1
|
Estrada A, Rodriguez AC, Rodriguez G, Grant AH, Ayala-Marin YM, Arrieta AJ, Kirken RA. Phosphorylation of CrkL S114 induced by common gamma chain cytokines and T-cell receptor signal transduction. Sci Rep 2021; 11:16951. [PMID: 34417497 PMCID: PMC8379229 DOI: 10.1038/s41598-021-96428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/23/2021] [Indexed: 11/09/2022] Open
Abstract
T-cell activation and cellular expansion by common gamma chain cytokines such as Interleukin-2 is necessary for adaptive immunity. However, when unregulated these same pathways promote pathologies ranging from autoimmune disorders to cancer. While the functional role of Interleukin-2 and downstream effector molecules is relatively clear, the repertoire of phosphoregulatory proteins downstream of this pathway is incomplete. To identify phosphoproteins downstream of common gamma chain receptor, YT cells were radiolabeled with [32P]-orthophosphate and stimulated with Interleukin-2. Subsequently, tyrosine phosphorylated proteins were immunopurified and subjected to tandem mass spectrometry-leading to the identification of CrkL. Phosphoamino acid analysis revealed concurrent serine phosphorylation of CrkL and was later identified as S114 by mass spectrometry analysis. S114 was inducible through stimulation with Interleukin-2 or T-cell receptor stimulation. Polyclonal antibodies were generated against CrkL phospho-S114, and used to show its inducibility by multiple stimuli. These findings confirm CrkL as an Interleukin-2 responsive protein that becomes phosphorylated at S114 by a kinase/s downstream of PI3K and MEK/ERK signaling.
Collapse
Affiliation(s)
- Armando Estrada
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Alejandro C Rodriguez
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Alice H Grant
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Yoshira M Ayala-Marin
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Amy J Arrieta
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Robert A Kirken
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
2
|
Sharma P, Plant M, Lam SK, Chen Q. Kinetic analysis of antibody binding to integral membrane proteins stabilized in SMALPs. BBA ADVANCES 2021; 1:100022. [PMID: 37082021 PMCID: PMC10074945 DOI: 10.1016/j.bbadva.2021.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fundamental importance of membrane protein (MP) targets in central biological and cellular events has driven a marked increase in the use of membrane mimetics for exploring these proteins as therapeutic targets. The main challenge associated with biophysical analysis of membrane protein is the need for detergent extraction from the bilayer environment, which in many cases causes the proteins to become insoluble, unstable or display altered structure or activity. Recent technological advances have tried to limit the exposure of purified membrane protein to detergents. One such method involves the amphipathic co-polymer of styrene and maleic acid (SMA), which can release lipids and integral membrane proteins into water soluble native particles (or vesicles) termed SMALPs (Styrene Maleic Acid Lipid Particles). In this study, assay conditions that leverage SMA for membrane protein stabilization were developed to perform kinetic analysis of antibody binding to integral membrane protein and complexes in SMALPs in both purified and complex mixture settings using multiple biosensor platforms. To develop a robust and flexible platform using SMALPs technology, we optimized various SPR assay formats to analyze SMALPs produced with cell membrane pellets as well as whole cell lysates from the cell lines overexpressing membrane protein of interest. Here we emphasize the extraction of model membrane proteins of diverse architecture and function from native environments to encapsulate with SMALPs. Given the importance of selected membrane targets in central biological events and therapeutic relevance, MP-specific or tag-specific antibodies were used as a proof-of-principal to validate the SMALPs platform for ligand binding studies to support drug discovery or tool generation processes. MP-SMALPs that retain specific binding capability in multiple assay formats and biosensors, such as waveguide interferometry and surface plasmon resonance, would be a versatile platform for a wide range of downstream applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, 91320
- Corresponding author.
| | - Matthew Plant
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Cambridge, MA, 02141
| | - Sheung Kwan Lam
- Biologics, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Qing Chen
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, 91320
| |
Collapse
|
3
|
Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:3023-3036. [PMID: 31666306 DOI: 10.4049/jimmunol.1900556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
Abstract
Although the immune adaptor SH2 domain containing leukocyte phosphoprotein of 76 kDa (SLP-76) integrates and propagates the TCR signaling, the regulation of SLP-76 during the TCR signaling is incompletely studied. In this article, we report that SLP-76 interacts with the small ubiquitin-like modifier (SUMO) E2 conjugase Ubc9 and is a substrate for Ubc9-mediated SUMOylation in human and mouse T cells. TCR stimulation promotes SLP-76-Ubc9 binding, accompanied by an increase in SLP-76 SUMOylation. Ubc9 binds to the extreme C terminus of SLP-76 spanning residues 516-533 and SUMOylates SLP-76 at two conserved residues K266 and K284. In addition, SLP-76 and Ubc9 synergizes to augment the TCR-mediated IL-2 transcription by NFAT in a manner dependent of SUMOylation of SLP-76. Moreover, although not affecting the TCR proximal signaling events, the Ubc9-mediated SUMOylation of SLP-76 is required for TCR-induced assembly of Ubc9-NFAT complex for IL-2 transcription. Together, these results suggest that Ubc9 modulates the function of SLP-76 in T cell activation both by direct interaction and by SUMOylation of SLP-76 and that the Ubc9-SLP-76 module acts as a novel regulatory complex in the control of T cell activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Christopher E Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and.,Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China;
| |
Collapse
|
4
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
Affiliation(s)
- Evelyn Gerth
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Wu HJ, Bondada S. CD72, a coreceptor with both positive and negative effects on B lymphocyte development and function. J Clin Immunol 2008; 29:12-21. [PMID: 19067131 DOI: 10.1007/s10875-008-9264-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION B lymphocytes remain in a resting state until activated by antigenic stimuli through interaction with the B cell receptor (BCR). Coreceptors on B cells can modulate the thresholds for signaling through the BCR for growth and differentiation. CD72 is a B cell coreceptor that has been shown to interact with CD100, a semaphorin, and to enhance BCR signaling. DISCUSSION CD72 ligation induces a variety of early signaling events such as activation of the Src kinases Blk and Lyn and the non-src kinase Btk leading to activation of the mitogen-activated protein (MAP) kinases, events usually associated with positive signaling. CD72 signals can enable Btk-deficient B cells to overcome their unresponsiveness to BCR signaling. On the other hand, BCR-mediated signals are enhanced in CD72-deficient cells but are reduced in CD100 null cells. The dual effects of CD72 on B cells can be explained by its association with positive and negative signaling molecules. Thus, CD72 interacts with SHP-1, an SH2-domain containing protein tyrosine phosphatase, a negative regulator of signaling, and Grb2, an adaptor protein associated with the Ras/MAPK pathway. Ligation of CD72 also triggered its association with CD19, a positive modulator of B cell receptor signaling. We propose a dual signaling hypothesis to explain the growth and differentiation promoting properties of CD72. Deficiency in either CD72 or CD100 leads to autoimmunity in mouse models. CD72 expression and polymorphisms exhibit some association with autoimmune diseases such as lupus, Sjogren's syndrome, and type 1 diabetes.
Collapse
Affiliation(s)
- Hsin-Jung Wu
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
6
|
Maus M, Medgyesi D, Kövesdi D, Csuka D, Koncz G, Sármay G. Grb2 associated binder 2 couples B-cell receptor to cell survival. Cell Signal 2008; 21:220-7. [PMID: 18950707 DOI: 10.1016/j.cellsig.2008.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/22/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
B-cell fate during maturation and the germinal center reaction is regulated through the strength and the duration of the B-cell receptor signal. Signaling pathways discriminating between apoptosis and survival in B cells are keys in understanding adaptive immunity. Gab2 is a member of the Gab/Dos adaptor protein family. It has been shown in several model systems that Gab/Dos family members may regulate both the anti-apoptotic PI3-K/Akt and the mitogenic Ras/MAPK pathways, still their role in B-cells have not been investigated in detail. Here we studied the role of Gab2 in B-cell receptor mediated signaling. We have shown that BCR crosslinking induces the marked phosphorylation of Gab2 through both Lyn and Syk kinases. Subsequently Gab2 recruits p85 regulatory subunit of PI3-K, and SHP-2. Our results revealed that Ig-alpha/Ig-beta, signal transducing unit of the B-cell receptor, may function as scaffold recruiting Gab2 to the signalosome. Overexpression of Gab2 in A20 cells demonstrated that Gab2 is a regulator of the PI3-K/Akt but not that of the Ras/MAPK pathway in B cells. Accordingly to the elevated Akt phosphorylation, overexpression of wild-type Gab2 in A20 cells suppressed Fas-mediated apoptosis, and enhanced BCR-mediated rescue from Fas-induced cell death. Although PH-domain has only a stabilizing effect on membrane recruitment of Gab2, it is indispensable in mediating its anti-apoptotic effect.
Collapse
Affiliation(s)
- Máté Maus
- Department of Immunology at Eötvös Loránd University, Pázmány Péter sétány. 1/c, Budapest, 1117, Hungary
| | | | | | | | | | | |
Collapse
|
7
|
Chini CC, Leibson PJ. Signal transduction during natural killer cell activation. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 9:Unit 9.16. [PMID: 18770753 DOI: 10.1002/0471142956.cy0916s14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding of transmembrane signaling during NK-cell activation has greatly expanded during the past few years. The discovery and characterization of novel triggering and inhibitory receptors have revealed the complexity of these processes. This unit focuses on receptor-initiated signaling pathways that modulate NK functions. Establishing the roles of different signaling pathways in NK cells is a crucial step in the design of therapeutic approaches for selective enhancement or suppression of NK-cell activation.
Collapse
Affiliation(s)
- C C Chini
- Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | |
Collapse
|
8
|
Chini CC, Leibson PJ. Signal transduction during natural killer cell activation. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 11:Unit 11.9B. [PMID: 18432709 DOI: 10.1002/0471142735.im1109bs35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Natural killer (NK) cells are a subpopulation of lymphocytes that can mediate cytotoxicity of certain tumor cells, virus-infected cells, and normal cells. In addition to their cytotoxic potential, NK cells secrete a variety of cytokines and chemokines that can modulate the function, growth, and differentiation of other immune cells. These different responses are initiated by the interaction of specific NK surface receptors with defined soluble or cell-associated ligands. There are several different types of receptors on the NK cell surface including "triggering" receptors, adhesion molecules, cytokine receptors, and MHC-recognizing killer-cell inhibitory receptors. The functional response of an NK cell is the result of the integration of signals transduced by these different types of receptors. Some of these signaling pathways are similar to other lymphoid cells, but there are also unique features employed by NK cells. This overview focuses on receptor-initiated signaling pathways that modulate NK functions.
Collapse
Affiliation(s)
- C C Chini
- Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | |
Collapse
|
9
|
Pan Z, Shen Y, Ge B, Du C, McKeithan T, Chan WC. Studies of a germinal centre B-cell expressed gene, GCET2, suggest its role as a membrane associated adapter protein. Br J Haematol 2007; 137:578-90. [PMID: 17489982 PMCID: PMC2396194 DOI: 10.1111/j.1365-2141.2007.06597.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GCET2 (Germinal centre B-cell expressed transcript 2; also named HGAL) is a newly cloned gene that has been shown to be a useful marker for germinal centre (GC) B cells and GC B-cell derived malignancies, including follicular lymphomas and germinal centre B cell-like diffuse large B-cell lymphomas (GCB-DLBCLs), and is a useful prognosticator for DLBCLs. We report here the biochemical and biological properties of GCET2, which may help to determine its role in the GC reaction. GCET2 is constitutively localised in the plasma membrane but is excluded from lipid rafts. GCET2 does not have a transmembrane domain, and its membrane localisation is mediated by myristoylation and palmitoylation. GCET2 has five conserved putative tyrosine phosphorylation sites, and it can be phosphorylated following pervanadate treatment in B cells. By serially mutating the five tyrosines, the third and fourth tyrosines were found to be essential for GCET2 phosphorylation. GCET2 was phosphorylated when co-transfected into COS7 cells with protein tyrosine kinases (PTKs) LYN, LCK or SYK, and therefore it could be a substrate of these kinases in B cells. The third tyrosine site ((107)YENV) of GCET2 is a consensus GRB2 binding site, and GCET2 was found to associate with GRB2 through the third tyrosine following phosphorylation. Our data suggests that GCET2 may be an adaptor protein in GC B cells that transduces signals from GC B-cell membrane to the cytosol via its association with GRB2.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- B-Lymphocytes/metabolism
- Base Sequence
- Binding Sites
- COS Cells
- Cell Line, Tumor
- Cell Membrane/metabolism
- Chlorocebus aethiops
- GRB2 Adaptor Protein/metabolism
- Germinal Center/metabolism
- Humans
- Immunoblotting
- Intracellular Signaling Peptides and Proteins
- Lymphoma, Follicular/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mice
- Microfilament Proteins
- Microscopy, Confocal
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Sequence Alignment
- Transduction, Genetic/methods
- Transfection/methods
- Vanadates/pharmacology
Collapse
Affiliation(s)
- Zenggang Pan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
10
|
Jiang Y, Cheng H. Evidence of LAT as a dual substrate for Lck and Syk in T lymphocytes. Leuk Res 2007; 31:541-5. [PMID: 16938345 DOI: 10.1016/j.leukres.2006.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/08/2006] [Accepted: 07/01/2006] [Indexed: 11/29/2022]
Abstract
LAT is a linker protein essential for activation of T lymphocytes. Its rapid tyrosine-phosphorylation upon T cell receptor (TCR) stimulation recruits downstream signaling molecules for membrane targeting and activation. LAT is physically concentrated in cholesterol-enriched membrane microdomains and is known a substrate for Syk/Zap70 kinase. In this study, we demonstrate that LAT serves as a dual substrate for both Lck and Syk kinases. LAT phosphorylation is absent in Lck-deficient J.CaM1.6 cells and Lck is co-precipitated with LAT in pervanadate-activated Jurkat cells. Further, the in vitro kinase assay using purified Lck and LAT shows that Lck directly phosphorylates LAT. Both Lck and Syk, phosphorylate the ITAM-like motifs on LAT at Y171Y191, which is essential for induction of the interaction of LAT with downstream signaling molecules such as Grb2, PLC-gamma1 and c-Cbl, and for activation of MAPK-ERK. Collectively, our data indicate that LAT is an immediate substrate for Lck in one of the earliest events of T cell activation.
Collapse
Affiliation(s)
- Yixing Jiang
- Department of Medicine and Pennstate Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
11
|
Garcia MI, Kaserman J, Chung YH, Jung JU, Lee SH. Herpesvirus saimiri STP-A oncoprotein utilizes Src family protein tyrosine kinase and tumor necrosis factor receptor-associated factors to elicit cellular signal transduction. J Virol 2006; 81:2663-74. [PMID: 17182673 PMCID: PMC1866011 DOI: 10.1128/jvi.01733-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The saimiri transforming protein oncogene, called STP-A, of herpesvirus saimiri (HVS) subgroup A is not required for viral replication but is required for lymphoid cell immortalization in culture and lymphoma induction in primates. Here we report that STP-A interacts with cellular tumor necrosis factor receptor-associated factors (TRAF2 and TRAF6) and Src family protein tyrosine kinases (SF-PTKs) in a genetically and functionally separable manner and that each interaction constitutively elicits independent cellular signal transduction. The amino-terminal and central proline-rich motifs of STP-A were responsible for TRAF6 and TRAF2 interactions, respectively, and STP-A and TRAF6 interaction contributed to the majority of NF-kappaB activation, whereas STP-A and TRAF2 interaction played a minor role in NF-kappaB activation. On the other hand, interaction of STP-A with SF-PTKs through its SH2 binding motif effectively elicited AP-1 and NF-AT transcription factor activity. One cellular gene targeted by STP-A is intercellular adhesion molecule 1 (ICAM-1), which participates in a wide range of inflammatory and immune responses. Both TRAF and SF-PTK signal transductions induced by STP-A were required for the marked increase of ICAM-1 expression. These results demonstrate that the viral oncogene STP-A independently targets two vital cellular signaling molecules and that these activities likely contribute to HVS-mediated lymphoid cell immortalization in culture and lymphoma induction in primates.
Collapse
Affiliation(s)
- Maria I Garcia
- Tumor Virology Division, New England Primate Research Center, Harvard Medical School, P.O. Box 9102, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | | | |
Collapse
|
12
|
Chen L, Juszczynski P, Takeyama K, Aguiar RCT, Shipp MA. Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation. Blood 2006; 108:3428-33. [PMID: 16888096 DOI: 10.1182/blood-2006-03-013821] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The strength and duration of B-cell-receptor (BCR) signaling depends upon the balance between protein tyrosine kinase (PTK) activation and protein tyrosine phosphatase (PTP) inhibition. BCR-dependent activation of the SYK PTK initiates downstream signaling events and amplifies the original BCR signal. Although BCR-associated SYK phosphorylation is clearly regulated by PTPs, SYK has not been identified as a direct PTP substrate. Herein, we demonstrate that SYK is a major substrate of a tissue-specific and developmentally regulated PTP, PTP receptor-type O truncated (PTPROt). PTPROt is a member of the PTPRO family (also designated GLEPP, PTP-Ø, PTP-oc, and PTPu2), a group of highly conserved receptor-type PTPs that are thought to function as tumor suppressor genes. The overexpression of PTPROt inhibited BCR-triggered SYK tyrosyl phosphorylation, activation of the associated adaptor proteins SHC and BLNK, and downstream signaling events, including calcium mobilization and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activation. PTPROt overexpression also inhibited lymphoma cell proliferation and induced apoptosis in the absence of BCR cross-linking, suggesting that the phosphatase modulates tonic BCR signaling.
Collapse
Affiliation(s)
- Linfeng Chen
- Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
13
|
Gelkop S, Gish GD, Babichev Y, Pawson T, Isakov N. T cell activation-induced CrkII binding to the Zap70 protein tyrosine kinase is mediated by Lck-dependent phosphorylation of Zap70 tyrosine 315. THE JOURNAL OF IMMUNOLOGY 2006; 175:8123-32. [PMID: 16339550 DOI: 10.4049/jimmunol.175.12.8123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Zap70 protein tyrosine kinase controls TCR-linked signal transduction pathways and is critical for T cell development and responsiveness. Following engagement of TCR, the Zap70 undergoes phosphorylation on multiple tyrosine residues that are implicated in the regulation of its catalytic activity and interaction with signaling effector molecules downstream of the TCR. We have shown previously that the CT10 regulator of kinase II (CrkII) adapter protein interacts with tyrosine-phosphorylated Zap70 in TCR-engaged T cells, and now extend these studies to show that Tyr315 in the Zap70 interdomain B region is the site of interaction with CrkII. A point mutation of Tyr315 (Y315F) eliminated the CrkII-Zap70 interaction capacity. Phosphorylation of Tyr315 and Zap70 association with CrkII were both dependent upon the Lck protein tyrosine kinase. Previous studies demonstrated the Tyr315 is the Vav-Src homology 2 (SH2) binding site, and that replacement of Tyr315 by Phe impaired the function of Zap70 in TCR signaling. However, fluorescence polarization-based binding studies revealed that the CrkII-SH2 and the Vav-SH2 bind a phosphorylated Tyr315-Zap70-derived peptide with affinities of a similar order of magnitude (Kd of 2.5 and 1.02 microM, respectively). The results suggest therefore that the biological functions attributed to the association of Zap70 with Vav following T cell activation may equally reflect the association of Zap70 with CrkII, and further support a regulatory role for CrkII in the TCR-linked signal transduction pathway.
Collapse
Affiliation(s)
- Sigal Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
14
|
Ludanyi K, Gogolak P, Rethi B, Magocsi M, Detre C, Matko J, Rajnavolgyi E. Fine-tuning of helper T cell activation and apoptosis by antigen-presenting cells. Cell Signal 2005; 16:939-50. [PMID: 15157673 DOI: 10.1016/j.cellsig.2004.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
The role of antigen-presenting cells (APC) in regulating helper T cell responses and activation-induced cell death (AICD) was investigated in vitro. T cell activation was monitored by measuring the early rise of intracellular free calcium [Ca+]ic, mRNA and cell surface expression of activation and apoptotic molecules, the production of cytokines and the activation of transcription factors. Our results demonstrate that the unique characteristics of a given APC can modify the threshold, kinetics and magnitude of the T cell response. The rapid and sustained rise of intracellular free calcium correlated well with the extent of cytokine production and the expression of activation molecules. Fas-dependent AICD could be induced by the most potent antigen-presenting cell (2PK3) only. Our results demonstrate that the response and fate of effector/memory CD4+ helper T lymphocytes is highly dependent on the individual properties of the APC they encounter.
Collapse
Affiliation(s)
- Katalin Ludanyi
- Institute of Immunology, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Boulevard, Debrecen H-4012, Hungary
| | | | | | | | | | | | | |
Collapse
|
15
|
Lee SH, Chung YH, Cho NH, Gwack Y, Feng P, Jung JU. Modulation of T-cell receptor signal transduction by herpesvirus signaling adaptor protein. Mol Cell Biol 2004; 24:5369-82. [PMID: 15169900 PMCID: PMC419894 DOI: 10.1128/mcb.24.12.5369-5382.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because of its central regulatory role, T-cell receptor (TCR) signal transduction is a common target of viruses. We report here the identification of a small signaling protein, ORF5, of the T-lymphotropic tumor virus herpesvirus saimiri (HVS). ORF5 is predicted to contain 89 to 91 amino acids with an amino-terminal myristoylation site and six SH2 binding motifs, showing structural similarity to cellular LAT (linker for activation of T cells). Sequence analysis showed that, despite extensive sequence variation, the myristoylation site and SH2 binding motifs were completely conserved among 13 different ORF5 isolates. Upon TCR stimulation, ORF5 was efficiently tyrosine phosphorylated and subsequently interacted with cellular SH2-containing signaling proteins Lck, Fyn, SLP-76, and p85 through its tyrosine residues. ORF5 expression resulted in the marked augmentation of TCR signal transduction activity, evidenced by increased cellular tyrosine phosphorylation, intracellular calcium mobilization, CD69 surface expression, interleukin-2 production, and activation of the NF-AT, NF-kappa B, and AP-1 transcription factors. Despite its structural similarity to cellular LAT, however, ORF5 could only partially substitute for LAT function in TCR signal transduction. These results demonstrate that HVS utilizes a novel signaling protein, ORF5, to activate TCR signal transduction. This activation probably facilitates viral gene expression and, thereby, persistent infection.
Collapse
Affiliation(s)
- Sun-Hwa Lee
- Department o fMicrobiology and Molecular Genetics and Tumor Virology Division, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Beverley Wilkinson
- Molecular Immunology Section, Department of Immunology, Division of Investigative Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
17
|
Abstract
Recent advances have been made in understanding the basis of T-cell signaling with the identification of hematopoeitic-specific adaptor proteins, or molecular scaffolds that facilitate protein complex formation and the integration of signals from the surface of T cells. Their potential relevance as targets in the modulation of transplantation relates to their immune-cell-specific expression and their ability to integrate signals needed for T-cell/APC conjugate formation, cytokine production and the clonal expansion of T cells. While LAT, GADS and SLP-76 are needed for TcR-induced cytokine production, the adaptors ADAP, VAV and SKAP-55 play specialized roles in the regulation of integrin adhesion and conjugation. Given the importance of these functions to the reactivity of T cells to allodeterminants of tissue grafts (GvH), and in the recognition and destruction of leukemic cells (GvL), these adaptors represent a new generation of potential targets in the modulation of transplantation.
Collapse
Affiliation(s)
- Christopher E Rudd
- Department of Immunology, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|
18
|
Pullar CE, Morris PJ, Wood KJ. Altered proximal T-cell receptor signalling events in mouse CD4+ T cells in the presence of anti-CD4 monoclonal antibodies: evidence for reduced phosphorylation of Zap-70 and LAT. Scand J Immunol 2003; 57:333-41. [PMID: 12662296 DOI: 10.1046/j.1365-3083.2003.01241.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anti-CD4 monoclonal antibodies are potential therapeutic agents for the prevention of autoimmune disease and treatment of rejection after organ transplantation and are capable of both restoring tolerance to self-antigens and inducing tolerance to antigens introduced under the cover of the antibody therapy in vivo. Tolerance to donor alloantigens can be induced in vivo by administering donor alloantigen in combination with either depleting (YTA 3.1) or nondepleting (YTS 177) anti-CD4, 28 days before heart transplantation in the mouse. The effect of anti-CD4 on proximal T-cell receptor (TCR) signalling pathways and proliferation was investigated in vitro and in vivo in the presence and absence of YTA 3.1 or YTS 177. Anti-CD4 was found to perturb proximal signalling events upon TCR/CD3 ligation, resulting in reduced tyrosine phosphorylation of Zap-70 and LAT (linker for activation of T cells) and reduced association of tyrosine-phosphorylated LAT with lck. This ultimately resulted in severely reduced proliferation of the responding CD4+ T cells. The signalling profile of the anti-CD4-treated cells resembled that of anergic T cells. This could be a result of a common mechanism involving perturbation in the formation of the central supramolecular activation cluster of the immunological synapse by impaired recruitment of CD4 and CD28, thereby resulting in severely reduced lck activation.
Collapse
Affiliation(s)
- C E Pullar
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
19
|
Abstract
The two-signal theory of T-cell activation dictates that optimal T-cell responses are determined by a least two signals, the primary signal provided by the antigen-receptor complex (TCR/CD3) and the second signal provided by a costimulatory receptor. Recent studies have underlined the importance of in trans costimulation via CD28 in the regulation of transplant rejection. Previous studies have emphasized the ability of CD28 to operate in cis in the amplification of signaling through the T-cell receptor (TCR). Our recent work has demonstrated that CD28 can activate the lipid kinase phosphatidylinositol 3-kinase (PI-3K) and can cooperate with adapters Vav and SLP-76 to influence the induction of interleukin (IL)-2 and IL-4 transcription in the absence of TCR ligation. CD28-PI-3K binding and CD28-VAV/SLP-76 cooperativity provide a pathway to account for in trans costimulation in T-cell immunity.
Collapse
Affiliation(s)
- Christopher E Rudd
- Department of Haematology, Division of Investigative Sciences, Faculty of Medicine, Imperial College School of Science, Technology and Medicine, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
20
|
Abstract
Host defense against pathogenic microbes requires dramatically different responses, depending on the character of the pathogen and on the tissue under attack. Central to the immune system's ability to mobilize a response to an invading pathogen is its ability to distinguish self from nonself. The host has evolved both innate and adaptive mechanisms to respond to and eliminate pathogenic microbes. Both of these mechanisms include self-nonself discrimination. This overview describes key mechanisms used by the immune system to respond to invading microbes and identifies settings in which disturbed immune function exacerbates tissue injury.
Collapse
Affiliation(s)
- David D Chaplin
- University of Alabama at Birmingham, 845 19th Street South, BBRB 276/11, Birmingham, AL 35294-2170, USA
| |
Collapse
|
21
|
Bernard F, Jaleco S, Dardalhon V, Steinberg M, Yssel H, Noraz N, Taylor N, Kinet S. Ex vivo isolation protocols differentially affect the phenotype of human CD4+ T cells. J Immunol Methods 2002; 271:99-106. [PMID: 12445733 DOI: 10.1016/s0022-1759(02)00412-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Leukemic T cell lines have facilitated signal transduction studies but their physiological relevance is restricted. The use of primary T lymphocytes overcomes this limitation but it has long been speculated that methodological aspects of blood collection and the isolation procedure modify the phenotype of the cell. Here we demonstrate that several characteristics of human peripheral T cells are affected by the selection conditions. A significantly higher induction of the chemokine receptor CXCR4 was observed on CD4+ lymphocytes isolated by sheep red blood cell (SRBC) rosetting and CD4 MicroBeads as compared with positively selected CD4+ cells where the antibody/bead complex was immediately detached. These latter cells expressed CXCR4 at levels equivalent to that observed on CD4+ lymphocytes obtained by negative antibody-mediated selection. Furthermore, CD4+ cells isolated by SRBC rosetting and CD4 MicroBeads formed aggregates upon in vitro culture. CD4+ lymphocytes obtained by SRBC rosetting as well as those isolated following positive selection demonstrated basal phosphorylation of the extracellular signal-regulated kinase (ERK)-2. Altogether these data suggest that certain discrepancies concerning signal transduction in primary human T cells can be attributed to the selection conditions. Thus, it is essential to establish the parameters influenced by the isolation protocol in order to fully interpret T cell responses to antigens, chemokines, and cytokines.
Collapse
Affiliation(s)
- Frédéric Bernard
- Institut de Génétique Moléculaire de Montpellier, UMR 5535/IFR 22, 1919 Route de Mende, F34293 Montpellier, Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu S, Lam KP. Delayed cellular maturation and decreased immunoglobulin kappa light chain production in immature B lymphocytes lacking B cell linker protein. J Exp Med 2002; 196:197-206. [PMID: 12119344 PMCID: PMC2193924 DOI: 10.1084/jem.20020172] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
B cell linker (BLNK) protein is a component of the B cell receptor (BCR) signaling pathway and BLNK(-/-) mice have a block in B lymphopoiesis at the pro-B/pre-B cell stage. To study the effect of BLNK mutation at later stages of B cell development, we introduce an innocuous transgenic BCR into BLNK(-/-) mice and show that two populations of immature B cells distinguishable by their IgM(low (lo)) and IgM(high (hi)) phenotypes are found in the bone marrow of these mice in contrast to a single population of IgM(hi) cells found in control BCR-transgenic BLNK(+/+) mice. The mutant IgM(lo) and IgM(hi) cells are at an earlier developmental stage compared with the control IgM(hi) cells as indicated by their differential expression of CD43, B220, and major histocompatibility complex class II antigens and their timing of generation in culture. Thus, in the absence of BLNK the differentiation of immature B cells is delayed. Furthermore, mutant IgM(lo) cells produce equivalent level of immunoglobulin (Ig) mu but less Ig kappa proteins than control and mutant IgM(hi) cells and this defect is attributed to a decrease in the amount of kappa transcripts being generated. Finally, splenic B cells in BCR-transgenic BLNK(-/-) mice are predominantly of the transitional B cell phenotype and are rapidly lost from the peripheral B cell pool. Taken together, the data suggest a role for BLNK and perhaps BCR signaling, in the regulation of kappa light chain expression and continued immature B cell differentiation.
Collapse
Affiliation(s)
- Shengli Xu
- Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | |
Collapse
|
23
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
24
|
Shen R, Ouyang YB, Qu CK, Alonso A, Sperzel L, Mustelin T, Kaplan MH, Feng GS. Grap negatively regulates T-cell receptor-elicited lymphocyte proliferation and interleukin-2 induction. Mol Cell Biol 2002; 22:3230-6. [PMID: 11971956 PMCID: PMC133801 DOI: 10.1128/mcb.22.10.3230-3236.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grb-2-related adaptor protein (Grap) is a Grb2-like SH3-SH2-SH3 adaptor protein with expression restricted to lymphoid tissues. Grap(-/-) lymphocytes isolated from targeted Grap-deficient mice exhibited enhanced proliferation, interleukin-2 production, and c-fos induction in response to mitogenic T-cell receptor (TCR) stimulation, compared to wild-type cells. Ectopic expression of Grap led to a suppression of Elk-1-directed transcription induced by the Ras/Erk pathway, without having effects on gene expression mediated by Jnk and p38 mitogen-activated protein kinases. Together, these data suggest that Grap, unlike Grb2, acts as a negative regulator of TCR-stimulated intracellular signaling by downregulating signal relay through the Ras/Erk pathway.
Collapse
Affiliation(s)
- Randy Shen
- Program in Signal Transduction Research, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Liping Geng
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
26
|
Umehara H, Inoue H, Huang J, Kono T, Minami Y, Tanaka Y, Okazaki T, Mimori T, Bloom ET, Domae N. Role for adapter proteins in costimulatory signals of CD2 and IL-2 on NK cell activation. Mol Immunol 2002; 38:587-96. [PMID: 11792427 DOI: 10.1016/s0161-5890(01)00099-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Natural killer (NK) cells participate in both innate and adaptive immunity through the prompt secretion of cytokines and ability to lyse virally infected cells or tumor cells. Triggering of NK cells requires aggregation of surface receptors such as CD2 and CD16, and NK cell activity can be augmented in vitro by stimulation with IL-2. In this study, we examined the role of adapter proteins in the increased NK activation following CD2 crosslinking and IL-2 stimulation of NK3.3 cells. NK3.3 cells lysed NK-sensitive K562 cells in a CD2-dependent manner, and IL-2 markedly enhanced lytic activity in a 4h cytotoxic assay. IL-2 also enhanced spontaneous and CD2-mediated granule exocytosis from NK3.3 cells. CD2 crosslinking markedly induced tyrosine phosphorylation of Cbl associated with Grb2 or CrkL, Shc and LAT, compared with IL-2 stimulation. However, costimulation of IL-2 with CD2 crosslinking remarkably enhanced associations of Grb2-Shc and CrkL-Cbl, compared to IL-2 stimulation or CD2 crosslinking alone. In vitro binding studies using GST-fusion proteins revealed that interactions of Grb2-Shc and CrkL-Cbl were mediated through each SH2 domain in tyrosine phosphorylation-dependent manner. Furthermore, CD2 crosslinking, but not IL-2 stimulation, markedly induced tyrosine phosphorylation of LAT. Thus, tyrosine phosphorylation of different adapter proteins and consequent interactions between signaling molecules described here may explain the molecular mechanisms of the additive effects of IL-2 stimulation and CD2 crosslinking on NK cell activation.
Collapse
Affiliation(s)
- Hisanori Umehara
- Department of Internal Medicine, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Raab M, Pfister S, Rudd CE. CD28 signaling via VAV/SLP-76 adaptors: regulation of cytokine transcription independent of TCR ligation. Immunity 2001; 15:921-33. [PMID: 11754814 DOI: 10.1016/s1074-7613(01)00248-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since CD28 provides cosignals in T cell responses, a key question is whether the coreceptor operates exclusively via TCRzeta/CD3 or also operates as an independent signaling unit. In this study, we show that CD28 can cooperate with VAV/SLP-76 adaptors to upregulate interleukin 2/4 transcription independently of TCR ligation. CD28 signaling is dependent on VAV/SLP-76 complex formation and induces membrane localization of these complexes. CD28-VAV/SLP-76 also functions in nonlymphoid cells to promote nuclear entry of NFAT, indicating that these adaptors are the only lymphoid components needed for this pathway. Further downstream, CD28-VAV/SLP-76 synergizes with Rac1 and causes F-actin remodelling proximal to receptor. Autonomous CD28 signaling may account for the distinct nature of the second signal and in trans amplification of T cell responses.
Collapse
Affiliation(s)
- M Raab
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
28
|
Gelkop S, Babichev Y, Isakov N. T cell activation induces direct binding of the Crk adapter protein to the regulatory subunit of phosphatidylinositol 3-kinase (p85) via a complex mechanism involving the Cbl protein. J Biol Chem 2001; 276:36174-82. [PMID: 11418612 DOI: 10.1074/jbc.m100731200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Crk adapter proteins are assumed to play a role in T lymphocyte activation because of their induced association with tyrosine-phosphorylated proteins, such as ZAP-70 and Cbl, and with the phosphatidylinositol 3kinase regulatory subunit, p85, following engagement of the T cell antigen receptor. Although the exact mechanism of interaction between these molecules has not been fully defined, it has been generally accepted that Crk, ZAP-70, and p85 interact with tyrosine-phosphorylated Cbl, which serves as a major scaffold protein in activated T lymphocytes. Our present results demonstrate a cell activation-dependent reciprocal co-immunoprecipitation of CrkII and p85 from lysates of Jurkat T cells and a direct binding of CrkII to p85 in an overlay assay. The use of bead-immobilized GST fusion proteins indicated a complex mechanism of interaction between CrkII and p85 involving two distinct and mutually independent regions in each molecule. A relatively high affinity binding of the CrkII-SH3(N) domain to p85 and the p85-proline-B cell receptor-proline (PBP) region to CrkII was observed in lysates of either resting or activated T cells. Direct physical interaction between the CrkII-SH3(N) and the p85-PBP domain was demonstrated using recombinant fusion proteins and was further substantiated by binding competition studies. In addition, immobilized fusion proteins possessing the CrkII-SH2 and p85-SH3 domains were found to pull down p85 and CrkII, respectively, but only from lysates of activated T cells. Nevertheless, the GST-CrkII-SH2 fusion protein was unable to mediate direct association with p85 from lysates of either resting or activated T cells. Our results support a model in which T cell activation dependent conformational changes in CrkII and/or p85 promote an initial direct or indirect low affinity interaction between the two molecules, which is then stabilized by a secondary high affinity interaction mediated by direct binding of the CrkII-SH3(N) to the p85-PBP domain.
Collapse
Affiliation(s)
- S Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
29
|
Abstract
Adapter proteins are well recognised as important molecular switches connecting immunoreceptors with intracellular signalling pathways. However, recent data suggest that homeostasis within the lymphatic system also depends on the coordinated activities of negative regulatory adapter proteins. These prevent activation of lymphocytes in the absence of externally applied signals and regulate termination/limitation of ongoing immune responses via different mechanisms.
Collapse
Affiliation(s)
- A Leo
- Blood Bank and Immunomodulation Laboratory, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| | | |
Collapse
|
30
|
Lakshmi Tamma SM, Wu Y, Toporovsky I, Lima V, Coico RF. IgD receptor-mediated signal transduction in T cells. Cell Immunol 2001; 207:110-7. [PMID: 11243700 DOI: 10.1006/cimm.2000.1747] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upregulation of immunoglobulin D-specific receptors (IgD-R) on CD4+ T cells may facilitate their interaction with specific carbohydrate moieties uniquely associated with membrane IgD on B cells. Previous studies have shown that upregulation of IgD-R facilitates cognate T-B cell interactions by mediating bidirectional signaling resulting in increased antibody responses and clonal expansion of antigen-specific T cells. Murine T hybridoma cells, 7C5, constitutively express IgD-R, as has been confirmed by staining with biotinylated IgD. Earlier studies have shown that inhibitors of protein tyrosine kinase (PTK) completely prevented upregulation of IgD-R in response to oligomeric IgD, suggesting that cross-linking of IgD-R may induce signal transduction and functional consequences through one or more PTK activation pathways, leading to upregulation of IgD-R. In the present study we show that cross-linking of IgD-R by oligomeric IgD indeed results in (a) T cell activation as seen by tyrosine phosphorylation of several intracellular proteins, (b) tyrosine phosphorylation of p56 Lck and PLC-gamma in 7C5 T hybridoma cells, and (c) phosphorylation of an approximately 29-kDa band that exhibits strong affinity for IgD. We analyzed tyrosine phosphorylation of p56 Lck and PLC-gamma in BALB/c splenic T cells that were exposed to oligomeric IgD both in vivo and in vitro. In vitro cross-linking as well as in vivo followed by in vitro cross-linking of IgD-R resulted in enhanced phosphorylation of p56 Lck and moderate tyrosine phosphorylation of PLC-gamma. These results suggest that interactions between IgD-R and IgD mediate signal transduction and support our previous findings that IgD-R+ T cells enhance cognate T cell-B cell interactions and antibody production.
Collapse
Affiliation(s)
- S M Lakshmi Tamma
- Department of Microbiology and Immunology, CUNY Medical School, New York, New York, 10031, USA
| | | | | | | | | |
Collapse
|
31
|
Marti F, Krause A, Post NH, Lyddane C, Dupont B, Sadelain M, King PD. Negative-feedback regulation of CD28 costimulation by a novel mitogen-activated protein kinase phosphatase, MKP6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:197-206. [PMID: 11123293 DOI: 10.4049/jimmunol.166.1.197] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR and CD28 costimulatory receptor-cooperative induction of T cell IL-2 secretion is dependent upon activation of mitogen-activated protein (MAP) kinases. Using yeast-hybrid technology, we cloned a novel CD28 cytoplasmic tail (CD28 CYT) interacting protein, MAP kinase phosphatase-6 (MKP6), which we demonstrate inactivates MAP kinases. Several lines of evidence indicate that MKP6 plays an important functional role in CD28 costimulatory signaling. First, in human peripheral blood T cells (PBT), expression of MKP6 is strongly up-regulated by CD28 costimulation. Second, transfer of dominant-negative MKP6 to PBT with the use of retroviruses primes PBT for the secretion of substantially larger quantities of IL-2, specifically in response to CD28 costimulation. A similar enhancement of IL-2 secretion is observed neither in response to TCR plus CD2 costimulatory receptor engagement nor in response to other mitogenic stimuli such as phorbol ester and ionomycin. Furthermore, this hypersensitivity to CD28 costimulation is associated with CD28-mediated hyperactivation of MAP kinases. Third, a retroviral transduced chimeric receptor with a CD28 CYT that is specifically unable to bind MKP6 costimulates considerably larger quantities of IL-2 from PBT than a similar transduced chimeric receptor that contains a wild-type CD28 CYT. Taken together, these results suggest that MKP6 functions as a novel negative-feedback regulator of CD28 costimulatory signaling that controls the activation of MAP kinases.
Collapse
Affiliation(s)
- F Marti
- T Cell Signal Transduction Laboratory, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lindholm CK, Frantz JD, Shoelson SE, Welsh M. Shf, a Shb-like adapter protein, is involved in PDGF-alpha-receptor regulation of apoptosis. Biochem Biophys Res Commun 2000; 278:537-43. [PMID: 11095946 DOI: 10.1006/bbrc.2000.3847] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent work has implicated the importance of adapter proteins in signal transduction. To identify homologues of the previously identified adapter protein Shb, database searches were performed. A Shb-like protein was found which we have named Shf. Shf contains an SH2 domain and four putative tyrosine phosphorylation sites and is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. The SH2 domain of Shf bound to the PDGF-alpha-receptor at tyrosine-720, but not to the PDGF-beta-receptor in PAE cells. Pervanadate induced tyrosine phosphorylation of Shf in NIH3T3 fibroblasts overexpressing this protein, whereas PDGF-AA alone had no detectable effect. NIH3T3 cells overexpressing Shf displayed significantly lower rates of apoptosis than control cells in the presence of PDGF-AA. Our findings suggest a role for the novel adapter Shf in PDGF-receptor signaling and regulation of apoptosis.
Collapse
Affiliation(s)
- C K Lindholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, S-75123, Sweden
| | | | | | | |
Collapse
|
33
|
Croze E, Usacheva A, Asarnow D, Minshall RD, Perez HD, Colamonici O. Receptor for activated C-kinase (RACK-1), a WD motif-containing protein, specifically associates with the human type I IFN receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5127-32. [PMID: 11046044 DOI: 10.4049/jimmunol.165.9.5127] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytoplasmic domain of the human type I IFN receptor chain 2 (IFNAR2c or IFN-alphaRbetaL) was used as bait in a yeast two-hybrid system to identify novel proteins interacting with this region of the receptor. We report here a specific interaction between the cytoplasmic domain of IFN-alphaRbetaL and a previously identified protein, RACK-1 (receptor for activated C kinase). Using GST fusion proteins encoding different regions of the cytoplasmic domain of IFN-alphaRbetaL, the minimum site for RACK-1 binding was mapped to aa 300-346. RACK-1 binding to IFN-alphaRbetaL did not require the first 91 aa of RACK-1, which includes two WD domains, WD1 and WD2. The interaction between RACK-1 and IFN-alphaRbetaL, but not the human IFN receptor chain 1 (IFNAR1 or IFN-alphaRalpha), was also detected in human Daudi cells by coimmunoprecipitation. RACK-1 was shown to be constitutively associated with IFN-alphaRbetaL, and this association was not effected by stimulation of Daudi cells with type I IFNs (IFN-beta1b). RACK-1 itself did not become tyrosine phosphorylated upon stimulation of Daudi cells with IFN-beta1b. However, stimulation of cells with either IFN-beta1b or PMA did result in an increase in detectable immunofluorescence and intracellular redistribution of RACK-1.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Aspartic Acid
- Cell Line
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- Humans
- Interferon Type I/metabolism
- Interferon Type I/pharmacology
- Intracellular Fluid/drug effects
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Membrane Proteins
- Peptide Mapping
- Precipitin Tests
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Receptor, Interferon alpha-beta
- Receptors for Activated C Kinase
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Receptors, Interferon/genetics
- Receptors, Interferon/isolation & purification
- Receptors, Interferon/metabolism
- Repetitive Sequences, Amino Acid/genetics
- Repetitive Sequences, Amino Acid/immunology
- Saccharomyces cerevisiae/genetics
- Tetradecanoylphorbol Acetate/pharmacology
- Tryptophan
- Tumor Cells, Cultured
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- E Croze
- Department of Immunology, Berlex Biosciences, Richmond CA 94804, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Xu S, Wong SC, Lam KP. Cutting edge: B cell linker protein is dispensable for the allelic exclusion of immunoglobulin heavy chain locus but required for the persistence of CD5+ B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4153-7. [PMID: 11035046 DOI: 10.4049/jimmunol.165.8.4153] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pre-B cell receptor (pre-BCR) and the BCR are required for B lymphopoiesis and for the allelic exclusion of Ig genes. Mice lacking B cell linker (BLNK) protein that is a component of the BCR signaling pathway have impaired B cell development. In this report, we show that allelic exclusion is intact in BLNK(-/-) mice harboring a V(H)12 transgene. This differs from mice lacking the tyrosine kinase Syk that is upstream of BLNK in BCR signaling and contrasts with mice lacking SLP-76 that is the equivalent adaptor molecule in TCR-signal transduction. We also show that, whereas most wild-type V(H)12-expressing B cells are CD5(+), the majority of the splenic V(H)12-expressing BLNK(-/-) B cells are CD5(-). A small population of V(H)12-expressing, BLNK(-/-) CD5(+) B cells is detectable in the peritoneal cavity of younger but not older mice. This suggests that BLNK deficiency affects not only the generation but also the persistence of B-1 cells.
Collapse
Affiliation(s)
- S Xu
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
35
|
Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL, Stone JC. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000; 1:317-21. [PMID: 11017103 DOI: 10.1038/79766] [Citation(s) in RCA: 298] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Ras signaling pathway plays a critical role in thymopoiesis and T cell activation, but the mechanism of Ras regulation is controversial. At least one mode of Ras regulation in T cells involves the messenger diacylglycerol (DAG). RasGRP, a Ras activator with a DAG-binding C1 domain, is expressed in T cells and thymocytes. Here we show that thymi of RasGRP-null mutant mice have approximately normal numbers of immature thymocytes but a marked deficiency of mature, single-positive (CD4+CD8- and CD4-CD8+) thymocytes. In Ras signaling and proliferation assays, mutant thymocytes showed a complete lack of response to DAG analogs or T cell receptor (TCR) stimulation by antibodies. Thus, TCR and DAG are linked through RasGRP to Ras signaling.
Collapse
Affiliation(s)
- N A Dower
- Department of Pediatrics, University of Alberta, Edmonton Alberta, Canada, T6G 2H7
| | | | | | | | | | | | | |
Collapse
|
36
|
Sundvold V, Torgersen KM, Post NH, Marti F, King PD, Røttingen JA, Spurkland A, Lea T. T cell-specific adapter protein inhibits T cell activation by modulating Lck activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2927-31. [PMID: 10975797 DOI: 10.4049/jimmunol.165.6.2927] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported the isolation of a cDNA encoding a T cell-specific adapter protein (TSAd). Its amino acid sequence contains an SH2 domain, tyrosines in protein binding motifs, and proline-rich regions. In this report we show that expression of TSAd is induced in normal peripheral blood T cells stimulated with anti-CD3 mAbs or anti-CD3 plus anti-CD28 mAbs. Overexpression of TSAd in Jurkat T cells interfered with TCR-mediated signaling by down-modulating anti-CD3/PMA-induced IL-2 promoter activity and anti-CD3 induced Ca2+ mobilization. The TCR-induced tyrosine phosphorylation of phospholipase C-gamma1, SH2-domain-containing leukocyte-specific phosphoprotein of 76kDa, and linker for activation of T cells was also reduced. Furthermore, TSAd inhibited Zap-70 recruitment to the CD3zeta-chains in a dose-dependent manner. Consistent with this, Lck kinase activity was reduced 3- to 4-fold in COS-7 cells transfected with both TSAd and Lck, indicating a regulatory effect of TSAd on Lck. In conclusion, our data strongly suggest an inhibitory role for TSAd in proximal T cell activation.
Collapse
Affiliation(s)
- V Sundvold
- Institute of Immunology, The National Hospital, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ellis JH, Ashman C, Burden MN, Kilpatrick KE, Morse MA, Hamblin PA. GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5805-14. [PMID: 10820259 DOI: 10.4049/jimmunol.164.11.5805] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adapter proteins such as Grb2 play a central role in the formation of signaling complexes through their association with multiple protein binding partners. These interactions are mediated by specialized domains such as the well-characterized Src homology SH2 and SH3 motifs. Using yeast three-hybrid technology, we have identified a novel adapter protein, expressed predominantly in T lymphocytes, that associates with the activated form of the costimulatory receptor, CD28. The protein is a member of the Grb2 family of adapter proteins and contains an SH3-SH2-SH3 domain structure. A unique glutamine/proline-rich domain (insert domain) of unknown function is situated between the SH2 and N-terminal SH3 domains. We term this protein GRID for Grb2-related protein with insert domain. GRID coimmunoprecipitates with CD28 from Jurkat cell lysates following activation of CD28. Using mutants of CD28 and GRID, we demonstrate that interaction between the proteins is dependent on phosphorylation of CD28 at tyrosine 173 and integrity of the GRID SH2 domain, although there are also subsidiary stabilizing contacts between the PXXP motifs of CD28 and the GRID C-terminal SH3 domain. In addition to CD28, GRID interacts with a number of other T cell signaling proteins, including SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa), p62dok, and RACK-1 (receptor for activated protein kinase C-1). These findings suggest that GRID functions as an adapter protein in the CD28-mediated costimulatory pathway in T cells.
Collapse
Affiliation(s)
- J H Ellis
- Immunopathology and Immunology Units, GlaxoWellcome Medicines Research Centre, Stevenage, United Kingdom.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Adapter molecules contain discrete modular domains that direct specific intermolecular interactions to orchestrate assembly of signaling complexes. A number of adapter proteins play critical roles in both positive and negative regulation of antigen-receptor signaling, influencing lymphocyte development and function.
Collapse
Affiliation(s)
- P S Myung
- Graduate Program of Immunology, University of Pennsylvania, The Leonard and Madlyn Abramson Family Cancer Research Institute, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
39
|
Christensen MD, Geisler C. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor. Scand J Immunol 2000; 51:557-64. [PMID: 10849365 DOI: 10.1046/j.1365-3083.2000.00727.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling. In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling regarding total protein tyrosine phosphorylation, TCR down-regulation, mobilization of intracellular free calcium, or induction of the activation markers CD69 and CD25.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD3 Complex/biosynthesis
- CD3 Complex/genetics
- Calcium/metabolism
- Cells, Cultured
- Humans
- Intracellular Fluid/metabolism
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Ligands
- Mice
- Molecular Sequence Data
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Interleukin-2/biosynthesis
- Receptors, KIR
- Recombinant Fusion Proteins/physiology
- Signal Transduction/immunology
- Tyrosine/metabolism
- Lamin B Receptor
Collapse
Affiliation(s)
- M D Christensen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | |
Collapse
|
40
|
Myung PS, Clements JL, White DW, Malik ZA, Cowdery JS, Allen LH, Harty JT, Kusner DJ, Koretzky GA. In vitro and in vivo macrophage function can occur independently of SLP-76. Int Immunol 2000; 12:887-97. [PMID: 10837416 DOI: 10.1093/intimm/12.6.887] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of SH2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76), a hematopoietic cell-specific adapter protein, is required to couple Syk family tyrosine kinase activation to downstream mediators such as phospholipase C (PLC)-gamma following TCR, platelet collagen receptor and mast cell Fc epsilon R stimulation. In addition to T cells, mast cells and platelets, SLP-76 is expressed in monocytes and macrophages. To determine the role of SLP-76 in Fc gamma R-stimulated signaling pathways in macrophages, we examined cultured bone marrow-derived macrophages (BMM) from SLP-76(-/-) and wild-type mice. In this study, we show that Fc gamma R cross-linking rapidly induces tyrosine phosphorylation of SLP-76 in wild-type BMM. Surprisingly, however, BMM from SLP-76(-/-) mice activate ERK2 and phosphorylate PLC-gamma 2 following Fc gamma R ligation. Furthermore, SLP-76(-/-) BMM display normal Fc gamma R-dependent phagocytic function and reactive oxygen intermediate production. SLP-76(-/-) and SLP-76(+/+) BMM secrete comparable levels of IL-12 in response to lipopolysaccharide and IFN-gamma. To examine macrophage function in vivo, SLP-76(-/-) mice were challenged i.v. with Listeria monocytogenes. SLP-76(-/-) mice survive and efficiently contain the acute phase of infection similar to wild-type mice but exhibit a stable chronic infection attributed to the lack of mature T cells. These data show that, although SLP-76 is required to couple Syk family PTK activity to downstream mediators and effector functions in Fc gamma R-induced pathways in some cell types, activation of Fc gamma R-dependent pathways occurs independently of SLP-76 in BM
Collapse
Affiliation(s)
- P S Myung
- Department of Physiology and Biophysics, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li Y, He X, Schembri-King J, Jakes S, Hayashi J. Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5199-206. [PMID: 10799879 DOI: 10.4049/jimmunol.164.10.5199] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lnk was originally cloned from a rat lymph node cDNA library and shown to participate in T cell signaling. Human Lnk (hLnk) was cloned by screening a Jurkat cell cDNA library. hLnk has a calculated molecular mass of 63 kDa, and its deduced amino acid sequence indicates the presence of an N-terminal proline-rich region, a pleckstrin homology domain, and a Src homology 2 domain. When expressed in COS cells, hLnk migrates with an apparent molecular mass of 75 kDa. Confocal fluorescence microscope analysis indicates that in COS cells transfected with an expression vector encoding a chimeric Lnk-green fluorescent protein, hLnk is found at the juxtanuclear compartment and also appears to be localized at the plasma membrane. Lnk is tyrosine-phosphorylated by p56lck. Following phosphorylation, p56lck binds to tyrosine-phosphorylated hLnk through its Src homology 2 domain. In COS cells cotransfected with hLnk, p56lck, and CD8-zeta, hLnk associated with tyrosine-phosphorylated TCR zeta-chain through its Src homology 2 domain. The overexpression of Lnk in Jurkat cells led to an inhibition of anti-CD3 mediated NF-AT-Luc activation. Our study reveals a potentially new mechanism of T cell-negative regulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Sequence
- Animals
- Blood Proteins/chemistry
- COS Cells
- Carrier Proteins/chemistry
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/antagonists & inhibitors
- Enzyme Precursors/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins
- Jurkat Cells
- Lymphocyte Activation/immunology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Molecular Sequence Data
- NFATC Transcription Factors
- Nuclear Proteins
- Phosphoproteins/chemistry
- Phosphorylation
- Protein Binding/immunology
- Protein-Tyrosine Kinases/metabolism
- Proteins/chemistry
- Proteins/genetics
- Proteins/metabolism
- Proteins/physiology
- RNA, Messenger/biosynthesis
- Rats
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Sequence Homology, Amino Acid
- Signal Transduction/immunology
- Syk Kinase
- T-Lymphocytes/immunology
- Transcription Factors/antagonists & inhibitors
- Transfection
- Tyrosine/metabolism
- src Homology Domains/immunology
Collapse
Affiliation(s)
- Y Li
- School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
42
|
Hueber AO, Zörnig M, Bernard AM, Chautan M, Evan G. A dominant negative Fas-associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T-cells and fibroblasts. J Biol Chem 2000; 275:10453-62. [PMID: 10744735 DOI: 10.1074/jbc.275.14.10453] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Death domain-containing members of the tumor necrosis factor (TNF) receptor family ("death receptors") can induce apoptosis upon stimulation by their natural ligands or by agonistic antibodies. Activated death receptors recruit death domain adapter proteins like Fas-associated death domain protein (FADD), and this ultimately leads to proteolytic activation of the caspase cascade and cell death. Recently, FADD has also been implicated in the regulation of proliferation; functional inhibition of FADD results in p53-dependent impairment of proliferation in activated T-cells. In this study we have further analyzed T-cells derived from transgenic mice expressing a dominant negative FADD mutant (FADD DN) under control of the lck promoter in vitro so as to identify the signaling pathways that become engaged upon T-cell receptor stimulation and that are regulated by death receptors. FADD DN expression inhibits T-cell proliferation, both at the G(0) --> S transition and in the G(1) phase of continuously proliferating cells. We observe a decrease in the release of calcium from intracellular stores after T-cell receptor stimulation, whereas influx of extracellular calcium seems to be unaffected. FADD DN-expressing fibroblasts show a similarly inhibited cell growth and impaired calcium mobilization indicating that the modulation of proliferation and calcium response by death receptors is not cell type-specific.
Collapse
Affiliation(s)
- A O Hueber
- Imperial Cancer Research Fund, 44 Lincolns Inn Fields, London WC2A 3PX, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
Tomasello E, Bléry M, Vély F, Vivier E. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Semin Immunol 2000; 12:139-47. [PMID: 10764622 DOI: 10.1006/smim.2000.0216] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the absence of antigen-specific receptors at their surface, NK cells can selectively eliminate virus-infected cells, tumor cells and allogenic cells. A dynamic and precisely coordinated balance between activating and inhibitory receptors governs NK cell activation programs. Multiple activating and inhibitory NK cell surface molecules have been described, a group of them acting as receptors for MHC class I molecules. In spite of their heterogeneity, activating NK cell receptors present remarkable structural and functional homologies with T cell- and B cell-antigen receptors. Inhibitory NK cell receptors operate at early stages of activating cascades by recruiting protein tyrosine phosphatases via intra- cytoplasmic motifs (ITIM), a strategy which is widely conserved in hematopoietic and non-hematopoietic cells.
Collapse
Affiliation(s)
- E Tomasello
- Centre d'Immunologie INSERM/CNRS de Marseille-Luminy Case 906, Institut Universitaire de France, Campus de Luminy, Marseille cedex 09, 13288, France
| | | | | | | |
Collapse
|
44
|
Hederer RA, Guntermann C, Miller N, Nagy P, Szollosi J, Damjanovich S, Hale G, Alexander DR. The CD45 tyrosine phosphatase regulates Campath-1H (CD52)-induced TCR-dependent signal transduction in human T cells. Int Immunol 2000; 12:505-16. [PMID: 10744652 DOI: 10.1093/intimm/12.4.505] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Campath-1H, a humanized mAb undergoing clinical trials for treatment of leukemia, transplantation and autoimmune diseases, produces substantial lymphocyte depletion in vivo. The antibody binds to CD52, a highly glycosylated molecule attached to the membrane by a glycosylphosphatidylinositol anchor. Cross-linked Campath-1H is known to activate T cells in vitro. We have investigated the molecular basis for these effects by comparing the protein tyrosine phosphorylation signals induced by Campath-1H and the CD3 mAb OKT3 in primary T cells, and in CD45(+)TCR(+), CD45(-)TCR(+) and CD45(+)TCR(-) Jurkat subclones transfected with CD52. Our results show that Campath-1H triggers similar tyrosine phosphorylation events as OKT3 in both primary T cells and in the CD45(+)TCR(+) Jurkat sub-clone, albeit at quantitatively lower levels. However, no phospholipase C gamma 1 activation nor calcium signals were detected in response to CD52 ligation. The CD52-mediated induction of protein tyrosine phosphorylation was absolutely dependent upon the expression of both the TCR and the CD45 phosphotyrosine phosphatase at the cell surface. Cross-linking of Campath-1H was essential for signal transduction in all cells investigated. Fluorescence resonance energy transfer was used to demonstrate CD52 homo-association at the cell surface in Jurkat T cells in a TCR- and CD45-independent manner, and CD52-TCR association in CD45(+)TCR(+) cells. We propose a model to explain the activating effects of Campath-1H in which CD52 mAb cross-linking causes the trapping of TCR polypeptides within molecular complexes at the cell surface, thereby inducing signals via the TCR by a process which depends on the CD45-mediated regulation of the p56(lck) and p59(fyn) tyrosine kinases.
Collapse
MESH Headings
- Alemtuzumab
- Antibodies, Monoclonal/physiology
- Antibodies, Monoclonal, Humanized
- Antibodies, Neoplasm/physiology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Neoplasm
- CD52 Antigen
- Calcium/physiology
- Calcium Signaling/immunology
- Cells, Cultured
- Glycoproteins/metabolism
- Glycoproteins/physiology
- Humans
- Inositol 1,4,5-Trisphosphate/immunology
- Isoenzymes/immunology
- Jurkat Cells
- Leukocyte Common Antigens/physiology
- Phospholipase C gamma
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transfection
- Type C Phospholipases/immunology
Collapse
Affiliation(s)
- R A Hederer
- Laboratory of Lymphocyte Signalling and Development, Molecular Immunology Programme, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lemay S, Davidson D, Latour S, Veillette A. Dok-3, a novel adapter molecule involved in the negative regulation of immunoreceptor signaling. Mol Cell Biol 2000; 20:2743-54. [PMID: 10733577 PMCID: PMC85490 DOI: 10.1128/mcb.20.8.2743-2754.2000] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adapters are typically viewed as molecules coordinating the recruitment of positive effectors of cell signaling. Herein, we report the identification of Dok-3, a novel adapter molecule belonging to the Dok family. Our studies show that Dok-3 is highly expressed in several hemopoietic cell types, including B cells and macrophages. It undergoes rapid tyrosine phosphorylation in response to immunoreceptor-mediated cellular activation, seemingly as a result of the action of Src family kinases. This phosphorylation induces the binding of Dok-3 to at least two inhibitory molecules, the 5' inositol phosphatase SHIP and the protein tyrosine kinase Csk. We also demonstrate that augmented expression of wild-type Dok-3 in a B-cell line results in an inhibition of immunoreceptor-mediated nuclear factor of activated T-cells (NFAT) activation and cytokine release, while introduction of a Dok-3 mutant with impaired ability to associate with SHIP and Csk enhances B-cell responsiveness. Taken together, these results indicate that Dok-3 is an adapter involved in the recruitment of inhibitory molecules and that it may play a significant role in the negative regulation of immunoreceptor signaling in hemopoietic cells such as B cells and macrophages.
Collapse
Affiliation(s)
- S Lemay
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
46
|
Plyte S, Majolini MB, Pacini S, Scarpini F, Bianchini C, Lanfrancone L, Pelicci P, Baldari CT. Constitutive activation of the Ras/MAP kinase pathway and enhanced TCR signaling by targeting the Shc adaptor to membrane rafts. Oncogene 2000; 19:1529-37. [PMID: 10734312 DOI: 10.1038/sj.onc.1203451] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Shc adaptor is responsible for coupling receptor tyrosine kinases and tyrosine kinase-associated receptors to the Ras/MAP kinase pathway. Shc is believed to be regulated by a change in subcellular localization from the cytosol to the plasma membrane, where it recruits Grb-2/Sos complexes and hence permits juxtaposition of the guanine nucleotide exchange factor Sos to Ras, resulting in GDP/GTP exchange and Ras activation. Shc has been recently shown to inducibly colocalize in detergent-resistant membrane rafts together with the activated TCR and associated signaling molecules. To understand whether Shc localization in membrane rafts is sufficient to regulate Shc function, we constructed a Shc chimera containing the Ras membrane localization motif at the C-terminus. We show that membrane targeted Shc was constitutively localized in the plasma membrane of T-cells, and was mostly compartmentalized in lipid rafts. Membrane targeted Shc was phosphorylated on tyrosine residues and bound Grb-2/Sos in the absence of TCR engagement. Furthermore, expression of membrane targeted Shc resulted in constitutive downstream signaling, including Erk2 activation and enhancement of TCR dependent activation of the TCR responsive transcription factor NF-AT. Hence localization of Shc in membrane rafts is sufficient for Shc to acquire a signaling competent state. Interestingly, a membrane targeted Shc mutant lacking both Grb-2 binding sites was not only incapable of signaling in the absence of TCR triggering, but transdominantly inhibited endogenous Shc, supporting a non redundant role for Shc in the activation of the Ras/MAP kinase pathway in T-cells.
Collapse
Affiliation(s)
- S Plyte
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hayashi K, Nittono R, Okamoto N, Tsuji S, Hara Y, Goitsuka R, Kitamura D. The B cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc Natl Acad Sci U S A 2000; 97:2755-60. [PMID: 10688901 PMCID: PMC16002 DOI: 10.1073/pnas.040575697] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B cell antigen receptor signals development, activation, proliferation, or apoptosis of B cells depending on their condition, and its proper signaling is critical for activation and homeostasis of the immune system. The B cell-restricted adaptor protein BASH (also termed BLNK/SLP-65) is rapidly phosphorylated by the tyrosine kinase Syk after BCR ligation and binds to various signaling proteins. BASH structurally resembles SLP-76, which is essential for T cell development and T cell receptor signaling. To evaluate the role for BASH in B cell development and function in vivo, we disrupted BASH alleles in embryonic stem cells by means of homologous recombination and used these cells to complement lymphocyte-incompetent blastocysts from RAG2-deficient mice. In the resultant chimeric mice, T cell development was apparently normal, but B cell development was impaired, and a normally rare population of large preB cells expressing preB cell receptor dominated in the bone marrow in place of small preB cells, although they were mostly noncycling. In addition, the mature B cell populations in the periphery and the bone marrow profoundly decreased in size, as did B-1 cells in the peritoneal cavity, and serum Ig was severely reduced. The BASH-deficient B cells scarcely proliferated or up-regulated B7-2 in response to BCR ligation and poorly proliferated upon CD40 ligation or lipopolysaccharide stimulation. This phenotype indicates that BASH is critical for preB cell receptor signaling inducing proliferation of large preB cells and the following differentiation, for peripheral B cell maturation, and for BCR signaling inducing activation/proliferation of B cells.
Collapse
Affiliation(s)
- K Hayashi
- Research Institute for Biological Sciences, Science University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Gringhuis SI, Leow A, Papendrecht-Van Der Voort EA, Remans PH, Breedveld FC, Verweij CL. Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2170-9. [PMID: 10657671 DOI: 10.4049/jimmunol.164.4.2170] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The T lymphocytes that reside in the synovium of the inflamed joints in patients with rheumatoid arthritis display severe hyporesponsiveness upon antigenic stimulation, which is probably due to their constant subjection to high levels of oxidative stress. Here we report that the synovial fluid T lymphocytes exert severely impaired phosphorylation of the adaptor protein linker for activation of T cells (LAT), a crucial component of the TCR-mediated signaling pathways. In healthy T lymphocytes, LAT is a membrane-bound protein and becomes phosphorylated by zeta-associated protein of 70 kDa (ZAP-70) upon TCR engagement. The molecular basis underlying the deficient phosphorylation of LAT and consequently the hyporesponsiveness of the synovial fluid T lymphocytes lies in the membrane displacement of LAT. We demonstrate that the subcellular localization of LAT is sensitive to changes in the intracellular levels of the antioxidant glutathione. The membrane anchorage of LAT, and consequently the phosphorylation of LAT and the cellular activation of the synovial fluid T lymphocytes upon TCR engagement, is restored in synovial fluid T lymphocytes after supplementation of the intracellular glutathione levels with N-acetyl-l -cysteine. These data suggest a role for the membrane displacement of LAT in the hyporesponsiveness of the synovial fluid T lymphocytes as a consequence of oxidative stress.
Collapse
Affiliation(s)
- S I Gringhuis
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
49
|
Schneider H, Guerette B, Guntermann C, Rudd CE. Resting lymphocyte kinase (Rlk/Txk) targets lymphoid adaptor SLP-76 in the cooperative activation of interleukin-2 transcription in T-cells. J Biol Chem 2000; 275:3835-40. [PMID: 10660534 DOI: 10.1074/jbc.275.6.3835] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rlk/Txk is a T-cell-specific member of the Btk/Tec family of tyrosine kinases, whereas SLP-76 is a lymphoid adaptor that is essential for pre-TcR and mature TcR signaling. Although Rlk deficient T-cells show partial defects in T-cell proliferation, Rlk can complement ITK-/- cells with multiple defects in TcR initiated early events and interleukin (IL)-2 production. A key question is the nature of the target of Rlk responsible for bridging the TcR with the activation of IL-2 transcription. In this study, we identify a pathway in which Rlk phosphorylates SLP-76 leading to the phosphorylation of PLCgamma1, activation of ERKs, and the synergistic up-regulation of TcR-driven IL-2 NFAT/AP-1 transcription. Rlk phosphorylated the N-terminal region of SLP-76, a region that has been previously shown to serve as a target for ZAP-70. Loss of N-terminal YESP/YEPP sites of SLP-76 or the Rlk kinase activity attenuated cooperativity between Rlk and SLP-76. These observations support a model where the TcR can utilize Rlk (as well as ZAP-70) in the phosphorylation of key sites in SLP-76 leading to the up-regulation of Th1 preferred cytokine IL-2.
Collapse
Affiliation(s)
- H Schneider
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
50
|
Yankee TM, Keshvara LM, Sawasdikosol S, Harrison ML, Geahlen RL. Inhibition of Signaling Through the B Cell Antigen Receptor by the Protooncogene Product, c-Cbl, Requires Syk Tyrosine 317 and the c-Cbl Phosphotyrosine-Binding Domain. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The Syk protein-tyrosine kinase couples the B cell Ag receptor (BCR) to intracellular biochemical pathways. Syk becomes phosphorylated on multiple tyrosine residues upon receptor cross-linking. Tyrosine 317 is a site of phosphorylation located within the linker region of Syk that separates the amino-terminal, tandem pair of SH2 domains from the carboxyl-terminal catalytic domain. The amino acid sequence surrounding phosphotyrosine 317 matches the consensus sequence for recognition by the phosphotyrosine-binding (PTB) domain of the protooncogene product, c-Cbl. The overexpression of c-Cbl in DT40 B cells inhibits Ag receptor-mediated activation of the NF-AT transcription factor. The ability of overexpressed c-Cbl to inhibit signaling requires both Syk tyrosine 317 and a functional c-Cbl PTB domain. Mutant forms of Syk lacking tyrosine 317 exhibit an enhanced ability to couple the BCR to pathways leading to the activation of both NF-AT and Elk-1. Coimmunoprecipitation experiments indicate that Syk phosphotyrosine 317 and the c-Cbl PTB domain enhance, but are not required for, all interactions between these two proteins. In unstimulated cells, c-Cbl and Syk can be isolated in a complex that also contains tubulin. A mutant form of Syk lacking tyrosine at position 317 exhibits an enhanced ability to interact with a diphosphopeptide modeled on the immunoreceptor tyrosine-based activation motif of the CD79a component of the Ag receptor. These studies indicate that c-Cbl may contribute to the regulation of BCR signaling by modulating the ability of Syk to associate with the BCR and couple the receptor to intracellular signaling pathways.
Collapse
Affiliation(s)
- Thomas M. Yankee
- *Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907; and
| | - Lakhu M. Keshvara
- *Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907; and
| | - Sansana Sawasdikosol
- †Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Marietta L. Harrison
- *Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907; and
| | - Robert L. Geahlen
- *Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907; and
| |
Collapse
|