1
|
Okamura T, Shimizu Y, Asaka MN, Kanuma T, Tsujimura Y, Yamamoto T, Matsuo K, Yasutomi Y. Long-term protective immunity induced by an adjuvant-containing live-attenuated AIDS virus. NPJ Vaccines 2021; 6:124. [PMID: 34686680 PMCID: PMC8536741 DOI: 10.1038/s41541-021-00386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
The use of an adjuvant in vaccination is thought to be effective for enhancing immune responses to various pathogens. We genetically constructed a live attenuated simian human immunodeficiency virus (SHIV) to express the adjuvant molecule Ag85B (SHIV-Ag85B). SHIV-Ag85B could not be detected 4 weeks after injection in cynomolgus macaques, and strong SHIV-specific T cell responses were induced in these macaques. When the macaques in which SHIV-Ag85B had become undetectable were challenged with pathogenic SHIV89.6P at 37 weeks after SHIV-Ag85B had become undetectable, SHIV89.6P was not detected after the challenge. Eradication of SHIV89.6P was confirmed by adoptive transfer experiments and CD8-depletion studies. The SHIV-Ag85B-inoculated macaques showed enhancement of Gag-specific monofunctional and polyfunctional CD8+ T cells in the acute phase of the pathogenic SHIV challenge. The results suggest that SHIV-Ag85B elicited strong sterile immune responses against pathogenic SHIV and that it may lead to the development of a vaccine for AIDS virus infection.
Collapse
Affiliation(s)
- Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Yuya Shimizu
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Masamitsu N Asaka
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Tomohiro Kanuma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan. .,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie, 514-8507, Japan.
| |
Collapse
|
2
|
Wang N, Yuan Z, Niu W, Li Q, Guo J. Synthetic biology approach for the development of conditionally replicating HIV-1 vaccine. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2017; 92:455-462. [PMID: 28983143 PMCID: PMC5624719 DOI: 10.1002/jctb.5174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While the combined antiretroviral therapy has resulted in a significant decrease in HIV-1 related morbidity and mortality, the HIV-1 pandemic has not been substantially averted. To curtail the 2.4 million new infections each year, a prophylactic HIV-1 vaccine is urgently needed. This review first summarizes four major completed clinical efficacy trials of prophylactic HIV-1 vaccine and their outcomes. Next, it discusses several other approaches that have not yet advanced to clinical efficacy trials, but provided valuable insights into vaccine design. Among them, live-attenuated vaccines (LAVs) provided excellent protection in a non-human primate model. However, safety concerns have precluded the current version of LAVs from clinical application. As the major component of this review, two synthetic biology approaches for improving the safety of HIV-1 LAVs through controlling HIV-1 replication are discussed. Particular focus is on a novel approach that uses unnatural amino acid-mediated suppression of amber nonsense codon to generate conditionally replicating HIV-1 variants. The objective is to attract more attention towards this promising research field and to provoke creative designs and innovative utilization of the two control strategies.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Zhe Yuan
- Nebraska Center for Virology & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Qingsheng Li
- Nebraska Center for Virology & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
3
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
4
|
Kuri-Cervantes L, Fourati S, Canderan G, Sekaly RP. Systems biology and the quest for correlates of protection to guide the development of an HIV vaccine. Curr Opin Immunol 2016; 41:91-97. [PMID: 27392184 DOI: 10.1016/j.coi.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
Over the last three decades, a myriad of data has been generated regarding HIV/SIV evolution, immune evasion, immune response, and pathogenesis. Much of this data can be integrated and potentially used to generate a successful vaccine. Although individual approaches have begun to shed light on mechanisms involved in vaccine-conferred protection from infection, true correlates of protection have not yet been identified. The systems biology approach helps unify datasets generated using different techniques and broaden our understanding of HIV immunopathogenesis. Moreover, systems biology is a tool that can provide correlates of protection, which can be targeted for the production of a successful HIV vaccine.
Collapse
Affiliation(s)
- Leticia Kuri-Cervantes
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Glenda Canderan
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Hodara VL, Parodi LM, Keckler MS, Giavedoni LD. Increases in NKG2C Expression on T Cells and Higher Levels of Circulating CD8 + B Cells Are Associated with Sterilizing Immunity Provided by a Live Attenuated SIV Vaccine. AIDS Res Hum Retroviruses 2016; 32:1125-1134. [PMID: 26986800 DOI: 10.1089/aid.2015.0300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vaccines based on live attenuated viruses are highly effective immunogens in the simian immunodeficiency virus (SIV)/rhesus macaque animal model and offer the possibility of studying correlates of protection against infection with virulent virus. We utilized a tether system for studying, in naive macaques and animals vaccinated with a live-attenuated vaccine, the acute events after challenge with pathogenic SIV. This approach allowed for the frequent sampling of small blood volumes without sedation or restraining of the animals, thus reducing the confounding effect of sampling stress. Before challenge, vaccinated animals presented significantly higher levels of proliferating and activated B cells than naive macaques, which were manifested by high expression of CD8 on B cells. After SIV challenge, the only changes observed in protected vaccinated macaques were significant increases in expression of the NK marker NKG2C on CD4 and CD8 T cells. We also identified that infection of naive macaques with SIV resulted in a transient peak of expression of CD20 on CD8 T cells and a constant rise in the number of B cells expressing CD8. Finally, analysis of a larger cohort of vaccinated animals identified that, even when circulating levels of vaccine virus are below the limit of detection, live attenuated vaccines induce systemic increases of IP-10 and perforin. These studies indicate that components of both the innate and adaptive immune systems of animals inoculated with a live-attenuated SIV vaccine respond to and control infection with virulent virus. Persistence of the vaccine virus in tissues may explain the elevated cytokine and B-cell activation levels. In addition, our report underpins the utility of the tether system for the intensive study of acute immune responses to viral infections.
Collapse
Affiliation(s)
- Vida L. Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Laura M. Parodi
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | - M. Shannon Keckler
- Division of Healthcare Quality Promotion, Centers for Diseases Control and Prevention, Atlanta, Georgia
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
6
|
Breed MW, Elser SE, Torben W, Jordan APO, Aye PP, Midkiff C, Schiro F, Sugimoto C, Alvarez-Hernandez X, Blair RV, Somasunderam A, Utay NS, Kuroda MJ, Pahar B, Wiseman RW, O'Connor DH, LaBranche CC, Montefiori DC, Marsh M, Li Y, Piatak M, Lifson JD, Keele BF, Fultz PN, Lackner AA, Hoxie JA. Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif. J Virol 2015; 89:10156-75. [PMID: 26223646 PMCID: PMC4580161 DOI: 10.1128/jvi.01134-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Deletion of Gly-720 and Tyr-721 from a highly conserved GYxxØ trafficking signal in the SIVmac239 envelope glycoprotein cytoplasmic domain, producing a virus termed ΔGY, leads to a striking perturbation in pathogenesis in rhesus macaques (Macaca mulatta). Infected macaques develop immune activation and progress to AIDS, but with only limited and transient infection of intestinal CD4(+) T cells and an absence of microbial translocation. Here we evaluated ΔGY in pig-tailed macaques (Macaca nemestrina), a species in which SIVmac239 infection typically leads to increased immune activation and more rapid progression to AIDS than in rhesus macaques. In pig-tailed macaques, ΔGY also replicated acutely to high peak plasma RNA levels identical to those for SIVmac239 and caused only transient infection of CD4(+) T cells in the gut lamina propria and no microbial translocation. However, in marked contrast to rhesus macaques, 19 of 21 pig-tailed macaques controlled ΔGY replication with plasma viral loads of <15 to 50 RNA copies/ml. CD4(+) T cells were preserved in blood and gut for up to 100 weeks with no immune activation or disease progression. Robust antiviral CD4(+) T cell responses were seen, particularly in the gut. Anti-CD8 antibody depletion demonstrated CD8(+) cellular control of viral replication. Two pig-tailed macaques progressed to disease with persisting viremia and possible compensatory mutations in the cytoplasmic tail. These studies demonstrate a marked perturbation in pathogenesis caused by ΔGY's ablation of the GYxxØ trafficking motif and reveal, paradoxically, that viral control is enhanced in a macaque species typically predisposed to more pathogenic manifestations of simian immunodeficiency virus (SIV) infection. IMPORTANCE The pathogenesis of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) reflects a balance between viral replication, host innate and adaptive antiviral immune responses, and sustained immune activation that in humans and Asian macaques is associated with persistent viremia, immune escape, and AIDS. Among nonhuman primates, pig-tailed macaques following SIV infection are predisposed to more rapid disease progression than are rhesus macaques. Here, we show that disruption of a conserved tyrosine-based cellular trafficking motif in the viral transmembrane envelope glycoprotein cytoplasmic tail leads in pig-tailed macaques to a unique phenotype in which high levels of acute viral replication are followed by elite control, robust cellular responses in mucosal tissues, and no disease. Paradoxically, control of this virus in rhesus macaques is only partial, and progression to AIDS occurs. This novel model should provide a powerful tool to help identify host-specific determinants for viral control with potential relevance for vaccine development.
Collapse
Affiliation(s)
- Matthew W Breed
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Samra E Elser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Workineh Torben
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Andrea P O Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Chie Sugimoto
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | - Robert V Blair
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | | | - Marcelo J Kuroda
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Roger W Wiseman
- University of Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - David H O'Connor
- University of Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | | | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College, London, United Kingdom
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - James A Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Billingsley JM, Rajakumar PA, Connole MA, Salisch NC, Adnan S, Kuzmichev YV, Hong HS, Reeves RK, Kang HJ, Li W, Li Q, Haase AT, Johnson RP. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. PLoS Pathog 2015; 11:e1004740. [PMID: 25768938 PMCID: PMC4358830 DOI: 10.1371/journal.ppat.1004740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/03/2023] Open
Abstract
The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states. The live attenuated vaccine SIVΔnef can induce robust CD8+ T cell- mediated protection against infection with pathogenic SIV in macaques. Thus, there is substantial interest in characterizing these immune responses to inform HIV vaccine design. Animals challenged at 15–20 weeks post vaccination exhibit robust protection, whereas animals challenged at 5 weeks post-vaccination manifest little protection. Since the frequency of SIV-specific T cells decreases from week 5 to week 20, it is likely that the quality of the response to challenge changes as virus-specific cells differentiate. We applied a novel approach of transcription factor expression profiling to characterize the differences in SIV-specific cell function and phenotype at more protected and less protected time points. Using unsupervised clustering methods informed by expression profiles assessed in purified CD8+ T cell subsets, we show that SIV-specific cells display expression profiles different than any purified CD8+ T cell subset, and intermediate to sorted effector memory and central memory subsets. SIV-specific cells overall appear more effector memory-like at week 5 post-vaccination, and more central memory-like at week 20 post-vaccination. Distinct profiles of CD8+ T cells specific for different SIV epitopes having different immune escape kinetics suggests maturation is regulated by ongoing low-level replication of vaccine virus.
Collapse
Affiliation(s)
- James M. Billingsley
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Premeela A. Rajakumar
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michelle A. Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Nadine C. Salisch
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Crucell Holland BV, Leiden, The Netherlands
| | - Sama Adnan
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yury V. Kuzmichev
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Henoch S. Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hyung-joo Kang
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Rabinovich S, Powell RLR, Lindsay RWB, Yuan M, Carpov A, Wilson A, Lopez M, Coleman JW, Wagner D, Sharma P, Kemelman M, Wright KJ, Seabrook JP, Arendt H, Martinez J, DeStefano J, Chiuchiolo MJ, Parks CL. A novel, live-attenuated vesicular stomatitis virus vector displaying conformationally intact, functional HIV-1 envelope trimers that elicits potent cellular and humoral responses in mice. PLoS One 2014; 9:e106597. [PMID: 25215861 PMCID: PMC4162551 DOI: 10.1371/journal.pone.0106597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/03/2014] [Indexed: 01/09/2023] Open
Abstract
Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G. Relocation of the G gene to the 5'terminus of the genome and insertion of EnvG into the natural G position induced a ∼1 log reduction in surface G, significant growth attenuation compared to wild-type, and incorporation of abundant EnvG. Western blot analysis indicated that ∼75% of incorporated EnvG was a mature proteolytically processed form. Flow cytometry showed that surface EnvG bound various conformationally- and trimer-specific antibodies (Abs), and in-vitro growth assays on CD4+CCR5+ cells demonstrated EnvG functionality. Neither intranasal (IN) or intramuscular (IM) administration in mice induced any observable pathology and all regimens tested generated potent Env-specific ELISA titers of 10(4)-10(5), with an IM VSV prime/IN VSV boost regimen eliciting the highest binding and neutralizing Ab titers. Significant quantities of Env-specific CD4+ T cells were also detected, which were augmented as much as 70-fold by priming with IM electroporated plasmids encoding EnvG and IL-12. These data suggest that our novel vector can achieve balanced safety and immunogenicity and should be considered as an HIV vaccine platform.
Collapse
Affiliation(s)
- Svetlana Rabinovich
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Rebecca L. R. Powell
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Ross W. B. Lindsay
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Maoli Yuan
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Alexei Carpov
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Aaron Wilson
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Mary Lopez
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - John W. Coleman
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Denise Wagner
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Palka Sharma
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Marina Kemelman
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Kevin J. Wright
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - John P. Seabrook
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Heather Arendt
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Jennifer Martinez
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Joanne DeStefano
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Maria J. Chiuchiolo
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Christopher L. Parks
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
9
|
Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27099867 DOI: 10.1155/2014/157895] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization-mechanism, stoichiometry, kinetics, and efficacy-from surprising new angles.
Collapse
|
10
|
Tuero I, Robert-Guroff M. Challenges in mucosal HIV vaccine development: lessons from non-human primate models. Viruses 2014; 6:3129-58. [PMID: 25196380 PMCID: PMC4147690 DOI: 10.3390/v6083129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022] Open
Abstract
An efficacious HIV vaccine is urgently needed to curb the AIDS pandemic. The modest protection elicited in the phase III clinical vaccine trial in Thailand provided hope that this goal might be achieved. However, new approaches are necessary for further advances. As HIV is transmitted primarily across mucosal surfaces, development of immunity at these sites is critical, but few clinical vaccine trials have targeted these sites or assessed vaccine-elicited mucosal immune responses. Pre-clinical studies in non-human primate models have facilitated progress in mucosal vaccine development by evaluating candidate vaccine approaches, developing methodologies for collecting and assessing mucosal samples, and providing clues to immune correlates of protective immunity for further investigation. In this review we have focused on non-human primate studies which have provided important information for future design of vaccine strategies, targeting of mucosal inductive sites, and assessment of mucosal immunity. Knowledge gained in these studies will inform mucosal vaccine design and evaluation in human clinical trials.
Collapse
Affiliation(s)
- Iskra Tuero
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Abstract
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | | | | |
Collapse
|
12
|
Sasikala-Appukuttan AK, Kim HO, Kinzel NJ, Hong JJ, Smith AJ, Wagstaff R, Reilly C, Piatak M, Lifson JD, Reeves RK, Johnson RP, Haase AT, Skinner PJ. Location and dynamics of the immunodominant CD8 T cell response to SIVΔnef immunization and SIVmac251 vaginal challenge. PLoS One 2013; 8:e81623. [PMID: 24349100 PMCID: PMC3857218 DOI: 10.1371/journal.pone.0081623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Live-attenuated SIV vaccines (LAVs) have been the most effective to date in preventing or partially controlling infection by wild-type SIV in non-human primate models of HIV-1 transmission to women acting by mechanisms of protection that are not well understood. To gain insights into mechanisms of protection by LAVs that could aid development of effective vaccines to prevent HIV-1 transmission to women, we used in situ tetramer staining to determine whether increased densities or changes in the local distribution of SIV-specific CD8 T cells correlated with the maturation of SIVΔnef vaccine-induced protection prior to and after intra-vaginal challenge with wild-type SIVmac251. We evaluated the immunodominant Mamu-A1*001:01/Gag (CM9) and Mamu-A1*001:01/Tat (SL8) epitope response in genital and lymphoid tissues, and found that tetramer+ cells were present at all time points examined. In the cervical vaginal tissues, most tetramer+ cells were distributed diffusely throughout the lamina propria or co-localized with other CD8 T cells within lymphoid aggregates. The distribution and densities of the tetramer+ cells at the portal of entry did not correlate with the maturation of protection or change after challenge. Given these findings, we discuss the possibility that changes in other aspects of the immune system, including the quality of the resident population of virus-specific effector CD8 T cells could contribute to maturation of protection, as well as the potential for vaccine strategies that further increase the size and quality of this effector population to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Arun K. Sasikala-Appukuttan
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, Minnesota, United States of America
| | - Hyeon O. Kim
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, Minnesota, United States of America
| | - Nikilyn J. Kinzel
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, Minnesota, United States of America
| | - Jung Joo Hong
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, Minnesota, United States of America
| | - Anthony J. Smith
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - Reece Wagstaff
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, Minnesota, United States of America
| | - Cavan Reilly
- University of Minnesota, School of Public Health, Division of Biostatistics, Minneapolis, Minnesota, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., (formerly Science Applications International Corporation–Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., (formerly Science Applications International Corporation–Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - Pamela J. Skinner
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, Minnesota, United States of America
| |
Collapse
|
13
|
Mühle M, Hoffmann K, Löchelt M, Denner J. Immunisation with foamy virus Bet fusion proteins as novel strategy for HIV-1 epitope delivery. Immunol Res 2013; 56:61-72. [PMID: 23440699 DOI: 10.1007/s12026-013-8387-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The induction of 2F5- and 4E10-like antibodies broadly neutralising HIV-1 and targeting the membrane external proximal region (MPER) of the transmembrane envelope protein gp41 would be a major advancement for the development of a preventive HIV-1 vaccine, but successful attempts remain rare. Recent studies demonstrated that broadly reactive antibodies develop relatively late during infection and after intensive affinity maturation. Therefore, a prolonged antigen delivery might be beneficial to induce them. Replicating foamy viruses which are characterised by apathogenic but persistent infection could represent suitable carrier viruses for this purpose. In order to develop such a system, we modified the accessory foamy virus Bet protein to contain the MPER of gp41, or the MPER linked to the stabilising fusion peptide proximal region of gp41 and analysed here the antigenic and immunogenic properties of such hybrid proteins. The antigens, expressed and purified to homogeneity, were recognised by the monoclonal antibodies 2F5 and 4E10 with nanomolar affinities and induced high levels of antibodies specific to gp41 after immunisation of rats. The antisera also bound to virus particles attached to infected cells, and peptide-based epitope mapping showed that they recognised the 2F5 epitope. Although no HIV-1 neutralising activity was observed, the presented data demonstrate that using the foamy virus Bet for HIV-1 epitope delivery is successfully applicable. Together with the attractive potential for sustained antigen expression after transfer to replicating virus, these results should therefore provide a first basis for the development of chimeric foamy viruses as novel HIV-1 vaccine vectors.
Collapse
Affiliation(s)
- Michael Mühle
- Center for HIV and Retrovirology, Robert Koch Institute, Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Bontjer I, Melchers M, Tong T, van Montfort T, Eggink D, Montefiori D, Olson WC, Moore JP, Binley JM, Berkhout B, Sanders RW. Comparative Immunogenicity of Evolved V1V2-Deleted HIV-1 Envelope Glycoprotein Trimers. PLoS One 2013; 8:e67484. [PMID: 23840716 PMCID: PMC3694020 DOI: 10.1371/journal.pone.0067484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/16/2013] [Indexed: 12/16/2022] Open
Abstract
Despite almost 30 years of research, no effective vaccine has yet been developed against HIV-1. Probably such a vaccine would need to induce both an effective T cell and antibody response. Any vaccine component focused on inducing humoral immunity requires the HIV-1 envelope (Env) glycoprotein complex as it is the only viral protein exposed on the virion surface. HIV-1 has evolved several mechanisms to evade broadly reactive neutralizing antibodies. One such a mechanism involves variable loop domains, which are highly flexible structures that shield the underlying conserved epitopes. We hypothesized that removal of such loops would increase the exposure and immunogenicity of these conserved regions. Env variable loop deletion however often leads to protein misfolding and aggregation because hydrophobic patches becoming solvent accessible. We have therefore previously used virus evolution to acquire functional Env proteins lacking the V1V2 loop. We then expressed them in soluble (uncleaved) gp140 forms. Three mutants were found to perform optimally in terms of protein expression, stability, trimerization and folding. In this study, we characterized the immune responses to these antigens in rabbits. The V1V2 deletion mutant ΔV1V2.9.VK induced a prominent response directed to epitopes that are not fully available on the other Env proteins tested but that effectively bound and neutralized the ΔV1V2 Env virus. This Env variant also induced more efficient neutralization of the tier 1 virus SF162. The immune refocusing effect was lost after booster immunization with a full-length gp140 protein with intact V1V2 loops. Collectively, this result suggests that deletion of variable domains could alter the specificity of the humoral immune response, but did not result in broad neutralization of neutralization-resistant virus isolates.
Collapse
Affiliation(s)
- Ilja Bontjer
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Mark Melchers
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Tommy Tong
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William C. Olson
- Progenics Pharmaceuticals, Tarrytown, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - James M. Binley
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Craigo JK, Ezzelarab C, Cook SJ, Chong L, Horohov D, Issel CJ, Montelaro RC. Envelope determinants of equine lentiviral vaccine protection. PLoS One 2013; 8:e66093. [PMID: 23785473 PMCID: PMC3682429 DOI: 10.1371/journal.pone.0066093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kurupati R, Tuyishime S, Kossenkov AV, Sazanovich M, Haut LH, Lasaro MO, Ratcliffe SJ, Bosinger SE, Carnathan DG, Lewis M, Showe LC, Silvestri G, Ertl HCJ. Correlates of relative resistance against low-dose rectal simian immunodeficiency virus challenges in peripheral blood mononuclear cells of vaccinated rhesus macaques. J Leukoc Biol 2012; 93:437-48. [PMID: 23271702 DOI: 10.1189/jlb.0612287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this study, we compared the immunogenicity and protection from repeated low-dose intrarectal SIVmac251 challenge in two groups of vaccinated RMs. Animals were immunized with live SIVmac239, which had been attenuated by a deletion of the nef sequence, or they were vaccinated twice with an E1-deleted AdHu5, expressing SIVmac239gag. The vaccinated animals and a cohort of unvaccinated control animals were then challenged 10 times in weekly intervals with low doses of SIVmac251 given rectally. Our results confirm previous studies showing that whereas SIVΔnef provides some degree of protection against viral acquisition after repeated low-dose rectal SIVmac251 challenges, vaccination with an AdHu5gag vaccine designed to induce only antiviral T cell responses is ineffective. As immunological analyses of prechallenge, vaccine-induced T and B cell responses failed to reveal correlates of protection that distinguished the more susceptible from the more resistant vaccinated animals, we carried out RNA-Seq studies of paired pre- and postvaccination samples to identify transcriptional patterns that correlated with the differences in response. We show that gene expression signatures associated with the delayed SIV infection seen in some AdHu5gag recipients were largely present in prevaccination samples of those animals. In contrast, the responding SIVΔnef-immunized animals showed a predominance of vaccine-induced changes, thus enabling us to define inherited and vaccine-induced gene expression signatures and their associated pathways that may play a role in preventing SIV acquisition.
Collapse
Affiliation(s)
- Raj Kurupati
- Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fukazawa Y, Park H, Cameron MJ, Lefebvre F, Lum R, Coombes N, Mahyari E, Hagen S, Bae JY, Reyes MD, Swanson T, Legasse AW, Sylwester A, Hansen SG, Smith AT, Stafova P, Shoemaker R, Li Y, Oswald K, Axthelm MK, McDermott A, Ferrari G, Montefiori DC, Edlefsen PT, Piatak M, Lifson JD, Sékaly RP, Picker LJ. Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines. Nat Med 2012; 18:1673-81. [PMID: 22961108 PMCID: PMC3493820 DOI: 10.1038/nm.2934] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/13/2012] [Indexed: 02/07/2023]
Abstract
Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.
Collapse
Affiliation(s)
- Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Haesun Park
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Mark J. Cameron
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Francois Lefebvre
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Richard Lum
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Noel Coombes
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Eisa Mahyari
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Shoko Hagen
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jin Young Bae
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Marcelo Delos Reyes
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Tonya Swanson
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Andrew Sylwester
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Andrew T. Smith
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Petra Stafova
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Yuan Li
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Kelli Oswald
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Adrian McDermott
- Vaccine Research Institute, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | | | | | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division,, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Rafick P. Sékaly
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
18
|
Trovato M, Krebs SJ, Haigwood NL, De Berardinis P. Delivery strategies for novel vaccine formulations. World J Virol 2012; 1:4-10. [PMID: 24175206 PMCID: PMC3782264 DOI: 10.5501/wjv.v1.i1.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/16/2011] [Accepted: 09/25/2011] [Indexed: 02/05/2023] Open
Abstract
A major challenge in vaccine design is to identify antigen presentation and delivery systems capable of rapidly stimulating both the humoral and cellular components of the immune system to elicit a strong and sustained immunity against different viral isolates. Approaches to achieve this end involve live attenuated and inactivated virions, viral vectors, DNA, and protein subunits. This review reports the state of current antigen delivery, and focuses on two innovative systems recently established at our labs. These systems are the filamentous bacteriophage fd and an icosahedral scaffold formed by the acyltransferase component (E2 protein) of the pyruvate dehydrogenase complex of Bacillus stearothermophilus.
Collapse
Affiliation(s)
- Maria Trovato
- Maria Trovato, Piergiuseppe De Berardinis, Institute of Protein Biochemistry, CNR, Naples 80131, Italy
| | | | | | | |
Collapse
|
19
|
Fryer HR, McLean AR. Modelling the spread of HIV immune escape mutants in a vaccinated population. PLoS Comput Biol 2011; 7:e1002289. [PMID: 22144883 PMCID: PMC3228780 DOI: 10.1371/journal.pcbi.1002289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/13/2011] [Indexed: 12/02/2022] Open
Abstract
Because cytotoxic T-lymphocytes (CTLs) have been shown to play a role in controlling human immunodeficiency virus (HIV) infection and because CTL-based simian immunodeficiency virus (SIV) vaccines have proved effective in non-human primates, one goal of HIV vaccine design is to elicit effective CTL responses in humans. Such a vaccine could improve viral control in patients who later become infected, thereby reducing onwards transmission and enhancing life expectancy in the absence of treatment. The ability of HIV to evolve mutations that evade CTLs and the ability of these ‘escape mutants’ to spread amongst the population poses a challenge to the development of an effective and robust vaccine. We present a mathematical model of within-host evolution and between-host transmission of CTL escape mutants amongst a population receiving a vaccine that elicits CTL responses to multiple epitopes. Within-host evolution at each epitope is represented by the outgrowth of escape mutants in hosts who restrict the epitope and their reversion in hosts who do not restrict the epitope. We use this model to investigate how the evolution and spread of escape mutants could affect the impact of a vaccine. We show that in the absence of escape, such a vaccine could markedly reduce the prevalence of both infection and disease in the population. However the impact of such a vaccine could be significantly abated by CTL escape mutants, especially if their selection in hosts who restrict the epitope is rapid and their reversion in hosts who do not restrict the epitope is slow. We also use the model to address whether a vaccine should span a broad or narrow range of CTL epitopes and target epitopes restricted by rare or common HLA types. We discuss the implications and limitations of our findings. The evolution and spread of HIV strains that evade the immune response poses a major challenge to the development of an effective and robust HIV vaccine. We present a new mathematical tool that we use to dissect the drivers of the spread of these ‘immune escape mutants’ in a vaccinated population. Our study focuses on a vaccine that can reduce infectiousness and enhance longevity but does not provide sterilizing immunity. We show that in the absence of escape such a vaccine could reduce the prevalence of both infection and disease in the population. However, vaccine impact could be significantly abated by immune escape mutants, especially if they emerge rapidly and revert very slowly after transmission to hosts in whom the original selection pressure is absent. We also discuss the effect that vaccine breadth and the frequency with which different epitopes are targeted have upon vaccine impact.
Collapse
Affiliation(s)
- Helen R Fryer
- The Institute for Emerging Infections, The Oxford Martin School, Department of Zoology, Oxford University, Oxford, United Kingdom.
| | | |
Collapse
|
20
|
Bilello JP, Manrique JM, Shin YC, Lauer W, Li W, Lifson JD, Mansfield KG, Johnson RP, Desrosiers RC. Vaccine protection against simian immunodeficiency virus in monkeys using recombinant gamma-2 herpesvirus. J Virol 2011; 85:12708-20. [PMID: 21900170 PMCID: PMC3209374 DOI: 10.1128/jvi.00865-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/27/2011] [Indexed: 12/21/2022] Open
Abstract
Recombinant strains of replication-competent rhesus monkey rhadinovirus (RRV) were constructed in which strong promoter/enhancer elements were used to drive expression of simian immunodeficiency virus (SIV) Env or Gag or a Rev-Tat-Nef fusion protein. Cultured rhesus monkey fibroblasts infected with each recombinant strain were shown to express the expected protein. Three RRV-negative and two RRV-positive rhesus monkeys were inoculated intravenously with a mixture of these three recombinant RRVs. Expression of SIV Gag was readily detected in lymph node biopsy specimens taken at 3 weeks postimmunization. Impressive anti-SIV cellular immune responses were elicited on the basis of major histocompatibility complex (MHC) tetramer staining and gamma interferon enzyme-linked immunospot (ELISPOT) assays. Responses were much greater in magnitude in the monkeys that were initially RRV negative but were still readily detected in the two monkeys that were naturally infected with RRV at the time of immunization. By 3 weeks postimmunization, responses measured by MHC tetramer staining in the two Mamu-A*01(+) RRV-negative monkeys reached 9.3% and 13.1% of all CD8(+) T cells in peripheral blood to the Gag CM9 epitope and 2.3% and 7.3% of all CD8(+) T cells in peripheral blood to the Tat SL8 epitope. Virus-specific CD8(+) T cell responses persisted at high levels up to the time of challenge at 18 weeks postimmunization, and responding cells maintained an effector memory phenotype. Despite the ability of the RRVenv recombinant to express high levels of Env in cultured cells, and despite the appearance of strong anti-RRV antibody responses in immunized monkeys, anti-Env antibody responses were below our ability to detect them. Immunized monkeys, together with three unimmunized controls, were challenged intravenously with 10 monkey infectious doses of SIVmac239. All five immunized monkeys and all three controls became infected with SIV, but peak viral loads were 1.2 to 3.0 log(10) units lower and chronic-phase viral loads were 1.0 to 3.0 log(10) units lower in immunized animals than the geometric mean of unimmunized controls. These differences were statistically significant. Anti-Env antibody responses following challenge indicated an anamnestic response in the vaccinated monkeys. These findings further demonstrate the potential of recombinant herpesviruses as preventive vaccines for AIDS. We hypothesize that this live, replication-competent, persistent herpesvirus vector could match, or come close to matching, live attenuated strains of SIV in the degree of protection if the difficulty with elicitation of anti-Env antibody responses can be overcome.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Gammaherpesvirinae/genetics
- Gammaherpesvirinae/immunology
- Gene Products, env/administration & dosage
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/administration & dosage
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genetic Vectors
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/virology
- Humans
- Immunity, Cellular
- Immunoenzyme Techniques
- Kidney/cytology
- Kidney/metabolism
- Kidney/virology
- Macaca mulatta/genetics
- Macaca mulatta/immunology
- Macaca mulatta/virology
- Neutralization Tests
- Plasmids
- Recombination, Genetic
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/genetics
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/immunology
- Vaccination
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- John P. Bilello
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - Julieta M. Manrique
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - Young C. Shin
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - William Lauer
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - Wenjun Li
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick Inc., National Cancer Institute, NCI Frederick, Frederick, Maryland 21702
| | - Keith G. Mansfield
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - R. Paul Johnson
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - Ronald C. Desrosiers
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| |
Collapse
|
21
|
CD40L-containing virus-like particle as a candidate HIV-1 vaccine targeting dendritic cells. J Acquir Immune Defic Syndr 2011; 56:393-400. [PMID: 21239998 DOI: 10.1097/qai.0b013e31820b844e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The central role of dendritic cell (DC) in mounting an immune response to a novel antigen is now well established. We sought to demonstrate the use of a particular vaccine strategy based on directing HIV-1 Gag proteins to DCs in conjunction with an activation signal. CD40L was expressed on the surface of virus-like particles (VLPs) to target HIV-1 Gag antigens to the CD40 receptor on DCs, whereas CD40L-CD40 interaction would also result in cellular activation. Multiple CD40L VLP constructs were made and evaluated in vitro and in vivo. Indeed, one VLP that expressed CD40L to the highest level showed greatest capacity to activate DCs in vitro. Correspondingly, this CD40L-VLP also proved to be most immunogenic in mice in raising both humoral and cellular responses to HIV-1 Gag. Confirmatory studies were performed to demonstrate the increased immunogenicity of CD40L-VLP is no longer observed when tested in CD40-/- mice. Our findings lend support to the belief that vaccine strategies that both target and activate DCs could yield a superior immune response.
Collapse
|
22
|
Characterization of an effective CTL response against HIV and SIV infections. J Biomed Biotechnol 2011; 2011:103924. [PMID: 21976964 PMCID: PMC3184421 DOI: 10.1155/2011/103924] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022] Open
Abstract
A vaccine inducing protective immunity in mucosal tissues and secretions may stop or limit HIV infection. Although cytotoxic T lymphocytes (CTLs) are clearly associated with control of viral replication in HIV and simian immunodeficiency virus (SIV) infections, there are examples of uncontrolled viral replication in the face of strong CD8+ T-cell responses. The number of functions, breadth, avidity, and magnitude of CTL response are likely to be important factors in the effectiveness of anti-HIV T-cell response, but the location and persistence of effector CD8+ T cells are also critical factors. Although the only HIV vaccine clinical trial targeting cellular immunity to prevent HIV infection failed, vaccine strategies using persistent agents against pathogenic mucosal challenge in macaque models are showing unique success. Thus, the key to control the initial focus of viral replication at the portal of entry may rely on the continuous generation of effector CTL responses at mucosal level.
Collapse
|
23
|
Abstract
HIV-1 and its simian counterpart SIV have been exquisitely tailored by evolution to evade host immunity. By virtue of specific adaptations that thwart individual innate or adaptive immune mechanisms, and an overall replication strategy that provides for rapid establishment of a large, systemic viral population, capable of dynamic adaptation to almost all immune selection pressures, these viruses, once established, almost invariably stay one step ahead of the host's immune system, and in the vast majority of infected individuals, replicate indefinitely. Although many vaccine approaches tested to date have been able to enhance the magnitude of the immune responses to HIV/SIV infection, most of these responses, whether cellular or humoral, have largely failed to be both effectively antiviral and targeted to prevent the emergence of fully functional escape variants. Recent advances, however, have provided strong evidence that the initial stages of infection following mucosal transmission of these viruses are more vulnerable to immune intervention, and have led to the development of vaccine strategies that elicit responses able to effectively intervene in these early stages of infection, either preventing acquisition of infection or establishing early, stringent, and durable control. Here, we place HIV/AIDS vaccine development in the context of the basic immunobiology of HIV and SIV, review the evidence for their vulnerability to immune responses immediately after mucosal transmission, and discuss how this newly recognized vulnerability might be exploited for the development of an effective HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Louis J Picker
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|
24
|
Abstract
OBJECTIVE In our prior study on a prophylactic T-cell-based vaccine, some vaccinated macaques controlled a simian immunodeficiency virus (SIV) challenge. These animals allowed viremia in the acute phase but showed persistent viral control after the setpoint. Here, we examined the breadth of postchallenge virus-specific cellular immune responses in these SIV controllers. DESIGN We previously reported that in a group of Burmese rhesus macaques possessing the MHC haplotype 90-120-Ia, immunization with a Gag-expressing vaccine results in nonsterile control of a challenge with SIVmac239 but not a mutant SIV carrying multiple cytotoxic T lymphocyte (CTL) escape gag mutations. In the present study, we investigated whether broader cellular immune responses effective against the mutant SIV replication are induced after challenge in those vaccinees that maintained wild-type SIVmac239 control. METHODS We analyzed cellular immune responses in these SIV controllers (n = 8). RESULTS These controllers elicited CTL responses directed against SIV non-Gag antigens as well as Gag in the chronic phase. Postvaccinated, prechallenge CD8(+) cells obtained from these animals suppressed wild-type SIV replication in vitro, but mostly had no suppressive effect on the mutant SIV replication, whereas CD8(+) cells in the chronic phase after challenge showed efficient antimutant SIV efficacy. The levels of in-vitro antimutant SIV efficacy of CD8(+) cells correlated with Vif-specific CD8(+) T-cell frequencies. Plasma viremia was kept undetectable even after the mutant SIV superchallenge in the chronic phase. CONCLUSION These results suggest that vaccine-based wild-type SIV controllers can acquire CD8(+) cells with the potential to suppress replication of SIV variants carrying CTL escape mutations.
Collapse
|
25
|
Abstract
Numerous human immunodeficiency virus (HIV)-1 vaccines have been developed over the last three decades, but to date an effective HIV-1 vaccine that can be used for prophylactic or therapeutic purposes in humans has not been identified. The failures and limited successes of HIV-1 vaccines have highlighted the gaps in our knowledge with regard to fundamental immunity against HIV-1 and have provided insights for vaccine strategies that may be implemented for designing more effective HIV-1 vaccines in the future. Recent studies have shown that robust mucosal immunity, high avidity and polyfunctional T cells, and broadly neutralizing antibodies are important factors governing the induction of protective immunity against HIV-1. Furthermore, optimization of vaccine delivery methods for DNA or live viral vector-based vaccines, elucidating the immune responses of individuals who remain resistant to HIV-1 infections and also understanding the core immune responses mediating protection against simian immunodeficiency viruses (SIV) and HIV-1 in animal models following vaccination, are key aspects to be regarded for designing more effective HIV-1 vaccines in the future.
Collapse
|
26
|
Craigo JK, Barnes S, Cook SJ, Issel CJ, Montelaro RC. Divergence, not diversity of an attenuated equine lentivirus vaccine strain correlates with protection from disease. Vaccine 2010; 28:8095-104. [PMID: 20955830 DOI: 10.1016/j.vaccine.2010.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/17/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
We recently reported an attenuated EIAV vaccine study that directly examined the effect of lentiviral envelope sequence variation on vaccine efficacy. The study [1] demonstrated for the first time the failure of an ancestral vaccine to protect and revealed a significant, inverse, linear relationship between envelope divergence and protection from disease. In the current study we examine in detail the evolution of the attenuated vaccine strain utilized in this previous study. We demonstrate here that the attenuated strain progressively evolved during the six-month pre-challenge period and that the observed protection from disease was significantly associated with divergence from the original vaccine strain.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
27
|
Das AT, Berkhout B. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 2010; 365:1965-73. [PMID: 20478891 PMCID: PMC2880118 DOI: 10.1098/rstb.2010.0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach.
Collapse
Affiliation(s)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
28
|
Das AT, Jeeninga RE, Berkhout B. Possible applications for replicating HIV 1 vectors. ACTA ACUST UNITED AC 2010; 4:361-369. [PMID: 20582153 DOI: 10.2217/hiv.10.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Since its discovery some 25 years ago, much has been learned about HIV type 1 and the molecular details of its replication cycle. This insight has been used to develop lentiviral vector systems that have advantages over conventional retroviral vector systems. For safety reasons, the lentiviral vector systems are replication incompetent and the risk of generating a replication competent virus has been minimized. Nevertheless, there may be certain applications for replication competent HIV based vector systems, and we will review our activities in this particular field. This includes the generation of a conditionally replicating HIV 1 variant as a safe live attenuated virus vaccine, the construction of mini HIV variants as cancer selective viruses for virotherapy against leukemia, and the use of a conditionally live anti HIV gene therapy vector. Although safety concerns will undoubtedly remain for the use of replication competent HIV based vector systems, some of the results in cell culture systems are very promising and warrant further testing in appropriate animal models.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
29
|
Greene JM, Lhost JJ, Burwitz BJ, Budde ML, Macnair CE, Weiker MK, Gostick E, Friedrich TC, Broman KW, Price DA, O'Connor SL, O'Connor DH. Extralymphoid CD8+ T cells resident in tissue from simian immunodeficiency virus SIVmac239{Delta}nef-vaccinated macaques suppress SIVmac239 replication ex vivo. J Virol 2010; 84:3362-72. [PMID: 20089651 PMCID: PMC2838091 DOI: 10.1128/jvi.02028-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/05/2010] [Indexed: 01/08/2023] Open
Abstract
Live-attenuated vaccination with simian immunodeficiency virus (SIV) SIVmac239Deltanef is the most successful vaccine product tested to date in macaques. However, the mechanisms that explain the efficacy of this vaccine remain largely unknown. We utilized an ex vivo viral suppression assay to assess the quality of the immune response in SIVmac239Deltanef-immunized animals. Using major histocompatibility complex-matched Mauritian cynomolgus macaques, we did not detect SIV-specific functional immune responses in the blood by gamma interferon (IFN-gamma) enzyme-linked immunospot assay at select time points; however, we found that lung CD8(+) T cells, unlike blood CD8(+) T cells, effectively suppress virus replication by up to 80%. These results suggest that SIVmac239Deltanef may be an effective vaccine because it elicits functional immunity at mucosal sites. Moreover, these results underscore the limitations of relying on immunological measurements from peripheral blood lymphocytes in studies of protective immunity to HIV/SIV.
Collapse
Affiliation(s)
- Justin M. Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Jennifer J. Lhost
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Melisa L. Budde
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Caitlin E. Macnair
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Madelyn K. Weiker
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Emma Gostick
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Thomas C. Friedrich
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Karl W. Broman
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - David A. Price
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| |
Collapse
|
30
|
Mechanism of protection of live attenuated simian immunodeficiency virus: coevolution of viral and immune responses. AIDS 2010; 24:637-48. [PMID: 20186034 DOI: 10.1097/qad.0b013e328337795a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Abstract
PURPOSE OF REVIEW To summarize recent progress in the development of adjuvants with a special focus on adjuvants that enhance B-cell responses to protein-based vaccines. Both established and new experimental approaches are described and also briefly we discuss how adjuvants and virus-based vaccines interact with the immune system. RECENT FINDINGS Two new adjuvants were recently approved for human applications and many others are in preclinical or clinical testing. Significant advances were made to describe the mechanism of action of adjuvants. For example, aluminum hydroxide salts were shown to engage Nalp3, a member of the cytosolic NOD-like receptors and activation of B cells via invariant natural killer cell presentation of alpha-galactosylceramide was described. The effects of Toll-like receptor ligands on B-cell differentiation were further characterized and a peptide derived from IPS-1, a cytosolic signaling molecule, was shown to provide adjuvant effect. Stimulation of protective antibodies against HIV-1 may require extensive antibody affinity maturation, thus long-term exposure or repeated administration of antigen may be needed to induce effective B-cell responses. SUMMARY Advances in our understanding of how specific signaling pathways link innate and adaptive immunity provides a basis for the design of improved adjuvants to promote broad and potent B-cell responses.
Collapse
|
32
|
Multi-low-dose mucosal simian immunodeficiency virus SIVmac239 challenge of cynomolgus macaques immunized with "hyperattenuated" SIV constructs. J Virol 2009; 84:2304-17. [PMID: 20032177 DOI: 10.1128/jvi.01995-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperattenuated simian immunodeficiency virus SIVmac239-derived constructs Delta5-CMV and Delta6-CCI are an effort to render SIV incapable of, in practical terms, both reversion and recombination while maintaining the immune features of SIV as a retrovirus. Primary inoculation of cynomolgus macaques with 10(8) 50% tissue culture infective doses (TCID(50)) of Delta5-CMV or Delta6-CCI induced low-level humoral and cellular responses detectable in the absence of measureable in vivo replication. The first of three DNA boosts resulted in elevated gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) responses to Gag, Pol, and Env in the Delta5-CMV vaccine group compared to the Delta6-CCI vaccine group (P = 0.001). Weekly intrarectal challenge with a low dose of SIVmac239 followed by a dose escalation was conducted until all animals became infected. The mean peak viral load of the Delta5-CMV-vaccinated animals (3.7 x 10(5) copies/ml) was approximately 1 log unit lower than that of the control animals. More dramatically, the viral load set point of these animals was decreased by 3 log units compared to that of the controls (<50 versus 1.64 x 10(4) copies/ml; P < 0.0001). Seventy-five percent (6/8) of vaccine recipients controlled virus below 1,000 copies/ml for at least 6 months, with a subset controlling virus and maintaining substantial CD4 T-cell counts for close to 2 years of follow-up. The correlates of protection from SIV disease progression may lie in the rapidity and protective value of immune responses that occur early in primary SIV infection. Prior immunization with hyperattenuated SIVmac239, even if sterilizing immunity is not achieved, may allow a more advantageous host response.
Collapse
|
33
|
Disruption of an env tyrosine-dependent sorting signal does not affect susceptibility of HIV-1 to cytotoxic T lymphocytes. AIDS 2009; 23:1449-51. [PMID: 19564727 DOI: 10.1097/qad.0b013e32832dbf91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Haut LH, Ertl HCJ. Obstacles to the successful development of an efficacious T cell-inducing HIV-1 vaccine. J Leukoc Biol 2009; 86:779-93. [PMID: 19597003 DOI: 10.1189/jlb.0209094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An efficacious vaccine to HIV-1 is direly needed to stem the global pandemic. Immunogens that elicit broadly cross-neutralizing antibodies to HIV-1 remain elusive, and thus, most HIV-1 vaccine efforts are focusing on induction of T cells. The notion that T cells can mediate protection against HIV-1 has been called into question by the failure of the STEP trial, which was designed to test this concept by the use of an E1-deleted Ad vaccine carrier. Lack of efficacy of the STEP trial vaccine underscores our limited knowledge about correlates of immune protection against HIV-1 and stresses the need for an enhanced commitment to basic research, including preclinical and clinical vaccine studies. In this review, we discuss known correlates of protection against HIV-1 and different vaccine strategies that have been or are being explored to induce such correlates, focusing on T cell-inducing vaccines and particularly on Ad vectors.
Collapse
Affiliation(s)
- Larissa Herkenhoff Haut
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
35
|
Salha MD, Cheynier R, Halwani R, McGrath H, Langaee TY, Yassine Diab B, Fournier J, Parenteau M, Edgar J, Ko D, Sherring A, Bogdanovic D, Sekaly RP, Rud EW. Persistence of restricted CD4 T cell expansions in SIV-infected macaques resistant to SHIV89.6P superinfection. Virology 2008; 377:239-47. [PMID: 18570962 DOI: 10.1016/j.virol.2008.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/29/2008] [Accepted: 04/24/2008] [Indexed: 12/11/2022]
Abstract
Attempts to evaluate the protective effect of live attenuated SIV vaccine strains have yielded variable results depending on the route of immunization, the level of attenuation, the level of divergence between the vaccine candidate and the challenge. The protective mechanisms induced by these vaccines are still not well understood. In an effort to address whether the diversity of the CD4+ T cell repertoire in cynomolgus macaques plays a role in the immunological protection following SIVmacC8 infection, we have performed a longitudinal follow-up of the CD4 repertoire by heteroduplex tracking assay in macaques mock-infected or infected with either the attenuated SIVmacC8 or its homologous SIVmacJ5 and challenged with simian-human immunodeficiency virus (SHIV89.6P). Viral load and CD4 absolute counts were determined in these animals and the presence of SHIV89.6P virus in challenged animals was evaluated by PCR and serology. In all macaques that were protected against the challenging virus, we demonstrated a reduced diversity in the CD4+ TRBV repertoire and a few dominant CD4+ T cell clones during early primary infection. In contrast, CD4 TRBV repertoire in unprotected macaques remained highly diverse. Moreover, some of the CD4 T cell clones that were expanded during primary SIV infection re-emerged after challenge suggesting their role in protection against the challenging virus. These results underline the importance of maintaining the CD4 T cell repertoire developed during acute infection and point to the restriction of the CD4 response to the vaccine as a correlate of protection.
Collapse
Affiliation(s)
- M-D Salha
- Department of Microbiology and Immunology, McGill University, Montreal, Canada PQ H3A 2B4
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wodarz D. Immunity and protection by live attenuated HIV/SIV vaccines. Virology 2008; 378:299-305. [PMID: 18586297 DOI: 10.1016/j.virol.2008.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/01/2008] [Accepted: 05/07/2008] [Indexed: 10/21/2022]
Abstract
Live attenuated virus vaccines have shown the greatest potential to protect against simian immunodeficiency virus (SIV) infection, a model for human immunodeficiency virus (HIV). Immunity against the vaccine virus is thought to mediate protection. However, it is shown computationally that the opposite might be true. According to the model, the initial growth of the challenge strain, its peak load, and its potential to be pathogenic is higher if immunity against the vaccine virus is stronger. This is because the initial growth of the challenge strain is mainly determined by virus competition rather than immune suppression. The stronger the immunity against the vaccine strain, the weaker its competitive ability relative to the challenge strain, and the lower the level of protection. If the vaccine virus does protect the host against a challenge, it is because the competitive interactions between the viruses inhibit the initial growth of the challenge strain. According to these arguments, an inverse correlation between the level of attenuation and the level of protection is expected, and this has indeed been observed in experimental data.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolution, 321 Steinhaus Hall, University of California, Irvine CA 92697, USA.
| |
Collapse
|
37
|
Koff WC, Parks CL, Berkhout B, Ackland J, Noble S, Gust ID. Replicating viral vectors as HIV vaccines Summary Report from IAVI Sponsored Satellite Symposium, International AIDS Society Conference, July 22, 2007. Biologicals 2008; 36:277-86. [PMID: 18555698 DOI: 10.1016/j.biologicals.2008.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/19/2008] [Indexed: 10/21/2022] Open
Abstract
At the International AIDS Society Conference on Pathogenesis, Treatment and Prevention held in Sydney, Australia, in July 2007, the International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled 'Accelerating the Development of Replicating Viral Vectors for AIDS Vaccines.' Its purpose was to highlight the rationale for accelerating the development of replicating viral vectors for use as vaccines against HIV-1, and to bring together vaccine scientists, regulatory officials, and public health specialists from industrialized and developing nations to discuss the major issues facing the development and testing of replicating viral vector-based vaccines.
Collapse
Affiliation(s)
- W C Koff
- International AIDS Vaccine Initiative, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
38
|
Das AT, Klaver B, Centlivre M, Harwig A, Ooms M, Page M, Almond N, Yuan F, Piatak M, Lifson JD, Berkhout B. Optimization of the doxycycline-dependent simian immunodeficiency virus through in vitro evolution. Retrovirology 2008; 5:44. [PMID: 18533993 PMCID: PMC2443169 DOI: 10.1186/1742-4690-5-44] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/05/2008] [Indexed: 12/04/2022] Open
Abstract
Background Vaccination of macaques with live attenuated simian immunodeficiency virus (SIV) provides significant protection against the wild-type virus. The use of a live attenuated human immunodeficiency virus (HIV) as AIDS vaccine in humans is however considered unsafe because of the risk that the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. We earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (dox). Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient dox administration. Since the effectiveness and safety of such a conditionally live virus vaccine should be tested in macaques, we constructed a similar dox-dependent SIV variant. The Tat-TAR transcription control mechanism in this virus was inactivated through mutation and functionally replaced by the dox-inducible Tet-On regulatory system. This SIV-rtTA variant replicated in a dox-dependent manner in T cell lines, but not as efficiently as the parental SIVmac239 strain. Since macaque studies will likely require an efficiently replicating variant, we set out to optimize SIV-rtTA through in vitro viral evolution. Results Upon long-term culturing of SIV-rtTA, additional nucleotide substitutions were observed in TAR that affect the structure of this RNA element but that do not restore Tat binding. We demonstrate that the bulge and loop mutations that we had introduced in the TAR element of SIV-rtTA to inactivate the Tat-TAR mechanism, shifted the equilibrium between two alternative conformations of TAR. The additional TAR mutations observed in the evolved variants partially or completely restored this equilibrium, which suggests that the balance between the two TAR conformations is important for efficient viral replication. Moreover, SIV-rtTA acquired mutations in the U3 promoter region. We demonstrate that these TAR and U3 changes improve viral replication in T-cell lines and macaque peripheral blood mononuclear cells (PBMC) but do not affect dox-control. Conclusion The dox-dependent SIV-rtTA variant was optimized by viral evolution, yielding variants that can be used to test the conditionally live virus vaccine approach and as a tool in SIV biology studies and vaccine research.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Genescà M, Skinner PJ, Bost KM, Lu D, Wang Y, Rourke TL, Haase AT, McChesney MB, Miller CJ. Protective attenuated lentivirus immunization induces SIV-specific T cells in the genital tract of rhesus monkeys. Mucosal Immunol 2008; 1:219-28. [PMID: 19079181 PMCID: PMC3401012 DOI: 10.1038/mi.2008.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Live attenuated lentivirus immunization is the only vaccine strategy that elicits consistent protection against intravaginal challenge with pathogenic simian immunodeficiency virus (SIV). To determine the mechanism of protection in rhesus monkeys infected with attenuated simian-human immunodeficiency virus (SHIV)89.6, a detailed analysis of SIV Gag-specific T-cell responses in several tissues including the genital tract was performed. Six months after SHIV infection, antiviral T-cell responses were rare in the cervix; however, polyfunctional, cytokine-secreting, and degranulating SIV Gag-specific CD4(+) T cells were consistently found in the vagina of the immunized macaques. SIV-specific CD8(+) T cells were also detected in the vagina, blood, and genital lymph nodes of most of the animals. Thus, an attenuated SHIV vaccine induces persistent antiviral T cells in tissues, including the vagina, where these effector T-cell responses may mediate the consistent protection from vaginal SIV challenge observed in this model.
Collapse
Affiliation(s)
- M Genescà
- Center for Comparative Medicine, University of California, Davis, California, USA, California National Primate Research Center, University of California, Davis, California, USA
| | - PJ Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - KM Bost
- Center for Comparative Medicine, University of California, Davis, California, USA, California National Primate Research Center, University of California, Davis, California, USA
| | - D Lu
- California National Primate Research Center, University of California, Davis, California, USA
| | - Y Wang
- California National Primate Research Center, University of California, Davis, California, USA
| | - TL Rourke
- Center for Comparative Medicine, University of California, Davis, California, USA, California National Primate Research Center, University of California, Davis, California, USA
| | - AT Haase
- Department of Microbiology, University of Minnesota, St Paul, Minnesota, USA
| | - MB McChesney
- California National Primate Research Center, University of California, Davis, California, USA
| | - CJ Miller
- Center for Comparative Medicine, University of California, Davis, California, USA, California National Primate Research Center, University of California, Davis, California, USA, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA, Division of Infectious Diseases, School of Medicine, University of California, Davis, California, USA
| |
Collapse
|
40
|
Perspectives for a protective HIV-1 vaccine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:423-52. [PMID: 18086420 DOI: 10.1016/s1054-3589(07)56014-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Kumar A, Liu Z, Sheffer D, Smith M, Singh DK, Buch S, Narayan O. Protection of macaques against AIDS with a live attenuated SHIV vaccine is of finite duration. Virology 2007; 371:238-45. [PMID: 17988702 DOI: 10.1016/j.virol.2007.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 11/28/2022]
Abstract
Using background data that live vaccines against several viral pathogens are effective in inducing life-long protection against disease, we undertook studies in macaques to determine the duration of protection that two live SHIV vaccines could induce against AIDS. Earlier studies had established that macaques immunized once with a live vaccine and challenged 6 months later were protected, and that other macaques given two sequential inoculations of live vaccines were protected for at least 1 year. Protection was associated with persistence of the vaccine viruses. In this study, we sought to determine whether the duration of protection in macaques given a single inoculation of replication competent live vaccines would extend beyond 3 years. Two groups of four rhesus macaques were inoculated with two live SHIV vaccines, respectively. The viruses replicated transiently in all animals but at the 3-year time point, PCR analysis of PBMC did not detect DNA of either virus in any of the animals, and all were negative for CMI responses in the blood. All 8 animals succumbed to disease when challenged with pathogenic viruses.
Collapse
Affiliation(s)
- Anil Kumar
- Division of Pharmacology, School of Pharmacy, University of Missouri, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Craigo JK, Zhang B, Barnes S, Tagmyer TL, Cook SJ, Issel CJ, Montelaro RC. Envelope variation as a primary determinant of lentiviral vaccine efficacy. Proc Natl Acad Sci U S A 2007; 104:15105-10. [PMID: 17846425 PMCID: PMC1986620 DOI: 10.1073/pnas.0706449104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lentiviral envelope antigenic variation and associated immune evasion are believed to present major obstacles to effective vaccine development. Although this perception is widely assumed by the scientific community, there is, to date, no rigorous experimental data assessing the effect of increasing levels of lentiviral Env variation on vaccine efficacy. It is our working hypothesis that Env is, in fact, a primary determinant of vaccine effectiveness. We previously reported that a successful experimental attenuated equine infectious anemia virus vaccine, derived by mutation of the viral S2 accessory gene, provided 100% protection from disease after virulent virus challenge. Here, we sought to comprehensively test our hypothesis by challenging vaccinated animals with proviral strains of defined, increasing Env variation, using variant envelope SU genes that arose naturally during experimental infection of ponies with equine infectious anemia virus. The reference attenuated vaccine combined with these variant Env challenge strains facilitated evaluation of the protection conferred by ancestral immunogens, because the Env of the attenuated vaccine is a direct ancestor to the variant proviral strain Envs. The results demonstrated that ancestral Env proteins did not impart broad levels of protection against challenge. Furthermore, the results displayed a significant inverse linear correlation of Env divergence and protection from disease. This study demonstrates potential obstacles to the use of single isolate ancestral Env immunogens. Finally, these findings reveal that relatively minor Env variation can pose a substantial challenge to lentiviral vaccine immunity, even when attenuated vaccines are used that, to date, achieve the highest levels of vaccine protection.
Collapse
Affiliation(s)
- Jodi K. Craigo
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Baoshan Zhang
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Shannon Barnes
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Tara L. Tagmyer
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Sheila J. Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516
| | - Charles J. Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516
| | - Ronald C. Montelaro
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
- To whom correspondence should be addressed at:
Department of Molecular Genetics and Biochemistry, W1144 Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261. E-mail:
| |
Collapse
|
43
|
Tsukamoto T, Yuasa M, Yamamoto H, Kawada M, Takeda A, Igarashi H, Matano T. Induction of CD8+ cells able to suppress CCR5-tropic simian immunodeficiency virus SIVmac239 replication by controlled infection of CXCR4-tropic simian-human immunodeficiency virus in vaccinated rhesus macaques. J Virol 2007; 81:11640-9. [PMID: 17728225 PMCID: PMC2168777 DOI: 10.1128/jvi.01475-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Das AT, Klaver B, Harwig A, Vink M, Ooms M, Centlivre M, Berkhout B. Construction of a doxycycline-dependent simian immunodeficiency virus reveals a nontranscriptional function of tat in viral replication. J Virol 2007; 81:11159-69. [PMID: 17670816 PMCID: PMC2045552 DOI: 10.1128/jvi.01354-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the quest for an effective vaccine against human immunodeficiency virus (HIV), live attenuated virus vaccines have proven to be very effective in the experimental model system of simian immunodeficiency virus (SIV) in macaques. However, live attenuated HIV vaccines are considered unsafe for use in humans because the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. As an alternative approach, we earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (DOX). Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient DOX administration. Since the effectiveness and safety of such a conditionally live AIDS vaccine should be tested in macaques, we constructed a similar DOX-dependent SIVmac239 variant in which the Tat-TAR (trans-acting responsive) transcription control mechanism was functionally replaced by the DOX-inducible Tet-On regulatory mechanism. Moreover, this virus can be used as a tool in SIV biology studies and vaccine research because both the level and duration of replication can be controlled by DOX administration. Unexpectedly, the new SIV variant required a wild-type Tat protein for replication, although gene expression was fully controlled by the incorporated Tet-On system. This result suggests that Tat has a second function in SIV replication in addition to its role in the activation of transcription.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Academic Medical Center, Room K3-106, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Young KR, McBurney SP, Karkhanis LU, Ross TM. Virus-like particles: designing an effective AIDS vaccine. Methods 2007; 40:98-117. [PMID: 16997718 DOI: 10.1016/j.ymeth.2006.05.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 05/05/2006] [Indexed: 01/10/2023] Open
Abstract
Viruses that infect eukaryotic organisms have the unique characteristic of self-assembling into particles. The mammalian immune system is highly attuned to recognizing and attacking these viral particles following infection. The use of particle-based immunogens, often delivered as live-attenuated viruses, has been an effective vaccination strategy for a variety of viruses. The development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge, since HIV infects cells of the immune system causing severe immunodeficiency resulting in the syndrome known as AIDS. In addition, the ability of the virus to adapt to immune pressure and reside in an integrated form in host cells presents hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes against different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immune responses. However, while these vaccines stimulate immunity, challenged animals rarely clear the viral infection and the degree of attenuation directly correlates with protection from disease. Further, a live-attenuated vaccine has the potential to revert to a pathogenic form. Alternatively, virus-like particles (VLPs) mimic the viral particle without causing an immunodeficiency disease. VLPs are self-assembling, non-replicating, non-pathogenic particles that are similar in size and conformation to intact virions. A variety of VLPs for lentiviruses are currently in preclinical and clinical trials. This review focuses on our current status of VLP-based AIDS vaccines, regarding issues of purification and immune design for animal and clinical trials.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | |
Collapse
|
46
|
De Boer RJ. Understanding the failure of CD8+ T-cell vaccination against simian/human immunodeficiency virus. J Virol 2007; 81:2838-48. [PMID: 17202215 PMCID: PMC1865966 DOI: 10.1128/jvi.01914-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although CD8+ T cells play an important role in controlling viral infections, boosting specific CD8+ T cells by prophylactic vaccination with simian immunodeficiency virus (SIV) epitopes fails to provide sterilizing immunity. Viral replication rates and viral contraction rates after the peak viremia hardly depend on the presence of memory CD8+ T cells. To study these paradoxical findings, we parameterize novel mathematical models for acute SIV and human immunodeficiency virus infection. These models explain that failure of vaccination is due to the fact that effector/target ratios are too low during the viral expansion phase. Because CD8+ T cells require cell-to-cell contacts, immune protection requires high effector/target ratios at the primary site of infection. Effector/target ratios become favorable for immune control at the time of the peak in the viral load when the virus becomes limited by other factors, such as the availability of uninfected target cells. At the viral set point, effector/target ratios are much higher, and perturbations of the number of CD8+ effector cells have a large impact on the viral load. Such protective effector/target ratios are difficult to achieve with nucleic acid- or protein-based vaccines.
Collapse
Affiliation(s)
- Rob J De Boer
- Theoretical Biology UU, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
47
|
Shimizu Y, Inaba K, Kaneyasu K, Ibuki K, Himeno A, Okoba M, Goto Y, Hayami M, Miura T, Haga T. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques. Virology 2006; 361:68-79. [PMID: 17157892 DOI: 10.1016/j.virol.2006.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 08/22/2006] [Accepted: 10/28/2006] [Indexed: 11/18/2022]
Abstract
Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper (Th) type-1 responses against HIV-1. To evaluate the adjuvant effects of RANTES against HIV vaccine candidate in SHIV-macaque models, we genetically engineered a live-attenuated SHIV to express the RANTES gene (SHIV-RANTES) and characterized the virus's properties in vivo. After the vaccination, the plasma viral loads were same in the SHIV-RANTES-inoculated monkeys and the parental nef-deleted SHIV (SHIV-NI)-inoculated monkeys. SHIV-RANTES provided some immunity in monkeys by remarkably increasing the antigen-specific CD4+ Th cell-proliferative response and by inducing an antigen-specific IFN-gamma ELISpot response. The magnitude of the immunity in SHIV-RANTES-immunized animals, however, failed to afford greater protection against a heterologous pathogenic SHIV (SHIV-C2/1) challenge compared to control SHIV-NI-immunized animals. SHIV-RANTES immunized monkeys, elicited robust cellular CD4+ Th responses and IFN-gamma ELISpot responses after SHIV-C2/1 challenge. These findings suggest that the chemokine RANTES can augment vaccine-elicited, HIV-specific CD4+ T cell responses.
Collapse
Affiliation(s)
- Yuya Shimizu
- Department of Veterinary Microbiology, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Buffa V, Negri DRM, Leone P, Bona R, Borghi M, Bacigalupo I, Carlei D, Sgadari C, Ensoli B, Cara A. A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)HXB2 Rev/Env or codon-optimized HIV-1JR-FL gp120 generates durable immune responses in mice. J Gen Virol 2006; 87:1625-1634. [PMID: 16690927 DOI: 10.1099/vir.0.81706-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic immunization using viral vectors provides an effective means to elicit antigen-specific cellular immune responses. Several viral vectors have proven efficacious in inducing immune responses after direct injection in vivo. Among them, recombinant, self-inactivating lentiviral vectors are very attractive delivery systems, as they are able to efficiently transduce into and express foreign genes in a wide variety of mammalian cells. A self-inactivating lentiviral vector was evaluated for the delivery of human immunodeficiency virus 1 (HIV-1) envelope sequences in mice in order to elicit specific immune responses. With this aim, BALB/c mice were immunized with a single injection of self-inactivating lentiviral vectors carrying either the full-length HIV-1HXB2 Rev/Env (TY2-IIIBEnv) or the codon-optimized HIV-1JR-FL gp120 (TY2-JREnv) coding sequence. Both vectors were able to elicit specific cellular responses efficiently, as measured by gamma interferon ELISPOT and chromium-release assays, upon in vitro stimulation of splenocytes from BALB/c immunized mice. However, only the TY2-JREnv-immunized mice were able to elicit specific humoral responses, measured as anti-gp120 antibody production. These data provide the first evidence that a single, direct, in vivo administration of a lentiviral vector encoding a viral gene might represent a useful strategy for vaccine development.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Codon
- Female
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/immunology
- Gene Products, rev/metabolism
- Genes, env
- Genes, rev
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV Antibodies/blood
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp120/metabolism
- HIV Infections/prevention & control
- HIV-1/immunology
- Humans
- Immunization
- Injections, Intramuscular
- Interferon-gamma/metabolism
- Lentivirus/genetics
- Lentivirus/immunology
- Lentivirus/metabolism
- Mice
- Mice, Inbred BALB C
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/immunology
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Viviana Buffa
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Donatella R M Negri
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Pasqualina Leone
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Roberta Bona
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Martina Borghi
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ilaria Bacigalupo
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Davide Carlei
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Ensoli
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Andrea Cara
- National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
49
|
Baliga CS, van Maanen M, Chastain M, Sutton RE. Vaccination of mice with replication-defective human immunodeficiency virus induces cellular and humoral immunity and protects against vaccinia virus-gag challenge. Mol Ther 2006; 14:432-41. [PMID: 16713742 DOI: 10.1016/j.ymthe.2006.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 02/07/2006] [Accepted: 02/23/2006] [Indexed: 10/24/2022] Open
Abstract
Here we describe as a potential vaccine candidate a replication-defective HIV that encodes multiple viral genes in addition to a cassette that includes both truncated cyclin T1 and an autofluorescent protein. After confirming functionality of the cyclin T1, we immunized mice intramuscularly once or twice with the replication-defective HIV vector pseudotyped with vesicular stomatitis virus (VSV) G protein (RD HIV), a plasmid encoding CMV-driven gag (gag DNA), or adenovirus gag (Ad5-gag). Capsid-specific antibody titers following RD HIV immunization were >10(6)/ml and approximately equivalent to those induced by gag DNA and Ad5-gag. Antibodies against the autofluorescent protein and VSV G were also detected. After RD HIV immunization ELISpot assays demonstrated Gag-specific interferon-gamma (IFN-gamma) SFU equivalent to that of Ad5-gag and fourfold greater than that of gag DNA. HIV polymerase-specific IFN-gamma SFU values were similar, and boosting increased both antibody titers and the IFN-gamma response. Challenge using vaccinia virus (VV)-gag demonstrated significantly lower recoverable VV for RD HIV-immunized mice compared to controls. No significant differences were observed in vaccinated mice challenged with wild-type VV. This study demonstrates the efficacy of RD HIV in conferring HIV-specific immunity and protection in mice and suggests its potential use in humans as either a prophylactic or a therapeutic vaccine.
Collapse
Affiliation(s)
- Christopher S Baliga
- Department of Pediatrics, Section of Allergy and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
50
|
Koff WC, Johnson PR, Watkins DI, Burton DR, Lifson JD, Hasenkrug KJ, McDermott AB, Schultz A, Zamb TJ, Boyle R, Desrosiers RC. HIV vaccine design: insights from live attenuated SIV vaccines. Nat Immunol 2006; 7:19-23. [PMID: 16357854 DOI: 10.1038/ni1296] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The International AIDS Vaccine Initiative has established a consortium to elucidate mechanisms of protection conferred by live attenuated simian immunodeficiency virus vaccines in monkeys. Here, the strategies defining key components of the protective immune response elicited by these vaccines are discussed.
Collapse
Affiliation(s)
- Wayne C Koff
- International AIDS Vaccine Initiative, New York, New York 10038, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|