DOI: 10.1186/s12915-020-0750-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic protein aggregation diseases, in addition to cell selectivity, exhibit clinical variation in the age of onset and progression, driven in part by inter-individual genetic variation. While natural genetic variants may pinpoint plastic networks amenable to intervention, the mechanisms by which they impact individual susceptibility to proteotoxicity are still largely unknown. RESULTS We have previously shown that natural variation modifies polyglutamine (polyQ) aggregation phenotypes in C. elegans muscle cells. Here, we find that a genomic locus from C. elegans wild isolate DR1350 causes two genetically separable aggregation phenotypes, without changing the basal activity of muscle proteostasis pathways known to affect polyQ aggregation. We find that the increased aggregation phenotype was due to regulatory variants in the gene encoding a conserved autophagy protein ATG-5. The atg-5 gene itself conferred dosage-dependent enhancement of aggregation, with the DR1350-derived allele behaving as hypermorph. Surprisingly, increased aggregation in animals carrying the modifier locus was accompanied by enhanced autophagy activation in response to activating treatment. Because autophagy is expected to clear, not increase, protein aggregates, we activated autophagy in three different polyQ models and found a striking tissue-dependent effect: activation of autophagy decreased polyQ aggregation in neurons and intestine, but increased it in the muscle cells. CONCLUSIONS Our data show that cryptic natural variants in genes encoding proteostasis components, although not causing detectable phenotypes in wild-type individuals, can have profound effects on aggregation-prone proteins. Clinical applications of autophagy activators for aggregation diseases may need to consider the unexpected divergent effects of autophagy in different cell types.
Collapse
Affiliation(s)
- J Alexander-Floyd
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Present Address: Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S Haroon
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Ying
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
| | - A A Entezari
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Current Address: Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - C Jaeger
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Current Address: Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - M Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Current Address: Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - T Gidalevitz
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Lam I, Hallacli E, Khurana V. Proteome-Scale Mapping of Perturbed Proteostasis in Living Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034124. [PMID: 30910772 DOI: 10.1101/cshperspect.a034124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteinopathies are degenerative diseases in which specific proteins adopt deleterious conformations, leading to the dysfunction and demise of distinct cell types. They comprise some of the most significant diseases of aging-from Alzheimer's disease to Parkinson's disease to type 2 diabetes-for which not a single disease-modifying or preventative strategy exists. Here, we survey approaches in tractable cellular and organismal models that bring us toward a more complete understanding of the molecular consequences of protein misfolding. These include proteome-scale profiling of genetic modifiers, as well as transcriptional and proteome changes. We describe assays that can capture protein interactomes in situ and distinct protein conformational states. A picture of cellular drivers and responders to proteotoxicity emerges from this work, distinguishing general alterations of proteostasis from cellular events that are deeply tied to the intrinsic function of the misfolding protein. These distinctions have consequences for the understanding and treatment of proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138.,New York Stem Cell Foundation - Robertson Investigator
| |
Collapse
|
39
|
The Drosophila melanogaster as Genetic Model System to Dissect the Mechanisms of Disease that Lead to Neurodegeneration in Adrenoleukodystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:145-159. [PMID: 33417213 DOI: 10.1007/978-3-030-60204-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drosophila melanogaster is the most successful genetic model organism to study different human disease with a recent increased popularity to study neurological disorders. Drosophila melanogaster has a complex yet well-defined brain with defined anatomical regions with specific functions. The neuronal network in the adult brain has a structural organization highly similar to human neurons, but in a brain that is much more amenable for complex analyses. The availability of sophisticated genetic tools to study neurons permits to examine neuronal functions at the single cell level in the whole brain by confocal imaging, which does not require sections. Thus, Drosophila has been used to successfully study many neurological disorders such as Parkinson's disease and has been recently adopted to understand the complex networks leading to neurological disorders with metabolic origins such as Leigh disease and X-linked adrenoleukodystrophy (X-ALD).In this review, we will describe the genetic tools available to study neuronal structures and functions and also illustrate some limitations of the system. Finally, we will report the experimental efforts that in the past 10 years have established Drosophila melanogaster as an excellent model organism to study neurodegenerative disorders focusing on X-ALD.
Collapse
|
40
|
Nainu F, Salim E, Asri RM, Hori A, Kuraishi T. Neurodegenerative disorders and sterile inflammation: lessons from a Drosophila model. J Biochem 2019; 166:213-221. [PMID: 31251338 DOI: 10.1093/jb/mvz053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
Central nervous system (CNS)-related disorders, including neurodegenerative diseases, are common but difficult to treat. As effective medical interventions are limited, those diseases will likely continue adversely affecting people's health. There is evidence that the hyperactivation of innate immunity is a hallmark of most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and polyglutamine diseases. In mammalian and fly CNS, the presence of noninfectious ligands, including danger-associated molecular patterns, is recognized by (micro)glial cells, inducing the expression of proinflammatory cytokines. Such inflammation may contribute to the onset and progression of neurodegenerative states. Studies using fruit flies have shed light on the types of signals, receptors and cells responsible for inducing the inflammation that leads to neurodegeneration. Researchers are using fly models to assess the mechanisms of sterile inflammation in the brain and its link to progressive neurodegeneration. Given the similarity of its physiological system and biochemical function to those of mammals, especially in activating and regulating innate immune signalling, Drosophila can be a versatile model system for studying the mechanisms and biological significance of sterile inflammatory responses in the pathogenesis of neurodegenerative diseases. Such knowledge would greatly facilitate the quest for a novel effective treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km.10 Tamalanrea, Makassar, Indonesia
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, Jl. Tri Dharma No. 5 Pintu 4 Kampus USU, Medan, Indonesia.,Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Shizenken, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Rangga Meidianto Asri
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km.10 Tamalanrea, Makassar, Indonesia.,Faculty of Pharmacy, Universitas Sumatera Utara, Jl. Tri Dharma No. 5 Pintu 4 Kampus USU, Medan, Indonesia
| | - Aki Hori
- Faculty of Pharmacy, Universitas Sumatera Utara, Jl. Tri Dharma No. 5 Pintu 4 Kampus USU, Medan, Indonesia
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Universitas Sumatera Utara, Jl. Tri Dharma No. 5 Pintu 4 Kampus USU, Medan, Indonesia
| |
Collapse
|
41
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|
42
|
Zhunina OA, Yabbarov NG, Orekhov AN, Deykin AV. Modern approaches for modelling dystonia and Huntington's disease in vitro and in vivo. Int J Exp Pathol 2019; 100:64-71. [PMID: 31090117 DOI: 10.1111/iep.12320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Dystonia associated with Huntington's disease, Parkinson's disease or other neurodegenerative diseases substantially affects patients' quality of life and is a major health problem worldwide. The above-mentioned diseases are characterized by neurodegeneration accompanied by motor and cognitive impairment and often have complex aetiology. A frequent feature of these conditions is the abnormal accumulation of protein aggregates within specific neuronal populations in the affected brain regions. Familial neurodegenerative diseases are associated with a number of genetic mutations. Identification of these mutations allowed creation of modern model systems for studying neurodegeneration, either in cultured cells or in model animals. Animal models, especially mouse models, have contributed considerably to improving our understanding of the pathophysiology of neurodegenerative diseases. These models have allowed study of the pathogenic mechanisms and development of new disease-modifying strategies and therapeutic approaches. However, due to the complex nature of these pathologies and the irreversible damage that they cause to the neural tissue, effective therapies against neurodegeneration remain to be elaborated. In this review, we provide an overview of cellular and animal models developed for studying neurodegenerative diseases, including Huntington's disease and dystonia of different origins.
Collapse
Affiliation(s)
- Olga A Zhunina
- JSC "Russian Research Center for Molecular Diagnostics and Therapy", Moscow, Russia
| | - Nikita G Yabbarov
- JSC "Russian Research Center for Molecular Diagnostics and Therapy", Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | | |
Collapse
|
43
|
Rangel-Barajas C, Rebec GV. Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. ACTA ACUST UNITED AC 2019; 83:e47. [PMID: 30040221 DOI: 10.1002/cpns.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transgenic mouse models of Huntington's disease (HD), a neurodegenerative condition caused by a single gene mutation, have been transformative in their ability to reveal the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Three model categories have been generated depending on the genetic context in which the mutation is expressed: truncated, full-length, and knock-in. No single model, however, broadly replicates the behavioral symptoms and massive neuronal loss that occur in human patients. The disparity between model and patient requires careful consideration of what each model has to offer when testing potential treatments. Although the translation of animal data to the clinic has been limited, each model can make unique contributions toward an improved understanding of the neurobehavioral underpinnings of HD. Thus, conclusions based on data obtained from more than one model are likely to have the most success in the search for new treatment targets. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
44
|
Yeh PA, Liu YH, Chu WC, Liu JY, Sun YH. Glial expression of disease-associated poly-glutamine proteins impairs the blood-brain barrier in Drosophila. Hum Mol Genet 2019; 27:2546-2562. [PMID: 29726932 DOI: 10.1093/hmg/ddy160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Expansion of poly-glutamine (polyQ) stretches in several proteins has been linked to neurodegenerative diseases. The effects of polyQ-expanded proteins on neurons have been extensively studied, but their effects on glia remain unclear. We found that expression of distinct polyQ proteins exclusively in all glia or specifically in the blood-brain barrier (BBB) and blood-retina barrier (BRB) glia caused cell-autonomous impairment of BBB/BRB integrity, suggesting that BBB/BRB glia are most vulnerable to polyQ-expanded proteins. Furthermore, we also found that BBB/BRB leakage in Drosophila is reflected in reversed waveform polarity on the basis of electroretinography (ERG), making ERG a sensitive method to detect BBB/BRB leakage. The polyQ-expanded protein Atxn3-84Q forms aggregates, induces BBB/BRB leakage, restricts Drosophila lifespan and reduces the level of Repo (a pan-glial transcriptional factor required for glial differentiation). Expression of Repo in BBB/BRB glia can rescue BBB/BRB leakage, suggesting that the reduced expression of Repo is important for the effect of polyQ on BBB/BRB impairment. Coexpression of the chaperon HSP40 and HSP70 effectively rescues the effects of Atxn3-84Q, indicating that polyQ protein aggregation in glia is deleterious. Intriguingly, coexpression of wild-type Atxn3-27Q can also rescue BBB/BRB impairment, suggesting that normal polyQ protein may have a protective function.
Collapse
Affiliation(s)
- Po-An Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Chu
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Japan
| | - Jia-Yu Liu
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
45
|
Schilling J, Broemer M, Atanassov I, Duernberger Y, Vorberg I, Dieterich C, Dagane A, Dittmar G, Wanker E, van Roon-Mom W, Winter J, Krauß S. Deregulated Splicing Is a Major Mechanism of RNA-Induced Toxicity in Huntington's Disease. J Mol Biol 2019; 431:1869-1877. [PMID: 30711541 DOI: 10.1016/j.jmb.2019.01.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin (HTT) gene, translating into an elongated polyglutamine stretch. In addition to the neurotoxic mutant HTT protein, the mutant CAG repeat RNA can exert toxic functions by trapping RNA-binding proteins. While few examples of proteins that aberrantly bind to mutant HTT RNA and execute abnormal function in conjunction with the CAG repeat RNA have been described, an unbiased approach to identify the interactome of mutant HTT RNA is missing. Here, we describe the analysis of proteins that preferentially bind mutant HTT RNA using a mass spectrometry approach. We show that (I) the majority of proteins captured by mutant HTT RNA belong to the spliceosome pathway, (II) expression of mutant CAG repeat RNA induces mis-splicing in a HD cell model, (III) overexpression of one of the splice factors trapped by mutant HTT ameliorates the HD phenotype in a fly model and (VI) deregulated splicing occurs in human HD brain. Our data suggest that deregulated splicing is a prominent mechanism of RNA-induced toxicity in HD.
Collapse
Affiliation(s)
- Judith Schilling
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, North Rhine-Westphalia, Germany
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, North Rhine-Westphalia, Germany
| | - Ilian Atanassov
- Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine-Westphalia, Germany
| | - Yvonne Duernberger
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, North Rhine-Westphalia, Germany
| | - Ina Vorberg
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, North Rhine-Westphalia, Germany; Department of Neurology, Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Christoph Dieterich
- Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine-Westphalia, Germany
| | - Alina Dagane
- Max-Delbrück-Center for Molecular Medicine (MDC), 13092 Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrück-Center for Molecular Medicine (MDC), 13092 Berlin, Germany; Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Erich Wanker
- Max-Delbrück-Center for Molecular Medicine (MDC), 13092 Berlin, Germany
| | | | - Jennifer Winter
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Rhineland-Palatinate, Germany
| | - Sybille Krauß
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, North Rhine-Westphalia, Germany.
| |
Collapse
|
46
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
47
|
Sivanantharajah L, Mudher A, Shepherd D. An evaluation of Drosophila as a model system for studying tauopathies such as Alzheimer's disease. J Neurosci Methods 2019; 319:77-88. [PMID: 30633936 DOI: 10.1016/j.jneumeth.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Work spanning almost two decades using the fruit fly, Drosophila melanogaster, to study tau-mediated neurodegeneration has provided valuable and novel insights into the causes and mechanisms of tau-mediated toxicity and dysfunction in tauopathies such as Alzheimer's disease (AD). The fly has proven to be an excellent model for human diseases because of its cost efficiency, and the availability of powerful genetic tools for use in a comparatively less-complicated, but evolutionarily conserved, in vivo system. In this review, we provide a critical evaluation of the insights provided by fly models, highlighting both the advantages and limitations of the system. The fly has contributed to a greater understanding of the causes of tau abnormalities, the role of these abnormalities in mediating toxicity and/or dysfunction, and the nature of causative species mediating tau-toxicity. However, it is not possible to perfectly model all aspects of human degenerative diseases. What sets the fly apart from other animal models is its genetic tractability, which makes it highly amenable to overcoming experimental limitations. The explosion of genetic technology since the first fly disease models were established has translated into fly lines that allow for greater temporal control in restricting tau expression to single neuron types, and lines that can label and monitor the function of subcellular structures and components; thus, fly models offer an unprecedented view of the neurodegenerative process. Emerging genetic technology means that the fly provides an ever-evolving experimental platform for studying disease.
Collapse
Affiliation(s)
| | - Amritpal Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - David Shepherd
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
48
|
Drombosky KW, Rode S, Kodali R, Jacob TC, Palladino MJ, Wetzel R. Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease. Neurobiol Dis 2018; 120:126-138. [PMID: 30171891 DOI: 10.1016/j.nbd.2018.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022] Open
Abstract
In Huntington disease (HD), an expanded polyglutamine (polyQ > 37) sequence within huntingtin (htt) exon1 leads to enhanced disease risk. It has proved difficult, however, to determine whether the toxic form generated by polyQ expansion is a misfolded or avid-binding monomer, an α-helix-rich oligomer, or a β-sheet-rich amyloid fibril. Here we describe an engineered htt exon1 analog featuring a short polyQ sequence that nonetheless quickly forms amyloid fibrils and causes HD-like toxicity in rat neurons and Drosophila. Additional modifications within the polyQ segment produce htt exon1 analogs that populate only spherical oligomers and are non-toxic in cells and flies. Furthermore, in mixture with expanded-polyQ htt exon1, the latter analogs in vitro suppress amyloid formation and promote oligomer formation, and in vivo rescue neurons and flies expressing mhtt exon1 from dysfunction and death. Thus, in our experiments, while htt exon1 toxicity tracks with aggregation propensity, it does so in spite of the toxic construct's possessing polyQ tracts well below those normally considered to be disease-associated. That is, aggregation propensity proves to be a more accurate surrogate for toxicity than is polyQ repeat length itself, strongly supporting a major toxic role for htt exon1 aggregation in HD. In addition, the results suggest that the aggregates that are most toxic in these model systems are amyloid-related. These engineered analogs are novel tools for mapping properties of polyQ self-assembly intermediates and products that should similarly be useful in the analysis of other expanded polyQ diseases. Small molecules with similar amyloid inhibitory properties might be developed into effective therapeutic agents.
Collapse
Affiliation(s)
- Kenneth W Drombosky
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sascha Rode
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ravi Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Palladino
- Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Vu A, Humphries T, Vogel S, Haberman A. Polyglutamine repeat proteins disrupt actin structure in Drosophila photoreceptors. Mol Cell Neurosci 2018; 93:10-17. [PMID: 30149064 DOI: 10.1016/j.mcn.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/07/2023] Open
Abstract
Expansions of polygutamine-encoding stretches in several genes cause neurodegenerative disorders including Huntington's Disease and Spinocerebellar Ataxia type 3. Expression of the human disease alleles in Drosophila melanogaster neurons recapitulates cellular features of these disorders, and has therefore been used to model the cell biology of these diseases. Here, we show that polyglutamine disease alleles expressed in Drosophila photoreceptors disrupt actin structure at rhabdomeres, as other groups have shown they do in Drosophila and mammalian dendrites. We show this actin regulatory pathway works through the small G protein Rac and the actin nucleating protein Form3. We also find that Form3 has additional functions in photoreceptors, and that loss of Form3 results in the specification of extra photoreceptors in the eye.
Collapse
Affiliation(s)
- Annie Vu
- University of San Diego, Department of Biology, 5998 Alcala Park Blvd, SCST 372, San Diego, CA 92110, USA
| | - Tyler Humphries
- University of San Diego, Department of Biology, 5998 Alcala Park Blvd, SCST 372, San Diego, CA 92110, USA
| | - Sean Vogel
- University of San Diego, Department of Biology, 5998 Alcala Park Blvd, SCST 372, San Diego, CA 92110, USA
| | - Adam Haberman
- University of San Diego, Department of Biology, 5998 Alcala Park Blvd, SCST 372, San Diego, CA 92110, USA.
| |
Collapse
|
50
|
Gatto E, Parisi V, Persi G, Fernandez Rey E, Cesarini M, Luis Etcheverry J, Rivera P, Squitieri F. Optical coherence tomography (OCT) study in Argentinean Huntington's disease patients. Int J Neurosci 2018; 128:1157-1162. [PMID: 29912591 DOI: 10.1080/00207454.2018.1489807] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic, rare and progressive neurodegenerative disorder that causes motor and cognitive impairment in midlife patients. Although retinal damage was observed in animal HD models and in patients with other neurodegenerative diseases, we still need confirmation of impairment in HD patients. Optical coherence tomography (OCT) is a non-invasive methodology that analyses the retinal nerve fibre layers (RNFL) and could reflect processes of neurodegeneration. METHODS A cross-sectional study with 14 HD patients who underwent a spectral domain OCT. Results were compared with a control group. Demographic data were also obtained. RESULTS Temporal and superior RNFL sectors in HD showed a significant RNFL thinning compared with a control group. However, no differences were identified in mean total RNFL thickness between HD patients and controls. CONCLUSIONS OCT is a rapid and non-invasive technique that can be investigated in larger cohorts of patients to assess its potential role as a biomarker in HD patients.
Collapse
Affiliation(s)
- Emilia Gatto
- a Department of Neurology , Sanatorio de la Trinidad Mitre , Buenos Aires , Argentina.,b Department of Movement Disorders , Fundación INEBA , Buenos Aires , Argentina
| | - Virginia Parisi
- a Department of Neurology , Sanatorio de la Trinidad Mitre , Buenos Aires , Argentina
| | - Gabriel Persi
- a Department of Neurology , Sanatorio de la Trinidad Mitre , Buenos Aires , Argentina
| | - Estela Fernandez Rey
- c Department of Neuro-opthamology , Hospital Oftalmológico Santa Lucía , Buenos Aires , Argentina
| | - Martin Cesarini
- c Department of Neuro-opthamology , Hospital Oftalmológico Santa Lucía , Buenos Aires , Argentina
| | - José Luis Etcheverry
- c Department of Neuro-opthamology , Hospital Oftalmológico Santa Lucía , Buenos Aires , Argentina
| | - Pablo Rivera
- c Department of Neuro-opthamology , Hospital Oftalmológico Santa Lucía , Buenos Aires , Argentina
| | - Ferdinando Squitieri
- d Huntington and Rare Diseases Unit at IRCCS Casa Sollievo della Sofferenza , San Giovanni Rotondo , Italy
| |
Collapse
|