1
|
Wang X, Deng Y, Xiao Y, Wang F, Tang Z, Qi X. A double inducible cell ablation system for eliminating senescent astrocytes via apoptosis. Mol Biol Rep 2024; 51:363. [PMID: 38403730 DOI: 10.1007/s11033-024-09297-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Cell senescence stands as a principal risk factor for various neurodegenerative diseases, with astrocytic senescence emerging as a potentially pivotal player in the pathogenesis of aging and neurodegenerative disorders. Clearing senescent astrocytes holds promise as a potential therapeutic approach for senescence-related diseases. METHODS In this study, we designed and constructed two plasmids aimed at inducing apoptosis in senescent astrocytes. This was achieved through the ligation of FKBP (FK506-binding protein) and FRB (FKBP and FKBP rapamycin binding domain) and the formation of caspase8 dimers, thereby achieving the purpose of eliminating senescent astrocytes. RESULTS The developed vector system demonstrates a specifically capability to induce apoptosis in aging astrocytes, offering a targeted approach to eliminate these cells. CONCLUSION The utilization of the double -inducible suicide gene system provides a versatile tool forstimulating cell apoptosis and inhibiting cellular senescence. This system proves valuable in exploring the intrinsic roles and molecular mechanisms of senescent cells in the occurrence and development of aging-related diseases. Ultimately, it offers a potential avenue for developing an efficient treatment system for such conditions.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuxin Deng
- Key Laboratory of Endemic and Minority Disease, Ministry of Education/Key Laboratory of Molecular Biology/Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Minority Disease, Ministry of Education/Key Laboratory of Molecular Biology/Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fan Wang
- Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhi Tang
- Key Laboratory of Endemic and Minority Disease, Ministry of Education/Key Laboratory of Molecular Biology/Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Minority Disease, Ministry of Education/Key Laboratory of Molecular Biology/Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Singh AK, Saharan K, Baral S, Luan S, Vasudevan D. Crystal packing reveals rapamycin-mediated homodimerization of an FK506-binding domain. Int J Biol Macromol 2022; 206:670-680. [PMID: 35218805 DOI: 10.1016/j.ijbiomac.2022.02.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Chemically induced dimerization (CID) is used to induce proximity and result in artificial complex formation between a pair of proteins involved in biological processes in cells to investigate and regulate these processes. The induced heterodimerization of FKBP fusion proteins by rapamycin and FK506 has been extensively exploited as a chemically induced dimerization system to regulate and understand highly dynamic cellular processes. Here, we report the crystal structure of the AtFKBP53 FKBD in complex with rapamycin. The crystal packing reveals an unusual feature whereby two rapamycin molecules appear to mediate homodimerization of the FKBD. The triene arm of rapamycin appears to play a significant role in forming this dimer. This forms the first structural report of rapamycin-mediated homodimerization of an FKBP. The structural information on the rapamycin-mediated FKBD dimerization may be employed to design and synthesize covalently linked dimeric rapamycin, which may subsequently serve as a chemically induced dimerization system for the regulation and characterization of cellular processes.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Ketul Saharan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Somanath Baral
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Dileep Vasudevan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India.
| |
Collapse
|
3
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
4
|
Foster AD, Chung C, Hann MM, Simpson GL, Tavassoli A. Development of a fluorescent three‐hybrid system for the identification of protein‐protein associators. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | - Ali Tavassoli
- School of Chemistry University of Southampton Southampton UK
| |
Collapse
|
5
|
Switchable Cas9. Curr Opin Biotechnol 2017; 48:119-126. [DOI: 10.1016/j.copbio.2017.03.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
|
6
|
A sensitive, semi-quantitative mammalian two-hybrid assay. Biotechniques 2017; 62:206-214. [PMID: 28528573 DOI: 10.2144/000114544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
Protein-protein interactions critically determine the function of a protein within the cell. Several methods have been developed for the analysis of protein interactions, including two-hybrid assays in yeast and mammals. Mammalian two-hybrid systems provide the ideal physiological environment to study the interactions of mammalian proteins; however, these approaches are limited in sensitivity and their ability to quantify interaction strength. Here, we present an inducible mammalian two-hybrid (iM2H) system using the small-molecule dimerizer rapalog for recruitment of multiple transactivation domains into the M2H system. This inducibility, combined with additional improvements of the iM2H components, results in an up to 100-fold increase in sensitivity compared with conventional M2H approaches. In addition, we include a number of reference interactions in our iM2H approach, which enable semiquantitative assessment of protein interactions. Using Groucho/Tle proteins and their binding partners, we demonstrate the applicability of our iM2H to established protein networks. Finally, to test the applicability of our system for drug screening, the interference of a small-molecule inhibitor on a known protein-protein interaction was tested, and the particular advantages of the internal reference interactions were shown.
Collapse
|
7
|
De Clercq DJH, Tavernier J, Lievens S, Van Calenbergh S. Chemical Dimerizers in Three-Hybrid Systems for Small Molecule-Target Protein Profiling. ACS Chem Biol 2016; 11:2075-90. [PMID: 27267544 DOI: 10.1021/acschembio.5b00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification of the molecular targets and mechanisms underpinning the beneficial or detrimental effects of small-molecule leads and drugs constitutes a crucial aspect of current drug discovery. Over the last two decades, three-hybrid (3H) systems have progressively taken an important position in the armamentarium of small molecule-target protein profiling technologies. Yet, a prerequisite for successful 3H analysis is the availability of appropriate chemical inducers of dimerization. Herein, we present a comprehensive and critical overview of the chemical dimerizers specifically applied in both yeast and mammalian three-hybrid systems for small molecule-target protein profiling within the broader scope of target deconvolution and drug discovery. Furthermore, examples and alternative suggestions for typical components of chemical dimerizers for 3H systems are discussed. As illustrated, more tools have become available that increase the sensitivity and efficiency of 3H-based screening platforms. Hence, it is anticipated that the great potential of 3H systems will further materialize in important contributions to drug discovery.
Collapse
Affiliation(s)
- Dries J. H. De Clercq
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sam Lievens
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Di Ventura B, Kuhlman B. Go in! Go out! Inducible control of nuclear localization. Curr Opin Chem Biol 2016; 34:62-71. [PMID: 27372352 DOI: 10.1016/j.cbpa.2016.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Cells have evolved a variety of mechanisms to regulate the enormous complexity of processes taking place inside them. One mechanism consists in tightly controlling the localization of macromolecules, keeping them away from their place of action until needed. Since a large fraction of the cellular response to external stimuli is mediated by gene expression, it is not surprising that transcriptional regulators are often subject to stimulus-induced nuclear import or export. Here we review recent methods in chemical biology and optogenetics for controlling the nuclear localization of proteins of interest inside living cells. These methods allow researchers to regulate protein activity with exquisite spatiotemporal control, and open up new possibilities for studying the roles of proteins in a broad array of cellular processes and biological functions.
Collapse
Affiliation(s)
- Barbara Di Ventura
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Kim SY, Kim JE, Won J, Song YJ. Characterization of the rapamycin-inducible EBV LMP1 activation system. J Microbiol 2015; 53:732-8. [PMID: 26428925 DOI: 10.1007/s12275-015-5455-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) is required for EBV-mediated B lymphocyte transformation into proliferating lymphoblastoid cell lines (LCL). LMP1 oligomerizes spontaneously in membrane lipid rafts via its transmembrane domain and constitutively activates signal transduction pathways, including NF-κB, p38 Mitogen-Activated Protein Kinase (MAPK), and c-Jun N-terminal Kinase (JNK). Since LMP1 mimics the tumor necrosis factor receptor (TNFR), CD40, it may be effectively utilized to study the effects of constitutive activation of signal transduction pathways on cellular physiology. On the other hand, LMP1 presents a disadvantage in terms of determining the sequential events and factors involved in signaling pathways. A CD40-LMP1 chimeric molecule has been generated to overcome this limitation but does not represent the authentic and physiological nature of LMP1. In the current study, a ligand-dependent activation system for LMP1 using rapamycin-inducible dimerization was generated to delineate the LMP1 signaling pathway.
Collapse
Affiliation(s)
- Sang Yong Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Jung-Eun Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Jiyeon Won
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
10
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis and infects approximately three to four million people per year, about 170 million infected people in total, making it one of the major global health problems. In a minority of cases HCV is cleared spontaneously, but in most of the infected individuals infection progresses to a chronic state associated with high risk to develop liver cirrhosis, hepatocellular cancer, or liver failure. The treatment of HCV infection has evolved over the years. Interferon (IFN)-α in combination with ribavirin has been used for decades as standard therapy. More recently, a new standard-of-care treatment has been approved based on a triple combination with either HCV protease inhibitor telaprevir or boceprevir. In addition, various options for all-oral, IFN-free regimens are currently being evaluated. Despite substantial improvement of sustained virological response rates, some intrinsic limitations of these new direct-acting antivirals, including serious side effects, the risk of resistance development and high cost, urge the development of alternative or additional therapeutic strategies. Gene therapy represents a feasible alternative treatment. Small RNA technology, including RNA interference (RNAi) techniques and antisense approaches, is one of the potentially promising ways to investigate viral and host cell factors that are involved in HCV infection and replication. With this, newly developed gene therapy regimens will be provided to treat HCV. In this chapter, a comprehensive overview guides you through the current developments and applications of RNAi and microRNA-based gene therapy strategies in HCV treatment.
Collapse
|
11
|
Abstract
Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators.
Collapse
Affiliation(s)
- Thea Ziegler
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany ; Lehrstuhl für Biochemie, Universität Bayreuth Bayreuth, Germany
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany ; Lehrstuhl für Biochemie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
12
|
Brown KA, Zou Y, Shirvanyants D, Zhang J, Samanta S, Mantravadi PK, Dokholyan NV, Deiters A. Light-cleavable rapamycin dimer as an optical trigger for protein dimerization. Chem Commun (Camb) 2015; 51:5702-5. [DOI: 10.1039/c4cc09442e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein heterodimerization of FKBP12 and FRB can be optically controlled with a photocleavable rapamycin dimer.
Collapse
Affiliation(s)
- Kalyn A. Brown
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
- Department of Chemistry
| | - Yan Zou
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - David Shirvanyants
- Department of Biochemistry and Biophysics
- University of North Carolina
- Chapel Hill
- USA
| | - Jie Zhang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Subhas Samanta
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| | | | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics
- University of North Carolina
- Chapel Hill
- USA
| | - Alexander Deiters
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
- Department of Chemistry
| |
Collapse
|
13
|
Abstract
Glucagon-like peptide (GLP)-1 is an incretin hormone with several antidiabetic functions including stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and beta-cell survival. Despite the initial technical difficulties and profound inefficiency of direct gene transfer into the pancreas that seriously restricted in vivo gene transfer experiments with GLP-1, recent exploitation of various routes of gene delivery and alternative means of gene transfer has permitted the detailed assessment of the therapeutic efficacy of GLP-1 in animal models of type 2 diabetes (T2DM). As a result, many clinical benefits of GLP-1 peptide/analogues observed in clinical trials involving induction of glucose tolerance, reduction of hyperglycaemia, suppression of appetite and food intake linked to weight loss have been replicated in animal models using gene therapy. Furthermore, GLP-1-centered gene therapy not only improved insulin sensitivity, but also reduced abdominal and/or hepatic fat associated with obesity-induced T2DM with drastic alterations in adipokine profiles in treated subjects. Thus, a comprehensive assessment of recent GLP-1-mediated gene therapy approaches with detailed analysis of current hurdles and resolutions, is discussed.
Collapse
|
14
|
Zhang K, Duan L, Ong Q, Lin Z, Varman PM, Sung K, Cui B. Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth. PLoS One 2014; 9:e92917. [PMID: 24667437 PMCID: PMC3965503 DOI: 10.1371/journal.pone.0092917] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/26/2014] [Indexed: 11/29/2022] Open
Abstract
It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Liting Duan
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Qunxiang Ong
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Ziliang Lin
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Pooja Mahendra Varman
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Kijung Sung
- Biophysics Program, Stanford University, Stanford, California, United States of America
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lim JYH, Gerber SA, Murphy SP, Lord EM. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol Immunother 2013; 63:259-71. [PMID: 24357146 DOI: 10.1007/s00262-013-1506-7] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
The need for an intact immune system for cancer radiation therapy to be effective suggests that radiation not only acts directly on the tumor but also indirectly, through the activation of host immune components. Recent studies demonstrated that endogenous type I interferons (type I IFNs) play a role in radiation-mediated anti-tumor immunity by enhancing the ability of dendritic cells to cross-prime CD8(+) T cells. However, it is still unclear to what extent endogenous type I IFNs contribute to the recruitment and function of CD8(+) T cells. Little is also known about the effects of type I IFNs on myeloid cells. In the current study, we demonstrate that type I and type II IFNs (IFN-γ) are both required for the increased production of CXCL10 (IP-10) chemokine by myeloid cells within the tumor after radiation treatment. Radiation-induced intratumoral IP-10 levels in turn correlate with tumor-infiltrating CD8(+) T cell numbers. Moreover, type I IFNs promote potent tumor-reactive CD8(+) T cells by directly affecting the phenotype, effector molecule production, and enhancing cytolytic activity. Using a unique inducible expression system to increase local levels of IFN-α exogenously, we show here that the capacity of radiation therapy to result in tumor control can be enhanced. Our preclinical approach to study the effects of local increase in IFN-α levels can be used to further optimize the combination therapy strategy in terms of dosing and scheduling, which may lead to better clinical outcome.
Collapse
Affiliation(s)
- Joanne Y H Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, 601 Elmwood Ave, Box 672, Rochester, NY, 14642, USA
| | | | | | | |
Collapse
|
16
|
Tang JCY, Szikra T, Kozorovitskiy Y, Teixiera M, Sabatini BL, Roska B, Cepko CL. A nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell 2013; 154:928-39. [PMID: 23953120 PMCID: PMC4096992 DOI: 10.1016/j.cell.2013.07.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 05/31/2013] [Accepted: 07/15/2013] [Indexed: 01/22/2023]
Abstract
Fluorescent proteins are commonly used to label cells across organisms, but the unmodified forms cannot control biological activities. Using GFP-binding proteins derived from Camelid antibodies, we co-opted GFP as a scaffold for inducing formation of biologically active complexes, developing a library of hybrid transcription factors that control gene expression only in the presence of GFP or its derivatives. The modular design allows for variation in key properties such as DNA specificity, transcriptional potency, and drug dependency. Production of GFP controlled cell-specific gene expression and facilitated functional perturbations in the mouse retina and brain. Further, retrofitting existing transgenic GFP mouse and zebrafish lines for GFP-dependent transcription enabled applications such as optogenetic probing of neural circuits. This work establishes GFP as a multifunctional scaffold and opens the door to selective manipulation of diverse GFP-labeled cells across transgenic lines. This approach may also be extended to exploit other intracellular products as cell-specific scaffolds in multicellular organisms.
Collapse
Affiliation(s)
- Jonathan C Y Tang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen SJ, Johnston J, Sandhu A, Bish LT, Hovhannisyan R, Jno-Charles O, Sweeney HL, Wilson JM. Enhancing the utility of adeno-associated virus gene transfer through inducible tissue-specific expression. Hum Gene Ther Methods 2013; 24:270-8. [PMID: 23895325 PMCID: PMC3753727 DOI: 10.1089/hgtb.2012.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 06/04/2013] [Indexed: 01/12/2023] Open
Abstract
The ability to regulate both the timing and specificity of gene expression mediated by viral vectors will be important in maximizing its utility. We describe the development of an adeno-associated virus (AAV)-based vector with tissue-specific gene regulation, using the ARGENT dimerizer-inducible system. This two-vector system based on AAV serotype 9 consists of one vector encoding a combination of reporter genes from which expression is directed by a ubiquitous, inducible promoter and a second vector encoding transcription factor domains under the control of either a heart- or liver-specific promoter, which are activated with a small molecule. Administration of the vectors via either systemic or intrapericardial injection demonstrated that the vector system is capable of mediating gene expression that is tissue specific, regulatable, and reproducible over induction cycles. Somatic gene transfer in vivo is being considered in therapeutic applications, although its most substantial value will be in basic applications such as target validation and development of animal models.
Collapse
Affiliation(s)
- Shu-Jen Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Julie Johnston
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Arbans Sandhu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lawrence T. Bish
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruben Hovhannisyan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Odella Jno-Charles
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - H. Lee Sweeney
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - James M. Wilson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
18
|
Collins CR, Das S, Wong EH, Andenmatten N, Stallmach R, Hackett F, Herman JP, Müller S, Meissner M, Blackman MJ. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Mol Microbiol 2013; 88:687-701. [PMID: 23489321 PMCID: PMC3708112 DOI: 10.1111/mmi.12206] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 02/01/2023]
Abstract
Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes.
Collapse
Affiliation(s)
- Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Sujaan Das
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Eleanor H Wong
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Nicole Andenmatten
- Wellcome Trust Centre for Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Jean-Paul Herman
- CRN2M – UMR 7286, Centre National de la Recherche Scientifique (CNRS), Aix Marseille UniversitéMarseille, France
| | - Sylke Müller
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Markus Meissner
- Wellcome Trust Centre for Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| |
Collapse
|
19
|
Shaffer HA, Rood MK, Kashlan B, Chang EIL, Doyle DF, Azizi B. BAPJ69-4A: A yeast two-hybrid strain for both positive and negative genetic selection. J Microbiol Methods 2012; 91:22-9. [DOI: 10.1016/j.mimet.2012.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/01/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
20
|
Wieland M, Fussenegger M. Engineering Molecular Circuits Using Synthetic Biology in Mammalian Cells. Annu Rev Chem Biomol Eng 2012; 3:209-34. [DOI: 10.1146/annurev-chembioeng-061010-114145] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Wieland
- Department of Biosystems Science and Bioengineering, ETH Zurich, CH-4058 Basel, Switzerland; ,
| | - Martin Fussenegger
- Department of Biosystems Science and Bioengineering, ETH Zurich, CH-4058 Basel, Switzerland; ,
| |
Collapse
|
21
|
Rivera VM, Berk L, Clackson T. Dimerizer-mediated regulation of gene expression. Cold Spring Harb Protoc 2012; 2012:767-770. [PMID: 22753597 DOI: 10.1101/pdb.top070128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Several systems have been developed that allow transcription of a target gene to be chemically controlled, usually by an allosteric modulator of transcription factor activity. An alternative is to use chemical inducers of dimerization, or "dimerizers," to reconstitute active transcription factors from inactive fusion proteins. The most widely used system employs the natural product rapamycin, or a biologically inert analog, as the dimerizing drug. A key feature of this system is the tightness of regulation, with basal expression usually undetectable and induced expression levels comparable to constitutive promoters. In our experiments, the use of the minimal interleukin-2 (IL-2) promoter is an important determinant of this; substitution of a minimal simian virus 40 (SV40) or cytomegalovirus (CMV) promoter results in significantly higher levels of basal expression. The key factor dictating the successful use of the system is achieving high expression levels of the activation domain fusion protein. In the context of clinical gene therapies, the system has the advantage of being built exclusively from human proteins, potentially minimizing immunogenicity in the clinical setting. The dimerizer system has been successfully incorporated into diverse vector backgrounds and has been used to achieve long-term regulated gene expression in vitro and in vivo. This article provides guidance in designing constructs and experiments to achieve dimerizer-regulated expression of a target gene both in vitro and in vivo.
Collapse
|
22
|
Fernandez-Rodriguez J, Marlovits TC. Induced heterodimerization and purification of two target proteins by a synthetic coiled-coil tag. Protein Sci 2012; 21:511-9. [PMID: 22362668 DOI: 10.1002/pro.2035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/23/2012] [Indexed: 11/09/2022]
Abstract
A synthetic de novo designed heterodimeric coiled-coil was used to copurify two target fluorescent proteins, Venus and enhanced cyan fluorescent protein (ECFP). The coiled-coil consists of two 21-amino acid repetitive sequences, (EIAALEK)(3) and (KIAALKE)(3), named E3 and K3, respectively. These sequences were fused to the C-termini of ECFP or Venus followed by either a strep- or a his-tag, respectively, for affinity purification. Mixed lysates of Venus-K3 and ECFP-E3 were subjected to consecutive affinity purification and showed highly specific association between the coiled-coil pair by SDS-PAGE, gel filtration, isothermal titration calorimetry (ITC), and fluorescence resonance energy transfer (FRET). The tagged proteins eluted as heterodimers at the concentrations tested. FRET analysis further showed that the coiled-coil pair was stable in buffers commonly used for protein purification, including those containing high salt concentration and detergent. This study shows that the E3/K3 pair is very well suited for the copurification of two target proteins expressed in vivo because of its high specificity: it forms exclusively heterodimers in solution, it does not interact with any cellular proteins and it is stable under different buffer conditions.
Collapse
|
23
|
Hadaczek P, Beyer J, Kells A, Narrow W, Bowers W, Federoff HJ, Forsayeth J, Bankiewicz KS. Evaluation of an AAV2-based rapamycin-regulated glial cell line-derived neurotrophic factor (GDNF) expression vector system. PLoS One 2011; 6:e27728. [PMID: 22132130 PMCID: PMC3221672 DOI: 10.1371/journal.pone.0027728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/23/2011] [Indexed: 11/18/2022] Open
Abstract
Effective regulation of transgene product in anatomically circumscribed brain tissue is dependent on the pharmacokinetics of the regulating agent, the kinetics of transcriptional activation and degradation of the transgene product. We evaluated rapamycin-regulated AAV2-GDNF expression in the rat brain (striatum). Regulated (a dual-component system: AAV2-FBZhGDNF + AAV2-TF1Nc) and constitutive (CMV-driven) expression vectors were compared. Constitutively active AAV2-GDNF directed stable GDNF expression in a dose-dependent manner and it increased for the first month, thereafter reaching a plateau that was maintained over a further 3 months. For the AAV2-regGDNF, rapamycin was administered in a 3-days on/4-days off cycle. Intraperitoneal, oral, and direct brain delivery (CED) of rapamycin were evaluated. Two cycles of rapamycin at an intraperitoneal dose of 10 mg/kg gave the highest GDNF level (2.75±0.01 ng/mg protein). Six cycles at 3 mg/kg resulted in lower GDNF values (1.36±0.3 ng/mg protein). Interestingly, CED of rapamycin into the brain at a very low dose (50 ng) induced GDNF levels comparable to a 6-week intraperitoneal rapamycin cycle. This study demonstrates the effectiveness of rapamycin regulation in the CNS. However, the kinetics of the transgene in brain tissue, the regulator dosing amount and schedule are critical parameters that influence the kinetics of accumulation and zenith of the encoded transgene product.
Collapse
Affiliation(s)
- Piotr Hadaczek
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Sean R. Cutler
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Department of Chemistry, University of California Riverside, Riverside, CA 92507, USA
| |
Collapse
|
25
|
Abstract
Chemical biology is now able to discover molecules that manipulate virtually any biological target or process. It remains a grand challenge to leverage these molecules into useful probes that can be used to address unsolved problems in biology.
Collapse
|
26
|
Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, Young DD, Hahn KM, Deiters A. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J Am Chem Soc 2010; 133:420-3. [PMID: 21162531 DOI: 10.1021/ja109630v] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed a new system for light-induced protein dimerization in living cells using a photocaged analogue of rapamycin together with an engineered rapamycin binding domain. Using focal adhesion kinase as a target, we demonstrated successful light-mediated regulation of protein interaction and localization in living cells. Modification of this approach enabled light-triggered activation of a protein kinase and initiation of kinase-induced phenotypic changes in vivo.
Collapse
Affiliation(s)
- Andrei V Karginov
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu Z, Mata M, Fink DJ. Prevention of diabetic neuropathy by regulatable expression of HSV-mediated erythropoietin. Mol Ther 2010; 19:310-7. [PMID: 20924361 DOI: 10.1038/mt.2010.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous studies have demonstrated that gene transfer of genes coding for neurotrophic factors to the dorsal root ganglion (DRG) using nonreplicating herpes simplex virus (HSV)-based vectors injected subcutaneously can prevent the progression of diabetic neuropathy. Because prolonged expression of neurotrophic factors could potentially have unwanted adverse effects, we constructed a nonreplicating HSV vector, vHrtEPO, to express erythropoietin (EPO) under the control of a tetracycline response element (TRE)-minimal cytomegalovirus (CMV) fusion promoter. Primary DRG neurons in culture infected with vHrtEPO express and release EPO in response to exposure to doxycycline (DOX). Animals infected with vHrtEPO by footpad inoculation demonstrated regulated expression of EPO in DRG under the control of DOX administered by gavage. Mice rendered diabetic by injection of streptozotocin (STZ), inoculated with vHrtEPO, and treated with DOX 4 days out of 7 each week for 4 weeks were protected against the development of diabetic neuropathy as assessed by electrophysiologic and behavioral measures. These studies indicate that intermittent expression of EPO in DRG achieved from a regulatable vector is sufficient to protect against the progression of neuropathy in diabetic animals, and provides proof-of-principle preclinical evidence for the development of such vectors for clinical trial.
Collapse
Affiliation(s)
- Zetang Wu
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
28
|
Peterson-Kaufman KJ, Carlson CD, Rodríguez-Martínez JA, Ansari AZ. Nucleating the assembly of macromolecular complexes. Chembiochem 2010; 11:1955-62. [PMID: 20812316 PMCID: PMC4176617 DOI: 10.1002/cbic.201000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Indexed: 12/23/2022]
Abstract
Nature constructs intricate complexes containing numerous binding partners in order to direct a variety of cellular processes. Researchers have taken a cue from these events to develop synthetic molecules that can nucleate natural and unnatural interactions for a diverse set of applications. These molecules can be designed to drive protein dimerization or to modulate the interactions between proteins, lipids, DNA, or RNA and thereby alter cellular pathways. A variety of components within the cellular machinery can be recruited with or replaced by synthetic compounds. Directing the formation of multicomponent complexes with new synthetic molecules can allow unprecedented control over the cellular machinery.
Collapse
Affiliation(s)
| | - Clayton D. Carlson
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| | - José A. Rodríguez-Martínez
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| | - Aseem Z. Ansari
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| |
Collapse
|
29
|
Voutetakis A, Cotrim AP, Rowzee A, Zheng C, Rathod T, Yanik T, Loh YP, Baum BJ, Cawley NX. Systemic delivery of bioactive glucagon-like peptide 1 after adenoviral-mediated gene transfer in the murine salivary gland. Endocrinology 2010; 151:4566-72. [PMID: 20610567 PMCID: PMC2940489 DOI: 10.1210/en.2010-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An adenoviral (Ad) vector that expresses bioactive glucagon-like peptide 1 (GLP-1) was generated, and its effectiveness at modulating glucose homeostasis was evaluated after transduction of murine salivary glands. The construct was engineered with the signal sequence of mouse GH to direct the peptide into the secretory pathway, followed by a furin cleavage site and the GLP-1(7-37) sequence encoding an Ala to Gly substitution at position 8 to achieve resistance to degradation. When expressed in Neuro2A and COS7 cells, an active form of GLP-1 was specifically detected by RIA in the conditioned medium of transduced cells, showed resistance to degradation by dipeptidyl-peptidase IV, and induced the secretion of insulin from NIT1 pancreatic beta-cells in vitro. In vivo studies demonstrated that healthy mice transduced with Ad-GLP-1 in both submandibular glands had serum GLP-1 levels approximately 3 times higher than mice transduced with the control Ad-luciferase vector. In fasted animals, serum glucose levels were similar between Ad-GLP-1 and Ad-luciferase transduced mice in keeping with GLP-1's glucose-dependent action. However, when challenged with glucose, Ad-GLP-1 transduced mice cleared the glucose significantly faster than control mice. In an animal model of diabetes induced by alloxan, progression of hyperglycemia was significantly attenuated in mice given the Ad-GLP-1 vector compared with control mice. These studies demonstrate that the bioactive peptide hormone, GLP-1, normally secreted from endocrine cells in the gut through the regulated secretory pathway, can be engineered for secretion into the circulatory system from exocrine cells of the salivary gland to affect glucose homeostasis.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zheng C, Voutetakis A, Metzger M, Afione S, Cotrim AP, Eckhaus MA, Rivera VM, Clackson T, Chiorini JA, Donahue RE, Dunbar CE, Baum BJ. Evaluation of a rapamycin-regulated serotype 2 adeno-associated viral vector in macaque parotid glands. Oral Dis 2010; 16:269-77. [PMID: 20374510 DOI: 10.1111/j.1601-0825.2009.01631.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Salivary glands are useful target organs for local and systemic gene therapeutics. For such applications, the regulation of transgene expression is important. Previous studies by us in murine submandibular glands showed that a rapamycin transcriptional regulation system in a single serotype 2, adeno-associated viral (AAV2) vector was effective for this purpose. This study evaluated if such a vector was similarly useful in rhesus macaque parotid glands. METHODS A recombinant AAV2 vector (AAV-TF-RhEpo-2.3w), encoding rhesus erythropoietin (RhEpo) and a rapamycin-inducible promoter, was constructed. The vector was administered to macaques at either of two doses [1.5 x 10(11) (low dose) or 1.5 x 10(12) (high dose) vector genomes] via cannulation of Stensen's duct. Animals were followed up for 12-14 weeks and treated at intervals with rapamycin (0.1 or 0.5 mg kg(-1)) to induce gene expression. Serum chemistry, hematology, and RhEpo levels were measured at interval. RESULTS AAV-TF-RhEpo-2.3w administration led to low levels of rapamycin-inducible RhEpo expression in the serum of most macaques. In five animals, no significant changes were seen in serum chemistry and hematology values over the study. One macaque, however, developed pneumonia, became anemic and subsequently required euthanasia. After the onset of anemia, a single administration of rapamycin led to significant RhEpo production in this animal. CONCLUSION Administration of AAV-TF-RhEpo-2.3w to macaque parotid glands was generally safe, but led only to low levels of serum RhEpo in healthy animals following rapamycin treatment.
Collapse
Affiliation(s)
- C Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-1190, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Living cells have evolved a broad array of complex signalling responses, which enables them to survive diverse environmental challenges and execute specific physiological functions. Our increasingly sophisticated understanding of the molecular mechanisms of cell signalling networks in eukaryotes has revealed a remarkably modular organization and synthetic biologists are exploring how this can be exploited to engineer cells with novel signalling behaviours. This approach is beginning to reveal the logic of how cells might evolve innovative new functions and moves us towards the exciting possibility of engineering custom cells with precise sensing-response functions that could be useful in medicine and biotechnology.
Collapse
Affiliation(s)
- Wendell A Lim
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94158, USA.
| |
Collapse
|
32
|
Taylor JL, Rohatgi P, Spencer HT, Doyle DF, Azizi B. Characterization of a molecular switch system that regulates gene expression in mammalian cells through a small molecule. BMC Biotechnol 2010; 10:15. [PMID: 20167077 PMCID: PMC2831033 DOI: 10.1186/1472-6750-10-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular switch systems that activate gene expression by a small molecule are effective technologies that are widely used in applied biological research. Nuclear receptors are valuable candidates for these regulation systems due to their functional role as ligand activated transcription factors. Previously, our group engineered a variant of the retinoid x receptor to be responsive to the synthetic compound, LG335, but not responsive to its natural ligand, 9-cis-retinoic acid. RESULTS This work focuses on characterizing a molecular switch system that quantitatively controls transgene expression. This system is composed of an orthogonal ligand/nuclear receptor pair, LG335 and GRQCIMFI, along with an artificial promoter controlling expression of a target transgene. GRQCIMFI is composed of the fusion of the DNA binding domain of the yeast transcription factor, Gal4, and a retinoid x receptor variant. The variant consists of the following mutations: Q275C, I310M, and F313I in the ligand binding domain. When introduced into mammalian cell culture, the switch shows luciferase activity at concentrations as low as 100 nM of LG335 with a 6.3 +/- 1.7-fold induction ratio. The developed one-component system activates transgene expression when introduced transiently or virally. CONCLUSIONS We have successfully shown that this system can induce tightly controlled transgene expression and can be used for transient transfections or retroviral transductions in mammalian cell culture. Further characterization is needed for gene therapy applications.
Collapse
Affiliation(s)
- Jennifer L Taylor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
33
|
Blits B, Derks S, Twisk J, Ehlert E, Prins J, Verhaagen J. Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: Comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors. J Neurosci Methods 2010; 185:257-63. [DOI: 10.1016/j.jneumeth.2009.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
34
|
Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proc Natl Acad Sci U S A 2009; 106:10638-43. [PMID: 19549857 DOI: 10.1073/pnas.0901501106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adjustable control of therapeutic transgenes in engineered cell implants after transdermal and topical delivery of nontoxic trigger molecules would increase convenience, patient compliance, and elimination of hepatic first-pass effect in future therapies. Pseudomonas putida DOT-T1E has evolved the flavonoid-triggered TtgR operon, which controls expression of a multisubstrate-specific efflux pump (TtgABC) to resist plant-derived defense metabolites in its rhizosphere habitat. Taking advantage of the TtgR operon, we have engineered a hybrid P. putida-mammalian genetic unit responsive to phloretin. This flavonoid is contained in apples, and, as such, or as dietary supplement, regularly consumed by humans. The engineered mammalian phloretin-adjustable control element (PEACE) enabled adjustable and reversible transgene expression in different mammalian cell lines and primary cells. Due to the short half-life of phloretin in culture, PEACE could also be used to program expression of difficult-to-produce protein therapeutics during standard bioreactor operation. When formulated in skin lotions and applied to the skin of mice harboring transgenic cell implants, phloretin was able to fine-tune target genes and adjust heterologous protein levels in the bloodstream of treated mice. PEACE-controlled target gene expression could foster advances in biopharmaceutical manufacturing as well as gene- and cell-based therapies.
Collapse
|
35
|
Characterization of the effects and functions of sumoylation through rapamycin-mediated heterodimerization. Methods Mol Biol 2008. [PMID: 19107416 DOI: 10.1007/978-1-59745-566-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Post-translational modification of proteins, such as phosphorylation, ubiquitination, and SUMO modification, is an important means of regulating a variety of cellular activities. SUMOs (Small Ubiquitin related Modifiers) are covalently conjugated to lysine residues of many proteins by a mechanism that parallels ubiquitination (1). The effects of sumoylation, however, are distinct from ubiquitination. Sumoylation does not directly control protein stability, but regulates proteins through various mechanisms that include modulation of protein-protein interactions, protein-nucleic acid interactions, subcellular protein localization, and enzymatic activity (1-4). There are many examples, however, where the molecular bases for the effects of sumoylation on protein function and on cellular processes remain unclear. Here, we outline the use of an inducible and reversible sumoylation system, based on rapamycin heterodimerization, as a novel tool to characterize the functions of sumoylation in mammalian cells.
Collapse
|
36
|
Corson TW, Aberle N, Crews CM. Design and Applications of Bifunctional Small Molecules: Why Two Heads Are Better Than One. ACS Chem Biol 2008; 3:677-692. [PMID: 19112665 DOI: 10.1021/cb8001792] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Induction of protein--protein interactions is a daunting challenge, but recent studies show promise for small molecules that specifically bring two or more protein molecules together for enhanced or novel biological effect. The first such bifunctional molecules were the rapamycin- and FK506-based "chemical inducers of dimerization", but the field has since expanded with new molecules and new applications in chemical genetics and cell biology. Examples include coumermycin-mediated gyrase B dimerization, proteolysis targeting chimeric molecules (PROTACs), drug hybrids, and strategies for exploiting multivalency in toxin binding and antibody recruitment. This Review discusses these and other advances in the design and use of bifunctional small molecules and potential strategies for future systems.
Collapse
Affiliation(s)
| | | | - Craig M. Crews
- Department of Molecular, Cellular & Developmental Biology
- Departments of Chemistry and Pharmacology, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
37
|
Bishop AC, Chen VL. Brought to life: targeted activation of enzyme function with small molecules. J Chem Biol 2008; 2:1-9. [PMID: 19568788 DOI: 10.1007/s12154-008-0012-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/04/2008] [Indexed: 11/30/2022] Open
Abstract
Cell-permeable small molecules that are capable of activating particular enzymes would be invaluable tools for studying protein function in complex cell-signaling cascades. But, is it feasible to identify compounds that allow chemical-biology researchers to activate specific enzymes in a cellular context? In this review, we describe some recent advances in achieving targeted enzyme activation with small molecules. In addition to surveying progress in the identification and targeting of enzymes that contain natural allosteric-activation sites, we focus on recently developed protein-engineering strategies that allow researchers to render an enzyme of interest "activatable" by a pre-chosen compound. Three distinct strategies for targeting an engineered enzyme are discussed: direct chemical "rescue" of an intentionally inactivated enzyme, activation of an enzyme by targeting a de novo small-molecule-binding site, and the generation of activatable enzymes via fusion of target enzymes to previously characterized small-molecule-binding domains.
Collapse
Affiliation(s)
- Anthony C Bishop
- Department of Chemistry, Amherst College, Amherst, MA, 01002, USA,
| | | |
Collapse
|
38
|
Phenotypes of major immediate-early gene mutants of mouse cytomegalovirus. Med Microbiol Immunol 2008; 197:233-40. [PMID: 18239940 DOI: 10.1007/s00430-008-0076-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Indexed: 10/22/2022]
Abstract
Immediate-early (IE) genes are the first genes to be transcribed during the lytic replication cycle of cytomegaloviruses (CMV), and encode nonstructural proteins, which are assumed to have mainly regulatory functions. The IE proteins may play important roles in the pathogenesis of CMV in vivo, for instance during the establishment of latency and during reactivation. We constructed mouse CMV mutants with disruptions in the major IE genes, ie1 and ie3, to study the roles of these genes in the context of the viral infection. Here we summarize the current results on the characterization of these mutants and give a perspective of the future research in this field.
Collapse
|
39
|
Jullien N, Goddard I, Selmi-Ruby S, Fina JL, Cremer H, Herman JP. Conditional transgenesis using Dimerizable Cre (DiCre). PLoS One 2007; 2:e1355. [PMID: 18159238 PMCID: PMC2131782 DOI: 10.1371/journal.pone.0001355] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 11/27/2007] [Indexed: 11/18/2022] Open
Abstract
Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. We have recently developed a conceptually new approach to regulate Cre recombinase, that we have called Dimerizable Cre or DiCre. It is based on splitting Cre into two inactive moieties and fusing them to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin associated protein), respectively. These latter can be efficiently hetero-dimerized by rapamycin, leading to the reinstatement of Cre activity. We have been able to show, using in vitro approaches, that this ligand-induced dimerization is an efficient way to regulate Cre activity, and presents a low background activity together with a high efficiency of recombination following dimerization. To test the in vivo performance of this system, we have, in the present work, knocked-in DiCre into the Rosa26 locus of mice. To evaluate the performance of the DiCre system, mice have been mated with indicator mice (Z/EG or R26R) and Cre-induced recombination was examined following activation of DiCre by rapamycin during embryonic development or after birth of progenies. No recombination could be observed in the absence of treatment of the animals, indicating a lack of background activity of DiCre in the absence of rapamycin. Postnatal rapamycin treatment (one to five daily injection, 10 mg/kg i.p) induced recombination in a number of different tissues of progenies such as liver, heart, kidney, muscle, etc. On the other hand, recombination was at a very low level following in utero treatment of DiCrexR26R mice. In conclusion, DiCre has indeed the potentiality to be used to establish conditional Cre-deleter mice. An added advantage of this system is that, contrary to other modulatable Cre systems, it offers the possibility of obtaining regulated recombination in a combinatorial manner, i.e. induce recombination at any desired time-point specifically in cells characterized by the simultaneous expression of two different promoters.
Collapse
Affiliation(s)
- Nicolas Jullien
- ICNE-UMR 6544 Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille, France
| | - Isabelle Goddard
- Centre de Transgenèse, Faculté de Médecine Nord, Institut Fédératif de Recherche (IFR) Jean-Roche, Marseille, France
| | - Samia Selmi-Ruby
- INSERM UMR 664, Faculté de Médecine RTH Laennec, Université Lyon I, Lyon, France
| | - Jean-Luc Fina
- Centre de Transgenèse, Faculté de Médecine Nord, Institut Fédératif de Recherche (IFR) Jean-Roche, Marseille, France
| | - Harold Cremer
- IBDML-UMR 6216 Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille, France
| | - Jean-Paul Herman
- ICNE-UMR 6544 Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Hartenbach S, Daoud-El Baba M, Weber W, Fussenegger M. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice. Nucleic Acids Res 2007; 35:e136. [PMID: 17947334 PMCID: PMC2175317 DOI: 10.1093/nar/gkm652] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
For optimal compatibility with biopharmaceutical manufacturing and gene therapy, heterologous transgene control systems must be responsive to side-effect-free physiologic inducer molecules. The arginine-inducible interaction of the ArgR repressor and the ArgR-specific ARG box, which synchronize arginine import and synthesis in the intracellular human pathogen Chlamydia pneumoniae, was engineered for arginine-regulated transgene (ART) expression in mammalian cells. A synthetic arginine-responsive transactivator (ARG), consisting of ArgR fused to the Herpes simplex VP16 transactivation domain, reversibly adjusted transgene transcription of chimeric ARG box-containing mammalian minimal promoters (PART) in an arginine-inducible manner. Arginine-controlled transgene expression showed rapid induction kinetics in a variety of mammalian cell lines and was adjustable and reversible at concentrations which were compatible with host cell physiology. ART variants containing different transactivation domains, variable spacing between ARG box and minimal promoter and several tandem ARG boxes showed modified regulation performance tailored for specific expression scenarios and cell types. Mice implanted with microencapsulated cells engineered for ART-inducible expression of the human placental secreted alkaline phosphatase (SEAP) exhibited adjustable serum phosphatase levels after treatment with different arginine doses. Using a physiologic inducer, such as the amino acid l-arginine, to control heterologous transgenes in a seamless manner which is devoid of noticeable metabolic interference will foster novel opportunities for precise expression dosing in future gene therapy scenarios as well as the manufacturing of difficult-to-produce protein pharmaceuticals.
Collapse
Affiliation(s)
- Shizuka Hartenbach
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
41
|
Luan H, White BH. Combinatorial methods for refined neuronal gene targeting. Curr Opin Neurobiol 2007; 17:572-80. [DOI: 10.1016/j.conb.2007.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/01/2007] [Accepted: 10/04/2007] [Indexed: 01/13/2023]
|
42
|
Stankunas K, Bayle JH, Havranek JJ, Wandless TJ, Baker D, Crabtree GR, Gestwicki JE. Rescue of degradation-prone mutants of the FK506-rapamycin binding (FRB) protein with chemical ligands. Chembiochem 2007; 8:1162-9. [PMID: 17525916 DOI: 10.1002/cbic.200700087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We recently reported that certain mutations in the FK506-rapamycin binding (FRB) domain disrupt its stability in vitro and in vivo (Stankunas et al. Mol. Cell, 2003, 12, 1615). To determine the precise residues that cause instability, we calculated the folding free energy (Delta G) of a collection of FRB mutants by measuring their intrinsic tryptophan fluorescence during reversible chaotropic denaturation. Our results implicate the T2098L point mutation as a key determinant of instability. Further, we found that some of the mutants in this collection were destabilized by up to 6 kcal mol(-1) relative to the wild type. To investigate how these mutants behave in cells, we expressed firefly luciferase fused to FRB mutants in African green monkey kidney (COS) cell lines and mouse embryonic fibroblasts (MEFs). When unstable FRB mutants were used, we found that the protein levels and the luminescence intensities were low. However, addition of a chemical ligand for FRB, rapamycin, restored luciferase activity. Interestingly, we found a roughly linear relationship between the Delta G of the FRB mutants calculated in vitro and the relative chemical rescue in cells. Because rapamycin is capable of simultaneously binding both FRB and the chaperone, FK506-binding protein (FKBP), we next examined whether FKBP might contribute to the protection of FRB mutants. Using both in vitro experiments and a cell-based model, we found that FKBP stabilizes the mutants. These findings are consistent with recent models that suggest damage to intrinsic Delta G can be corrected by pharmacological chaperones. Further, these results provide a collection of conditionally stable fusion partners for use in controlling protein stability.
Collapse
Affiliation(s)
- Kryn Stankunas
- Department of Pathology, Stanford University, 279 Campus Drive, Beckman Building, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Daniel P Walsh
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
44
|
Harkins RN, Szymanski P, Petry H, Brooks A, Qian HS, Schaefer C, Kretschmer PJ, Orme A, Wang P, Rubanyi GM, Hermiston TW. Regulated expression of the interferon-β gene in mice. Gene Ther 2007; 15:1-11. [PMID: 17637794 DOI: 10.1038/sj.gt.3302998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A single plasmid regulated expression vector based upon a mifepristone-inducible two plasmid system, termed pBRES, has been constructed and tested in mice using murine interferon-b (mIFNb) as the transgene. The expression of mIFNb in the circulation was followed by measuring the systemic induction of IP-10, a validated biomarker for mIFNb in mice. Long-term, inducible expression of mIFNb was demonstrated following a single intramuscular (i.m.) injection of the pBRES mIFNb plasmid vector into the hind limb of mice. Induction of mIFNb expression was achieved by administration of the small molecule inducer, mifepristone (MFP). Plasmid DNA and mIFNb mRNA levels in the injected muscles correlated with mIFNb expression as monitored by IP-10 over a 3-month time period. Renewable transgene expression was achieved following repeat administration of the plasmid at 3 months following the first plasmid injection. A dose-dependent increase in expression was demonstrated by varying the amount of injected plasmid or the amount of the inducer administered to the mice. Finally, the pBRES plasmid expressing mIFNb under control of the inducer, MFP, was shown to be efficacious in a murine model of experimental allergic encephalomyelitis, supporting the feasibility of gene-based therapeutic approaches for treating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- R N Harkins
- Department of Gene Technologies, Berlex Biosciences, Richmond, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Szymanski P, Kretschmer PJ, Bauzon M, Jin F, Qian HS, Rubanyi GM, Harkins RN, Hermiston TW. Development and Validation of a Robust and Versatile One-plasmid Regulated Gene Expression System. Mol Ther 2007; 15:1340-7. [PMID: 17505483 DOI: 10.1038/sj.mt.6300171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have developed a one-plasmid regulated gene expression system, pBRES, based on a mifepristone (MFP)-inducible two-plasmid system. The various expression elements of the pBRES system (promoters, 5' and 3' untranslated regions (UTRs), introns, target gene, and polyA sequences) are bounded by restriction enzyme sites so that each module can be conveniently replaced by alternate DNA elements in order to tailor the system for particular tissues, organs, or conditions. There are four possible orientations of the two expression units relative to each other, and insertion of a variety of expression elements and target genes into the four different orientations revealed orientation- and gene-dependent effects on induced and uninduced levels of gene expression. Induced target gene expression from the pBRES system was shown to be comparable to the two-plasmid system and higher than the expression from the cytomegalovirus (CMV) promoter in vivo, while maintaining low uninduced levels of expression. Finally, a pBRES expression cassette was transferred to an adeno-associated virus (AAV) vector and shown to be capable of regulated gene expression in vivo for nearly 1 year.
Collapse
Affiliation(s)
- Paul Szymanski
- Department of Gene Technologies, Berlex Biosciences, Richmond, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Stafford RL, Arndt HD, Brezinski ML, Ansari AZ, Dervan PB. Minimization of a protein-DNA dimerizer. J Am Chem Soc 2007; 129:2660-8. [PMID: 17290996 PMCID: PMC3064071 DOI: 10.1021/ja067971k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A protein-DNA dimerizer constructed from a DNA-binding polyamide and the peptide FYPWMKG facilitates the binding of a natural transcription factor Exd to an adjacent DNA site. The Exd binding domain can be reduced to a dipeptide WM attached to the polyamide through an epsilon-aminohexanoic acid linker with retention of protein-DNA dimerizer activity. Screening a library of analogues indicated that the tryptophan indole moiety is more important than methionine's side chain or the N-terminal acetamide. Remarkably, switching the stereochemistry of the tryptophan residue (l to d) stabilizes the dimerizer*Exd*DNA ternary complex at 37 degrees C. These observations provide design principles for artificial transcription factors that may function in concert with the cellular regulatory circuitry.
Collapse
|
47
|
Osten P, Grinevich V, Cetin A. Viral vectors: a wide range of choices and high levels of service. Handb Exp Pharmacol 2007:177-202. [PMID: 17203656 DOI: 10.1007/978-3-540-35109-2_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are intracellular parasites with simple DNA or RNA genomes. Virus life revolves around three steps: infection of a host cell, replication of its genome within the host cell environment, and formation of new virions; this process is often but not always associated with pathogenic effects against the host organism. Since the mid-1980s, the main goal of viral vectorology has been to develop recombinant viral vectors for long-term gene delivery to mammalian cells, with minimal associated toxicity. Today, several viral vector systems are close to achieving this aim, providing stable transgenic expression in many different cell types and tissues. Here we review application characteristics of four vector systems, derived from adeno-associated viruses, adenoviruses, retroviruses and herpes simplex virus-1, for in vivo gene delivery. We discuss the transfer capacity of the expression vectors, the stability of their transgenic expression, the tropism of the recombinant viruses, the likelihood of induction of immunotoxicity, and the ease (or difficulty) of the virus production. In the end, we discuss applications of these vectors for delivery of three molecular systems for conditional mutagenesis, two for inducible transcriptional control of transgenic expression (the tet and the dimerizer systems), and the third one for inducible control of endogenous gene expression based on RNA interference.
Collapse
Affiliation(s)
- P Osten
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
48
|
Nguyen M, Huan-Tu G, Gonzalez-Edick M, Rivera VM, Clackson T, Jooss KU, Harding TC. Rapamycin-regulated control of antiangiogenic tumor therapy following rAAV-mediated gene transfer. Mol Ther 2007; 15:912-20. [PMID: 17245354 DOI: 10.1038/mt.sj.6300079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Regulated gene expression may be required for the clinical development of certain gene therapies. Several approaches have been developed that allow pharmacologic control of transgene expression, including the dimerizer-regulated transcriptional system in which rapamycin or its analogs function as transcriptional inducers. These compounds can also act as direct antitumor agents via inhibition of mammalian target of rapamycin (mTOR). We describe the development of an optimized recombinant adeno-associated virus (AAV) expression cassette that allows dimerizer-regulated gene expression from a single vector in vitro and in vivo. After demonstrating multiple cycles of rapamycin-dependent transgene induction following a single administration of an AAV vector in vivo, application of this regulated AAV gene expression system to the pharmacologic control of antiangiogenic therapy was evaluated in preclinical tumor models. Dimerizer-regulated vectors were constructed encoding a soluble inhibitor of the vascular endothelial growth factor (VEGF) pathway. In two subcutaneous models of glioblastoma, regulated expression of the VEGF inhibitor via recombinant AAV-mediated gene transfer, in combination with rapamycin, was shown to decrease tumor growth rate significantly. The dual properties of rapamycin--as a transcriptional inducer and mTOR inhibitor--are exploited in combination with an AAV-encoded antiangiogenic agent to provide a novel approach for the treatment of malignant diseases.
Collapse
Affiliation(s)
- Minh Nguyen
- Cell Genesys Inc., South San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Nguyen M, Huan-Tu G, Gonzalez-Edick M, Rivera VM, Clackson T, Jooss KU, Harding TC. Rapamycin-regulated Control of Antiangiogenic Tumor Therapy Following rAAV-mediated Gene Transfer. Mol Ther 2007. [DOI: 10.1038/sj.mt.6300079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
50
|
Abstract
Designer molecules that can be used to impose exogenous control on gene transcription, artificial transcription factors (ATFs), are highly desirable as mechanistic probes of gene regulation, as potential therapeutic agents, and as components of cell-based devices. Recently, several advances have been made in the design of ATFs that activate gene transcription (activator ATFs), including reports of small-molecule-based systems and ATFs that exhibit potent activity. However, the many open mechanistic questions about transcriptional activators, in particular, the structure and function of the transcriptional activation domain (TAD), have hindered rapid development of synthetic ATFs. A compelling need thus exists for chemical tools and insights toward a more detailed portrait of the dynamic process of gene activation.
Collapse
Affiliation(s)
- Anna K Mapp
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|