1
|
Peng TJ, Chang Wang CC, Tang SJ, Sun GH, Sun KH. Neurotrophin-3 Facilitates Stemness Properties and Associates with Poor Survival in Lung Cancer. Neuroendocrinology 2024; 114:921-933. [PMID: 38885623 DOI: 10.1159/000539815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Cancer stem cells (CSCs) shape the tumor microenvironment via neuroendocrine signaling and orchestrate drug resistance and metastasis. Cytokine antibody array demonstrated the upregulation of neurotrophin-3 (NT-3) in lung CSCs. This study aims to dissect the role of NT-3 in lung CSCs during tumor innervation. METHODS Western blotting, quantitative reverse transcription-PCR, and flow cytometry were used to determine the expression of the NT-3 axis in lung CSCs. NT-3-knockdown and NT-3-overexpressed cells were derived lung CSCs, followed by examining the stemness gene expression, tumorsphere formation, transwell migration and invasion, drug resistance, soft agar colony formation, and in vivo tumorigenicity. Human lung cancer tissue microarray and bioinformatic databases were used to investigate the clinical relevance of NT-3 in lung cancer. RESULTS NT-3 and its receptor tropomyosin receptor kinase C (TrkC) were augmented in lung tumorspheres. NT-3 silencing (shNT-3) suppressed the migration and anchorage-independent growth of lung cancer cells. Further, shNT-3 abolished the sphere-forming capability, chemo-drug resistance, invasion, and in vivo tumorigenicity of lung tumorspheres with a decreased expression of CSC markers. Conversely, NT-3 overexpression promoted migration and anchorage-independent growth and fueled tumorsphere formation by upregulating the expression of CSC markers. Lung cancer tissue microarray analysis revealed that NT-3 increased in patients with advanced-stage, lymphatic metastasis and positively correlated with Sox2 expression. Bioinformatic databases confirmed a co-expression of NT-3/TrkC-axis and demonstrated that NT-3, NT-3/TrkC, NT-3/Sox2, and NT-3/CD133 worsen the survival of lung cancer patients. CONCLUSION NT-3 conferred the stemness features in lung cancer during tumor innervation, which suggests that NT-3-targeting is feasible in eradicating lung CSCs.
Collapse
Affiliation(s)
- Ta-Jung Peng
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Cancer and Immunology Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Chih Chang Wang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Shye-Jye Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Cancer and Immunology Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Weible MW, Lovelace MD, Mundell HD, Pang TWR, Chan-Ling T. BMPRII + neural precursor cells isolated and characterized from organotypic neurospheres: an in vitro model of human fetal spinal cord development. Neural Regen Res 2024; 19:447-457. [PMID: 37488910 PMCID: PMC10503628 DOI: 10.4103/1673-5374.373669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 07/26/2023] Open
Abstract
Roof plate secretion of bone morphogenetic proteins (BMPs) directs the cellular fate of sensory neurons during spinal cord development, including the formation of the ascending sensory columns, though their biology is not well understood. Type-II BMP receptor (BMPRII), the cognate receptor, is expressed by neural precursor cells during embryogenesis; however, an in vitro method of enriching BMPRII+ human neural precursor cells (hNPCs) from the fetal spinal cord is absent. Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRII and leukemia inhibitory factor (LIF). Regions of highest BMPRII+ immunofluorescence localized to sensory columns. Parenchymal and meningeal-associated BMPRII+ vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers, CD34/CD39. LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons, mirroring the expression of LIF receptor/CD118. A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages, while synergistically increasing the proportion of neurospheres with a stratified, cytoarchitecture. These neurospheres were characterized by BMPRII+/MAP2ab+/-/βIII-tubulin+/nestin-/vimentin-/GFAP-/NeuN- surface hNPCs surrounding a heterogeneous core of βIII-tubulin+/nestin+/vimentin+/GFAP+/MAP2ab-/NeuN- multipotent precursors. Dissociated cultures from tripotential neurospheres contained neuronal (βIII-tubulin+), astrocytic (GFAP+), and oligodendrocytic (O4+) lineage cells. Fluorescence-activated cell sorting-sorted BMPRII+ hNPCs were MAP2ab+/-/βIII-tubulin+/GFAP-/O4- in culture. This is the first isolation of BMPRII+ hNPCs identified and characterized in human fetal spinal cords. Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres, characterized by surface BMPRII+ hNPCs. Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for > 10 passages. Investigations of the role BMPRII plays in spinal cord development have primarily relied upon mouse and rat models, with interpolations to human development being derived through inference. Because of significant species differences between murine biology and human, including anatomical dissimilarities in central nervous system (CNS) structure, the findings made in murine models cannot be presumed to apply to human spinal cord development. For these reasons, our human in vitro model offers a novel tool to better understand neurodevelopmental pathways, including BMP signaling, as well as spinal cord injury research and testing drug therapies.
Collapse
Affiliation(s)
- Michael W. Weible
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Michael D. Lovelace
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- Discipline of Medicine, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW, Australia
| | - Hamish D. Mundell
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Charles Perkins Centre (D17), Sydney, NSW, Australia
| | - Tsz Wai Rosita Pang
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
| | - Tailoi Chan-Ling
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Peng HR, Zhang YK, Zhou JW. The Structure and Function of Glial Networks: Beyond the Neuronal Connections. Neurosci Bull 2023; 39:531-540. [PMID: 36481974 PMCID: PMC10043088 DOI: 10.1007/s12264-022-00992-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022] Open
Abstract
Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.
Collapse
Affiliation(s)
- Hai-Rong Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Kai Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Zhou J, Wu Y, Tang Z, Zou K, Chen J, Lei Z, Wan X, Liu Y, Zhang H, Wang Y, Blesch A, Lei T, Liu S. Alginate hydrogel cross-linked by Ca2+ to promote spinal cord neural stem/progenitor cell differentiation and functional recovery after a spinal cord injury. Regen Biomater 2022; 9:rbac057. [PMID: 36072264 PMCID: PMC9438746 DOI: 10.1093/rb/rbac057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
Alginate capillary hydrogels seeded with differentiated cells can fill the lesion cavity and promote axonal regeneration after grafting into the injured spinal cord. Neural stem/progenitor cells (NSPCs) can potentially repair the spinal cord; however, effects of alginate hydrogels (AHs) on NSPCs remain unknown. In this study, we fabricated AHs cross-linked by Ca2+ and seeded hydrogels with rat embryonic day 14 NSPCs. Immunocytochemistry and electron microscopy show that NSPCs survive, proliferate and differentiate into neurons in vitro within the capillaries. After transplantation into an acute T8 complete spinal cord transection site in adult rats, approximately one-third (38.3%) of grafted cells survive and differentiate into neurons (40.7%), astrocytes (26.6%) and oligodendrocytes (28.4%) at 8 weeks post-grafting. NSPCs promote the growth of host axons within the capillaries in a time-dependent manner. Host axons make synapse-like contacts with NSPC-derived neurons within the hydrogel channels, and graft-derived axons extend into the host white and gray matter making putative synapses. This is paralleled by improved electrophysiological conductivity across the lesion and partial hindlimb locomotor recovery.
Collapse
Affiliation(s)
- Jun Zhou
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Yaqi Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Zhijian Tang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Kaipeng Zou
- Chongqing University Affiliated Jiangjin Hospital (Jiangjin Central Hospital) Department of Anus-intestines, , Chongqing, P.R. China
| | - Juan Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Zuowei Lei
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Orthopedics, , Wuhan, P.R. China
| | - Xueyan Wan
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Yanchao Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Huaqiu Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Armin Blesch
- University of California San Diego Department of Neurosciences, , LaJolla, CA, USA
- Veterans Affairs San Diego Healthcare System , La Jolla, CA, USA
| | - Ting Lei
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| | - Shengwen Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of Neurosurgery, , Wuhan, P.R. China
| |
Collapse
|
6
|
McIntyre WB, Pieczonka K, Khazaei M, Fehlings MG. Regenerative replacement of neural cells for treatment of spinal cord injury. Expert Opin Biol Ther 2021; 21:1411-1427. [PMID: 33830863 DOI: 10.1080/14712598.2021.1914582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Traumatic Spinal Cord Injury (SCI) results from primary physical injury to the spinal cord, which initiates a secondary cascade of neural cell death. Current therapeutic approaches can attenuate the consequences of the primary and secondary events, but do not address the degenerative aspects of SCI. Transplantation of neural stem/progenitor cells (NPCs) for the replacement of the lost/damaged neural cells is suggested here as a regenerative approach that is complementary to current therapeutics.Areas Covered: This review addresses how neurons, oligodendrocytes, and astrocytes are impacted by traumatic SCI, and how current research in regenerative-NPC therapeutics aims to restore their functionality. Methods used to enhance graft survival, as well as bias progenitor cells towards neuronal, oligodendrogenic, and astroglia lineages are discussed.Expert Opinion: Despite an NPC's ability to differentiate into neurons, oligodendrocytes, and astrocytes in the transplant environment, their potential therapeutic efficacy requires further optimization prior to translation into the clinic. Considering the temporospatial identity of NPCs could promote neural repair in region specific injuries throughout the spinal cord. Moreover, understanding which cells are targeted by NPC-derived myelinating cells can help restore physiologically-relevant myelin patterns. Finally, the duality of astrocytes is discussed, outlining their context-dependent importance in the treatment of SCI.
Collapse
Affiliation(s)
- William Brett McIntyre
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Katarzyna Pieczonka
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Han F, Lu P. Introduction for Stem Cell-Based Therapy for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:1-8. [PMID: 33105491 DOI: 10.1007/978-981-15-4370-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological diseases caused by the progressive degeneration of neurons and glial cells in the brain and spinal cords. Usually there is a selective loss of specific neuronal cells in a restricted brain area from any neurodegenerative diseases, such as dopamine (DA) neuron death in Parkinson disease (PD) and motor neuron loss in amyotrophic lateral sclerosis (ALS), or a widespread degeneration affecting many types of neurons in Alzheimer's disease (AD). As there is no effective treatment to stop the progression of these neurodegenerative diseases, stem cell-based therapies have provided great potentials for these disorders. Currently transplantation of different stem cells or their derivatives has improved neural function in animal models of neurodegenerative diseases by replacing the lost neural cells, releasing cytokines, modulation of inflammation, and mediating remyelination. With the advance in somatic cell reprogramming to generate induced pluripotent stem cells (iPS cells) and directly induced neural stem cells or neurons, pluripotent stem cell can be induced to differentiate to any kind of neural cells and overcome the immune rejection of the allogeneic transplantation. Recent studies have proved the effectiveness of transplanted stem cells in animal studies and some clinical trials on patients with NDs. However, some significant hurdles need to be resolved before these preclinical results can be translated to clinic. In particular, we need to better understand the molecular mechanisms of stem cell transplantation and develop new approaches to increase the directed neural differentiation, migration, survival, and functional connections of transplanted stem cells in the pathological environment of the patient's central nerve system.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Shandong University/Affiliated Second Hospital, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China.
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA.,Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
HOTAIRM1 regulates neuronal differentiation by modulating NEUROGENIN 2 and the downstream neurogenic cascade. Cell Death Dis 2020; 11:527. [PMID: 32661334 PMCID: PMC7359305 DOI: 10.1038/s41419-020-02738-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Neuronal differentiation is a timely and spatially regulated process, relying on precisely orchestrated gene expression control. The sequential activation/repression of genes driving cell fate specification is achieved by complex regulatory networks, where transcription factors and noncoding RNAs work in a coordinated manner. Herein, we identify the long noncoding RNA HOTAIRM1 (HOXA Transcript Antisense RNA, Myeloid-Specific 1) as a new player in neuronal differentiation. We demonstrate that the neuronal-enriched HOTAIRM1 isoform epigenetically controls the expression of the proneural transcription factor NEUROGENIN 2 that is key to neuronal fate commitment and critical for brain development. We also show that HOTAIRM1 activity impacts on NEUROGENIN 2 downstream regulatory cascade, thus contributing to the achievement of proper neuronal differentiation timing. Finally, we identify the RNA-binding proteins HNRNPK and FUS as regulators of HOTAIRM1 biogenesis and metabolism. Our findings uncover a new regulatory layer underlying NEUROGENIN 2 transitory expression in neuronal differentiation and reveal a previously unidentified function for the neuronal-induced long noncoding RNA HOTAIRM1.
Collapse
|
9
|
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21:366-383. [PMID: 32518349 PMCID: PMC8384139 DOI: 10.1038/s41583-020-0314-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Yavarpour-Bali H, Ghasemi-Kasman M, Shojaei A. Direct reprogramming of terminally differentiated cells into neurons: A novel and promising strategy for Alzheimer's disease treatment. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109820. [PMID: 31743695 DOI: 10.1016/j.pnpbp.2019.109820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
Glial activation is a common pathological process of the central nervous system (CNS) in disorders such as Alzheimer's disease (AD). Several approaches have been used to reduce the number of activated astrocytes and microglia in damaged areas. In recent years, various kinds of fully differentiated cells have been successfully reprogrammed to a desired type of cell in lesion areas. Interestingly, internal glial cells, including astrocytes and NG2 positive cells, were efficiently converted to neuroblasts and neurons by overexpression of some transcription factors (TFs) or microRNAs (miRNAs). Notably, some specific subtypes of neurons have been achieved by in vivo reprogramming and the resulting neurons were successfully integrated into local neuronal circuits. Furthermore, somatic cells from AD patients have been converted to functional neurons. Although direct reprogramming of a patient's own internal cells has revolutionized regenerative medicine, but there are some major obstacles that should be examined before using these induced cells in clinical therapies. In the present review article, we aim to discuss the current studies on in vitro and in vivo reprogramming of somatic cells to neurons using TFs, miRNAs or small molecules in healthy and AD patients.
Collapse
Affiliation(s)
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Amir Shojaei
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Zhu Q, Lu P. Stem Cell Transplantation for Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:71-97. [PMID: 33105496 DOI: 10.1007/978-981-15-4370-8_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuronal degeneration disease, in which the death of motor neurons causes lost control of voluntary muscles. The consequence is weakness of muscles with a wide range of disabilities and eventually death. Most patients died within 5 years after diagnosis, and there is no cure for this devastating neurodegenerative disease up to date. Stem cells, including non-neural stem cells and neural stem cells (NSCs) or neural progenitor cells (NPCs), are very attractive cell sources for potential neuroprotection and motor neuron replacement therapy which bases on the idea that transplant-derived and newly differentiated motor neurons can replace lost motor neurons to re-establish voluntary motor control of muscles in ALS. Our recent studies show that transplanted NSCs or NPCs not only survive well in injured spinal cord, but also function as neuronal relays to receive regenerated host axonal connection and extend their own axons to host for connectivity, including motor axons in ventral root. This reciprocal connection between host neurons and transplanted neurons provides a strong rationale for neuronal replacement therapy for ALS to re-establish voluntary motor control of muscles. In addition, a variety of new stem cell resources and the new methodologies to generate NSCs or motor neuron-specific progenitor cells have been discovered and developed. Together, it provides the basis for motor neuron replacement therapy with NSCs or NPCs in ALS.
Collapse
Affiliation(s)
- Qiang Zhu
- Ludwig Institute, University of California - San Diego, La Jolla, CA, USA
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA. .,Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Abstract
Cellular transplantation for repair of the injured spinal cord has a rich history with strategies focused on neuroprotection, immunomodulation, and neural reconstruction. The goal of the present review is to provide a concise overview and discussion of five key themes that have become important considerations for rebuilding functional neural networks. The questions raised include: (i) who are the donor cells selected for transplantation, (ii) what is the intended target for repair, (iii) when is the optimal time for transplantation, (iv) where should the cells be delivered, and lastly (v) why does cell transplantation remain an attractive candidate for promoting neural repair after injury? Recent developments in neurobiology and engineering now enable us to start addressing these questions with multidisciplinary expertise and methods.
Collapse
Affiliation(s)
- Lyandysha V Zholudeva
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA.,2 The Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Michael A Lane
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA.,2 The Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Zholudeva LV, Iyer N, Qiang L, Spruance VM, Randelman ML, White NW, Bezdudnaya T, Fischer I, Sakiyama-Elbert SE, Lane MA. Transplantation of Neural Progenitors and V2a Interneurons after Spinal Cord Injury. J Neurotrauma 2018; 35:2883-2903. [PMID: 29873284 DOI: 10.1089/neu.2017.5439] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is growing interest in the use of neural precursor cells to treat spinal cord injury (SCI). Despite extensive pre-clinical research, it remains unclear as to which donor neuron phenotypes are available for transplantation, whether the same populations exist across different sources of donor tissue (e.g., developing tissue vs. cultured cells), and whether donor cells retain their phenotype once transplanted into the hostile internal milieu of the injured adult spinal cord. In addition, while functional improvements have been reported after neural precursor transplantation post-SCI, the extent of recovery is limited and variable. The present work begins to address these issues by harnessing ventrally derived excitatory pre-motor V2a spinal interneurons (SpINs) to repair the phrenic motor circuit after cervical SCI. Recent studies have demonstrated that Chx10-positive V2a SpINs contribute to anatomical plasticity within the phrenic circuitry after cervical SCI, thus identifying them as a therapeutic candidate. Building upon this discovery, the present work tests the hypothesis that transplantation of neural progenitor cells (NPCs) enriched with V2a INs can contribute to neural networks that promote repair and enhance respiratory plasticity after cervical SCI. Cultured NPCs (neuronal and glial restricted progenitor cells) isolated from E13.5 Green fluorescent protein rats were aggregated with TdTomato-mouse embryonic stem cell-derived V2a INs in vitro, then transplanted into the injured cervical (C3-4) spinal cord. Donor cells survive, differentiate and integrate with the host spinal cord. Functional diaphragm electromyography indicated recovery 1 month following treatment in transplant recipients. Animals that received donor cells enriched with V2a INs showed significantly greater functional improvement than animals that received NPCs alone. The results from this study offer insight into the neuronal phenotypes that might be effective for (re)establishing neuronal circuits in the injured adult central nervous system.
Collapse
Affiliation(s)
- Lyandysha V Zholudeva
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nisha Iyer
- 3 Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin
| | - Liang Qiang
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Victoria M Spruance
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Margo L Randelman
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nicholas W White
- 4 Department of Biomedical Engineering, University of Texas, Austin, Texas
| | - Tatiana Bezdudnaya
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Itzhak Fischer
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | | | - Michael A Lane
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Spruance VM, Zholudeva LV, Hormigo KM, Randelman ML, Bezdudnaya T, Marchenko V, Lane MA. Integration of Transplanted Neural Precursors with the Injured Cervical Spinal Cord. J Neurotrauma 2018; 35:1781-1799. [PMID: 29295654 PMCID: PMC6033309 DOI: 10.1089/neu.2017.5451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cervical spinal cord injuries (SCI) result in devastating functional consequences, including respiratory dysfunction. This is largely attributed to the disruption of phrenic pathways, which control the diaphragm. Recent work has identified spinal interneurons as possible contributors to respiratory neuroplasticity. The present work investigated whether transplantation of developing spinal cord tissue, inherently rich in interneuronal progenitors, could provide a population of new neurons and growth-permissive substrate to facilitate plasticity and formation of novel relay circuits to restore input to the partially denervated phrenic motor circuit. One week after a lateralized, C3/4 contusion injury, adult Sprague-Dawley rats received allografts of dissociated, developing spinal cord tissue (from rats at gestational days 13-14). Neuroanatomical tracing and terminal electrophysiology was performed on the graft recipients 1 month later. Experiments using pseudorabies virus (a retrograde, transynaptic tracer) revealed connections from donor neurons onto host phrenic circuitry and from host, cervical interneurons onto donor neurons. Anatomical characterization of donor neurons revealed phenotypic heterogeneity, though donor-host connectivity appeared selective. Despite the consistent presence of cholinergic interneurons within donor tissue, transneuronal tracing revealed minimal connectivity with host phrenic circuitry. Phrenic nerve recordings revealed changes in burst amplitude after application of a glutamatergic, but not serotonergic antagonist to the transplant, suggesting a degree of functional connectivity between donor neurons and host phrenic circuitry that is regulated by glutamatergic input. Importantly, however, anatomical and functional results were variable across animals, and future studies will explore ways to refine donor cell populations and entrain consistent connectivity.
Collapse
Affiliation(s)
- Victoria M Spruance
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Kristiina M Hormigo
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Margo L Randelman
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Tatiana Bezdudnaya
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Bai QR, Dong L, Hao Y, Chen X, Shen Q. Metabolic glycan labeling-assisted discovery of cell-surface markers for primary neural stem and progenitor cells. Chem Commun (Camb) 2018; 54:5486-5489. [PMID: 29756626 DOI: 10.1039/c8cc01535j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A chemical approach was developed for identifying cell-surface markers for primary neural stem cells (NSCs). Using an in vitro coculture system of primary NSCs combined with metabolic labeling of sialoglycans with bioorthogonal functional groups, we selectively enriched and identified a list of cell-surface sialoglycoproteins that were more abundantly expressed in neural stem and progenitor cells.
Collapse
Affiliation(s)
- Qing-Ran Bai
- PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
16
|
López-León M, Outeiro TF, Goya RG. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Res Rev 2017; 40:168-181. [PMID: 28903069 DOI: 10.1016/j.arr.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/27/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD.
Collapse
Affiliation(s)
- Micaela López-León
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rodolfo G Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina.
| |
Collapse
|
17
|
Lin CR, Wu PC, Shih HC, Cheng JT, Lu CY, Chou AK, Yang LC. Intrathecal Spinal Progenitor Cell Transplantation for the Treatment of Neuropathic Pain. Cell Transplant 2017. [DOI: 10.3727/096020198389744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Injury to, or dysfunction of, the nervous system can lead to spontaneous pain, hyperalgesia, and/or allodynia. It is believed that the number and activity of GABAergic neurons gradually decreases over the dorsal horn. Glutamic acid decarboxylase (GAD) immunocompetence has been demonstrated on spinal progenitor cells (SPCs) cultivated in vitro. The intrathecal implantation of these cultivated progenitor cells may provide a means of alleviating neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve was used to induce chronic neuropathic pain in the hind paw of rats. SPCs (1 × 106) were implanted intrathecally on the third day after the CCI surgery. The behavioral response to thermal hyperalgesia was observed and recorded during the 14 days postsurgery. Various techniques were utilized to trace the progenitor cells, confirm the differentiation, and identify the neurotransmitters involved. GAD immunoactivity was revealed for 65% of the cultivated spinal progenitor cells in our study. We also determined that transplanted cells could survive more than 3 weeks postintrathecal implantation. Significant reductions were demonstrated for responses to thermal stimuli for the CCI rats that had received intrathecal SPC transplantation. A novel intrathecal delivery with SPCs reduced CCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Chung-Ren Lin
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
- Department of Biological Sciences Department, National Sun-Yat Sen University, Taiwan
| | - Ping-Ching Wu
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| | - Hsun-Chang Shih
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences Department, National Sun-Yat Sen University, Taiwan
| | - Cheng-Yuan Lu
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| | - An-Kuo Chou
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| | - Lin-Cheng Yang
- Department of Anesthesiology, Anesthesiology Research Laboratory, Kaohsiung Chang Gung Memorial Hospital 833, Taiwan
| |
Collapse
|
18
|
Blits B, Boer GJ, Verhaagen J. Pharmacological, Cell, and Gene Therapy Strategies to Promote Spinal Cord Regeneration. Cell Transplant 2017. [DOI: 10.3727/000000002783985521] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neuronal survival and neurite outgrowth have enabled the design of experiments aimed at viral vector-mediated transfer of genes encoding neurotrophic factors, growth-associated proteins, cell adhesion molecules, and antiapoptotic genes. Central to the success of these approaches was the development of efficient, nontoxic vectors for gene delivery and the acquirement of the appropriate (genetically modified) cells for neurotransplantation. Direct gene transfer in the nervous system was first achieved with herpes viral and E1-deleted adenoviral vectors. Both vector systems are problematic in that these vectors elicit immunogenic and cytotoxic responses. Adeno-associated viral vectors and lentiviral vectors constitute improved gene delivery systems and are beginning to be applied in neuroregeneration research of the spinal cord. Ex vivo approaches were initially based on the implantation of genetically modified fibroblasts. More recently, transduced Schwann cells, genetically modified pieces of peripheral nerve, and olfactory ensheathing glia have been used as implants into the injured spinal cord.
Collapse
Affiliation(s)
- Bas Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Gerard J. Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Joost Verhaagen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| |
Collapse
|
19
|
Liu Y, Zheng Y, Li S, Xue H, Schmitt K, Hergenroeder GW, Wu J, Zhang Y, Kim DH, Cao Q. Human neural progenitors derived from integration-free iPSCs for SCI therapy. Stem Cell Res 2017; 19:55-64. [PMID: 28073086 PMCID: PMC5629634 DOI: 10.1016/j.scr.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023] Open
Abstract
As a potentially unlimited autologous cell source, patient induced pluripotent stem cells (iPSCs) provide great capability for tissue regeneration, particularly in spinal cord injury (SCI). However, despite significant progress made in translation of iPSC-derived neural progenitor cells (NPCs) to clinical settings, a few hurdles remain. Among them, non-invasive approach to obtain source cells in a timely manner, safer integration-free delivery of reprogramming factors, and purification of NPCs before transplantation are top priorities to overcome. In this study, we developed a safe and cost-effective pipeline to generate clinically relevant NPCs. We first isolated cells from patients' urine and reprogrammed them into iPSCs by non-integrating Sendai viral vectors, and carried out experiments on neural differentiation. NPCs were purified by A2B5, an antibody specifically recognizing a glycoganglioside on the cell surface of neural lineage cells, via fluorescence activated cell sorting. Upon further in vitro induction, NPCs were able to give rise to neurons, oligodendrocytes and astrocytes. To test the functionality of the A2B5+ NPCs, we grafted them into the contused mouse thoracic spinal cord. Eight weeks after transplantation, the grafted cells survived, integrated into the injured spinal cord, and differentiated into neurons and glia. Our specific focus on cell source, reprogramming, differentiation and purification method purposely addresses timing and safety issues of transplantation to SCI models. It is our belief that this work takes one step closer on using human iPSC derivatives to SCI clinical settings.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yiyan Zheng
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenglan Li
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haipeng Xue
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Karl Schmitt
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georgene W Hergenroeder
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest Health Sciences, 391 Technology Way, Winston-Salem, NC 27101, USA
| | - Dong H Kim
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qilin Cao
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
20
|
Abstract
Stem cells, especially neural stem cells (NSCs), are a very attractive cell source for potential reconstruction of injured spinal cord though either neuroprotection, neural regeneration, remyelination, replacement of lost neural cells, or reconnection of disrupted axons. The later have great potential since recent studies demonstrate long-distance growth and connectivity of axons derived from transplanted NSCs after spinal cord injury (SCI). In addition, transplanted NSCs constitute a permissive environment for host axonal regeneration and serve as new targets for host axonal connection. This reciprocal connection between grafted neurons and host neurons constitutes a neuronal relay formation that could restore functional connectivity after SCI.
Collapse
|
21
|
Peng KY, Lee YW, Hsu PJ, Wang HH, Wang Y, Liou JY, Hsu SH, Wu KK, Yen BL. Human pluripotent stem cell (PSC)-derived mesenchymal stem cells (MSCs) show potent neurogenic capacity which is enhanced with cytoskeletal rearrangement. Oncotarget 2016; 7:43949-43959. [PMID: 27304057 PMCID: PMC5190070 DOI: 10.18632/oncotarget.9947] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are paraxial mesodermal progenitors with potent immunomodulatory properties. Reports also indicate that MSCs can undergo neural-like differentiation, offering hope for use in neurodegenerative diseases. However, ex vivo expansion of these rare somatic stem cells for clinical use leads to cellular senescence. A newer source of MSCs derived from human pluripotent stem cells (PSC) can offer the 'best-of-both-worlds' scenario, abrogating the concern of teratoma formation while preserving PSC proliferative capacity. PSC-derived MSCs (PSC-MSCs) also represent MSCs at the earliest developmental stage, and we found that these MSCs harbor stronger neuro-differentiation capacity than post-natal MSCs. PSC-MSCs express higher levels of neural stem cell (NSC)-related genes and transcription factors than adult bone marrow MSCs at baseline, and rapidly differentiate into neural-like cells when cultured in either standard neurogenic differentiation medium (NDM) or when the cytoskeletal modulator RhoA kinase (ROCK) is inhibited. Interestingly, when NDM is combined with ROCK inhibition, PSC-MSCs undergo further commitment, acquiring characteristics of post-mitotic neurons including nuclear condensation, extensive dendritic growth, and neuron-restricted marker expression including NeuN, β-III-tubulin and Doublecortin. Our data demonstrates that PSC-MSCs have potent capacity to undergo neural differentiation and also implicate the important role of the cytoskeleton in neural lineage commitment.
Collapse
Affiliation(s)
- Kai-Yen Peng
- 1 Department of Life Science, National Central University, Jhongli, Taiwan
- 2 Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Yu-Wei Lee
- 2 Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Pei-Ju Hsu
- 2 Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Hsiu-Huan Wang
- 2 Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Yun Wang
- 3 Center for Neuropsychiatric Research, NHRI, Zhunan, Taiwan
| | - Jun-Yang Liou
- 2 Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Shan-Hui Hsu
- 4 Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Kenneth K. Wu
- 5 Graduate Institute of Basic Medical Sciences, China Medical University, Taichung, Taiwan
| | - B. Linju Yen
- 2 Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| |
Collapse
|
22
|
Götz M. Glial Cells Generate Neurons—Master Control within CNS Regions: Developmental Perspectives on Neural Stem Cells. Neuroscientist 2016; 9:379-97. [PMID: 14580122 DOI: 10.1177/1073858403257138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A common problem in neural stem cell research is the poor generation of neuronal or oligodendroglial descendants. The author takes a developmental perspective to propose solutions to this problem. After a general overview of the recent progress in developmental neurobiology, she highlights the necessity of the sequential and hierarchical specification of CNS precursors toward the generation of specific cell types, for example, neurons. In the developing as well as the adult CNS, multipotent stem cells do not directly generate neurons but give rise to precursors that are specified and restricted toward the generation of neurons. Some molecular determinants of this fate restriction have been identified during recent years and reveal that progression via this fate-restricted state is a necessary step of neurogenesis. These discoveries also demonstrate that neuronal fate specification is inseparably linked at the molecular level to regionalization of the developing CNS. These fate determinants and their specific action in distinct region-specific con-texts are essential to direct the progeny of stem cells more efficiently toward the generation of the desired cell types. Recent data are discussed that demonstrate the common identity of precursors and stem cells in the developing and adult nervous system as radial glia, astroglia, or non-myelinating glia. A novel line-age model is proposed that incorporates these new views and explains why the default pathway of stem cells is astroglia. These new insights into the cellular and molecular mechanisms of neurogenesis help to design novel approaches for reconstitutive therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Götz
- Max-Planck Institute of Neurobiology, Planegg-Martinsried/Munich, Germany.
| |
Collapse
|
23
|
Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strobl H, Takashima Y, Biane J, Conner J, Zhang SC, Tuszynski MH. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 2016; 22:479-87. [PMID: 27019328 PMCID: PMC4860037 DOI: 10.1038/nm.4066] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023]
Abstract
The corticospinal tract (CST) is the most important motor system in humans, yet robust regeneration of this projection after spinal cord injury (SCI) has not been accomplished. In murine models of SCI, we report robust corticospinal axon regeneration, functional synapse formation and improved skilled forelimb function after grafting multipotent neural progenitor cells into sites of SCI. Corticospinal regeneration requires grafts to be driven toward caudalized (spinal cord), rather than rostralized, fates. Fully mature caudalized neural grafts also support corticospinal regeneration. Moreover, corticospinal axons can emerge from neural grafts and regenerate beyond the lesion, a process that is potentially related to the attenuation of the glial scar. Rat corticospinal axons also regenerate into human donor grafts of caudal spinal cord identity. Collectively, these findings indicate that spinal cord 'replacement' with homologous neural stem cells enables robust regeneration of the corticospinal projection within and beyond spinal cord lesion sites, achieving a major unmet goal of SCI research and offering new possibilities for clinical translation.
Collapse
Affiliation(s)
- Ken Kadoya
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Department of Orthopaedic Surgery, Hokkaido University, Sapporo, Japan
| | - Paul Lu
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Veterans Administration San Diego Healthcare System, San Diego, California, USA
| | - Kenny Nguyen
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Corinne Lee-Kubli
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Hiromi Kumamaru
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Lin Yao
- Waisman Center, University of Wisconsin-Madison, Wisconsin, USA.,Department of Neuroscience, University of Wisconsin-Madison, Wisconsin, USA.,Department of Neurology, University of Wisconsin-Madison, Wisconsin, USA
| | - Joshua Knackert
- Waisman Center, University of Wisconsin-Madison, Wisconsin, USA.,Department of Neuroscience, University of Wisconsin-Madison, Wisconsin, USA.,Department of Neurology, University of Wisconsin-Madison, Wisconsin, USA
| | - Gunnar Poplawski
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Jennifer N Dulin
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Hans Strobl
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Yoshio Takashima
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Jeremy Biane
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - James Conner
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Wisconsin, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Veterans Administration San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
24
|
Neural Stem Cells for Spinal Cord Injury. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Welzel G, Seitz D, Schuster S. Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures. Sci Rep 2015; 5:7959. [PMID: 25609542 PMCID: PMC4302367 DOI: 10.1038/srep07959] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/29/2014] [Indexed: 01/07/2023] Open
Abstract
Neuronal cell cultures offer a crucial tool to mechanistically analyse regeneration in the nervous system. Despite the increasing importance of zebrafish (Danio rerio) as an in vivo model in neurobiological and biomedical research, in vitro approaches to the nervous system are lagging far behind and no method is currently available for establishing enriched neuronal cell cultures. Here we show that magnetic-activated cell sorting (MACS) can be used for the large-scale generation of neuronal-restricted progenitor (NRP) cultures from embryonic zebrafish. Our findings provide a simple and semi-automated method that is likely to boost the use of neuronal cell cultures as a tool for the mechanistic dissection of key processes in neuronal regeneration and development.
Collapse
Affiliation(s)
- Georg Welzel
- 1] Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany [2] Friedrich-Baur BioMed Center, 95448 Bayreuth
| | - Daniel Seitz
- 1] Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany [2] Friedrich-Baur BioMed Center, 95448 Bayreuth
| | - Stefan Schuster
- 1] Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany [2] Friedrich-Baur BioMed Center, 95448 Bayreuth
| |
Collapse
|
26
|
Bonner JF, Steward O. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Res 2015; 1619:115-23. [PMID: 25591483 DOI: 10.1016/j.brainres.2015.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 02/01/2023]
Abstract
Spinal cord injury (SCI) disrupts the long axonal tracts of the spinal cord leading to devastating loss of function. Cell transplantation in the injured spinal cord has the potential to lead to recovery after SCI via a variety of mechanisms. One such strategy is the formation of neuronal relays between injured long tract axons and denervated neurons. The idea of creating a neuronal relay was first proposed over 25 years ago when fetal tissue was first successfully transplanted into the injured rodent spinal cord. Advances in labeling of grafted cells and the development of neural stem cell culturing techniques have improved the ability to create and refine such relays. Several recent studies have examined the ability to create a novel neuronal circuit between injured axons and denervated targets. This approach is an alternative to long-distance regeneration of damaged axons that may provide a meaningful degree of recovery without direct recreation of lost pathways. This brief review will examine the contribution of fetal grafting to current advances in neuronal grafting. Of particular interest will be the ability of transplanted neurons derived from fetal grafts, neural precursor cells and neural stem cells to reconnect long distance motor and sensory pathways of the injured spinal cord. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Joseph F Bonner
- Reeve-Irvine Research Center, University of California, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4265, USA.
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4265, USA; Departments of Anatomy & Neurobiology, Neurobiology & Behavior, and Neurosurgery, University of California at Irvine School of Medicine, Irvine, CA 92697-4265, USA
| |
Collapse
|
27
|
Human glial progenitor engraftment and gene expression is independent of the ALS environment. Exp Neurol 2014; 264:188-99. [PMID: 25523812 DOI: 10.1016/j.expneurol.2014.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/22/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
Although Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease, basic research studies have highlighted that astrocytes contribute to the disease process. Therefore, strategies which replace the diseased astrocyte population with healthy astrocytes may protect against motor neuron degeneration. Our studies have sought to evaluate astrocyte replacement using glial-restricted progenitors (GRPs), which are lineage-restricted precursors capable of differentiating into astrocytes after transplantation. The goal of our current study was to evaluate how transplantation to the diseased ALS spinal cord versus a healthy, wild-type spinal cord may affect human GRP engraftment and selected gene expression. Human GRPs were transplanted into the spinal cord of either an ALS mouse model or wild-type littermate mice. Mice were sacrificed for analysis at either the onset of disease course or at the endstage of disease. The transplanted GRPs were analyzed by immunohistochemistry and NanoString gene profiling which showed no gross differences in the engraftment or gene expression of the cells. Our data indicate that human glial progenitor engraftment and gene expression is independent of the neurodegenerative ALS spinal cord environment. These findings are of interest given that human GRPs are currently in clinical development for spinal cord transplantation into ALS patients.
Collapse
|
28
|
Nourse JL, Prieto JL, Dickson AR, Lu J, Pathak MM, Tombola F, Demetriou M, Lee AP, Flanagan LA. Membrane biophysics define neuron and astrocyte progenitors in the neural lineage. Stem Cells 2014; 32:706-16. [PMID: 24105912 DOI: 10.1002/stem.1535] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022]
Abstract
Neural stem and progenitor cells (NSPCs) are heterogeneous populations of self-renewing stem cells and more committed progenitors that differentiate into neurons, astrocytes, and oligodendrocytes. Accurately identifying and characterizing the different progenitor cells in this lineage has continued to be a challenge for the field. We found previously that populations of NSPCs with more neurogenic progenitors (NPs) can be distinguished from those with more astrogenic progenitors (APs) by their inherent biophysical properties, specifically the electrophysiological property of whole cell membrane capacitance, which we characterized with dielectrophoresis (DEP). Here, we hypothesize that inherent electrophysiological properties are sufficient to define NPs and APs and test this by determining whether isolation of cells solely by these properties specifically separates NPs and APs. We found NPs and APs are enriched in distinct fractions after separation by electrophysiological properties using DEP. A single round of DEP isolation provided greater NP enrichment than sorting with PSA-NCAM, which is considered an NP marker. Additionally, cell surface N-linked glycosylation was found to significantly affect cell fate-specific electrophysiological properties, providing a molecular basis for the cell membrane characteristics. Inherent plasma membrane biophysical properties are thus sufficient to define progenitor cells of differing fate potential in the neural lineage, can be used to specifically isolate these cells, and are linked to patterns of glycosylation on the cell surface.
Collapse
Affiliation(s)
- J L Nourse
- Department of Neurology, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang JX, Feng YF, Qi Q, Shen L, Wang R, Zhou JS, Lü HZ, Hu JG. JNK is necessary for oligodendrocyte precursor cell proliferation induced by the conditioned medium from B104 neuroblastoma cells. J Mol Neurosci 2014; 52:269-76. [PMID: 24122238 DOI: 10.1007/s12031-013-0135-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023]
Abstract
The conditioned medium from B104 neuroblastoma cells (B104CM) induces proliferation of oligodendrocyte progenitor cells (OPCs) in vitro. Our previous study showed that phosphorylation of extracellular signal-regulated protein kinase(s), not PI3K or p38, is key to B104CM-induced OPC proliferation. However, whether there are still other signaling pathways that are also involved in B104CM-induced proliferation remains unknown. In the present study, we evaluated the implication of c-Jun N-terminal kinase (JNK) signaling pathway in the B104CM-induced proliferation of OPCs using the specific inhibitor of JNK. We provided convincing evidence for the first time that the phosphorylation of JNK is necessary for OPC proliferation induced by B104CM in vitro. Moreover, the activation of JNK results in subsequent expressions of c-jun, c-fos, and c-myc, which initiates proliferation of OPCs. Collectively, these results suggest that JNK is also necessary for B104CM-induced OPC proliferation.
Collapse
|
30
|
Wu L, Li J, Chen L, Zhang H, Yuan L, Davies SJ. Combined transplantation of GDAs(BMP) and hr-decorin in spinal cord contusion repair. Neural Regen Res 2014; 8:2236-48. [PMID: 25206533 PMCID: PMC4146032 DOI: 10.3969/j.issn.1673-5374.2013.24.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/27/2013] [Indexed: 12/23/2022] Open
Abstract
Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astrocytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, double-immunofluorescent histochemistry revealed that combined transplantation inhibited the early inflammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was secreted by transplanted cells, protected injured axons. The combined transplantation promoted axonal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte proliferation and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.
Collapse
Affiliation(s)
- Liang Wu
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China ; Rehabilitation Center, Beijing Xiaotangshan Rehabilitation Hospital, Beijing 102211, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Hong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China
| | - Li Yuan
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Stephen Ja Davies
- Department of Neurosurgery, University of Colorado Denver, 1250 14th Street Denver, Colorado 80217, USA
| |
Collapse
|
31
|
Park KS, Shin SW, Choi JW, Um SH. Specific protein markers for stem cell cross-talk with neighboring cells in the environment. Int J Stem Cells 2014; 6:75-86. [PMID: 24386551 DOI: 10.15283/ijsc.2013.6.2.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 01/04/2023] Open
Abstract
A stem cell interacts with the neighboring cells in its environment. To maintain a living organism's metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell's functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which stem cells cooperate with their surroundings have been discovered and established. In this article, we review several stem cell markers used to communicate with either cancer or immune cells in the human body.
Collapse
Affiliation(s)
- Kyung Soo Park
- Department of Chemical and Biomolecular Engineering and Sogang University, Seoul, Korea
| | - Seung Won Shin
- School of Chemical Engineering and Sungkyunkwan University, Suwon
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering and Sogang University, Seoul, Korea ; Graduate School of Management of Technology, Sogang University, Seoul, Korea
| | - Soong Ho Um
- School of Chemical Engineering and Sungkyunkwan University, Suwon ; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon
| |
Collapse
|
32
|
Luo Y, Liu C, Cerbini T, San H, Lin Y, Chen G, Rao MS, Zou J. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl Med 2014; 3:821-35. [PMID: 24833591 DOI: 10.5966/sctm.2013-0212] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cell lines with tissue-specific or ubiquitous reporter genes are extremely useful for optimizing in vitro differentiation conditions as well as for monitoring transplanted cells in vivo. The adeno-associated virus integration site 1 (AAVS1) locus has been used as a "safe harbor" locus for inserting transgenes because of its open chromatin structure, which permits transgene expression without insertional mutagenesis. However, it is not clear whether targeted transgene expression at the AAVS1 locus is always protected from silencing when driven by various promoters, especially after differentiation and transplantation from hiPS cells. In this paper, we describe a pair of transcription activator-like effector nucleases (TALENs) that enable more efficient genome editing than the commercially available zinc finger nuclease at the AAVS1 site. Using these TALENs for targeted gene addition, we find that the cytomegalovirus-immediate early enhancer/chicken β-actin/rabbit β-globin (CAG) promoter is better than cytomegalovirus 7 and elongation factor 1α short promoters in driving strong expression of the transgene. The two independent AAVS1, CAG, and enhanced green fluorescent protein (EGFP) hiPS cell reporter lines that we have developed do not show silencing of EGFP either in undifferentiated hiPS cells or in randomly and lineage-specifically differentiated cells or in teratomas. Transplanting cardiomyocytes from an engineered AAVS1-CAG-EGFP hiPS cell line in a myocardial infarcted mouse model showed persistent expression of the transgene for at least 7 weeks in vivo. Our results show that high-efficiency targeting can be obtained with open-source TALENs and that careful optimization of the reporter and transgene constructs results in stable and persistent expression in vitro and in vivo.
Collapse
Affiliation(s)
- Yongquan Luo
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Chengyu Liu
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Trevor Cerbini
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Hong San
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Yongshun Lin
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Guokai Chen
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Mahendra S Rao
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jizhong Zou
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells 2014; 31:941-52. [PMID: 23341249 DOI: 10.1002/stem.1334] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/24/2012] [Indexed: 01/07/2023]
Abstract
Astrocytes can be generated from various tissue sources including human pluripotent stem cells (PSC). In this manuscript, we describe a chemically defined xeno-free medium culture system for rapidly generating astrocytes from neural stem cells derived from PSC. We show that astrocyte development in vitro, mimics normal development in vivo, and also passes through a CD44(+) astrocyte precursor stage. Astrocytes generated by our method display similar gene expression patterns, morphological characteristics and functional properties to primary astrocytes, and they survive and integrate after xenotransplantation. Whole genome expression profiling of astrocyte differentiation was performed at several time points of differentiation, and the results indicate the importance of known regulators and identify potential novel regulators and stage-specific lineage markers.
Collapse
|
34
|
Beneficial effects of melatonin combined with exercise on endogenous neural stem/progenitor cells proliferation after spinal cord injury. Int J Mol Sci 2014; 15:2207-22. [PMID: 24487506 PMCID: PMC3958846 DOI: 10.3390/ijms15022207] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 01/27/2023] Open
Abstract
Endogenous neural stem/progenitor cells (eNSPCs) proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI). We have previously shown that melatonin (MT) plus exercise (Ex) had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy including melatonin and exercise might exert a beneficial effect on eNSPCs after SCI. Melatonin was administered twice a day and exercise was performed on a treadmill for 15 min, six days per week for 3 weeks after SCI. Immunohistochemistry and RT-PCR analysis were used to determine cell population for late response, in conjunction with histological examination and motor function test. There was marked improvement in hindlimb function in SCI+MT+Ex group at day 14 and 21 after injury, as documented by the reduced size of the spinal lesion and a higher density of dendritic spines and axons; such functional improvements were associated with increased numbers of BrdU-positive cells. Furthermore, MAP2 was increased in the injured thoracic segment, while GFAP was increased in the cervical segment, along with elevated numbers of BrdU-positive nestin-expressing eNSPCs in the SCI+MT+Ex group. The dendritic spine density was augmented markedly in SCI+MT and SCI+MT+Ex groups. These results suggest a synergistic effect of SCI+MT+Ex might create a microenvironment to facilitate proliferation of eNSPCs to effectively replace injured cells and to improve regeneration in SCI.
Collapse
|
35
|
Medalha CC, Jin Y, Yamagami T, Haas C, Fischer I. Transplanting neural progenitors into a complete transection model of spinal cord injury. J Neurosci Res 2014; 92:607-18. [PMID: 24452691 DOI: 10.1002/jnr.23340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/18/2013] [Accepted: 10/29/2013] [Indexed: 11/11/2022]
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for spinal cord injury (SCI) because of the potential for cell replacement and restoration of connectivity. Our previous studies have shown that transplants of NPC, composed of neuron- and glia-restricted progenitors derived from the embryonic spinal cord, survived well in partial lesion models and generated graft-derived neurons, which could be used to form a functional relay. We have now examined the properties of a similar NPC transplant using a complete transection model in juvenile and adult rats. We found poor survival of grafted cells despite using a variety of lesion methods, matrices, and delays of transplantation. If, instead of cultured progenitor cells, the transplants were composed of segmental or dissociated segments of fetal spinal cord (FSC) derived from similar-staged embryos, grafted cells survived and integrated well with host tissue in juvenile and adult rats. FSC transplants differentiated into neurons and glial cells, including astrocytes and oligodendrocytes. Graft-derived neurons expressed glutaminergic and GABAergic markers. Grafted cells also migrated and extended processes into host tissue. Analysis of axon growth from the host spinal cord showed serotonin-positive fibers and biotinylated dextran amine-traced propriospinal axons growing into the transplants. These results suggest that in treating severe SCI, such as complete transection, NPC grafting faces major challenges related to cell survival and formation of a functional relay. Lessons learned from the efficacy of FSC transplants could be used to develop a therapeutic strategy based on neural progenitor cells for severe SCI.
Collapse
Affiliation(s)
- Carla Christina Medalha
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Biosciences, Federal University of São Paulo, Santos-São Paulo, Brazil
| | | | | | | | | |
Collapse
|
36
|
Zou Q, Yan Q, Zhong J, Wang K, Sun H, Yi X, Lai L. Direct conversion of human fibroblasts into neuronal restricted progenitors. J Biol Chem 2014; 289:5250-60. [PMID: 24385434 DOI: 10.1074/jbc.m113.516112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuronal restricted progenitors (NRPs) represent a type of transitional intermediate cells that lie between multipotent neural progenitors and terminal differentiated neurons during neurogenesis. These NRPs have the ability to self-renew and differentiate into neurons, but not into glial cells, which is considered an advantage for cellular therapy of human neurodegenerative diseases. However, difficulty in the extraction of highly purified NRPs from normal nervous tissue prevents further studies and applications. In this study, we report the conversion of human fetal fibroblasts into human induced NRPs (hiNRPs) in 11 days by using just three defined factors: Sox2, c-Myc, and either Brn2 or Brn4. The hiNRPs exhibited distinct neuronal characteristics, including cell morphology, multiple neuronal marker expression, self-renewal capacity, and a genome-wide transcriptional profile. Moreover, hiNRPs were able to differentiate into various terminal neurons with functional membrane properties but not glial cells. Direct generation of hiNRPs from somatic cells will provide a new source of cells for cellular replacement therapy of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Qingjian Zou
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Hu JG, Wang XF, Deng LX, Liu NK, Gao X, Chen J, Zhou FC, Xu XM. Cotransplantation of Glial Restricted Precursor Cells and Schwann Cells Promotes Functional Recovery after Spinal Cord Injury. Cell Transplant 2013; 22:2219-36. [DOI: 10.3727/096368912x661373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oligodendrocyte (OL) replacement can be a promising strategy for spinal cord injury (SCI) repair. However, the poor posttransplantation survival and inhibitory properties to axonal regeneration are two major challenges that limit their use as donor cells for repair of CNS injuries. Therefore, strategies aimed at enhancing the survival of grafted oligodendrocytes as well as reducing their inhibitory properties, such as the use of more permissive oligodendrocyte progenitor cells (OPCs), also called glial restricted precursor cells (GRPs), should be highly prioritized. Schwann cell (SC) transplantation is a promising translational strategy to promote axonal regeneration after CNS injuries, partly due to their expression and secretion of multiple growth-promoting factors. Whether grafted SCs have any effect on the biological properties of grafted GRPs remains unclear. Here we report that either SCs or SC-conditioned medium (SCM) promoted the survival, proliferation, and migration of GRPs in vitro. When GRPs and SCs were cografted into the normal or injured spinal cord, robust survival, proliferation, and migration of grafted GRPs were observed. Importantly, grafted GRPs differentiated into mature oligodendrocytes and formed new myelin on axons caudal to the injury. Finally, cografts of GRPs and SCs promoted recovery of function following SCI. We conclude that cotransplantation of GRPs and SCs, the only two kinds of myelin-forming cells in the nervous system, act complementarily and synergistically to promote greater anatomical and functional recovery after SCI than when either cell type is used alone.
Collapse
Affiliation(s)
- Jian-Guo Hu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital, Bengbu Medical College, Bengbu, P.R. China
| | - Xiao-Fei Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
38
|
Haidet-Phillips AM, Gross SK, Williams T, Tuteja A, Sherman A, Ko M, Jeong YH, Wong PC, Maragakis NJ. Altered astrocytic expression of TDP-43 does not influence motor neuron survival. Exp Neurol 2013; 250:250-9. [PMID: 24120466 DOI: 10.1016/j.expneurol.2013.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 12/12/2022]
Abstract
The role of glia as a contributing factor to motor neuron (MN) death in amyotrophic lateral sclerosis (ALS) is becoming increasingly appreciated. However, most studies implicating astrocytes have focused solely on models of ALS caused by superoxide dismutase 1 (SOD1) mutations. The goal of our study was to determine whether astrocytes contribute to wild-type MN death in the case of ALS caused by mutations in tar-DNA binding protein 43 (TDP-43). Since it is currently unknown how TDP-43 mutations cause disease, we derived astrocytes for study from both gain and loss of function mouse models of TDP-43. Astrocytes overexpressing mutant TDP-43(A315T) as well as astrocytes lacking TDP-43 were morphologically indistinguishable from wild-type astrocytes in vitro. Furthermore, astrocytes with these TDP-43 alterations did not cause the death of wild-type MNs in co-culture. To investigate the in vivo effects of TDP-43 alterations in astrocytes, glial-restricted precursors were transplanted to the wild-type rat spinal cord where they differentiated into astrocytes and interacted with host MNs. Astrocytes with TDP-43 alterations did not cause host wild-type MN damage although they were capable of engrafting and interacting with host MNs with the same efficiency as wild-type astrocytes. These data indicate that astrocytes do not adopt the same toxic phenotype as mutant SOD1 astrocytes when TDP-43 is mutated or expression levels are modified. Our study reinforces the heterogeneity in ALS disease mechanisms and highlights the potential for future screening subsets of ALS patients prior to treatment with cell type-directed therapies.
Collapse
Affiliation(s)
- Amanda M Haidet-Phillips
- Department of Neurology, Johns Hopkins University School of Medicine, Rangos 248, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mousa A, Bakhiet M. Role of cytokine signaling during nervous system development. Int J Mol Sci 2013; 14:13931-57. [PMID: 23880850 PMCID: PMC3742226 DOI: 10.3390/ijms140713931] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 01/24/2023] Open
Abstract
Cytokines are signaling proteins that were first characterized as components of the immune response, but have been found to have pleiotropic effects in diverse aspects of body function in health and disease. They are secreted by numerous cells and are used extensively in intercellular communications to produce different activities, including intricate processes engaged in the ontogenetic development of the brain. This review discusses factors involved in brain growth regulation and recent findings exploring cytokine signaling pathways during development of the central nervous system. In view of existing data suggesting roles for neurotropic cytokines in promoting brain growth and repair, these molecules and their signaling pathways might become targets for therapeutic intervention in neurodegenerative processes due to diseases, toxicity, or trauma.
Collapse
Affiliation(s)
- Alyaa Mousa
- Department of Anatomy, Faculty of Medicine, Health Sciences Centre, Kuwait University, Safat 13060, Kuwait; E-Mail:
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671 Manama, Bahrain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +973-1723-7300
| |
Collapse
|
40
|
Dandapat A, Hartweck LM, Bosnakovski D, Kyba M. Expression of the human FSHD-linked DUX4 gene induces neurogenesis during differentiation of murine embryonic stem cells. Stem Cells Dev 2013; 22:2440-8. [PMID: 23560660 DOI: 10.1089/scd.2012.0643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Misexpression of the double homeodomain protein DUX4 in muscle is believed to cause facioscapulohumeral muscular dystrophy (FSHD). Although strategies are being devised to inhibit DUX4 activity in FSHD, there is little known about the normal function of this protein. Expression of DUX4 has been reported in pluripotent cells and testis. To test the idea that DUX4 may be involved in initiating a germ lineage program in pluripotent cells, we interrogated the effect of expressing the human DUX4 gene at different stages during in vitro differentiation of murine embryonic stem (ES) cells. We find that expression of even low levels of DUX4 is incompatible with pluripotency: DUX4-expressing ES cells downregulate pluripotency markers and rapidly differentiate even in the presence of leukemia inhibitory factor (LIF) and bone morphogenetic protein 4 (BMP4). Transcriptional profiling revealed unexpectedly that DUX4 induced a neurectodermal program. Embryoid bodies exposed to a pulse of DUX4 expression displayed severely inhibited mesodermal differentiation, but acquired neurogenic potential. In a serum-containing medium in which neurogenic differentiation is minimal, DUX4 expression served as a neural-inducing factor, enabling the differentiation of Tuj1+ neurites. These data suggest that besides effects in muscle and germ cells, the involvement of DUX4 in neurogenesis should be considered as anti-DUX4 therapies are developed.
Collapse
Affiliation(s)
- Abhijit Dandapat
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
41
|
Liedmann A, Frech S, Morgan PJ, Rolfs A, Frech MJ. Differentiation of human neural progenitor cells in functionalized hydrogel matrices. Biores Open Access 2013; 1:16-24. [PMID: 23515105 PMCID: PMC3560381 DOI: 10.1089/biores.2012.0209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydrogel-based three-dimensional (3D) scaffolds are widely used in the field of regenerative medicine, translational medicine, and tissue engineering. Recently, we reported the effect of scaffold formation on the differentiation and survival of human neural progenitor cells (hNPCs) using PuraMatrix™ (RADA-16) scaffolds. Here, we were interested in the impact of PuraMatrix modified by the addition of short peptide sequences, based on a bone marrow homing factor and laminin. The culture and differentiation of the hNPCs in the modified matrices resulted in an approximately fivefold increase in neuronal cells. The examination of apoptotic and necrotic cells, as well as the level of the anti-apoptotic protein Bcl-2, indicates benefits for cells hosted in the modified formulations. In addition, we found a trend to lower proportions of apoptotic or necrotic neuronal cells in the modified matrices. Interestingly, the neural progenitor cell pool was increased in all the tested matrices in comparison to the standard 2D culture system, while no difference was found between the modified matrices. We conclude that a combination of elevated neuronal differentiation and a protective effect of the modified matrices underlies the increased proportion of neuronal cells.
Collapse
Affiliation(s)
- Andrea Liedmann
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| | | | | | | | | |
Collapse
|
42
|
Hu JG, Wu XJ, Feng YF, Xi GM, Deng LX, Wang ZH, Wang R, Shen L, Zhou JS, Lü HZ. The molecular events involved in oligodendrocyte precursor cell proliferation induced by the conditioned medium from b104 neuroblastoma cells. Neurochem Res 2013; 38:601-9. [PMID: 23283697 DOI: 10.1007/s11064-012-0957-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/28/2012] [Accepted: 12/19/2012] [Indexed: 11/29/2022]
Abstract
The conditioned medium from B104 neuroblastoma cells (B104CM) induces proliferation of oligodendrocyte progenitor cells (OPCs) in vitro. However, the molecular events that occur during B104CM-induced proliferation of OPCs has not been well clarified. In the present study, using OPCs immunopanned from embryonic day 14 Sprague-Dawley rat spinal cords, we explored the activation of several signaling pathways and the expression of several important immediate early genes (IEGs) and cyclins in OPCs in response to B104CM. We found that B104CM can induce OPC proliferation through the activation of the extracellular signal-regulated kinases 1 and 2 (Erk1/2), but not PI3K or p38 MAPK signaling pathways in vitro. The IEGs involved in B104CM-induced OPC proliferation include c-fos, c-jun and Id2, but not c-myc, fyn, or p21. The cyclins D1, D2 and E are also involved in B104CM-stimulated proliferation of OPCs. The activation of Erk results in subsequent expression of IEGs (such as c-fos, c-jun and Id-2) and cyclins (including cyclin D1, D2 and E), which play key roles in cell cycle initiation and OPC proliferation. Collectively, these results suggest that the phosphorylation of Erk1/2 is an important molecular event during OPC proliferation induced by B104CM.
Collapse
Affiliation(s)
- Jian-Guo Hu
- Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Neural lineage development in the rhesus monkey with embryonic stem cells. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThere are three controversial and undetermined models of neurogenesis and gliogenesis from neuroepithelial cells in the early neural tube; the first in which neurons and glia were proposed to originate from a single homogenous population, the second from two separate pools of committed glial and neuronal progenitors, or, lastly, from transit radial glial (RG). Issues concerning embryonic neural lineage development in primates are not well understood due to restrictions imposed by ethics and material sources. In this study, early neural lineage development was investigated in vitro with rhesus monkey embryonic stem cells (rESC) by means of immunofluorescence with lineage specific markers. It was revealed that neural differentiation likely progresses in a sequential lineage restriction pathway from neuroepithelial stem/progenitor cells to neurons and glia via RG and intermediate precursors: neuronal precursors and glial progenitors. In conclusion, our results suggest that the early neural lineage development of rESC in vitro supported the model in which neuroepithelial cells develop into RG capable of generating both neurons and glia. This work should facilitate understanding of the mechanism of development of the nervous system in primates.
Collapse
|
44
|
Fan C, Zheng Y, Cheng X, Qi X, Bu P, Luo X, Kim DH, Cao Q. Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury. Int J Biol Sci 2012; 9:78-93. [PMID: 23289019 PMCID: PMC3535536 DOI: 10.7150/ijbs.5626] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/19/2012] [Indexed: 12/23/2022] Open
Abstract
The transplantation of neural stem/progenitor cells is a promising therapeutic strategy for spinal cord injury (SCI). In this study, we tested whether combination of neurotrophic factors and transplantation of glial-restricted precursor (GRPs)-derived astrocytes (GDAs) could decrease the injury and promote functional recovery after SCI. We developed a protocol to quickly produce a sufficiently large, homogenous population of young astrocytes from GRPs, the earliest arising progenitor cell population restricted to the generation of glia. GDAs expressed the axonal regeneration promoting substrates, laminin and fibronectin, but not the inhibitory chondroitin sulfate proteoglycans (CSPGs). Importantly, GDAs or its conditioned medium promoted the neurite outgrowth of dorsal root ganglion neurons in vitro. GDAs were infected with retroviruses expressing EGFP or multi-neurotrophin D15A and transplanted into the contused adult thoracic spinal cord at 8 days post-injury. Eight weeks after transplantation, the grafted GDAs survived and integrated into the injured spinal cord. Grafted GDAs expressed GFAP, suggesting they remained astrocyte lineage in the injured spinal cord. But it did not express CSPG. Robust axonal regeneration along the grafted GDAs was observed. Furthermore, transplantation of D15A-GDAs significantly increased the spared white matter and decreased the injury size compared to other control groups. More importantly, transplantation of D15A-GDAs significantly improved the locomotion function recovery shown by BBB locomotion scores and Tredscan footprint analyses. However, this combinatorial strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. These results demonstrate that transplantation of D15A-expressing GDAs promotes anatomical and locomotion recovery after SCI, suggesting it may be an effective therapeutic approach for SCI.
Collapse
Affiliation(s)
- Chunling Fan
- Department of Anatomy and Neurobiology, Central South University Xianya Medical School, Changsha, Hunan 410011, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Su H, Zhang W, Yang X, Qin D, Sang Y, Wu C, Wong WM, Yuan Q, So KF, Wu W. Neural Progenitor Cells Generate Motoneuron-Like Cells to Form Functional Connections with Target Muscles after Transplantation into the Musculocutaneous Nerve. Cell Transplant 2012; 21:2651-63. [DOI: 10.3727/096368912x654975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neural progenitor cells (NPCs) are suggested to be a valuable source of cell transplant in treatment of various neurological diseases because of their distinct attributes. They can be expanded and induced to differentiate in vitro. However, it remains uncertain whether in vitro expanded NPCs have the capacity to give rise to functional motoneurons after transplantation in vivo. Here, we showed that in vitro expanded NPCs, when transplanted into the musculocutaneous nerve, generated motoneuron-like cells that exhibited typical morphology with large cell bodies, expressed specific molecules, and extended axons to form functional connections with the target muscle. In contrast, transplanted NPCs failed to yield motoneurons in the injured ventral horn of the spinal cord. The results of the study demonstrate that NPCs have the potential to generate functional motoneurons in an appropriate environment. The distinct differentiating fate of NPCs in the musculocutaneous nerve and the injured ventral horn suggests the importance and necessity of modifying the host microenvironment in use of NPCs for cell replacement therapies for motoneuron diseases.
Collapse
Affiliation(s)
- Huanxing Su
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenming Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiaoying Yang
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dajiang Qin
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yanhua Sang
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chaoyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Wai-Man Wong
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qiuju Yuan
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok-Fai So
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Joint Laboratory for Brain Function and Health (BFAH), Jinan University and The University of Hong Kong, Jinan University, Guangzhou, China
| | - Wutian Wu
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Joint Laboratory for Brain Function and Health (BFAH), Jinan University and The University of Hong Kong, Jinan University, Guangzhou, China
- Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
46
|
Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012; 150:1264-73. [PMID: 22980985 DOI: 10.1016/j.cell.2012.08.020] [Citation(s) in RCA: 671] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/02/2012] [Accepted: 08/20/2012] [Indexed: 12/30/2022]
Abstract
Neural stem cells (NSCs) expressing GFP were embedded into fibrin matrices containing growth factor cocktails and grafted to sites of severe spinal cord injury. Grafted cells differentiated into multiple cellular phenotypes, including neurons, which extended large numbers of axons over remarkable distances. Extending axons formed abundant synapses with host cells. Axonal growth was partially dependent on mammalian target of rapamycin (mTOR), but not Nogo signaling. Grafted neurons supported formation of electrophysiological relays across sites of complete spinal transection, resulting in functional recovery. Two human stem cell lines (566RSC and HUES7) embedded in growth-factor-containing fibrin exhibited similar growth, and 566RSC cells supported functional recovery. Thus, properties intrinsic to early-stage neurons can overcome the inhibitory milieu of the injured adult spinal cord to mount remarkable axonal growth, resulting in formation of new relay circuits that significantly improve function. These therapeutic properties extend across stem cell sources and species.
Collapse
Affiliation(s)
- Paul Lu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Siddiqi F, Chen F, Aron AW, Fiondella CG, Patel K, LoTurco JJ. Fate mapping by piggyBac transposase reveals that neocortical GLAST+ progenitors generate more astrocytes than Nestin+ progenitors in rat neocortex. Cereb Cortex 2012; 24:508-20. [PMID: 23118195 DOI: 10.1093/cercor/bhs332] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Progenitors within the neocortical ventricular zone (VZ) first generate pyramidal neurons and then astrocytes. We applied novel piggyBac transposase lineage tracking methods to fate-map progenitor populations positive for Nestin or glutamate and aspartate transpoter (GLAST) promoter activities in the rat neocortex. GLAST+ and Nestin+ progenitors at embryonic day 13 (E13) produce lineages containing similar rations of neurons and astrocytes. By E15, the GLAST+ progenitor population diverges significantly to produce lineages with 5-10-fold more astrocytes relative to neurons than generated by the Nestin+ population. To determine when birth-dated progeny within GLAST+ and Nestin+ populations diverge, we used a Cre/loxP fate-mapping system in which plasmids are lost after a cell division. By E18, birth-dated progeny of GLAST+ progenitors give rise to 2-3-fold more neocortical astrocytes than do Nestin+ progenitors. Finally, we used a multicolor clonal labeling method to show that the GLAST+ population labeled at E15 generates astrocyte progenitors that produce larger, spatially restricted, clonal clusters than the Nestin+ population. This study provides in vivo evidence that by mid-corticogenesis (E15), VZ progenitor populations have significantly diversified in terms of their potential to generate astrocytes and neurons.
Collapse
Affiliation(s)
- Faez Siddiqi
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
48
|
Klincumhom N, Pirity MK, Berzsenyi S, Ujhelly O, Muenthaisong S, Rungarunlert S, Tharasanit T, Techakumphu M, Dinnyes A. Generation of neuronal progenitor cells and neurons from mouse sleeping beauty transposon-generated induced pluripotent stem cells. Cell Reprogram 2012; 14:390-7. [PMID: 22917491 PMCID: PMC3459052 DOI: 10.1089/cell.2012.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells can be used as models of neuronal differentiation for the investigation of mammalian neurogenesis, pharmacological testing, and development of cell-based therapies. Recently, mouse iPS cell lines have been generated by Sleeping Beauty (SB) transposon-mediated transgenesis (SB-iPS). In this study, we determined for the first time the differentiation potential of mouse SB-iPS cells to form neuronal progenitor cells (NPCs) and neurons. Undifferentiated SB-iPS and ES cells were aggregated into embryoid bodies (EBs) and cultured in neuronal differentiation medium supplemented with 5 μM all-trans retinoic acid. Thereafter, EBs were dissociated and plated to observe further neuronal differentiation. Samples were fixed on days 10 and 14 for immunocytochemistry staining using the NPC markers Pax6 and Nestin and the neuron marker βIII-tubulin/Tuj1. Nestin-labeled cells were analyzed further by flow cytometry. Our results demonstrated that SB-iPS cells can generate NPCs and differentiate further into neurons in culture, although SB-iPS cells produced less nestin-positive cells than ESCs (6.12 ± 1.61 vs. 74.36 ± 1.65, respectively). In conclusion, the efficiency of generating SB-iPS cells-derived NPCs needs to be improved. However, given the considerable potential of SB-iPS cells for drug testing and as therapeutic models in neurological disorders, continuing investigation of their neuronal differentiation ability is required.
Collapse
Affiliation(s)
- Nuttha Klincumhom
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Biotalentum Ltd., 2100 Godollo, Hungary
| | - Melinda K. Pirity
- Biotalentum Ltd., 2100 Godollo, Hungary
- Current address: Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | | | | | | | - Sasitorn Rungarunlert
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakornphatom, 73170, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Andras Dinnyes
- Biotalentum Ltd., 2100 Godollo, Hungary
- Molecular Animal Biotechnology Laboratory, Szent Istvan University, 2100 Godollo, Hungary
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
49
|
Gu YL, Yin LW, Zhang Z, Liu J, Liu SJ, Zhang LF, Wang TH. Neurotrophin expression in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement. Cell Mol Neurobiol 2012; 32:1089-97. [PMID: 22573254 PMCID: PMC11498527 DOI: 10.1007/s10571-012-9832-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
It is well known that neural stem cells (NSC) could promote the repairment after spinal cord injury, but the underlying mechanism remains to be elucidated. This study showed that the transplantation of NSC significantly improved hindlimb locomotor functions in adult rats subjected to transection of the spinal cord. Biotin dextran amine tracing together with the stimulus experiment in motor sensory area showed that little CST regeneration existed and functional synaptic formation in the injury site. Immunocytochemistry and RT-PCR demonstrated the secretion of NGF, BDNF, and NT-3 by NSC in vitro and in vivo, respectively. However, only mRNA expression of BDNF and NT-3 but not NGF in injury segment following NSC transplantation was upregulated remarkably, while caspase-3, a crucial apoptosis gene, was downregulated simultaneously. These provided us a clue that the functional recovery was correlated with the regulation of BDNF, NT-3, and caspase-3 in spinal cord transected rats following NSC transplantation.
Collapse
Affiliation(s)
- Ying-Li Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lu-Wei Yin
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Su-Juan Liu
- Translational Neuroscience Center, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lian-Feng Zhang
- Institute of Laboratory Animal Science, CAMS, Beijing, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
- Translational Neuroscience Center, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
50
|
Hu JG, Wu XJ, Feng YF, Xi GM, Wang ZH, Zhou JS, Lü HZ. PDGF-AA and bFGF mediate B104CM-induced proliferation of oligodendrocyte precursor cells. Int J Mol Med 2012; 30:1113-8. [PMID: 22922759 DOI: 10.3892/ijmm.2012.1110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/06/2012] [Indexed: 01/12/2023] Open
Abstract
The conditioned medium from B104 neuroblastoma cells (B104CM) induces proliferation of οligodendrocyte precursor cells (OPCs) in vitro, which indicates that certain factors contained within B104CM give instructional signals that direct the proliferation of OPCs. However, the OPC-proliferative factors present in B104CM have yet to be identified. Platelet-derived growth factor AA (PDGF-AA), basic fibroblast growth factor (bFGF) and insulin-like growth factor-1 (IGF-1) have been reported to act as potent mitogens for OPC proliferation. This raises the possibility that B104CM induces proliferation of OPCs through secretion of PDGF‑AA, bFGF and/or IGF-1. In the present study, we detected the expression and levels of PDGF-AA, bFGF and IGF-1 in B104 cells and B104CM, and observed the expression of their receptors in OPCs. The results indicated that these growth factors were expressed in B104 cells and B104CM. All 3 receptors, PDGFR, FGFR2 and IGF-1R, were also detected in OPCs. Furthermore, B104CM-stimulated OPC proliferation could be markedly decreased by both AG1295 (an inhibitor of PDGFR) and PD173074 (an inhibitor of FGFR). However, the inhibition of IGF-1R with AG1204 did not affect the proliferation of OPCs. Our study suggests that the PDGF-AA and bFGF in B104CM are 2 key factors that stimulate OPC proliferation.
Collapse
Affiliation(s)
- Jian-Guo Hu
- Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, PR China
| | | | | | | | | | | | | |
Collapse
|