1
|
Das T, Kumar P, Kumar S, Mal S, Kumar S, Rajana VK, Singh S, Dasgupta A, Mandal D, Das S. Design, Synthesis, and Biological Studies of C-5-Substituted Diazenyl Derivatives of Uracil as Potent and Selective Antileishmanial Agents Targeting Uridine Biosynthesis Pathway Enzymes. ACS Infect Dis 2024. [PMID: 39485929 DOI: 10.1021/acsinfecdis.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we describe the design and synthesis of a series of C-5-substituted diazenyl derivatives of uracil, exhibiting selective and potent antileishmanial but not antibacterial or antifungal activity. The formation of the substituted derivatives was confirmed by using FTIR, 1H, 13C NMR, and HRMS analysis. Among all of the sets of tested compounds, only three [4a, 6b, and 8b] showed the highest activity against Leishmania donovani (LD) promastigote and amastigote models of LD infections. Further, the cytotoxicity assays performed using three different cell lines, Vero cells, J774 cells, and THP1 cells, along with erythrocyte hemolysis assay showed the highest biocompatibility for the 4a, making it a lead compound for further biological assays. The LD cell death associated with 4a was not linked with ergosterol depletion, a common mechanism of action of antileishmanial drugs like amphotericin B (AmB). However, the LD cell death in the presence of 4a was reversed significantly through supplementation of uridine monophosphate (UMP), indicating the specific role of uridine biosynthesis pathway as the target of 4a. Furthermore, the in silico studies predicted orotidine monophosphate decarboxylase enzyme (OMPDCase) from LD as the plausible target for 4a. The proteomics analysis showed stronger downregulation of the aforementioned OMPDCase and also for a few other enzymes that are involved in the UMP biosynthesis pathway. This indicates that OMPDCase and other enzymes that regulate the UMP biosynthesis may be the target of 4a. Overall, the C-5-substituted diazenyl derivatives of uracil are presented here as novel and potent antileishmanial agents that can be used for treating visceral leishmaniasis (VL) wherein at present drug resistance and side effects of existing drugs demand a look for safer alternatives.
Collapse
Affiliation(s)
- Tushar Das
- Applied Chemistry Laboratory, Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath 800005, Bihar, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India
| | - Sachin Kumar
- Applied Chemistry Laboratory, Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath 800005, Bihar, India
| | - Susital Mal
- Applied Chemistry Laboratory, Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath 800005, Bihar, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector-10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Arunava Dasgupta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector-10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India
| | - Subrata Das
- Applied Chemistry Laboratory, Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath 800005, Bihar, India
| |
Collapse
|
2
|
Moreira FA, Escobar JFB, Giordani C, Caseli L. Exploring the physicochemical properties of the integration of Tristearoyl uridine in Langmuir monolayers: An approach to cell membrane modeling for prodrugs. Biophys Chem 2024; 310:107256. [PMID: 38728807 DOI: 10.1016/j.bpc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Understanding the mechanisms by which drugs interact with cell membranes is crucial for unraveling the underlying biochemical and biophysical processes that occur on the surface of these membranes. Our research focused on studying the interaction between an ester-type derivative of tristearoyl uridine and model cell membranes composed of lipid monolayers at the air-water interface. For that, we selected a specific lipid to simulate nontumorigenic cell membranes, namely 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine. We noted significant changes in the surface pressure-area isotherms, with a noticeable shift towards larger areas, which was lower than expected for ideal mixtures, indicating monolayer condensation. Furthermore, the viscoelastic properties of the interfacial film demonstrated an increase in both the elastic and viscous parameters for the mixed film. We also observed structural alterations using vibrational spectroscopy, which revealed an increase in the all-trans to gauche conformers ratio. This confirmed the stiffening effect of the prodrug on the lipid monolayer. In summary, this study indicates that this lipophilic prodrug significantly impacts the lipid monolayer's thermodynamic, rheological, electrical, and molecular characteristics. This information is crucial for understanding how the drug interacts with specific sites on the cellular membrane. It also has implications for drug delivery, as the drug's passage into the cytosol may involve traversing the lipid bilayer.
Collapse
Affiliation(s)
- Felipe Almeida Moreira
- Department of Chemistry, Federal University of Sao Paulo, Rua São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - Jhon Fernando Berrío Escobar
- Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellìn 050010, Colombia
| | - Cristiano Giordani
- Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellìn 050010, Colombia; Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Luciano Caseli
- Department of Chemistry, Federal University of Sao Paulo, Rua São Nicolau, 210, Diadema, SP 09913-030, Brazil.
| |
Collapse
|
3
|
Ward MH, Nwosu ZC, Lyssiotis CA. Uridine: as sweet as sugar for some cells? Cell Res 2023; 33:898-899. [PMID: 37567975 PMCID: PMC10709445 DOI: 10.1038/s41422-023-00860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Affiliation(s)
- Matthew H Ward
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Zeribe C Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Lu S, Xu J, Zhao Z, Guo Y, Zhang H, Jurutka PW, Huang D, Cao C, Cheng S. Dietary Lactobacillus rhamnosus GG extracellular vesicles enhance antiprogrammed cell death 1 (anti-PD-1) immunotherapy efficacy against colorectal cancer. Food Funct 2023; 14:10314-10328. [PMID: 37916395 DOI: 10.1039/d3fo02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Shun Lu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Jing Xu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Zihao Zhao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yuheng Guo
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hanwen Zhang
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, AZ 85306, USA
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Shujie Cheng
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
5
|
Luganini A, Sibille G, Pavan M, Mello Grand M, Sainas S, Boschi D, Lolli ML, Chiorino G, Gribaudo G. Mechanisms of antiviral activity of the new hDHODH inhibitor MEDS433 against respiratory syncytial virus replication. Antiviral Res 2023; 219:105734. [PMID: 37852322 DOI: 10.1016/j.antiviral.2023.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Human respiratory syncytial virus (RSV) is an important cause of acute lower respiratory infections, for which no effective drugs are currently available. The development of new effective anti-RSV agents is therefore an urgent priority, and Host-Targeting Antivirals (HTAs) can be considered to target RSV infections. As a contribution to this antiviral avenue, we have characterized the molecular mechanisms of the anti-RSV activity of MEDS433, a new inhibitor of human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of de novo pyrimidine biosynthesis. MEDS433 was found to exert a potent antiviral activity against RSV-A and RSV-B in the one-digit nanomolar range. Analysis of the RSV replication cycle in MEDS433-treated cells, revealed that the hDHODH inhibitor suppressed the synthesis of viral genome, consistently with its ability to specifically target hDHODH enzymatic activity. Then, the capability of MEDS433 to induce the expression of antiviral proteins encoded by Interferon-Stimulated Genes (ISGs) was identified as a second mechanism of its antiviral activity against RSV. Indeed, MEDS433 stimulated secretion of IFN-β and IFN-λ1 that, in turn, induced the expression of some ISG antiviral proteins, such as IFI6, IFITM1 and IRF7. Singly expression of these ISG proteins reduced RSV-A replication, thus likely contributing to the overall anti-RSV activity of MEDS433. Lastly, MEDS433 proved to be effective against RSV-A replication even in a primary human small airway epithelial cell model. Taken as a whole, these observations provide new insights for further development of MEDS433, as a promising candidate to develop new strategies for treatment of RSV infections.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Marta Pavan
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | | | - Stefano Sainas
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Donatella Boschi
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Marco L Lolli
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | | | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy.
| |
Collapse
|
6
|
Skinner OS, Blanco-Fernández J, Goodman RP, Kawakami A, Shen H, Kemény LV, Joesch-Cohen L, Rees MG, Roth JA, Fisher DE, Mootha VK, Jourdain AA. Salvage of ribose from uridine or RNA supports glycolysis in nutrient-limited conditions. Nat Metab 2023; 5:765-776. [PMID: 37198474 PMCID: PMC10229423 DOI: 10.1038/s42255-023-00774-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/03/2023] [Indexed: 05/19/2023]
Abstract
Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency1, our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Owen S Skinner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Russell P Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hongying Shen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
- Yale Systems Biology Institute, Yale West Campus, West Haven, CT, USA
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Alexis A Jourdain
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
7
|
Etienne-Grimaldi MC, Pallet N, Boige V, Ciccolini J, Chouchana L, Barin-Le Guellec C, Zaanan A, Narjoz C, Taieb J, Thomas F, Loriot MA. Current diagnostic and clinical issues of screening for dihydropyrimidine dehydrogenase deficiency. Eur J Cancer 2023; 181:3-17. [PMID: 36621118 DOI: 10.1016/j.ejca.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.
Collapse
Affiliation(s)
| | - Nicolas Pallet
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Valérie Boige
- Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Joseph Ciccolini
- SMARTc, CRCM INSERM U1068, Université Aix-Marseille, Marseille, France; Laboratory of Pharmacokinetics and Toxicology, Hôpital Universitaire La Timone, F-13385 Marseille, France; COMPO, CRCM INSERM U1068-Inria, Université Aix-Marseille, Marseille, France
| | - Laurent Chouchana
- Regional Center of Pharmacovigilance, Department of Pharmacology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France; French Pharmacovigilance Network, France
| | - Chantal Barin-Le Guellec
- Laboratory of Biochemistry and Molecular Biology, Centre Hospitalo-uinversitaire de Tours, Tours, France; INSERM U1248, IPPRITT, University of Limoges, Limoges, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céline Narjoz
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Julien Taieb
- SIRIC CARPEM, Université de Paris; Fédération Francophone de Cancérologie Digestive (FFCD), Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabienne Thomas
- Laboratory of Pharmacology, Institut Claudius Regaud, IUCT-Oncopole and CRCT, INSERM UMR1037, Université Paul Sabatier, Toulouse, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | | |
Collapse
|
8
|
Sibille G, Luganini A, Sainas S, Boschi D, Lolli ML, Gribaudo G. The Novel hDHODH Inhibitor MEDS433 Prevents Influenza Virus Replication by Blocking Pyrimidine Biosynthesis. Viruses 2022; 14:v14102281. [PMID: 36298835 PMCID: PMC9611833 DOI: 10.3390/v14102281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections. As a contribution to this antiviral strategy, in this study, we characterized the anti-IV activity of MEDS433, a novel small molecule inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 exhibited a potent antiviral activity against IAV and IBV replication, which was reversed by the addition of exogenous uridine and cytidine or the hDHODH product orotate, thus indicating that MEDS433 targets notably hDHODH activity in IV-infected cells. When MEDS433 was used in combination either with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, or with an anti-IV DAA, such as N4-hydroxycytidine (NHC), synergistic anti-IV activities were observed. As a whole, these results indicate MEDS433 as a potential HTA candidate to develop novel anti-IV intervention approaches, either as a single agent or in combination regimens with DAAs.
Collapse
Affiliation(s)
- Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- Correspondence: ; Tel.: +39-011-6704648
| |
Collapse
|
9
|
Mashayekh S, Stunkard LM, Kienle M, Mathews II, Khosla C. Structure-Based Prototyping of Allosteric Inhibitors of Human Uridine/Cytidine Kinase 2 (UCK2). Biochemistry 2022; 61:2261-2266. [PMID: 36190114 DOI: 10.1021/acs.biochem.2c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyrimidine nucleotide biosynthesis in humans is a promising chemotherapeutic target for infectious diseases caused by RNA viruses. Because mammalian cells derive pyrimidine ribonucleotides through a combination of de novo biosynthesis and salvage, combined inhibition of dihydroorotate dehydrogenase (DHODH; the first committed step in de novo pyrimidine nucleotide biosynthesis) and uridine/cytidine kinase 2 (UCK2; the first step in salvage of exogenous nucleosides) strongly attenuates viral replication in infected cells. However, while several pharmacologically promising inhibitors of human DHODH are known, to date there are no reports of medicinally viable leads against UCK2. Here, we use structure-based drug prototyping to identify two classes of promising leads that noncompetitively inhibit UCK2 activity. In the process, we have identified a hitherto unknown allosteric site at the intersubunit interface of this homotetrameric enzyme. By reducing the kcat of human UCK2 without altering its KM, these new inhibitors have the potential to enable systematic dialing of the fractional inhibition of pyrimidine salvage to achieve the desired antiviral effect with minimal host toxicity.
Collapse
Affiliation(s)
- Siavash Mashayekh
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lee M Stunkard
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Maryline Kienle
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Gu J, Wu Q, Zhang Q, You Q, Wang L. A decade of approved first-in-class small molecule orphan drugs: Achievements, challenges and perspectives. Eur J Med Chem 2022; 243:114742. [PMID: 36155354 DOI: 10.1016/j.ejmech.2022.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
In the past decade (2011-2020), there was a growing interest in the discovery and development of orphan drugs for the treatment of rare diseases. However, rare diseases only account for a population of 0.65‰-1‰ which usually occur with previously unknown biological mechanisms and lack of specific therapeutics, thus to increase the demands for the first-in-class (FIC) drugs with new biological targets or mechanisms. Considering the achievements in the past 10 years, a total of 410 drugs were approved by U.S. Food and Drug Administration (FDA), which contained 151 FIC drugs and 184 orphan drugs, contributing to make up significant numbers of the approvals. Notably, more than 50% of FIC drugs are developed as orphan drugs and some of them have already been milestones in drug development. In this review, we aim to discuss the FIC small molecules for the development of orphan drugs case by case and highlight the R&D strategy with novel targets and scientific breakthroughs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyu Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Kim C, Wang X, Kültz D. Prediction and Experimental Validation of a New Salinity-Responsive Cis-Regulatory Element (CRE) in a Tilapia Cell Line. Life (Basel) 2022; 12:787. [PMID: 35743818 PMCID: PMC9225295 DOI: 10.3390/life12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptional regulation is a major mechanism by which organisms integrate gene x environment interactions. It can be achieved by coordinated interplay between cis-regulatory elements (CREs) and transcription factors (TFs). Euryhaline tilapia (Oreochromis mossambicus) tolerate a wide range of salinity and thus are an appropriate model to examine transcriptional regulatory mechanisms during salinity stress in fish. Quantitative proteomics in combination with the transcription inhibitor actinomycin D revealed 19 proteins that are transcriptionally upregulated by hyperosmolality in tilapia brain (OmB) cells. We searched the extended proximal promoter up to intron1 of each corresponding gene for common motifs using motif discovery tools. The top-ranked motif identified (STREME1) represents a binding site for the Forkhead box TF L1 (FoxL1). STREME1 function during hyperosmolality was experimentally validated by choosing two of the 19 genes, chloride intracellular channel 2 (clic2) and uridine phosphorylase 1 (upp1), that are enriched in STREME1 in their extended promoters. Transcriptional induction of these genes during hyperosmolality requires STREME1, as evidenced by motif mutagenesis. We conclude that STREME1 represents a new functional CRE that contributes to gene x environment interactions during salinity stress in tilapia. Moreover, our results indicate that FoxL1 family TFs are contribute to hyperosmotic induction of genes in euryhaline fish.
Collapse
Affiliation(s)
- Chanhee Kim
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Dietmar Kültz
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| |
Collapse
|
12
|
Xu F, Pang Y, Nie Q, Zhang Z, Ye C, Jiang C, Wang Y, Liu H. Development and evaluation of a simultaneous strategy for pyrimidine metabolome quantification in multiple biological samples. Food Chem 2021; 373:131405. [PMID: 34742045 DOI: 10.1016/j.foodchem.2021.131405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 01/29/2023]
Abstract
Pyrimidines are critical nutrients and key biomolecules in nucleic acid biosynthesis and carbohydrate and lipid metabolism. Here, we proposed the concept of the pyrimidine metabolome, which covers 14 analytes in pyrimidine de novo and salvage synthetic pathways, and established a novel analytical strategy with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to efficiently illustrate pyrimidine transient distribution and dynamic balance. The lower limits of quantification (LLOQs) of all analytes were less than 10 ng/mL. Acceptable inter- and intra-day relative deviation (<15%) was detected, and good stability was obtained under different storage conditions. Metabolomics analysis revealed pyrimidine metabolic diversity in the plasma and brain among species, and a visualization strategy exhibited that pyrimidine biosynthetic metabolism is quite active in brain. Distinct metabolic features were also observed in cells with pyrimidine metabolomic disorders during proliferation and apoptosis. Absolute concentrations of pyrimidine metabolites in different bio-samples offered reference data for future pyrimidine studies.
Collapse
Affiliation(s)
- Feng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuanyuan Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhipeng Zhang
- General Surgery Department, Third Hospital, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Wang
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Krylova IB, Selina EN, Bulion VV, Rodionova OM, Evdokimova NR, Belosludtseva NV, Shigaeva MI, Mironova GD. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Sci Rep 2021; 11:16999. [PMID: 34417540 PMCID: PMC8379228 DOI: 10.1038/s41598-021-96562-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The effect of uridine on the myocardial ischemic and reperfusion injury was investigated. A possible mechanism of its cardioprotective action was established. Two rat models were used: (1) acute myocardial ischemia induced by occlusion of the left coronary artery for 60 min; and (2) myocardial ischemia/reperfusion with 30-min ischemia and 120-min reperfusion. In both models, treatment with uridine (30 mg/kg) prevented a decrease in cell energy supply and in the activity of the antioxidant system, as well as an increase in the level of lipid hydroperoxides and diene conjugates. This led to a reduction of the necrosis zone in the myocardium and disturbances in the heart rhythm. The blocker of the mitochondrial ATP-dependent potassium (mitoKATP) channel 5-hydroxydecanoate limited the positive effects of uridine. The data indicate that the cardioprotective action of uridine may be related to the activation of the mitoKATP channel. Intravenously injected uridine was more rapidly eliminated from the blood in hypoxia than in normoxia, and the level of the mitoKATP channel activator UDP in the myocardium after uridine administration increased. The results suggest that the use of uridine can be a potentially effective approach to the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Irina B Krylova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376.
| | - Elena N Selina
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Valentina V Bulion
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Olga M Rodionova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Natalia R Evdokimova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Natalia V Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Maria I Shigaeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Galina D Mironova
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
14
|
Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C. The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms 2021; 9:microorganisms9081731. [PMID: 34442810 PMCID: PMC8398173 DOI: 10.3390/microorganisms9081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 inhibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Elizabeth Elder
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Ali Mirazimi
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden
- National Veterinary Institute, 75189 Uppsala, Sweden
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
- Correspondence: ; Tel.: +39-011-6704648
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| |
Collapse
|
15
|
Effective deploying of a novel DHODH inhibitor against herpes simplex type 1 and type 2 replication. Antiviral Res 2021; 189:105057. [PMID: 33716051 DOI: 10.1016/j.antiviral.2021.105057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Emergence of drug resistance and adverse effects often affect the efficacy of nucleoside analogues in the therapy of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Host-targeting antivirals could therefore be considered as an alternative or complementary strategy in the management of HSV infections. To contribute to this advancement, here we report on the ability of a new generation inhibitor of a key cellular enzyme of de novo pyrimidine biosynthesis, the dihydroorotate dehydrogenase (DHODH), to inhibit HSV-1 and HSV-2 in vitro replication, with a potency comparable to that of the reference drug acyclovir. Analysis of the HSV replication cycle in MEDS433-treated cells revealed that it prevented the accumulation of viral genomes and reduced late gene expression, thus suggesting an impairment at a stage prior to viral DNA replication consistent with the ability of MEDS433 to inhibit DHODH activity. In fact, the anti-HSV activity of MEDS433 was abrogated by the addition of exogenous uridine or of the product of DHODH, the orotate, thus confirming DHODH as the MEDS433 specific target in HSV-infected cells. A combination of MEDS433 with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, was then observed to be effective in inhibiting HSV replication even in the presence of exogenous uridine, thus mimicking in vivo conditions. Finally, when combined with acyclovir and DPY in checkerboard experiments, MEDS433 exhibited highly synergistic antiviral activity. Taken together, these findings suggest that MEDS433 is a promising candidate as either single agent or in combination regimens with existing direct-acting anti-HSV drugs to develop new strategies for treatment of HSV infections.
Collapse
|
16
|
Gaidano V, Houshmand M, Vitale N, Carrà G, Morotti A, Tenace V, Rapelli S, Sainas S, Pippione AC, Giorgis M, Boschi D, Lolli ML, Cilloni D, Cignetti A, Saglio G, Circosta P. The Synergism between DHODH Inhibitors and Dipyridamole Leads to Metabolic Lethality in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:1003. [PMID: 33670894 PMCID: PMC7957697 DOI: 10.3390/cancers13051003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the de novo pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML. Learning from previous failures, we mimicked human conditions (performing experiments in the presence of physiological uridine plasma levels) and looked for synergic combinations to boost apoptosis, including classical antileukemic drugs and dipyridamole, a blocker of the pyrimidine salvage pathway. MEDS433 induced apoptosis in multiple AML cell lines, not only as a consequence of differentiation, but also directly. Its combination with antileukemic agents further increased the apoptotic rate, but when experiments were performed in the presence of physiological uridine concentrations, results were less impressive. Conversely, the combination of MEDS433 with dipyridamole induced metabolic lethality and differentiation in all AML cell lines; this extraordinary synergism was confirmed on AML primary cells with different genetic backgrounds and was unaffected by physiological uridine concentrations, predicting in human activity.
Collapse
Affiliation(s)
- Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Division of Hematology, A.O. SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Mohammad Houshmand
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| | - Nicoletta Vitale
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
| | - Valerio Tenace
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Stefania Rapelli
- Department of Life Sciences and System Biology, University of Turin, 10124 Turin, Italy;
| | - Stefano Sainas
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Agnese Chiara Pippione
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Marta Giorgis
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Marco Lucio Lolli
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Alessandro Cignetti
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Paola Circosta
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
17
|
Gonçalves da Silva EF, Costa BP, Nassr MT, de Souza Basso B, Bastos MS, Antunes GL, Reghelin CK, Rosa Garcia MC, Schneider Levorse VG, Carlessi LP, Antunes Fernandes KH, Richter Schmitz CR, Haute GV, Luft C, Santarém E, Barbé-Tuana FM, Donadio MVF, Basso LA, Machado P, Rodrigues de Oliveira J. Therapeutic effect of uridine phosphorylase 1 (UPP1) inhibitor on liver fibrosis in vitro and in vivo. Eur J Pharmacol 2020; 890:173670. [PMID: 33098831 DOI: 10.1016/j.ejphar.2020.173670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65) is a potent inhibitor of the uridine phosphorylase 1 (UPP1) enzyme. Its non-ionized analog has already demonstrated biological properties by reducing adverse effects caused by the chemotherapeutic 5-fluorouracil (5-FU). In addition, it has been demonstrated that uridine inhibits inflammation and fibrosis in bleomycin lung injury, decreasing collagen production. The purpose of this study was to investigate the in vitro and in vivo effects of CPBMF65 on activated hepatic stellate cells (HSC) and on carbon tetrachloride-induced liver fibrosis in mice. After incubation with CPBMF65, decreased cell proliferation and phenotype reversion were observed in vitro. In addition, CPBMF65 promoted a protective effect on tetrachloride-induced liver fibrosis in mice, demonstrated by its antifibrotic and anti-inflammatory actions. The results of the present study indicate that the UPP1 inhibitor (CPBMF65) may have potential as a novel therapeutic agent for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Elisa Feller Gonçalves da Silva
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.
| | - Bruna Pasqualotto Costa
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Marcella Tornquist Nassr
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Bruno de Souza Basso
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Matheus Scherer Bastos
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Géssica Luana Antunes
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Camille Kirinus Reghelin
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Maria Claudia Rosa Garcia
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Vitor Giancarlo Schneider Levorse
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Leonardo Pfeiff Carlessi
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Krist Helen Antunes Fernandes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Carine Raquel Richter Schmitz
- Programa de Pós-Graduação Em Biologia Celular: Bioquímica, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Gabriela Viegas Haute
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Carolina Luft
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Eliane Santarém
- Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Florencia María Barbé-Tuana
- Laboratório de Imunobiologia, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), TecnoPuc, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Pablo Machado
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), TecnoPuc, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa Em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| |
Collapse
|
18
|
Huang YT, Yeh PC, Lan SC, Liu PF. Metabolites modulate the functional state of human uridine phosphorylase I. Protein Sci 2020; 29:2189-2200. [PMID: 32864839 DOI: 10.1002/pro.3939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022]
Abstract
Metabolic pathways in cancer cells typically become reprogrammed to support unconstrained proliferation. These abnormal metabolic states are often accompanied by accumulation of high concentrations of ATP in the cytosol, a phenomenon known as the Warburg Effect. However, how high concentrations of ATP relate to the functional state of proteins is poorly understood. Here, we comprehensively studied the influence of ATP levels on the functional state of the human enzyme, uridine phosphorylase I (hUP1), which is responsible for activating the chemotherapeutic pro-drug, 5-fluorouracil. We found that elevated levels of ATP decrease the stability of hUP1, leading to the loss of its proper folding and function. We further showed that the concentration of hUP1 exerts a critical influence on this ATP-induced destabilizing effect. In addition, we found that ATP interacts with hUP1 through a partially unfolded state and accelerates the rate of hUP1 unfolding. Interestingly, some structurally similar metabolites showed similar destabilization effects on hUP1. Our findings suggest that metabolites can alter the folding and function of a human protein, hUP1, through protein destabilization. This phenomenon may be relevant in studying the functions of proteins that exist in the specific metabolic environment of a cancer cell.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Pei-Chin Yeh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Shih-Chun Lan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| |
Collapse
|
19
|
Ismail NS, Subbiah SK, Taib NM. Application of Phenotype Microarray for Profiling Carbon Sources Utilization between Biofilm and Non-Biofilm of Pseudomonas aeruginosa from Clinical Isolates. Curr Pharm Biotechnol 2020; 21:1539-1550. [PMID: 32598252 DOI: 10.2174/1389201021666200629145217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism. METHODS The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog). RESULTS AND DISCUSSION In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid. CONCLUSION The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.
Collapse
Affiliation(s)
- Nur S Ismail
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suresh K Subbiah
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Niazlin M Taib
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
CPBMF65, a synthetic human uridine phosphorylase-1 inhibitor, reduces HepG2 cell proliferation through cell cycle arrest and senescence. Invest New Drugs 2020; 38:1653-1663. [DOI: 10.1007/s10637-020-00941-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/17/2020] [Indexed: 01/04/2023]
|
21
|
Zhang Y, Guo S, Xie C, Fang J. Uridine Metabolism and Its Role in Glucose, Lipid, and Amino Acid Homeostasis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7091718. [PMID: 32382566 PMCID: PMC7180397 DOI: 10.1155/2020/7091718] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Pyrimidine nucleoside uridine plays a critical role in maintaining cellular function and energy metabolism. In addition to its role in nucleoside synthesis, uridine and its derivatives contribute to reduction of cytotoxicity and suppression of drug-induced hepatic steatosis. Uridine is mostly present in blood and cerebrospinal fluid, where it contributes to the maintenance of basic cellular functions affected by UPase enzyme activity, feeding habits, and ATP depletion. Uridine metabolism depends on three stages: de novo synthesis, salvage synthesis pathway and catabolism, and homeostasis, which is tightly relating to glucose homeostasis and lipid and amino acid metabolism. This review is devoted to uridine metabolism and its role in glucose, lipid, and amino acid homeostasis.
Collapse
Affiliation(s)
- Yumei Zhang
- College of Bioscience and Biotechnology, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Songge Guo
- College of Bioscience and Biotechnology, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Chunyan Xie
- College of Bioscience and Biotechnology, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
22
|
Mortensen LA, Svane AM, Burton M, Bistrup C, Thiesson HC, Marcussen N, Beck HC. Proteomic Analysis of Renal Biomarkers of Kidney Allograft Fibrosis-A Study in Renal Transplant Patients. Int J Mol Sci 2020; 21:ijms21072371. [PMID: 32235494 PMCID: PMC7177439 DOI: 10.3390/ijms21072371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Renal transplantation is the preferred treatment of end stage renal disease, but allograft survival is limited by the development of interstitial fibrosis and tubular atrophy in response to various stimuli. Much effort has been put into identifying new protein markers of fibrosis to support the diagnosis. In the present work, we performed an in-depth quantitative proteomics analysis of allograft biopsies from 31 prevalent renal transplant patients and correlated the quantified proteins with the volume fraction of fibrosis as determined by a morphometric method. Linear regression analysis identified four proteins that were highly associated with the degree of interstitial fibrosis, namely Coagulation Factor XIII A chain (estimate 18.7, adjusted p < 0.03), Uridine Phosphorylase 1 (estimate 19.4, adjusted p < 0.001), Actin-related protein 2/3 subunit 2 (estimate 34.2, adjusted p < 0.05) and Cytochrome C Oxidase Assembly Factor 6 homolog (estimate -44.9, adjusted p < 0.002), even after multiple testing. Proteins that were negatively associated with fibrosis (p < 0.005) were primarily related to normal metabolic processes and respiration, whereas proteins that were positively associated with fibrosis (p < 0.005) were involved in catabolic processes, cytoskeleton organization and the immune response. The identified proteins may be candidates for further validation with regards to renal fibrosis. The results support the notion that cytoskeleton organization and immune responses are prevalent processes in renal allograft fibrosis.
Collapse
Affiliation(s)
- Line Aas Mortensen
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Anne Marie Svane
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, DK-5000 Odense, Denmark;
| | - Mark Burton
- Department of Clinical Genetics, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Helle Charlotte Thiesson
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, DK-5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
23
|
Xie CY, Wang Q, Li G, Fan Z, Wang H, Wu X. Dietary supplement with nucleotides in the form of uridine monophosphate or uridine stimulate intestinal development and promote nucleotide transport in weaned piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6108-6113. [PMID: 31177538 DOI: 10.1002/jsfa.9850] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nucleotides are key constituents of milk, where they are utilized in cell replication, although there are limited studies for weaned piglets. This study evaluated the effects of uridine monophosphate (UMP) with uridine (UR) feed supplementation on the intestinal development and nucleotide transport in weaned piglets. RESULTS Supplementation with UMP significantly increased (P < 0.05) plasma glucose, and UR supplementation significantly reduced (0.05 < P < 0.10) the plasma total cholesterol (TC) of piglets when compared with that of the control group, although non-significant difference (P > 0.05) in growth performance was observed among three groups. Piglets fed supplementary UR exhibited greater (P < 0.05) crypt depth in the duodenum and ileum when compared with those in the supplementary UMP and control groups. Real-time quantitative polymerase chain reaction (RT-qPCR) results revealed that UR supplementation increased (P < 0.05) the relative mRNA levels of genes encoding the transmembrane proteins ZO-1 and occludin in the duodenum mucosa, and ZO-1 in the jejunum mucosa (P < 0.05). Similarly, UR supplementation increased (P < 0.05) expression of solute carriers SLC28A1 and SLC29A1 in the duodenum mucosa. Conversely, claudin-1 expression in the duodenum mucosa was inhibited (P < 0.05) by dietary supplementation with UMP or UR. CONCLUSION Collectively, our data indicated that dietary supplementation with UMP or UR was conducive to stimulating intestinal development and promoting nucleotide transport in weaned piglets. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chun-Yan Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Qinhua Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guanya Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhiyong Fan
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hong Wang
- Meiya Hai'an Pharmaceutical Co., Ltd, Hai'an, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| |
Collapse
|
24
|
Gomes AC, Mohsen MO, Mueller JE, Leoratti FMS, Cabral-Miranda G, Bachmann MF. Early Transcriptional Signature in Dendritic Cells and the Induction of Protective T Cell Responses Upon Immunization With VLPs Containing TLR Ligands-A Role for CCL2. Front Immunol 2019; 10:1679. [PMID: 31428084 PMCID: PMC6687836 DOI: 10.3389/fimmu.2019.01679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Inducing T cell responses by therapeutic vaccination requires appropriate activation of antigen presenting cells (APCs). The use of virus-like particles (VLPs) containing Toll-like receptor (TLR) ligands has demonstrated remarkable potential in activating APCs and modulating the immune response both for prophylactic vaccines as well as immunotherapy. Here, we employed VLPs associated to TLR ligands as tools to modulate cytotoxic response mediated by CD8+ T cells and provide further insight in the development of T cell-based immunotherapy. We have investigated the in vivo transcriptional signature in dendritic cells (DCs) from mice immunized with VLPs containing distinct classes of nucleic acid and correlated the expression patterns with the efficiency of induced T cell responses. We identified key pathways activated in DCs that are involved in the appropriated induction of T cell responses and show evidence for the modulatory effect of CCL2 in CD8+ T cells responses. These insights shed light on immune networks that are pivotal for the induction of potent cytotoxic T cell responses and identify key genes for appropriate DC activation and subsequent modulation of the adaptive immune response.
Collapse
Affiliation(s)
- Ariane C. Gomes
- The Jenner Institute, Oxford University, Oxford, United Kingdom
| | - Mona O. Mohsen
- The Jenner Institute, Oxford University, Oxford, United Kingdom
| | | | | | | | - Martin F. Bachmann
- The Jenner Institute, Oxford University, Oxford, United Kingdom
- Immunology, Inselspital, Bern, Switzerland
| |
Collapse
|
25
|
Prabu S, Rajamohan R, Sivakumar K, Mohamad S. Spectral Studies on the Supramolecular Assembly of Uridine with β-Cyclodextrin and Its In Vitro Cytotoxicity. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1636831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Samikannu Prabu
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Rajaram Rajamohan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | | | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Tanabe T, Fukuzawa H, Amatatsu Y, Matsui K, Ohtsuka H, Maeda Y, Sato H. Identification of an antilymphocyte transformation substance from Pasteurella multocida. Microbiol Immunol 2019; 63:261-268. [PMID: 31209918 PMCID: PMC7168365 DOI: 10.1111/1348-0421.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Pasteurella multocida is one of the most important bacteria responsible for diseases of animals. Crude extracts from sonicated P. multocida strain Dainai-1, which is serotype A isolated from bovine pneumonia, were found to inhibit proliferation of mouse spleen cells stimulated with Con A. The crude extract was purified by cation and anion exchange chromatography and hydroxyapatite chromatography. Its molecular weight was 27 kDa by SDS-PAGE and it was named PM27. PM27 was found to inhibit proliferation of mouse spleen cells stimulated with Con A as effectively as did the crude extract; however, its activity was lost after heating to 100°C for 20 min. PM27 did not directly inhibit proliferation of HT-2 cells, which are an IL-2-dependent T cell line, nor did it modify IL-2 production by Con A-stimulated mouse spleen cells. The N-terminal amino acid sequence of PM27 was determined and BLAST analysis revealed its identity to uridine phosphorylase (UPase) from P. multocida. UPase gene from P. multocida Dainai-1 was cloned into expression vector pQE-60 in Escherichia coli XL-1 Blue. Recombinant UPase (rUPase) tagged with His at the C-terminal amino acid was purified with Ni affinity chromatography. rUPase was found to inhibit proliferation of mouse spleen cells stimulated with Con A; however, as was true for PM27, its activity was lost after heating to 100°C for 20 min. Thus, PM27/UPase purified from P. multocida has significant antiproliferative activity against Con A-stimulated mouse spleen cells and may be a virulence factor.
Collapse
Affiliation(s)
- Taishi Tanabe
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hiroki Fukuzawa
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yuki Amatatsu
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Keigo Matsui
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hiromichi Ohtsuka
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yousuke Maeda
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hisaaki Sato
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
27
|
Gou XJ, Gao S, Chen L, Feng Q, Hu YY. A Metabolomic Study on the Intervention of Traditional Chinese Medicine Qushi Huayu Decoction on Rat Model of Fatty Liver Induced by High-Fat Diet. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5920485. [PMID: 30881991 PMCID: PMC6383432 DOI: 10.1155/2019/5920485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/23/2022]
Abstract
Qushi Huayu Decoction (QHD), an important clinically proved herbal formula, has been reported to be effective in treating fatty liver induced by high-fat diet in rats. However, the mechanism of action has not been clarified at the metabolic level. In this study, a urinary metabolomic method based on gas chromatography-mass spectrometry (GC-MS) coupled with pattern recognition analysis was performed in three groups (control, model, and QHD group), to explore the effect of QHD on fatty liver and its mechanism of action. There was obvious separation between the model group and control group, and the QHD group showed a tendency of recovering to the control group in metabolic profiles. Twelve candidate biomarkers were identified and used to explore the possible mechanism. Then, a pathway analysis was performed using MetaboAnalyst 3.0 to illustrate the pathways of therapeutic action of QHD. QHD reversed the urinary metabolite abnormalities (tryptophan, uridine, and phenylalanine, etc.). Fatty liver might be prevented by QHD through regulating the dysfunctions of phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, and tryptophan metabolism. This work demonstrated that metabolomics might be helpful for understanding the mechanism of action of traditional Chinese medicine for future clinical evaluation.
Collapse
Affiliation(s)
- Xiao-jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Shanshan Gao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Yangxian, Shaanxi 712046, China
| | - Liang Chen
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu 226001, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-yang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
28
|
Hamasaki MY, Severino P, Puga RD, Koike MK, Hernandes C, Barbeiro HV, Barbeiro DF, Machado MCC, Reis EM, Pinheiro da Silva F. Short-Term Effects of Sepsis and the Impact of Aging on the Transcriptional Profile of Different Brain Regions. Inflammation 2019; 42:1023-1031. [DOI: 10.1007/s10753-019-00964-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Diverse metabolic reactions activated during 58-hr fasting are revealed by non-targeted metabolomic analysis of human blood. Sci Rep 2019; 9:854. [PMID: 30696848 PMCID: PMC6351603 DOI: 10.1038/s41598-018-36674-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/21/2018] [Indexed: 12/30/2022] Open
Abstract
During human fasting, metabolic markers, including butyrates, carnitines, and branched-chain amino acids, are upregulated for energy substitution through gluconeogenesis and use of stored lipids. We performed non-targeted, accurate semiquantitative metabolomic analysis of human whole blood, plasma, and red blood cells during 34–58 hr fasting of four volunteers. During this period, 44 of ~130 metabolites increased 1.5~60-fold. Consistently fourteen were previously reported. However, we identified another 30 elevated metabolites, implicating hitherto unrecognized metabolic mechanisms induced by fasting. Metabolites in pentose phosphate pathway are abundant, probably due to demand for antioxidants, NADPH, gluconeogenesis and anabolic metabolism. Global increases of TCA cycle-related compounds reflect enhanced mitochondrial activity in tissues during fasting. Enhanced purine/pyrimidine metabolites support RNA/protein synthesis and transcriptional reprogramming, which is promoted also by some fasting-related metabolites, possibly via epigenetic modulations. Thus diverse, pronounced metabolite increases result from greatly activated catabolism and anabolism stimulated by fasting. Anti-oxidation may be a principal response to fasting.
Collapse
|
30
|
Denihan NM, Kirwan JA, Walsh BH, Dunn WB, Broadhurst DI, Boylan GB, Murray DM. Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic-ischaemic encephalopathy. J Cereb Blood Flow Metab 2019; 39:147-162. [PMID: 28840775 PMCID: PMC6311668 DOI: 10.1177/0271678x17726502] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elucidating metabolic effects of hypoxic-ischaemic encephalopathy (HIE) may reveal early biomarkers of injury and new treatment targets. This study uses untargeted metabolomics to examine early metabolic alterations in a carefully defined neonatal population. Infants with perinatal asphyxia who were resuscitated at birth and recovered (PA group), those who developed HIE (HIE group) and healthy controls were all recruited at birth. Metabolomic analysis of cord blood was performed using direct infusion FT-ICR mass spectrometry. For each reproducibly detected metabolic feature, mean fold differences were calculated HIE vs. controls (ΔHIE) and PA vs. controls (ΔPA). Putative metabolite annotations were assigned and pathway analysis was performed. Twenty-nine putatively annotated metabolic features were significantly different in ΔPA after false discovery correction ( q < 0.05), with eight of these also significantly altered in ΔHIE. Altered putative metabolites included; melatonin, leucine, kynurenine and 3-hydroxydodecanoic acid which differentiated between infant groups (ΔPA and ΔHIE); and D-erythrose-phosphate, acetone, 3-oxotetradecanoic acid and methylglutarylcarnitine which differentiated across severity grades of HIE. Pathway analysis revealed ΔHIE was associated with a 50% and 75% perturbation of tryptophan and pyrimidine metabolism, respectively. We have identified perturbed metabolic pathways and potential biomarkers specific to PA and HIE, which measured at birth, may help direct treatment.
Collapse
Affiliation(s)
- Niamh M Denihan
- 1 Neonatal Brain Research Group, University College Cork, Cork, Ireland.,2 Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | | | - Brian H Walsh
- 4 Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA.,5 Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Warwick B Dunn
- 3 School of Biosciences, University of Birmingham, Birmingham, UK.,6 Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - David I Broadhurst
- 7 School of Science, Edith Cowan University, Joondalup, Perth, Australia
| | - Geraldine B Boylan
- 1 Neonatal Brain Research Group, University College Cork, Cork, Ireland.,2 Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- 1 Neonatal Brain Research Group, University College Cork, Cork, Ireland.,2 Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Henricks LM, Jacobs BAW, Meulendijks D, Pluim D, van den Broek D, de Vries N, Rosing H, Beijnen JH, Huitema ADR, Guchelaar H, Cats A, Schellens JHM. Food-effect study on uracil and dihydrouracil plasma levels as marker for dihydropyrimidine dehydrogenase activity in human volunteers. Br J Clin Pharmacol 2018; 84:2761-2769. [PMID: 30047584 PMCID: PMC6256055 DOI: 10.1111/bcp.13719] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 12/31/2022] Open
Abstract
AIMS This study aimed to determine the effect of food intake on uracil and dihydrouracil plasma levels. These levels are a promising marker for dihydropyrimidine dehydrogenase activity and for individualizing fluoropyrimidine anticancer therapy. METHODS A randomized, cross-over study in 16 healthy volunteers was performed, in which subjects were examined in fasted and fed state on two separate days. In fed condition, a high-fat, high-caloric breakfast was consumed between 8:00 h and 8:30 h. Whole blood for determination of uracil, dihydrouracil and uridine plasma levels was drawn on both test days at predefined time points between 8:00 h and 13:00 h. RESULTS Uracil levels were statistically significantly different between fasting and fed state. At 13:00 h, the mean uracil level in fasting state was 12.6 ± 3.7 ng ml-1 and after a test meal 9.4 ± 2.6 ng ml-1 (P < 0.001). Dihydrouracil levels were influenced by food intake as well (mean dihydrouracil level at 13:00 h in fasting state 147.0 ± 36.4 ng ml-1 and in fed state 85.7 ± 22.1 ng ml-1 , P < 0.001). Uridine plasma levels showed curves with similar patterns as for uracil. CONCLUSIONS It was shown that both uracil and dihydrouracil levels were higher in fasting state than in fed state. This is hypothesized to be an direct effect of uridine plasma levels, which were previously shown to be elevated in fasting state and reduced after intake of food. These findings show that, when assessing plasma uracil and dihydrouracil levels for adaptive fluoropyrimidine dosing in clinical practice, sampling should be done between 8:00 h and 9:00 h after overnight fasting to avoid bias caused by circadian rhythm and food effects.
Collapse
Affiliation(s)
- Linda M. Henricks
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Bart A. W. Jacobs
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Didier Meulendijks
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Dutch Medicines Evaluation Board (CBG‐MEB)UtrechtThe Netherlands
| | - Dick Pluim
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daan van den Broek
- Department of Clinical ChemistryThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Niels de Vries
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hilde Rosing
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jan H. M. Schellens
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
32
|
Löffler M, Carrey EA, Zameitat E. New perspectives on the roles of pyrimidines in the central nervous system. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:290-306. [PMID: 29693489 DOI: 10.1080/15257770.2018.1453076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since 1956, when exogenous uridine and cytidine were found to be necessary for the maintenance of perfused rat brain function, the co-existence of de novo synthesis, salvage pathways and removal of pyrimidine bases in the CNS has been a controversial subject. Here, we review studies on metabolites and enzymes of pyrimidine metabolism through more than 60 years. In view of known and newly-described inherited pyrimidine and purine disorders - some with complex clinical profiles of neurological impairments - we underline the necessity to investigate how the different pathways work together in the developing brain and then sustain plasticity, regeneration and neuro-transmission in the adult CNS. Experimentally, early incorporation studies in animal brain slices and homogenates with radio-labelled nucleosides or precursors demonstrated salvage activity or de novo synthesis. Later, the nucleoside transporters and organic anionic transporters underlying uptake of metabolites and anti-pyrimidine drugs in the CNS were identified. Recently, the expression of de novo enzymes in glial cells and neurons was verified using (immuno) histochemical and in-situ-hybridization techniques. Adult brain was shown to take up or produce all pyrimidine (deoxy) ribonucleosides or, after uptake and phosphorolysis of nucleosides, to make use of ribose for different purposes, including energy. More recently, non-canonical pyrimidine bases (5mC, 5hmC) have been found most notably in brain, pointing to considerable postreplicative DNA metabolism, with the need for pyrimidine-specific enzymes. Even more perspectives are emerging, with advances in genome analysis and in the manipulation of expression from the gene.
Collapse
Affiliation(s)
- M Löffler
- a Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University Marburg , Marburg , Germany
| | - E A Carrey
- b Institute of Child Health, University College London , GB
| | - E Zameitat
- a Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University Marburg , Marburg , Germany
| |
Collapse
|
33
|
Talaat HM, Ibrahim IT, Bayomy NA, Farouk N. Synthesis of 99mTc-Radiolabeled Uridine as a Potential Tumor Imaging Agent. RADIOCHEMISTRY 2018. [DOI: 10.1134/s1066362218010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest. Sci Rep 2017; 7:16575. [PMID: 29185486 PMCID: PMC5707403 DOI: 10.1038/s41598-017-16857-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/19/2017] [Indexed: 12/29/2022] Open
Abstract
Cardiac arrest (CA) is not a uniform condition and its pathophysiology strongly depends on its cause. In this work we have used a metabolomics approach to study the dynamic metabolic changes occurring in the plasma samples of a swine model following two different causes of CA, namely asphyxia (ACA) and ventricular fibrillation (VFCA). Plasma samples were collected at baseline and every minute during the experimental phases. In order to identify the metabolomics profiles characterizing the two pathological entities, all samples were analysed by 1H NMR spectroscopy and LC-MS/MS spectrometry.The metabolomics fingerprints of ACA and VFCA significantly differed during the peri-arrest period and the resuscitation phase. Major alterations were observed in plasma concentrations of metabolites related to tricarboxylic acid (TCA) cycle, urea cycle, and anaplerotic replenishing of TCA. ACA animals showed significant metabolic disturbances during the asphyxial and CA phases, while for VFCA animals this phenomenon resulted shifted at the resuscitation phase. Interestingly, starting from the asphyxial phase, the ACA animals were stratified in two groups based on their metabolomics profiles that resulted to be correlated with the clinical outcome. Succinate overproduction was observed in the animals with the worse outcome, suggesting a potential prognostic role for this metabolite.
Collapse
|
35
|
Rautio J, Kärkkäinen J, Sloan KB. Prodrugs – Recent approvals and a glimpse of the pipeline. Eur J Pharm Sci 2017; 109:146-161. [DOI: 10.1016/j.ejps.2017.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
|
36
|
Jeengar MK, Thummuri D, Magnusson M, Naidu VGM, Uppugunduri S. Uridine Ameliorates Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice. Sci Rep 2017; 7:3924. [PMID: 28634361 PMCID: PMC5478663 DOI: 10.1038/s41598-017-04041-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Uridine, one of the four components that comprise RNA, has attracted attention as a novel therapeutic modulator of inflammation. However, very little is known about its effect on intestinal inflammation. The aim of the present study was to investigate the potential protective effect of intracolonic administered uridine against DSS induced colitis in male C57BL/6 mice. Intracolonic instillation of 3 doses of uridine 1 mg/Kg (lower dose), 5 mg/Kg (medium dose), and 10 mg/Kg (higher dose) in saline was performed daily. Uridine at medium and high dose significantly reduced the severity of colitis (DAI score) and alleviated the macroscopic and microscopic signs of the disease. The levels of proinflammatory cytokines IL-6, IL-1β and TNF in serum as well as mRNA expression in colon were significantly reduced in the uridine treated groups. Moreover, colon tissue myloperoxidase activities, protein expression of IL-6, TNF- α, COX-2, P-NFkB and P-Ikk-βα in the colon tissues were significantly reduced in medium and high dose groups. These findings demonstrated that local administration of uridine alleviated experimental colitis in male C57BL/6 mice accompanied by the inhibition of neutrophil infiltration and NF-κB signaling. Thus, Uridine may be a promising candidate for future use in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Manish Kumar Jeengar
- Autoimmunity & Immune Regulation (AIR), Department of Clinical & Experimental Medicine, Linköping University, Linköping, Sweden.
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute, Balanagar, Hyderabad, 500037, India.
| | - Dinesh Thummuri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute, Balanagar, Hyderabad, 500037, India
| | - Mattias Magnusson
- Autoimmunity & Immune Regulation (AIR), Department of Clinical & Experimental Medicine, Linköping University, Linköping, Sweden
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute, Balanagar, Hyderabad, 500037, India
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute, Guwahati, 781032, Assam, India
| | - Srinivas Uppugunduri
- Regional Cancer Center South East Sweden and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
37
|
Human pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy. Curr Opin Biotechnol 2017; 48:127-134. [PMID: 28458037 DOI: 10.1016/j.copbio.2017.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/10/2017] [Indexed: 01/03/2023]
Abstract
The development of broad-spectrum, host-acting antiviral therapies remains an important but elusive goal in anti-infective drug discovery. To replicate efficiently, viruses not only depend on their hosts for an adequate supply of pyrimidine nucleotides, but also up-regulate pyrimidine nucleotide biosynthesis in infected cells. In this review, we outline our understanding of mammalian de novo and salvage metabolic pathways for pyrimidine nucleotide biosynthesis. The available spectrum of experimental and FDA-approved drugs that modulate individual steps in these metabolic pathways is also summarized. The logic of a host-acting combination antiviral therapy comprised of inhibitors of dihydroorotate dehydrogenase and uridine/cytidine kinase is discussed.
Collapse
|
38
|
Deng Y, Wang ZV, Gordillo R, An Y, Zhang C, Liang Q, Yoshino J, Cautivo KM, De Brabander J, Elmquist JK, Horton JD, Hill JA, Klein S, Scherer PE. An adipo-biliary-uridine axis that regulates energy homeostasis. Science 2017; 355:355/6330/eaaf5375. [PMID: 28302796 DOI: 10.1126/science.aaf5375] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
Uridine, a pyrimidine nucleoside present at high levels in the plasma of rodents and humans, is critical for RNA synthesis, glycogen deposition, and many other essential cellular processes. It also contributes to systemic metabolism, but the underlying mechanisms remain unclear. We found that plasma uridine levels are regulated by fasting and refeeding in mice, rats, and humans. Fasting increases plasma uridine levels, and this increase relies largely on adipocytes. In contrast, refeeding reduces plasma uridine levels through biliary clearance. Elevation of plasma uridine is required for the drop in body temperature that occurs during fasting. Further, feeding-induced clearance of plasma uridine improves glucose metabolism. We also present findings that implicate leptin signaling in uridine homeostasis and consequent metabolic control and thermoregulation. Our results indicate that plasma uridine governs energy homeostasis and thermoregulation in a mechanism involving adipocyte-dependent uridine biosynthesis and leptin signaling.
Collapse
Affiliation(s)
- Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yu An
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Qiren Liang
- Department of Biochemistry and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly M Cautivo
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jef De Brabander
- Department of Biochemistry and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jay D Horton
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Lou Y, Wang Q, Zheng J, Hu H, Liu L, Hong D, Zeng S. Possible Pathways of Capecitabine-Induced Hand–Foot Syndrome. Chem Res Toxicol 2016; 29:1591-1601. [PMID: 27631426 DOI: 10.1021/acs.chemrestox.6b00215] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Lou
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Qian Wang
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Jinqi Zheng
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, People’s Republic of China
| | - Haihong Hu
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Lin Liu
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Dongsheng Hong
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Su Zeng
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| |
Collapse
|
40
|
Cao Z, Ma J, Chen X, Zhou B, Cai C, Huang D, Zhang X, Cao D. Uridine homeostatic disorder leads to DNA damage and tumorigenesis. Cancer Lett 2016; 372:219-25. [PMID: 26801745 DOI: 10.1016/j.canlet.2016.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Uridine is a natural nucleoside precursor of uridine monophosphate in organisms and thus is considered to be safe and is used in a wide range of clinical settings. The far-reaching effects of pharmacological uridine have long been neglected. Here, we report that the homeostatic disorder of uridine is carcinogenic. Targeted disruption (-/-) of murine uridine phosphorylase (UPase) disrupted the homeostasis of uridine and increased spontaneous tumorigenesis by more than 3-fold. Multiple tumors (e.g., lymphoma, hepatoma and lung adenoma) occurred simultaneously in some UPase deficient mice, but not in wild-type mice raised under the same conditions. In the tissue from UPase -/- mice, the 2'-deoxyuridine,5'-triphosphate (dUTP) levels and uracil DNA were increased and p53 was activated with an increased phospho-Ser18 p53 level. Exposing cell lines (e.g., MCF-7, RKO, HCT-8 and NCI-H460) to uridine (10 or 30 µM) led to uracil DNA damage and p53 activation, which in turn triggered the DNA damage response. In these cells, phospho-ATM, phospho-CHK2, and phospho-γH2AX were increased by uridine. These data suggest that uridine homeostatic disorder leads to uracil DNA damage and that pharmacological uridine may be carcinogenic.
Collapse
Affiliation(s)
- Zhe Cao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha 410128, China; Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Jun Ma
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Xinchun Chen
- Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Boping Zhou
- Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Chuan Cai
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Dan Huang
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuewen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha 410128, China.
| | - Deliang Cao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha 410128, China; Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA; Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
41
|
Patel JP, Sowers ML, Herring JL, Theruvathu JA, Emmett MR, Hawkins BE, Zhang K, DeWitt DS, Prough DS, Sowers LC. Measurement of Postreplicative DNA Metabolism and Damage in the Rodent Brain. Chem Res Toxicol 2015; 28:2352-63. [PMID: 26447562 PMCID: PMC7986959 DOI: 10.1021/acs.chemrestox.5b00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DNA of all organisms is metabolically active due to persistent endogenous DNA damage, repair, and enzyme-mediated base modification pathways important for epigenetic reprogramming and antibody diversity. The free bases released from DNA either spontaneously or by base excision repair pathways constitute DNA metabolites in living tissues. In this study, we have synthesized and characterized the stable-isotope standards for a series of pyrimidines derived from the normal DNA bases by oxidation and deamination. We have used these standards to measure free bases in small molecule extracts from rat brain. Free bases are observed in extracts, consistent with both endogenous DNA damage and 5-methylcytosine demethylation pathways. The most abundant free base observed is uracil, and the potential sources of uracil are discussed. The free bases measured in tissue extracts constitute the end product of DNA metabolism and could be used to reveal metabolic disturbances in human disease.
Collapse
Affiliation(s)
- Jay P. Patel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jason L. Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jacob A. Theruvathu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mark R. Emmett
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Bridget E. Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
42
|
Cavazzola LR, Carvalhal GF, Deves C, Renck D, Almeida R, Santos DIS. Relative mRNA expression of prostate-derived E-twenty-six factor and E-twenty-six variant 4 transcription factors, and of uridine phosphorylase-1 and thymidine phosphorylase enzymes, in benign and malignant prostatic tissue. Oncol Lett 2015; 9:2886-2894. [PMID: 26137165 DOI: 10.3892/ol.2015.3093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is the most frequent urological tumor, and the second most common cancer diagnosed in men. Incidence and mortality are variable and appear to depend on behavioral factors and genetic predisposition. The prostate-derived E-twenty-six factor (PDEF) and E-twenty-six variant 4 (ETV4) transcription factors, and the thymidine phosphorylase (TP) and uridine phosphorylase-1 (UP-1) enzymes, are reported to be components of the pathways leading to tumorigenesis and/or metastasis in a number of tumors. The present study aimed to analyze the mRNA expression levels of these proteins in prostatic cancerous and benign tissue, and their association with clinical and pathological variables. Using quantitative reverse transcription polymerase chain reaction, the mRNA expression levels of PDEF, ETV4, TP and UP-1 were studied in 52 tissue samples (31 of benign prostatic hyperplasia and 21 of prostate adenocarcinomas) obtained from patients treated by transurethral resection of the prostate or by radical prostatectomy. Relative expression was assessed using the ∆-CT method. Data was analyzed using Spearman's tests for correlation. P<0.05 was considered to indicate a statistically significant difference. The results revealed that PDEF, ETV4, UP-1 and TP were expressed in 85.7, 90.5, 95.2 and 100% of the prostate cancer samples, and in 90.3, 96.8, 90.3 and 96.8% of the benign samples, respectively. PDEF and ETV4 exhibited a significantly higher relative expression level in the tumor samples compared with their benign counterparts. The relative expression of TP and UP-1 did not differ significantly between benign and cancerous prostate tissues. The relative expression of TP was moderately and significantly correlated with the expression of ETV4 in the benign tissues. The relative expression of UP-1 was significantly lower in T3 compared with T1 and T2 cancers. These findings indicate that PDEF, ETV4, TP and UP-1 are typically expressed in benign and malignant prostatic tissues. Further studies are necessary to define the role of these proteins as therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Luciane Rostirola Cavazzola
- Center for Research on Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Gustavo Franco Carvalhal
- Department of Urology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Candida Deves
- Center for Research on Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Daiana Renck
- Center for Research on Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Ricardo Almeida
- Department of Urology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - DIóGENES Santiago Santos
- Center for Research on Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| |
Collapse
|
43
|
Bambling M, Parham SC, Coulson S, Vitetta L. S-adenosylmethionine (SAMe) and Magnesium Orotate as adjunctives to SSRIs in sub-optimal treatment response of depression in adults: A pilot study. ADVANCES IN INTEGRATIVE MEDICINE 2015. [DOI: 10.1016/j.aimed.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Urasaki Y, Pizzorno G, Le TT. Uridine affects liver protein glycosylation, insulin signaling, and heme biosynthesis. PLoS One 2014; 9:e99728. [PMID: 24918436 PMCID: PMC4053524 DOI: 10.1371/journal.pone.0099728] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022] Open
Abstract
Purines and pyrimidines are complementary bases of the genetic code. The roles of purines and their derivatives in cellular signal transduction and energy metabolism are well-known. In contrast, the roles of pyrimidines and their derivatives in cellular function remain poorly understood. In this study, the roles of uridine, a pyrimidine nucleoside, in liver metabolism are examined in mice. We report that short-term uridine administration in C57BL/6J mice increases liver protein glycosylation profiles, reduces phosphorylation level of insulin signaling proteins, and activates the HRI-eIF-2α-ATF4 heme-deficiency stress response pathway. Short-term uridine administration is also associated with reduced liver hemin level and reduced ability for insulin-stimulated blood glucose removal during an insulin tolerance test. Some of the short-term effects of exogenous uridine in C57BL/6J mice are conserved in transgenic UPase1−/− mice with long-term elevation of endogenous uridine level. UPase1−/− mice exhibit activation of the liver HRI-eIF-2α-ATF4 heme-deficiency stress response pathway. UPase1−/− mice also exhibit impaired ability for insulin-stimulated blood glucose removal. However, other short-term effects of exogenous uridine in C57BL/6J mice are not conserved in UPase1−/− mice. UPase1−/− mice exhibit normal phosphorylation level of liver insulin signaling proteins and increased liver hemin concentration compared to untreated control C57BL/6J mice. Contrasting short-term and long-term consequences of uridine on liver metabolism suggest that uridine exerts transient effects and elicits adaptive responses. Taken together, our data support potential roles of pyrimidines and their derivatives in the regulation of liver metabolism.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- Nevada Cancer Institute, Las Vegas, Nevada, United States of America
- Desert Research Institute, Las Vegas, Nevada, United States of America
| | - Giuseppe Pizzorno
- Nevada Cancer Institute, Las Vegas, Nevada, United States of America
- Desert Research Institute, Las Vegas, Nevada, United States of America
- * E-mail: (GP); (TTL)
| | - Thuc T. Le
- Nevada Cancer Institute, Las Vegas, Nevada, United States of America
- Desert Research Institute, Las Vegas, Nevada, United States of America
- * E-mail: (GP); (TTL)
| |
Collapse
|
45
|
Le TT, Urasaki Y, Pizzorno G. Uridine prevents tamoxifen-induced liver lipid droplet accumulation. BMC Pharmacol Toxicol 2014; 15:27. [PMID: 24887406 PMCID: PMC4064512 DOI: 10.1186/2050-6511-15-27] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/30/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Tamoxifen, an agonist of estrogen receptor, is widely prescribed for the prevention and long-term treatment of breast cancer. A side effect of tamoxifen is fatty liver, which increases the risk for non-alcoholic fatty liver disease. Prevention of tamoxifen-induced fatty liver has the potential to improve the safety of long-term tamoxifen usage. METHODS Uridine, a pyrimidine nucleoside with reported protective effects against drug-induced fatty liver, was co-administered with tamoxifen in C57BL/6J mice. Liver lipid levels were evaluated with lipid visualization using coherent anti-Stokes Raman scatting (CARS) microscopy, biochemical assay measurement of triacylglyceride (TAG), and liquid chromatography coupled with mass spectrometry (LC-MS) measurement of membrane phospholipid. Blood TAG and cholesterol levels were measured. Mitochondrial respiration of primary hepatocytes in the presence of tamoxifen and/or uridine was evaluated by measuring oxygen consumption rate with an extracellular flux analyzer. Liver protein lysine acetylation profiles were evaluated with 1D and 2D Western blots. In addition, the relationship between endogenous uridine levels, fatty liver, and tamoxifen administration was evaluated in transgenic mice UPase1-/-and UPase1-TG. RESULTS Uridine co-administration prevented tamoxifen-induced liver lipid droplet accumulation in mice. The most prominent effect of uridine co-administration with tamoxifen was the stimulation of liver membrane phospholipid biosynthesis. Uridine had no protective effect against tamoxifen-induced impairment to mitochondrial respiration of primary hepatocytes or liver TAG and cholesterol export. Uridine had no effect on tamoxifen-induced changes to liver protein acetylation profile. Transgenic mice UPase1-/-with increased pyrimidine salvage activity were protected against tamoxifen-induced liver lipid droplet accumulation. In contrast, UPase1-TG mice with increased pyrimidine catabolism activity had intrinsic liver lipid droplet accumulation, which was aggravated following tamoxifen administration. CONCLUSION Uridine co-administration was effective at preventing tamoxifen-induced liver lipid droplet accumulation. The ability of uridine to prevent tamoxifen-induced fatty liver appeared to depend on the pyrimidine salvage pathway, which promotes biosynthesis of membrane phospholipid.
Collapse
Affiliation(s)
- Thuc T Le
- Nevada Cancer Institute, One Breakthrough Way, Las Vegas, NV 89135, USA.
| | | | | |
Collapse
|
46
|
Buszewska-Forajta M, Struck-Lewicka W, Bujak R, Siluk D, Kaliszan R. Determination of Water-Soluble Components of Abdominal Secretion of Grasshopper ( Chorthippus spp.) by GC/MS/MS in Search for Potential Wound Healing Agents. Chromatographia 2014; 77:1091-1102. [PMID: 25089050 PMCID: PMC4111860 DOI: 10.1007/s10337-014-2679-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 11/16/2022]
Abstract
Wound healing is still a serious medical problem due to process complexity and lack of effective medicaments. This is particularly true in the treatment of wounds arising in the course of such diseases as AIDS or diabetes. Therefore, scientific efforts are focused on the search for new compounds of natural origin, which could be used as medicines or evaluated for subsequent drug design. In folk medicine, grasshopper (Chorthippus spp.) abdominal secretion has been used to accelerate the wound healing process. In this context, the knowledge of the composition of grasshopper abdominal secretion is crucial. The aim of this study was to determine the main water-soluble components of grasshopper abdominal secretion with the use of GC/MS/MS. Liquid-liquid extraction was used as a pretreatment method to clean up, concentrate and fractionate compounds from the complex insect matrix. To obtain more stable and volatile compounds, necessary for GC/MS/MS analysis, a double-step derivatization process was carried out with the use of methoxyamine hydrochloride and a mixture of bis-N,O-trimethylsilyl trifluoroacetamide and chlorotrimethylsilane. As a result, 2,108 compounds were identified, mainly as amino acids, carbohydrates and organic acids. Some of the identified compounds are emphasized due to antimicrobial, antifungal or antioxidant activities reported in the literature. Moreover, a set of compounds characteristic for Chorthippus spp. samples has been selected. In the last part of the study, a statistical analysis was performed to demonstrate differences in composition of aqueous fractions of abdominal secretions from grasshoppers collected at two distant locations: Starogard Gdański and Łubianka meadows.
Collapse
Affiliation(s)
- Magdalena Buszewska-Forajta
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Wiktoria Struck-Lewicka
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Renata Bujak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
47
|
Renck D, Machado P, Souto AA, Rosado LA, Erig T, Campos MM, Farias CB, Roesler R, Timmers LFSM, de Souza ON, Santos DS, Basso LA. Design of novel potent inhibitors of human uridine phosphorylase-1: synthesis, inhibition studies, thermodynamics, and in vitro influence on 5-fluorouracil cytotoxicity. J Med Chem 2013; 56:8892-902. [PMID: 24131420 DOI: 10.1021/jm401389u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uridine (Urd) is a promising biochemical modulator to reduce host toxicity caused by 5-fluorouracil (5-FU) without impairing its antitumor activity. Elevated doses of Urd are required to achieve a protective effect against 5-FU toxicity, but exogenous administration of Urd is not well-tolerated. Selective inhibitors of human uridine phosphorylase (hUP) have been proposed as a strategy to increase Urd levels. We describe synthesis and characterization of a new class of ligands that inhibit hUP type 1 (hUP1). The design of ligands was based on a possible SN1 catalytic mechanism and as mimics of the carbocation in the transition state of hUP1. The kinetic and thermodynamic profiles showed that the ligands here presented are the most potent in vitro hUP1 inhibitors developed to date. In addition, a lead compound improved the antiproliferative effects of 5-FU on colon cancer cells, accompanied by a reduction of in vitro 5-FU cytotoxicity in aggressive SW-620 cancer cells.
Collapse
Affiliation(s)
- Daiana Renck
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , 6681/92-A, TecnoPuc, Av. Ipiranga, 90619-900 Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Le TT, Ziemba A, Urasaki Y, Hayes E, Brotman S, Pizzorno G. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation. J Lipid Res 2013; 54:1044-57. [PMID: 23355744 DOI: 10.1194/jlr.m034249] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report in this study an intrinsic link between pyrimidine metabolism and liver lipid accumulation utilizing a uridine phosphorylase 1 transgenic mouse model UPase1-TG. Hepatic microvesicular steatosis is induced by disruption of uridine homeostasis through transgenic overexpression of UPase1, an enzyme of the pyrimidine catabolism and salvage pathway. Microvesicular steatosis is also induced by the inhibition of dihydroorotate dehydrogenase (DHODH), an enzyme of the de novo pyrimidine biosynthesis pathway. Interestingly, uridine supplementation completely suppresses microvesicular steatosis in both scenarios. The effective concentration (EC(50)) for uridine to suppress microvesicular steatosis is approximately 20 µM in primary hepatocytes of UPase1-TG mice. We find that uridine does not have any effect on in vitro DHODH enzymatic activity. On the other hand, uridine supplementation alters the liver NAD(+)/NADH and NADP(+)/NADPH ratios and the acetylation profile of metabolic, oxidation-reduction, and antioxidation enzymes. Protein acetylation is emerging as a key regulatory mechanism for cellular metabolism. Therefore, we propose that uridine suppresses fatty liver by modulating the liver protein acetylation profile. Our findings reveal a novel link between uridine homeostasis, pyrimidine metabolism, and liver lipid metabolism.
Collapse
Affiliation(s)
- Thuc T Le
- Desert Research Institute, Las Vegas, NV 89135, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Lashkov AA, Gabdulkhakov AG, Prokofev II, Seregina TA, Sotnichenko SE, Lyashenko AV, Shtil AA, Mironov AS, Betzel C, Mikhailov AM. Expression, purification, crystallization and preliminary X-ray structure analysis of Vibrio cholerae uridine phosphorylase in complex with thymidine. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1394-7. [PMID: 23143257 PMCID: PMC3515389 DOI: 10.1107/s1744309112041401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/02/2012] [Indexed: 11/10/2022]
Abstract
A high-resolution structure of the complex of Vibrio cholerae uridine phosphorylase (VchUPh) with its physiological ligand thymidine is important in order to determine the mechanism of the substrate specificity of the enzyme and for the rational design of pharmacological modulators. Here, the expression and purification of VchUPh and the crystallization of its complex with thymidine are reported. Conditions for crystallization were determined with an automated Cartesian Dispensing System using The Classics, MbClass and MbClass II Suites crystallization kits. Crystals of the VchUPh-thymidine complex (of dimensions ∼200-350 µm) were grown by the sitting-drop vapour-diffusion method in ∼7 d at 291 K. The crystallization solution consisted of 1.5 µl VchUPh (15 mg ml(-1)), 1 µl 0.1 M thymidine and 1.5 µl reservoir solution [15%(w/v) PEG 4000, 0.2 M MgCl(2).6H2O in 0.1 M Tris-HCl pH 8.5]. The crystals diffracted to 2.12 Å resolution and belonged to space group P2(1) (No. 4), with unit-cell parameters a=91.80, b=95.91, c=91.89 Å, β=119.96°. The Matthews coefficient was calculated as 2.18 Å3 Da(-1); the corresponding solvent content was 43.74%.
Collapse
Affiliation(s)
- Alexander A. Lashkov
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
| | - Azat G. Gabdulkhakov
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
| | - Igor I. Prokofev
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
| | - Tatyana A. Seregina
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhny Proezd 1, Moscow 117545, Russian Federation
| | - Sergey E. Sotnichenko
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
| | - Andrey V. Lyashenko
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
| | - Alexander A. Shtil
- Blokhin Cancer Center, Kashirskoye Shosse 24, Moscow 115478, Russian Federation
| | - Alexander S. Mironov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhny Proezd 1, Moscow 117545, Russian Federation
| | | | - Al’bert M. Mikhailov
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
| |
Collapse
|
50
|
Lashkov AA, Sotnichenko SE, Prokofiev II, Gabdulkhakov AG, Agapov II, Shtil AA, Betzel C, Mironov AS, Mikhailov AM. X-ray structure of Salmonella typhimurium uridine phosphorylase complexed with 5-fluorouracil and molecular modelling of the complex of 5-fluorouracil with uridine phosphorylase from Vibrio cholerae. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:968-74. [PMID: 22868762 DOI: 10.1107/s090744491201815x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/23/2012] [Indexed: 11/10/2022]
Abstract
Uridine phosphorylase (UPh), which is a key enzyme in the reutilization pathway of pyrimidine nucleoside metabolism, is a validated target for the treatment of infectious diseases and cancer. A detailed analysis of the interactions of UPh with the therapeutic ligand 5-fluorouracil (5-FUra) is important for the rational design of pharmacological inhibitors of these enzymes in prokaryotes and eukaryotes. Expanding on the preliminary analysis of the spatial organization of the active centre of UPh from the pathogenic bacterium Salmonella typhimurium (StUPh) in complex with 5-FUra [Lashkov et al. (2009), Acta Cryst. F65, 601-603], the X-ray structure of the StUPh-5-FUra complex was analysed at atomic resolution and an in silico model of the complex formed by the drug with UPh from Vibrio cholerae (VchUPh) was generated. These results should be considered in the design of selective inhibitors of UPhs from various species.
Collapse
Affiliation(s)
- Alexander A Lashkov
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky Prospekt, 119333 Moscow, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|