1
|
Singh N, Kansal P, Ahmad Z, Baid N, Kushwaha H, Khatri N, Kumar A. Antimycobacterial effect of IFNG (interferon gamma)-induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis. Autophagy 2018; 14:972-991. [PMID: 29457983 DOI: 10.1080/15548627.2018.1436936] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IFNG (interferon gamma)-induced autophagy plays an important role in the elimination of intracellular pathogens, such as Mycobacterium tuberculosis (Mtb). However, the signaling cascade that leads to the increase in autophagy flux in response to IFNG is poorly defined. Here, we demonstrate that HMOX1 (heme oxygenase 1)-generated carbon monoxide (CO) is required for the induction of autophagy and killing of Mtb residing in macrophages in response to immunomodulation by IFNG. Interestingly, IFNG exposure of macrophages induces an increase in intracellular calcium levels that is dependent on HMOX1 generated CO. Chelation of intracellular calcium inhibits IFNG-mediated autophagy and mycobacterial clearance from macrophages. Moreover, we show that IFNG-mediated increase in intracellular calcium leads to activation of the phosphatase calcineurin (PPP3), which dephosphorylates the TFEB (transcription factor EB) to induce autophagy. PPP3-mediated activation and nuclear translocation of TFEB are critical in IFNG-mediated mycobacterial trafficking and survival inside the infected macrophages. These findings establish that IFNG utilizes the PPP3-TFEB signaling axis for inducing autophagy and regulating mycobacterial growth. We believe this signaling axis could act as a therapeutic target for suppression of growth of intracellular pathogens.
Collapse
Affiliation(s)
- Nisha Singh
- a Council of Scientific and Industrial Research , Institute of Microbial Technology , Chandigarh , India
| | - Pallavi Kansal
- a Council of Scientific and Industrial Research , Institute of Microbial Technology , Chandigarh , India
| | - Zeeshan Ahmad
- a Council of Scientific and Industrial Research , Institute of Microbial Technology , Chandigarh , India
| | - Navin Baid
- a Council of Scientific and Industrial Research , Institute of Microbial Technology , Chandigarh , India
| | - Hariom Kushwaha
- a Council of Scientific and Industrial Research , Institute of Microbial Technology , Chandigarh , India
| | - Neeraj Khatri
- a Council of Scientific and Industrial Research , Institute of Microbial Technology , Chandigarh , India
| | - Ashwani Kumar
- a Council of Scientific and Industrial Research , Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
2
|
Zhang B, Crankshaw W, Nesemeier R, Patel J, Nweze I, Lakshmanan J, Harbrecht BG. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression. J Surg Res 2014; 193:795-801. [PMID: 25150084 DOI: 10.1016/j.jss.2014.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. MATERIALS AND METHODS Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. RESULTS The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. CONCLUSIONS These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines.
Collapse
Affiliation(s)
- Baochun Zhang
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Will Crankshaw
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Ryan Nesemeier
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Jay Patel
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Ikenna Nweze
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Jaganathan Lakshmanan
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Brian G Harbrecht
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
3
|
Halfter U, Derbyshire Z, Vaillancourt R. Interferon-gamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin II and SHP2 in keratinocytes. Biochem J 2009; 388:17-28. [PMID: 15601262 PMCID: PMC1186689 DOI: 10.1042/bj20041236] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IFNgamma (interferon-gamma) binding to its cognate receptor results, through JAK (Janus kinase), in direct activation of receptor-bound STAT1 (signal transducer and activator of transcription 1), although there is evidence for additional activation of a MAPK (mitogen-activated protein kinase) pathway. In the present paper, we report IFNgamma-dependent activation of the MEKK4 (MAPK/extracellular-signal-regulated kinase kinase kinase 4) pathway in HaCaT human keratinocytes. MEKK4 is tyrosine-phosphorylated and the IFNgamma-dependent phosphorylation requires intracellular calcium. Calcium-dependent phosphorylation of MEKK4 is mediated by Pyk2. Moreover, MEKK4 and Pyk2 co-localize in an IFNgamma-dependent manner in the perinuclear region. Furthermore, the calcium-binding protein, annexin II, and the calcium-regulated kinase, Pyk2, co-immunoprecipitate with MEKK4 after treatment with IFNgamma. Immunofluorescence imaging of HaCaT cells shows an IFNgamma-dependent co-localization of annexin II with Pyk2 in the perinuclear region, suggesting that annexin II mediates the calcium-dependent regulation of Pyk2. Tyrosine phosphorylation of MEKK4 correlates with its activity to phosphorylate MKK6 (MAPK kinase 6) in vitro and subsequent p38 MAPK activation in an IFNgamma-dependent manner. Additional studies demonstrate that the SH2 (Src homology 2)-domain-containing tyrosine phosphatase SHP2 co-immunoprecipitates with MEKK4 in an IFNgamma-dependent manner and co-localizes with MEKK4 after IFNgamma stimulation in the perinuclear region in HaCaT cells. Furthermore, we provide evidence that SHP2 dephosphorylates MEKK4 and Pyk2, terminating the MEKK4-dependent branch of the IFNgamma signalling pathway.
Collapse
Affiliation(s)
- Ursula M. Halfter
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
| | - Zachary E. Derbyshire
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
| | - Richard R. Vaillancourt
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
4
|
Intracellular calcium responses to cholinergic stimulation of lymphocytes from healthy donors and patients with rheumatoid arthritis. Rheumatol Int 2008; 29:497-502. [DOI: 10.1007/s00296-008-0723-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
|
5
|
Hastie C, Masters JR, Moss SE, Naaby-Hansen S. Interferon-gamma reduces cell surface expression of annexin 2 and suppresses the invasive capacity of prostate cancer cells. J Biol Chem 2008; 283:12595-603. [PMID: 18211896 PMCID: PMC2335354 DOI: 10.1074/jbc.m800189200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 01/18/2008] [Indexed: 01/02/2023] Open
Abstract
The effect of interferon-gamma (IFNgamma) treatment on cell surface protein expression was studied in the human prostate cancer cell line 1542CP3TX. IFNgamma increased both the number and abundance of proteins in membrane fractions. In contrast, the expression of annexin 2 and its binding partner p11 decreased by 4-fold after 24 h of exposure, with the remaining anx2(t) complexes localized to lipid rafts. Within the same time scale, IFNgamma reduced the abundance of the peripherally attached, anx2(t)-associated proteases procathepsin B and plasminogen. The invasive capacity of the cancer cells was reduced by treatment with IFNgamma or antibody to annexin 2 in 1542CP3TX cells, but not in LNCaP, an annexin 2-negative prostate cancer cell line. Expression of annexin 2 in LNCaP cells increased their invasiveness. IFNgamma induced calpain expression and activation and increased the phosphorylation and degradation of the calpain substrate ABCA1 in 1542CP3TX cancer cells. Surface expression of annexin 2 was reduced in cells treated with glyburide, an ABCA1 inhibitor, whereas inhibition of calpain abrogated IFNgamma-induced annexin 2 down-regulation and suppression of Matrigel invasion. The findings suggest annexin 2 externalization is coupled to lipid efflux in prostate epithelium and that IFNgamma induces down-regulation of the protease-binding anx2(t) scaffold at the cell surface and consequently acts to suppress invasiveness through calpain-mediated degradation of the lipid transporter ABCA1.
Collapse
Affiliation(s)
- Claire Hastie
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, Hampshire PO1 2UP, United Kingdom
| | | | | | | |
Collapse
|
6
|
Kindzelskii AL, Petty HR. Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:1-26. [PMID: 16044273 DOI: 10.1007/s00249-005-0001-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 05/13/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
We have tested Galvanovskis and Sandblom's prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K(v)1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca(2+) channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K(+) and Ca(2+) channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K(+) channel blockers act by reducing the neutrophil's membrane potential. Mibefradil and SKF93635, which block T-type Ca(2+) channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca(2+) signaling. Electric fields enhanced Ca(2+) spike amplitude and triggered formation of a second traveling Ca(2+) wave. Mibefradil blocked Ca(2+) spikes and waves. Although 10 microM SKF96365 mimicked mibefradil, 7 microM SKF96365 specifically inhibited electric field-induced Ca(2+) signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-beta-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.
Collapse
Affiliation(s)
- Andrei L Kindzelskii
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
7
|
Ellis TN, Beaman BL. Interferon-gamma activation of polymorphonuclear neutrophil function. Immunology 2004; 112:2-12. [PMID: 15096178 PMCID: PMC1782470 DOI: 10.1111/j.1365-2567.2004.01849.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 02/16/2004] [Indexed: 11/29/2022] Open
Abstract
As current research illuminates the dynamic interplay between the innate and acquired immune responses, the interaction and communication between these two arms has yet to be fully investigated. Polymorphonuclear neutrophils (PMNs) and interferon-gamma (IFN-gamma) are known critical components of innate and acquired immunity, respectively. However, recent studies have demonstrated that these two components are not entirely isolated. Treatment of PMNs with IFN-gamma elicits a variety of responses depending on stimuli and environmental conditions. These responses include increased oxidative burst, differential gene expression, and induction of antigen presentation. Many of these functions have been overlooked in PMNs, which have long been classified as terminal phagocytic cells incapable of protein synthesis. As this review reports, the old definition of the PMN is in need of an update, as these cells have demonstrated their ability to mediate the transition between the innate and acquired immune responses.
Collapse
Affiliation(s)
- Terri N Ellis
- Department of Medical Microbiology and Immunology, University of California School of Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
8
|
Aas V, Algerøy S, Sand KL, Iversen JG. Fibronectin promotes calcium signaling by interferon-gamma in human neutrophils via G-protein and sphingosine kinase-dependent mechanisms. CELL COMMUNICATION & ADHESION 2004; 8:125-38. [PMID: 11936187 DOI: 10.3109/15419060109080712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A common intracellular signal activating polymorphonuclear leukocytes (PMN) in inflammation is a change in cytosolic calcium concentration. Previously, we have shown that interferon-gamma (IFN-gamma) induces transient calcium signals in PMN, but only after intracellular calcium store depletion. Using a digital imaging system, we show that adhesion of PMN is critical for IFN-gamma-induced calcium signals, and with PMN attached to the optimal coating, the calcium signals are evoked even in presence of extracellular calcium, that is, non-depleted calcium stores. Adhesion to fibronectin, pure or extracted from plasma by gelatin, improved the IFN-gamma responses compared with serum, plasma, or vitronectin coats. In accordance with previous observations, IFN-gamma-induced calcium signals in fibronectin adherent cells were totally abolished by the G-protein inhibitor pertussis toxin and were also inhibited by the sphingosine kinase inhibitors dimethylsphingosine (DMS) and N-acetylsphingosine (N-Ac-Sp). PMN contact with fibronectin alone, measured in cells sedimenting onto a fibronectin-coated surface or by addition of fibronectin to glass-adherent cells, evoked transient calcium signals. However, PMN in suspension did not respond to the addition of fibronectin or arginine-glycine-aspartate (RGD). The fibronectin-induced calcium signals were also clearly depressed by pertussis toxin and by the sphingosine kinase inhibitors DMS, dihydrosphingosine (DHS), and N-Ac-Sp. When the product of sphingosine kinase activity, sphingosine 1-phosphate (S1-P), was added to the cells, similar calcium signals were induced, which were dependent on a pertussis toxin-sensitive G-protein activity. Finally, addition of S1-P to the cells prior to stimulation with IFN-gamma partly mimicked the priming effect of fibronectin. In conclusion, fibronectin contact evokes by itself a calcium signal in PMN and further promotes calcium signaling by IFN-gamma. We suggest that fibronectin might activate sphingosine kinase, and that the sphingosine 1-phosphate thereby generated induces a calcium signal via a G-protein-dependent mechanism. Apparently, sphingosine kinase activity is also involved in IFN-gamma induced calcium signals.
Collapse
Affiliation(s)
- V Aas
- Department of Pharmacology, School of Pharmacy, University of Oslo, Norway.
| | | | | | | |
Collapse
|
9
|
Alfonso A, De la Rosa LA, Vieytes MR, Botana LM. Dimethylsphingosine increases cytosolic calcium and intracellular pH in human T lymphocytes. Biochem Pharmacol 2003; 65:465-78. [PMID: 12527340 DOI: 10.1016/s0006-2952(02)01519-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N,N-Dimethyl-D-erythro-sphingosine (DMS) is the N-methyl derivative of sphingosine; both are activators of sphingosine-dependent protein kinases. The aim of this work was to study the effect of DMS on cytosolic calcium and intracellular pH (pHi) in human T lymphocytes. The variations of calcium and pH were determined by fluorescence digital imaging using Fura-2-AM and BCECF-AM, respectively. DMS increased both pHi and Ca(2+)-cytoslic in human T lymphocytes. These effects were dose-dependent. This drug induced a fast increase in pHi and a release of calcium from different intracellular calcium pools than thapsigargin. DMS also induced a Ca(2+)-influx different from the store-operated calcium channels, since drug effect was not modified by 30 microM SKF 96365. The influx of calcium induced by DMS was completely blocked by preincubation in the presence of nickel, or lanthanum, while the increase in pHi was no affected. However, the presence of cadmium reduced but does not block Ca(2+)-influx. The inhibition of G-protein by 100 ng/mL pertussis toxin, and the inhibition of tyrosine kinases by genistein significantly reduced the cytosolic calcium increase induced by DMS by an inhibition of both, release of calcium from intracellular pools and influx from extracellular medium. The inhibition of pools emptiness by these drugs was related with the inhibition that they induce in the DMS cytosolic alcalinization. In summary, DMS increases pHi and as consequence releases calcium from intracellular pools, and it increases calcium-influx through a channel different from store-operated channel (SOC). Both cytosolic calcium and pHi increase are modulated by G-proteins and tyrosine kinases.
Collapse
Affiliation(s)
- A Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | | | | | | |
Collapse
|
10
|
Olsen LF, Kummer U, Kindzelskii AL, Petty HR. A model of the oscillatory metabolism of activated neutrophils. Biophys J 2003; 84:69-81. [PMID: 12524266 PMCID: PMC1302594 DOI: 10.1016/s0006-3495(03)74833-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2002] [Accepted: 09/04/2002] [Indexed: 11/18/2022] Open
Abstract
We present a two-compartment model to explain the oscillatory behavior observed experimentally in activated neutrophils. Our model is based mainly on the peroxidase-oxidase reaction catalyzed by myeloperoxidase with melatonin as a cofactor and NADPH oxidase, a major protein in the phagosome membrane of the leukocyte. The model predicts that after activation of a neutrophil, an increase in the activity of the hexose monophosphate shunt and the delivery of myeloperoxidase into the phagosome results in oscillations in oxygen and NAD(P)H concentration. The period of oscillation changes from >200 s to 10-30 s. The model is consistent with previously reported oscillations in cell metabolism and oxidant production. Key features and predictions of the model were confirmed experimentally. The requirement of the hexose monophosphate pathway for 10 s oscillations was verified using 6-aminonicotinamide and dexamethasone, which are inhibitors of glucose-6-phosphate dehydrogenase. The role of the NADPH oxidase in promoting oscillations was confirmed by dose-response studies of the effect of diphenylene iodonium, an inhibitor of the NADPH oxidase. Moreover, the model predicted an increase in the amplitude of NADPH oscillations in the presence of melatonin, which was confirmed experimentally. Successful computer modeling of complex chemical dynamics within cells and their chemical perturbation will enhance our ability to identify new antiinflammatory compounds.
Collapse
Affiliation(s)
- Lars F Olsen
- European Media Laboratory, Schloss-Wolfsbrunnenweg 33, D-69118 Heidelberg, Germany.
| | | | | | | |
Collapse
|
11
|
Channon JY, Miselis KA, Minns LA, Dutta C, Kasper LH. Toxoplasma gondii induces granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor secretion by human fibroblasts: implications for neutrophil apoptosis. Infect Immun 2002; 70:6048-57. [PMID: 12379681 PMCID: PMC130285 DOI: 10.1128/iai.70.11.6048-6057.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human neutrophils are rescued from apoptosis following incubation with once-washed, fibroblast-derived Toxoplasma gondii tachyzoites. Both infected and uninfected neutrophils are rescued, implicating a soluble mediator. In this study we investigated the origin and identity of this soluble mediator. Neutrophils were incubated either with purified tachyzoites or with conditioned medium derived from T. gondii-infected human fibroblasts. Conditioned medium was found to be a potent stimulus that delayed neutrophil apoptosis up to 72 h, whereas purified and extensively washed tachyzoites had no effect. Delayed apoptosis correlated with up-regulation of the neutrophil antiapoptotic protein, Mcl-1, and the neutrophil interleukin 3 receptor alpha subunit (IL-3Ralpha), suggesting a role for granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF and granulocyte colony-stimulating factor (G-CSF) were measurable in conditioned medium by enzyme-linked immunosorbent assay. Neutralizing antibodies to GM-CSF and G-CSF were additive in abrogating delayed neutrophil apoptosis induced by conditioned medium. Inhibitors of Src family tyrosine kinases, G(i) proteins, phosphatidylinositol 3-kinase, p44(erk1) and p42(erk2) mitogen-activated protein kinases, and Jak2 kinases partially attenuated the effect of conditioned medium, consistent with a role for G-CSF and/or GM-CSF. Hence, delayed neutrophil apoptosis is mediated by GM-CSF and G-CSF secreted by T. gondii-infected human fibroblasts. This enhanced neutrophil survival may contribute to the robust proinflammatory response elicited in the T. gondii-infected host.
Collapse
Affiliation(s)
- Jacqueline Y Channon
- Department of Microbiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | |
Collapse
|
12
|
Nair JS, DaFonseca CJ, Tjernberg A, Sun W, Darnell JE, Chait BT, Zhang JJ. Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-gamma. Proc Natl Acad Sci U S A 2002; 99:5971-6. [PMID: 11972023 PMCID: PMC122886 DOI: 10.1073/pnas.052159099] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In response to IFN-gamma, the latent cytoplasmic protein signal transducers and activators of transcription 1 (Stat1) becomes phosphorylated on Y701, dimerizes, and accumulates in the nucleus to activate transcription of IFN-gamma-responsive genes. For maximal gene activation, S727 in the transcription activation domain of Stat1 also is inducibly phosphorylated by IFN-gamma. We previously purified a group of nuclear proteins that interact specifically with the Stat1 transcription activation domain. In this report, we identified one of them as the multifunctional Ca(2+)/calmodulin-dependent kinase (CaMK) II. We demonstrate that IFN-gamma mobilizes a Ca(2+) flux in cells and activates CaMKII. CaMKII can interact directly with Stat1 and phosphorylate Stat1 on S727 in vitro. Inhibition of Ca(2+) flux or CaMKII results in a lack of S727 phosphorylation and Stat1-dependent gene activation, suggesting in vivo phosphorylation of Stat1 S727 by CaMKII. Thus two different cellular signaling events, IFN-gamma receptor occupation and Ca(2+) flux, are required for Stat1 to achieve maximal transcriptional activation through regulation of phosphorylation.
Collapse
Affiliation(s)
- Jayasree S Nair
- Department of Pathology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Borjesson DL, Simon SI, Hodzic E, Ballantyne CM, Barthold SW. Kinetics of CD11b/CD18 up-regulation during infection with the agent of human granulocytic ehrlichiosis in mice. J Transl Med 2002; 82:303-11. [PMID: 11896209 DOI: 10.1038/labinvest.3780424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The agent of human granulocytic ehrlichiosis (aoHGE) is a tick-borne, obligate intracellular, granulocytotropic bacterium able to infect numerous host species. Given its unique niche and the leukopenia often noted with infection, we investigated the effect of acute aoHGE infection on neutrophil activation by evaluating surface expression of the beta 2 integrin CD11b/CD18 in a mouse model using FACS analysis. Infection resulted in neutrophil activation with up-regulation of CD11b/CD18 in multiple strains of mice, however, hematologic analysis showed no apparent role for CD11b/CD18 in mediating peripheral leukopenia. Because IFN-gamma is an important cytokine during granulocytic ehrlichiosis and is known to activate leukocytes, we investigated the potential role of IFN-gamma in CD11b/CD18 up-regulation. Neutrophils from IFN-gamma knock-out mice became activated during aoHGE infection, however, the kinetics of activation differed from wild-type mice. In addition, activation correlated directly with the presence of bacteria because neutrophils with large intracytoplasmic morula also expressed higher levels of CD11b/CD18. CD11b/CD18 seemed to be critical to early bacterial clearance and killing in vivo because infection of mice with targeted genetic disruption of CD11b/CD18 resulted in an initial increase in bacterial burden compared with wild-type mice. Similarly, in vitro culture of neutrophils from infected CD11b/CD18 knock-out mice resulted in a marked increase in bacterial proliferation compared with congenic controls. The data support crucial roles of CD11b/CD18 and IFN-gamma-mediated cell activation as mechanisms that limit bacterial replication.
Collapse
Affiliation(s)
- Dori L Borjesson
- Center for Comparative Medicine, School of Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
14
|
Chang YJ, Holtzman MJ, Chen CC. Interferon-gamma-induced epithelial ICAM-1 expression and monocyte adhesion. Involvement of protein kinase C-dependent c-Src tyrosine kinase activation pathway. J Biol Chem 2002; 277:7118-26. [PMID: 11751911 DOI: 10.1074/jbc.m109924200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon-gamma (IFN-gamma) induced intercellular adhesion molecule-1 (ICAM-1) expression in human NCI-H292 epithelial cells, as shown by enzyme-linked immunosorbent assay and immunofluorescence staining. The enhanced ICAM-1 expression resulted in increased adhesion of U937 cells to NCI-H292 cells. Tyrosine kinase inhibitors (genistein or herbimycin), Src family inhibitor (PP2), or a phosphatidylinositol-phospholipase C inhibitor (U73122) attenuated the IFN-gamma-induced ICAM-1 expression. Protein kinase C (PKC) inhibitors (staurosporine or Ro 31-8220) also inhibited IFN-gamma-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression; this effect was inhibited by tyrosine kinase or Src inhibitor. ICAM-1 promoter activity was enhanced by IFN-gamma and TPA in cells transfected with pIC339-Luc, containing the downstream NF-kappaB and gamma-activated site (GAS) sites, but not in cells transfected with GAS-deletion mutant, pIC135 (DeltaAP2). Electrophoretic gel mobility shift assay demonstrated that GAS-binding complexes in IFN-gamma-stimulated cells contained STAT1alpha. The IFN-gamma-induced ICAM-1 promoter activity was inhibited by tyrosine kinase inhibitors, a phosphatidylinositol-phospholipase C inhibitor, or PKC inhibitors, and the TPA-induced ICAM-1 promoter activity was also inhibited by tyrosine kinase inhibitors. Cotransfection with a PLC-gamma2 mutant inhibited IFN-gamma- but not TPA-induced ICAM-1 promoter activity. However, cotransfection with dominant negative mutants of PKCalpha or c-Src inhibited both IFN-gamma- and TPA-induced ICAM-1 promoter activity. The ICAM-1 promoter activity was stimulated by cotransfection with wild type PLC-gamma2, PKCalpha, c-Src, JAK1, or STAT1. An immunocomplex kinase assay showed that both IFN-gamma and TPA activated c-Src and Lyn activities and that these effects were inhibited by staurosporine and herbimycin. Thus, in NCI-H292 epithelial cells, IFN-gamma activates PLC-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and c-Src or Lyn, resulting in activation of STAT1alpha, and GAS in the ICAM-1 promoter, followed by initiation of ICAM-1 expression and monocyte adhesion.
Collapse
Affiliation(s)
- Ya-Jen Chang
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road, 1st Section, Taipei 10018, Taiwan
| | | | | |
Collapse
|
15
|
SUNIL VASANTHIR, CONNOR AGNIESZKAJ, LAVNIKOVA NATASHA, GARDNER CAROLR, LASKIN JEFFREYD, LASKIN DEBRAL. Acute endotoxemia prolongs the survival of rat lung neutrophils in response to 12-O-tetradecanoyl-phorbol 13-acetate. J Cell Physiol 2002; 190:382-9. [PMID: 11857454 PMCID: PMC4023474 DOI: 10.1002/jcp.10074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute endotoxemia is associated with prolonged survival of adherent neutrophils in the lung vasculature. In the present studies, the effects of inflammatory mediators on signaling pathways regulating neutrophil survival were examined. We found that the protein kinase C activator, 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not interferon-gamma (IFN-gamma), prolonged the survival of adherent vasculature lung neutrophils from endotoxemic rats, a response that was correlated with reduced apoptosis. Although endotoxin administration to rats induced the expression of the anti-apoptotic protein Mcl-1 in lung neutrophils, TPA had no effect on this response. Endotoxin administration also induced expression of total p38 and p44/42 mitogen activated protein kinases (MAPK) in neutrophils, as well as phosphatidyl inositol 3 kinase (PI3K) and its downstream target protein kinase B (PKB). Treatment of the cells with TPA increased p38 MAPK expression in cells from both control and endotoxin treated animals. Cells from endotoxin treated, but not control animals, were found to exhibit constitutive binding activity of nuclear factor kappa B (NF-kappaB) which was blocked by TPA. In contrast, constitutive CCAAT/enhancer binding protein (C/EBP) nuclear binding activity evident in neutrophils from control animals was reduced following endotoxin administration. Moreover, this response was independent of TPA. These data suggest that NF-kappaB plays a role in TPA-induced signaling leading to prolonged survival of adherent vascular neutrophils in the lung during acute endotoxemia.
Collapse
Affiliation(s)
- VASANTHI R. SUNIL
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - AGNIESZKA J. CONNOR
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - NATASHA LAVNIKOVA
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - CAROL R. GARDNER
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - JEFFREY D. LASKIN
- Department of Environmental and Community Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - DEBRA L. LASKIN
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Correspondence to: Debra L. Laskin, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854.
| |
Collapse
|
16
|
Chen LW, Jan CR. Effect of the antianginal drug bepridil on intracellular Ca2+ release and extracellular Ca2+ influx in human neutrophils. Int Immunopharmacol 2001; 1:945-53. [PMID: 11379049 DOI: 10.1016/s1567-5769(01)00031-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To understand more fully the effects of bepridil, an antiarrhythmic and antianginal drug, on myocardial ischemia-reperfusion injury and systemic immune responses, its effect on intracellular Ca2+ levels ([Ca2+]i) in human neutrophils was investigated by using fura-2 as a fluorescent probe. Bepridil (10-200 microM) increased [Ca2+]i in a concentration-dependent fashion. This signal was partly inhibited by removal of extracellular Ca2+. In a Ca(2+)-free medium, pretreatment with bepridil (100 microM) abolished the Ca2+ release induced by thapsigargin (1 microM), an endoplasmic reticulum Ca2+ pump inhibitor, and by carbonylcyanide m-chlorophenylhydrazone (2 microM), a mitochondrial uncoupler. Pretreatment with carbonylcyanide m-chlorophenylhydrazone and thapsigargin, respectively, partly inhibited bepridil-induced Ca2+ release. Addition of Ca2+ (3 mM) increased [Ca2+]i after pretreatment with bepridil (100 microM) in a Ca(2+)-free medium. Bepridil (100 microM)-induced Ca2+ release was not altered when phospholipase C was inhibited by U73122 (2 microM). Both Ca2+ release and Ca2+ entry induced by bepridil (100 microM) were augmented by activating protein kinase C with phorbol 12-myristate 13-acetate (10 nM), and were suppressed by inhibiting protein kinase C with GF 109203X (2 microM). Treatment with bepridil (10-20 microM) for 30 min increased the production of reactive oxygen intermediates (ROI) by more than 50%. Collectively, it was found that bepridil increased [Ca2+]i concentration-dependently in human neutrophils by releasing Ca2+ from the endoplasmic reticulum, mitochondria and, possibly, other compartments in a phospholipase C-independent manner. Bepridil also activated Ca2+ influx. The activity of protein kinase C may regulate bepridil-induced Ca2+ release and Ca2+ entry.
Collapse
Affiliation(s)
- L W Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | |
Collapse
|
17
|
Vikman KS, Owe-Larsson B, Brask J, Kristensson KS, Hill RH. Interferon-gamma-induced changes in synaptic activity and AMPA receptor clustering in hippocampal cultures. Brain Res 2001; 896:18-29. [PMID: 11277968 DOI: 10.1016/s0006-8993(00)03238-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extended release of interferon-gamma (IFN-gamma) in the nervous system during immunological and infectious conditions may trigger demyelinating disorders and cause disturbances in brain function. The aim of this study was to examine the effects of IFN-gamma on neuronal function in rat hippocampal cell cultures by using whole cell patch clamp analysis together with quantitative immunocytochemistry. Acute application of IFN-gamma to differentiated neurons in culture caused no immediate neurophysiological responses, but recordings after 48 h of incubation displayed an increase in frequency of AMPA receptor (AMPAR)-mediated spontaneous excitatory postsynaptic currents (EPSCs). Quantitative immunocytochemistry for the AMPAR subunit GluR1 showed no alteration in receptor clustering at this time point. However, prolonged treatment with IFN-gamma for 2 weeks resulted in a significant reduction in AMPAR clustering on dendrites but no marked differences in EPSC frequency between treated neurons and controls could be observed. On the other hand, treatment of hippocampal neurons for 4 weeks, instituted at an immature stage (1 day in culture), caused a significant reduction in spontaneous EPSC frequency. These neurons developed with no overt alterations in dendritic arborization or in the appearance of dendritic spines as visualized by alpha-actinin immunocytochemistry. Nonetheless, there was a marked reduction in AMPAR clustering on dendrites. These observations show that a key immunomodulatory molecule, IFN-gamma, can cause long-term modifications of synaptic activity and perturb glutamate receptor clustering.
Collapse
Affiliation(s)
- K S Vikman
- Department of Neuroscience, Nobels Väg 12A, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|