1
|
Krause T, Moenning JL, Lamp J, Maul R, Schenkel H, Fürst P, Pieper R, Numata J. Transfer of polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) from oral exposure into cow's milk - Part I: state of knowledge and uncertainties. Nutr Res Rev 2023; 36:448-470. [PMID: 36089770 DOI: 10.1017/s0954422422000178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polychlorinated dibenzo-para-dioxins (PCDDs) and dibenzofurans (PCDFs) (collectively and colloquially referred to as 'dioxins') as well as polychlorinated biphenyls (PCBs) are persistent and ubiquitous environmental contaminants that may unintentionally enter and accumulate along the food chain. Owing to their chronic toxic effects in humans and bioaccumulative properties, their presence in feed and food requires particular attention. One important exposure pathway for consumers is consumption of milk and dairy products. Their transfer from feed to milk has been studied for the past 50 years to quantify the uptake and elimination kinetics. We extracted transfer parameters (transfer rate, transfer factor, biotransfer factor and elimination half-lives) in a machine-readable format from seventy-six primary and twenty-nine secondary literature items. Kinetic data for some toxicologically relevant dioxin congeners and the elimination half-lives of dioxin-like PCBs are still not available. A well-defined selection of transfer parameters from literature was statistically analysed and shown to display high variability. To understand this variability, we discuss the data with an emphasis on influencing factors, such as experimental conditions, cow performance parameters and metabolic state. While no universal interpretation could be derived, a tendency for increased transfer into milk is apparently connected to an increase in milk yield and milk fat yield as well as during times of body fat mobilisation, for example during the negative energy balance after calving. Over the past decades, milk yield has increased to over 40 kg/d during high lactation, so more research is needed on how this impacts feed to food transfer for PCDD/Fs and PCBs.
Collapse
Affiliation(s)
- Torsten Krause
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Jan-Louis Moenning
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Julika Lamp
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Ronald Maul
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Hans Schenkel
- Department of Animal Nutrition, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
| | - Peter Fürst
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe (CVUA-MEL), Joseph-König-Straße 40, 48147 Münster, Germany
| | - Robert Pieper
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jorge Numata
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Forcada S, Menéndez-Miranda M, Boente C, Rodríguez Gallego JL, Costa-Fernández JM, Royo LJ, Soldado A. Impact of Potentially Toxic Compounds in Cow Milk: How Industrial Activities Affect Animal Primary Productions. Foods 2023; 12:foods12081718. [PMID: 37107514 PMCID: PMC10138093 DOI: 10.3390/foods12081718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) frequently coexist in soils near industrial areas and sometimes in environmental compartments directly linked to feed (forage) and food (milk) production. However, the distribution of these pollutants along the dairy farm production chain is unclear. Here, we analyzed soil, forage, and milk samples from 16 livestock farms in Spain: several PTEs and PAHs were quantified. Farms were compared in terms of whether they were close to (<5 km) or far away from (>5 km) industrial areas. The results showed that PTEs and PAHs were enriched in the soils and forages from farms close to industrial areas, but not in the milk. In the soil, the maximum concentrations of PTEs reached 141, 46.1, 3.67, 6.11, and 138 mg kg-1 for chromium, arsenic, cadmium, mercury, and lead, respectively, while fluoranthene (172.8 µg kg-1) and benzo(b)fluoranthene (177.4 µg kg-1) were the most abundant PAHs. Principal component analysis of the soil PTEs suggested common pollution sources for iron, arsenic, and lead. In the forage, the maximum contents of chromium, arsenic, cadmium, mercury, and lead were 32.8, 7.87, 1.31, 0.47, and 7.85 mg kg-1, respectively. The PAH found in the highest concentration in the feed forage was pyrene (120 µg kg-1). In the milk, the maximum PTE levels were much lower than in the soil or the feed forages: 74.1, 16.1, 0.12, 0.28, and 2.7 µg kg-1 for chromium, arsenic, cadmium, mercury, and lead, respectively. Neither of the two milk samples exceeded the 20 µg kg-1 limit for lead set in EU 1881/2006. Pyrene was the most abundant PAH found in the milk (39.4 µg kg-1), while high molecular weight PAHs were not detected. For PTEs, the results showed that soil-forage transfer factors were higher than forage-milk ratios. Our results suggest that soils and forages around farms near industries, as well as the milk produced from those farms, have generally low levels of PTE and PAH contaminants.
Collapse
Affiliation(s)
- Sergio Forcada
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
| | - Mario Menéndez-Miranda
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
| | - Carlos Boente
- Atmospheric Pollution Laboratory, CIQSO-Center for Research in Sustainable Chemistry, Associate Unit CSIC-University of Huelva, Campus El Carmen s/n, 21071 Huelva, Huelva, Spain
| | - José Luis Rodríguez Gallego
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, Campus de Mieres, University of Oviedo, C/Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | - Luis J Royo
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
- Department of Functional Biology, Genetics, University of Oviedo, Avda. Julián Clavería 6, 33006 Oviedo, Asturias, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
3
|
Polycyclic Aromatic Hydrocarbons (PAHs) Sample Preparation and Analysis in Beverages: A Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe monitoring of food contaminants is of interests to both food regulatory bodies and the consumers. This literature review covers polycyclic aromatic hydrocarbons (PAHs) with regard to their background, sources of exposures, and occurrence in food and environment as well as health hazards. Furthermore, analytical methods focusing on the analysis of PAHs in tea, coffee, milk, and alcoholic samples for the last 16 years are presented. Numerous experimental methods have been developed aiming to obtain better limits of detections (LODs) and percent recoveries as well as to reduce solvent consumption and laborious work. These include information such as the selected PAHs analyzed, food matrix of PAHs, methods of extraction, cleanup procedure, LOD, limits of quantitation (LOQ), and percent recovery. For the analysis of tea, coffee, milk, and alcoholic samples, a majority of the research papers focused on the 16 US Environmental Protection Agency PAHs, while PAH4, PAH8, and methylated PAHs were also of interests. Extraction methods range from the classic Soxhlet extraction and liquid–liquid extraction to newer methods such as QuEChERS, dispersive solid-phase microextraction, and magnetic solid-phase extraction. The cleanup methods involved mainly the use of column chromatography and SPE filled with either silica or Florisil adsorbents. Gas chromatography and liquid chromatography coupled with mass spectrometry or fluorescence detectors are the main analytical instruments used. A majority of the selected combined methods used are able to achieve LODs and percent recoveries in the ranges of 0.01–5 ug/kg and 70–110%, respectively, for the analysis of tea, coffee, milk, and alcoholic samples.
Collapse
|
4
|
Lin M, Tang J, Ma S, Yu Y, Li G, Fan R, Mai B, An T. Insights into biomonitoring of human exposure to polycyclic aromatic hydrocarbons with hair analysis: A case study in e-waste recycling area. ENVIRONMENT INTERNATIONAL 2020; 136:105432. [PMID: 31884415 DOI: 10.1016/j.envint.2019.105432] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, 96 pairs of hair and urine samples were collected from e-waste (EW) dismantling workers of an industrial park, as well as residents living in surrounding areas. The concentrations of polycyclic aromatic hydrocarbons (PAHs) and hydroxylated PAH metabolites (OH-PAHs) were analyzed . The results show that concentrations of Σ15PAHs ranged from 6.24 to 692 ng/g dry weight (dw) and Σ12OH-PAHs from undetected to 187 ng/g dw in hair external (hair-Ex), and ranged from 31.7 to 738 ng/g dw and 21.6 to 1887 ng/g dw in hair internal (hair-In). There was no significant difference in exposure levels between EW dismantling workers and residents of the surrounding area. For the parent PAHs, the concentrations of Σ15PAHs of hair-In were comparable with those of hair-Ex for all populations except for the child residents. On the contrary, for the OH-PAHs, the concentrations of Σ12OH-PAHs of hair-In were 9-37 times higher than those of hair-Ex for populations. Moreover, the congener profiles of OH-PAHs of hair-In were different from those of hair-Ex, but similar to that of urine. Particularly, 3-OH-Bap, which is a carcinogenic metabolite, was only detected in the hair-In. These results indicate that OH-PAHs in hair-In, just like in urine, are mainly derived from endogenous metabolism and could be considered as reliable biomarkers for PAHs exposure. However, there was almost no significant correlations between hair-In and urine for OH-PAHs. This indicates that more attention should be paid to OH-PAHs when conducting PAHs exposure risk assessment using hair, which will help to obtain more reliable and comprehensive information on health risk assessments.
Collapse
Affiliation(s)
- Meiqing Lin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, 510631, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Li JY, He Q, Li J, Chen Y, Yin J, Jin L, Wang Q. Aquaculture Contributes a Higher Proportion to Children's Daily Intake of Polycyclic Aromatic Hydrocarbons Than to That of Adults in Eastern China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1084-1092. [PMID: 30737832 DOI: 10.1002/etc.4389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/05/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Asia, especially China, shares a large proportion of global aquaculture production. Consequently, aquaculture food quality and safety with regard to contamination with polycyclic aromatic hydrocarbons (PAHs) were assessed in eastern China, which is a typical area of aquaculture. The concentrations of ∑PAHs ranged from 42 to 600 ng/g dry weight in a variety of dietary species from farm ponds in eastern China. With regard to the total daily intake of PAHs estimated based on the literature data on urinary hydroxy-PAHs in this region, there was a significant difference between children (mean = 130 ng/kg/d) and adults (mean = 600 ng/kg/d for pregnant women, 1700 ng/kg/d for women, and 2300 ng/kg/d for men). Furthermore, we provided a novel estimation on the fractional contribution of aquatic products to the overall human daily intake of PAHs. Specifically, the contribution of aquatic foodstuffs to total daily intake for children and pregnant women reached more than 50 and 10%, respectively, indicating that children and pregnant women were more vulnerable to the PAH-contaminated aquaculture foodstuffs. Meanwhile, no significant region-specific pattern between different provinces was observed. In summary, these results suggested that sensitive subpopulations were vulnerable to exposure to PAH-contaminated aquatic products, and it is necessary to pay attention to the dietary intake pattern of these sensitive subgroups in eastern China. Environ Toxicol Chem 2019;00:1-9. © 2019 SETAC.
Collapse
Affiliation(s)
- Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Qing He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Hegazy AM, Khalifa MI, M. Nasr S. Monitoring of Carcinogenic Environmental Pollutants in raw Cows’ Milk. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
These investigations were conducted to detect the residues of polycyclic aromatic hydrocarbons, lead, and cadmium in the raw milk samples of lactating cows grazing around the Sugar Cane Factory. One hundred raw milk samples were collected from apparent healthy lactating cows during the rest and work periods of the Sugar Cane Factory. Detection of polycyclic aromatic hydrocarbons residue in milk samples was performed using a gas chromatography. Lead and cadmium levels in the milk samples were determined after digestion. Results revealed that benzo(a)anthracene and indeno(1,2,3-cd)pyrene (carcinogenic), and acenaphthylene and phenanthrene non-carcinogenic were detected only in the raw milk samples during the work period, while fluoranthene and benzo(a)pyrene were detected only during the rest period. However, chrysene and benzo(b) fluoranthene (carcinogenic) were detected in the milk at the rest and work periods of the Sugar Cane Factory. The highest levels of lead and cadmium were detected during the work period compared to the levels of lead and cadmium at rest. In conclusion, benzo(a)anthracene, indeno(1,2,3-cd)pyrene, acenaphthylene, and phenanthrene, lead and cadmium could be detected in cows’ milk which raised around the Sugar Cane Factory. Further investigations of these pollutants must be done in water, plants, air, and soil around this factory.
Collapse
Affiliation(s)
- Ahmed Medhat Hegazy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Aswan University, Sahari, Airport Way, Post Box 81528, Aswan, Egypt
| | - Marwa I. Khalifa
- Department of Food Hygiene, Faculty of Veterinary Medicine, Aswan University, Sahari, Airport Way, Post Box 81528, Aswan, Egypt
| | - Soad M. Nasr
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Post Box 12622, Dokki, Giza, Egypt
| |
Collapse
|
7
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
8
|
Tian K, Bao H, Zhang X, Shi T, Liu X, Wu F. Residuals, bioaccessibility and health risk assessment of PAHs in winter wheat grains from areas influenced by coal combustion in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:777-784. [PMID: 29079082 DOI: 10.1016/j.scitotenv.2017.08.174] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) contamination in atmospheric and soil was serious, which is mainly due to high level of emission of PAHs in China resulted from the predominating use of coal in energy consumption and continuous development of economy and society for years. However, the status of PAHs in winter wheat grains from the areas influenced by coal combustion in China was still not clear. During harvest season, the winter wheat grains were collected from agricultural fields surrounding coal-fired power plants located in Shaanxi and Henan Provinces. This study found that the mean concentrations of 15 priority PAHs ranged from 69.58 to 557.0μgkg-1. Three-ring PAHs (acenaphthene, acenaphthylene, fluorene, phenanthrene and anthracene) were dominant in the grains, accounting for approximately 70-81% of the total PAHs. The bioaccessibility of low molecular weight (LMW, 2-3 ring) PAHs (51.1-52.8%), high molecular weight (HMW, 4-6 ring) PAHs (19.8-27.6%) and total PAHs (40.9-48.0%) in the intestinal condition was significantly (p<0.001) higher than that (37.4-38.6%; 15.6-22.5%; 30.7-35.5%) in the gastric condition, respectively. Based on total PAHs, the values of incremental lifetime cancer risk (ILCR) for children, adolescents, adults and seniors were all higher than the baseline value (10-6) and some even fell in the range of 10-5-10-4, which indicated that most grains from the areas affected by coal combustion possessed considerable cancer risk. The present study also indicated that the children were the age group most sensitive to PAHs contamination. The pilot research provided relevant information for the regulation of PAHs in the winter wheat grains and for the safety of the agro-products growing in the PAHs-contaminated areas.
Collapse
Affiliation(s)
- Kai Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Xuechen Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Taoran Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Xueping Liu
- School of Municipal and Environment Engineering, Henan University of Urban Construction, Pingdingshan 467036, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
9
|
Yin W, Hou J, Xu T, Cheng J, Li P, Wang L, Zhang Y, Wang X, Hu C, Huang C, Yu Z, Yuan J. Obesity mediated the association of exposure to polycyclic aromatic hydrocarbon with risk of cardiovascular events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:841-854. [PMID: 29122344 DOI: 10.1016/j.scitotenv.2017.10.238] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/22/2017] [Indexed: 05/21/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) could cause high blood pressure (BP) and increased risk for atherosclerotic cardiovascular disease (ASCVD). However, the mechanisms underlying the relationship between them were unclear. We investigated potential mediation effect of obesity on the association of exposure to PAHs with high BP and increased risk for ASCVD. In the repeated measures study, 106 community-dwelling residents in Wuhan, China finished the physical examination in the winter and summer seasons, eight urinary PAHs metabolites were measured. Associations of urinary PAHs with high BP and increased risk for ASCVD were assessed using either linear mixed effect models or generalized estimating equations models. Mediation analysis was performed to evaluate the mediating effect of obesity on the association of urinary PAHs metabolites with high BP or increased risk of ASCVD. We observed the positive association between urinary PAHs metabolites and BP or the odds ratios for high BP (all P<0.05). Additionally, each one-unit increase in ln-transformed urinary levels of 4-hydroxyphenanthrene or the total of PAH metabolites was associated with a 12.63% or 11.91% increase in the estimated 10-year ASCVD risk (both P<0.05). The waist-to-height ratio mediated 29.0% of the association of urinary 4-hydroxyphenanthrene with increased risk of ASCVD (P<0.05). The findings suggest that PAHs exposure may be associated with elevated BP and an increased risk of ASCVD. Obesity may partially mediate the association between PAHs exposure and higher BP or increased risk of ASCVD.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Pei Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Youjian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Xian Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Chen Hu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Cheng Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
10
|
Paz APSD, Nascimento ECP, Marcondes HC, Silva MCFD, Hamoy M, Mello VJD. Presença de hidrocarbonetos policíclicos aromáticos em produtos alimentícios e a sua relação com o método de cocção e a natureza do alimento. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.10216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo Hidrocarbonetos Policíclicos Aromáticos (HPA) podem estar associados à carcinogênese em humanos. Tais compostos penetram no organismo pelo trato gastrointestinal, o que faz da dieta uma importante via de contaminação. O objetivo desta revisão é analisar a relação entre a formação/ingestão desses compostos e a alimentação. Foi encontrada associação direta do método de cocção empregado com o aumento dos níveis de HPA nos alimentos e a formação de novos compostos. A fonte térmica aplicada, a composição do alimento, o tipo de óleo utilizado, especialmente nos processos de fritura, bem como o tipo de tratamento empregado ao alimento antes da cocção, são fatores que influenciam o teor de HPA no produto final. A legislação brasileira é pouco abrangente em relação a esses compostos e a necessidade de ampliação das normas nacionais se torna ainda mais evidente quando este tema é visto como uma questão de Segurança de Alimentos.
Collapse
|
11
|
Fernández-Cruz T, Martínez-Carballo E, Simal-Gándara J. Perspective on pre- and post-natal agro-food exposure to persistent organic pollutants and their effects on quality of life. ENVIRONMENT INTERNATIONAL 2017; 100:79-101. [PMID: 28089279 DOI: 10.1016/j.envint.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Adipose tissue constitutes a continual source of internal exposure to organic pollutants (OPs). When fats mobilize during pregnancy and breastfeeding, OPs could affect foetal and neonatal development, respectively. SCOPE AND APPROACH The main aim of this review is to deal with pre- and post-natal external exposure to organic pollutants and their effects on health, proposing prevention measures to reduce their risk. The goal is the development of a biomonitoring framework program to estimate their impact on human health, and prevent exposure by recommending some changes in personal lifestyle habits. KEY FINDINGS AND CONCLUSIONS It has been shown that new studies should be developed taking into account their cumulative effect and the factors affecting their body burden. In conclusion, several programs should continuously be developed by different health agencies to have a better understanding of the effect of these substances and to develop a unified public policy.
Collapse
Affiliation(s)
- Tania Fernández-Cruz
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Elena Martínez-Carballo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
12
|
Yang P, Wang YX, Chen YJ, Sun L, Li J, Liu C, Huang Z, Lu WQ, Zeng Q. Urinary Polycyclic Aromatic Hydrocarbon Metabolites and Human Semen Quality in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:958-967. [PMID: 27966341 DOI: 10.1021/acs.est.6b04810] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Toxicological studies have demonstrated that polycyclic aromatic hydrocarbons (PAHs) exposure impairs male reproductive health. However, the epidemiological evidence is limited and discordant. Our goal was to investigate the relationship between PAH exposures and human semen quality. We analyzed 12 urinary metabolites of PAHs from 933 men who sought semen quality analysis in an infertility clinic in Wuhan, China. Associations with semen quality were assessed using a multivariable linear regression. Restricted cubic splines were used to explore the dose-response relationships between urinary metabolites of PAHs and semen quality. We observed inverse associations between urinary 1-hydroxynaphthalene (1-OHNa) and sperm count, sperm concentration, and percentage of normal morphology (all p for trends <0.05) as well as between urinary ∑OHNa (sum of 1-OHNa and 2-OHNa) and sperm concentration (p for trend =0.04). Additionally, we found inverse associations between urinary 9-hydroxyphenanthrene (9-OHPh) and semen volume and sperm straight-line velocity (both p for trends <0.05) as well as between urinary ∑OHPh (sum of 1-, 2-, 3-, 4-, and 9-OHPh) and sperm count (p for trend =0.04). These dose-response relationships were further confirmed in the curves of the restricted cubic splines. Our data suggest that exposure to naphthalene and phenanthrene is related to decreased semen quality. Our results contribute to the growing body of evidence regarding the widespread exposure to PAHs and the detriment to male reproductive function.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Li Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Jin Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Zhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| |
Collapse
|
13
|
Abstract
There has been increasing demand for simple, rapid, highly sensitive, inexpensive yet reliable method for detecting predisposition to cancer. Human biomonitoring of exposure to the largest class of chemical carcinogen, polycyclic aromatic hydrocarbons (PAHs) that are rapidly transformed into detectable metabolites (eg, 1-hydroxypyrene), can serve as strong pointers to early detection of predisposition to cancer. Given that any exposure to PAH is assumed to pose a certain risk of cancer, several biomarkers have been employed in biomonitoring these ninth most threatening ranked compounds. They include metabolites in urine, urinary thioethers, urinary mutagenicity, genetoxic end points in lymphocytes, hemoglobin adducts of benzo(a)pyrene, PAH-protein adducts, and PAH-DNA adducts among others. In this chapter, the main focus will be on the urine metabolites since urine samples are easily collected and there is a robust analytical instrument for the determination of their metabolites.
Collapse
|
14
|
Abstract
Polycyclic aromatic hydrocarbons (PAH) comprise the largest class of cancer-causing chemicals and are ranked ninth among chemical compounds threatening to humans. Although interest in PAH has been mainly due to their carcinogenic property, many of these compounds are genotoxic, mutagenic, teratogenic, and carcinogenic. They tend to bioaccumulate in the soft tissues of living organisms. Interestingly, many are not directly carcinogenic, but act like synergists. PAH carcinogenicity is related to their ability to bind DNA thereby causing a series of disruptive effects that can result in tumor initiation. Thus, any structural attribute or modification of a PAH molecule that enhances DNA cross linking can cause carcinogenicity. In part I, we review exposure to these dangerous chemicals across a spectrum of use in the community and industry.
Collapse
Affiliation(s)
| | - Chimezie Anyakora
- The Centre for Applied Research on Separation Science, Lagos, Nigeria; Department of Pharmaceutical Chemistry, University of Lagos, Lagos, Nigeria.
| |
Collapse
|
15
|
Motorykin O, Santiago-Delgado L, Rohlman D, Schrlau JE, Harper B, Harris S, Harding A, Kile ML, Massey Simonich SL. Metabolism and excretion rates of parent and hydroxy-PAHs in urine collected after consumption of traditionally smoked salmon for Native American volunteers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:170-7. [PMID: 25659315 PMCID: PMC4361301 DOI: 10.1016/j.scitotenv.2015.01.083] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 05/07/2023]
Abstract
Few studies have been published on the excretion rates of parent polycyclic aromatic hydrocarbons (PAHs) and hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) following oral exposure. This study investigated the metabolism and excretion rates of 4 parent PAHs and 10 OH-PAHs after the consumption of smoked salmon. Nine members of the Confederated Tribes of the Umatilla Indian Reservation consumed 50 g of traditionally smoked salmon with breakfast and five urine samples were collected during the following 24 h. The concentrations of OH-PAHs increased from 43.9 μg/g creatinine for 2-OH-Nap to 349 ng/g creatinine for 1-OH-Pyr, 3 to 6 h post-consumption. Despite volunteers following a restricted diet, there appeared to be a secondary source of naphthalene and fluorene, which led to excretion efficiencies greater than 100%. For the parent PAHs that were detected in urine, the excretion efficiencies ranged from 13% for phenanthrene (and its metabolite) to 240% for naphthalene (and its metabolites). The half-lives for PAHs ranged from 1.4 h for retene to 3.3h for pyrene. The half-lives for OH-PAHs were higher and ranged from 1.7 h for 9-OH-fluorene to 7.0 h for 3-OH-fluorene. The concentrations of most parent PAHs, and their metabolites, returned to the background levels 24 h post-consumption.
Collapse
Affiliation(s)
- Oleksii Motorykin
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | | | - Diana Rohlman
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jill E Schrlau
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Barbara Harper
- Department of Science and Engineering, Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR 97801, USA
| | - Stuart Harris
- Department of Science and Engineering, Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR 97801, USA
| | - Anna Harding
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Staci L Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
16
|
Girelli AM, Sperati D, Tarola AM. Determination of polycyclic aromatic hydrocarbons in Italian milk by HPLC with fluorescence detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:703-10. [PMID: 24417240 DOI: 10.1080/19440049.2013.878959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The presence of polycyclic aromatic hydrocarbons (PAHs) in Italian commercial milk samples is reported. The study was carried out on lactating (cow and goat) and plant (rice, soya, oat) milk. The quantitative determination involved liquid-liquid extraction of PAHs, a pre-concentration and determination by HPLC using a fluorescence detector. The recovery of analytes was in the range of 70-115%. The precision of the method was found to be between 6% and 24%. The detection limit ranged from 0.66 to 33.3 µg l(-1) corresponding to 0.03-1.66 µg kg(-1) milk (wet weight), at a signal-to-noise ratio of 3, depending on the compound. By this procedure, the levels of more volatile PAHs (two to three aromatic rings) were confirmed in 34 commercial milk and three plant milk samples, whereas benzo[a]pyrene was found only in five pasteurised milk samples at a mean concentration of 0.17 µg kg(-1) milk. These results provide evidence that PAH levels are influenced by heat treatments and skimming processes of milk production.
Collapse
Affiliation(s)
- A M Girelli
- a Department of Chemistry , Sapienza University of Rome , P.le A. Moro 5, I-00185 Rome , Italy
| | | | | |
Collapse
|
17
|
Zhang Y, Ding J, Shen G, Zhong J, Wang C, Wei S, Chen C, Chen Y, Lu Y, Shen H, Li W, Huang Y, Chen H, Su S, Lin N, Wang X, Liu W, Tao S. Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolites--a controlled case study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:515-22. [PMID: 24177434 PMCID: PMC4299857 DOI: 10.1016/j.envpol.2013.10.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/29/2013] [Accepted: 10/04/2013] [Indexed: 05/03/2023]
Abstract
Daily dietary and inhalation exposures to 16 parent polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 13 monohydroxy metabolites (OHPAHs) were monitored for 12 non-smoking university students in Beijing, China, during a controlled feeding experiment. The relationship between the urinary excretion of OHPAHs and the uptake of PAHs was investigated. The results suggest severe exposure of the subjects to PAHs via both dietary and inhalation pathways. Large increase of most urinary OHPAHs occurred after the ingestion of lamb kabob. Higher concentrations of OHPAHs were observed for female subjects, with the intakes of parent PAHs lower than those by males, likely due to the gender differences in metabolism. It appears that besides 1-PYR, metabolites of PHE could also be used as biomarkers to indicate the short-term dietary exposure to PAHs and urinary 3-BaA may serve as the biomarker for inhalation intake of high molecular weight PAHs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shu Tao
- Corresponding author phone: 86-10-62751938;
| |
Collapse
|
18
|
Garcia Londoño VA, Garcia LP, Scussel VM, Resnik S. Polycyclic aromatic hydrocarbons in milk powders marketed in Argentina and Brazil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1573-80. [PMID: 23844580 DOI: 10.1080/19440049.2013.810347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to quantify polycyclic aromatic hydrocarbon (PAH) levels in milk powder samples commercialised in Argentina and Brazil during 2012. Thirty-one samples were available from the retail market. An HPLC method for the determination of PAHs was applied involving a clean-up step with silica cartridges. Recoveries were greater than 79% for all PAHs analysed. Reproducible determination with adequate detection and quantification limits (LOD and LOQ) were attained by HPLC with fluorescence detection for 14 PAHs. Acenaphthylene was determined with a UV-VIS detector. There is no significant difference in any PAHs or in the sum of them between the Argentinean and Brazilian samples. Therefore, the samples were evaluated together. The highest concentration of benzo(a)pyrene (BaP) detected was 0.57 µg kg⁻¹ in milk powder. Contamination of samples expressed as the sum of 15 analysed PAHs varied between 11.8 and 78.4 µg kg⁻¹ and as PAH4 (BaP, chrysene, benzo(a)anthracene and benzo(b)fluoranthene) was between 0.02 and 10.16 µg kg⁻¹. The correlation coefficient for PAH2 (BaP and chrysene) and PAH4 groups was 0.95, for PAH2 and PAH8 it was 0.71, and for PAH4 and PAH8 it was 0.83. All the samples were below the regulatory limit for BaP, but 65% of commercial milk powders do not comply with the European Union limit for PAH4. This is the first report of PAH contamination in powder milk from Argentina and Brazil.
Collapse
Affiliation(s)
- Victor A Garcia Londoño
- a Departamentos de Industrias y Química Orgánica , Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA) , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
19
|
Abstract
Human activities produce polluting compounds such as persistent organic pollutants (POPs), which may interact with agriculture. These molecules have raised concern about the risk of transfer through the food chain via the animal product. POPs are characterised by a strong persistence in the environment, a high volatility and a lipophilicity, which lead to their accumulation in fat tissues. These compounds are listed in international conventions to organise the information about their potential toxicity for humans and the environment. The aim of this paper is to synthesise current information on dairy ruminant exposure to POPs and the risk of their transfer to milk. Three major groups of POPs have been considered: the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), the polychlorobiphenyls (PCBs) and the polycyclic aromatic hydrocarbons (PAHs). The results show that contamination of fodder and soil by these compounds is observed when they are exposed to emission sources (steelworks, cementworks, waste incinerators or motorways) compared with remote areas. In general, soil contamination is considered higher than plant contamination. Highest concentrations of POPs in soil may be close to 1000 ng/kg dry matter (DM) for PCDD/Fs, to 10 000 mg/kg DM for PAHs and 100 μg/kg DM for PCBs. The contamination of milk by POPs depends on environmental factors, factors related to the rearing system (fodder and potentially contaminated soil, stage of lactation, medical state of the herd) and of the characteristics of the contaminants. Transfer rates to milk have been established: for PCBs the rate of transfer varies from 5% to 90%, for PCDD/Fs from 1% to 40% and for PAHs from 0.5% to 8%. The differential transfer of the compounds towards milk is related to the hydrophobicity of the pollutants as well as to the metabolic susceptibility of the compounds.
Collapse
|
20
|
|
21
|
Schellenberger MT, Grova N, Farinelle S, Willième S, Revets D, Muller CP. Immunogenicity of a promiscuous T cell epitope peptide based conjugate vaccine against benzo[a]pyrene: redirecting antibodies to the hapten. PLoS One 2012; 7:e38329. [PMID: 22666501 PMCID: PMC3364213 DOI: 10.1371/journal.pone.0038329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/04/2012] [Indexed: 12/19/2022] Open
Abstract
The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142-51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15-56%). We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted.
Collapse
Affiliation(s)
- Mario T Schellenberger
- Centre de Recherche Public-Santé/National Public Health Laboratory, Institute of Immunology, Luxembourg, Grand Duchy of Luxembourg
| | | | | | | | | | | |
Collapse
|
22
|
Scientific Opinion on the risk to public health related to the presence of high levels of dioxins and dioxin‐like PCBs in liver from sheep and deer. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
23
|
Naccari C, Cristani M, Giofrè F, Ferrante M, Siracusa L, Trombetta D. PAHs concentration in heat-treated milk samples. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Wang HS, Man YB, Wu FY, Zhao YG, Wong CKC, Wong MH. Oral bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) through fish consumption, based on an in vitro digestion model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11517-11524. [PMID: 20929255 DOI: 10.1021/jf102242m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An in vitro gastrointestinal digestion model was used to evaluate bioaccessibility of PAHs in 20 fish species collected from Hong Kong markets. The average bioaccessibilities of PAHs were 24.3 and 31.1%, respectively, in gastric and intestinal conditions. When bioaccessibility was taken into consideration, the values of potency equivalent concentrations (PEC) decreased from 0.53 to 0.18 ng g(-1) for freshwater fish and from 1.43 to 0.35 ng g(-1) for marine fish. This indicated that bioaccessibility should be taken into account for health risk assessment with regard to PAH contamination in fish. The relative accumulation ratios (R(nn)) of PAH congeners were significantly correlated with their physicochemical parameters and their corresponding concentrations reported in subcutaneous fats of Hong Kong residents. The data suggest that R(nn) values calculated in the present study could effectively reflect the accumulations of PAHs in the human body.
Collapse
Affiliation(s)
- Hong-Sheng Wang
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Lin LC, Wu HY, Tseng VSM, Chen LC, Chang YC, Liao PC. A statistical procedure to selectively detect metabolite signals in LC-MS data based on using variable isotope ratios. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:232-241. [PMID: 19892567 DOI: 10.1016/j.jasms.2009.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
The tracing of metabolite signals in LC-MS data using stable isotope-labeled compounds has been described in the literature. However, the filtering efficiency and confidence when mining metabolite signals in complex LC-MS datasets can be improved. Here, we propose an additional statistical procedure to increase the compound-derived signal mining efficiency. This method also provides a highly confident approach to screen out metabolite signals because the correlation of varying concentration ratios of native/stable isotope-labeled compounds and their instrumental response ratio is used. An in-house computational program [signal mining algorithm with isotope tracing (SMAIT)] was developed to perform the statistical procedure. To illustrate the SMAIT concept and its effectiveness for mining metabolite signals in LC-MS data, the plasticizer, di-(2-ethylhexyl) phthalate (DEHP), was used as an example. The statistical procedure effectively filtered 15 probable metabolite signals from 3617 peaks in the LC-MS data. These probable metabolite signals were considered structurally related to DEHP. Results obtained here suggest that the statistical procedure could be used to confidently facilitate the detection of probable metabolites from a compound-derived precursor presented in a complex LC-MS dataset.
Collapse
Affiliation(s)
- Lung-Cheng Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Costera A, Feidt C, Dziurla MA, Monteau F, Le Bizec B, Rychen G. Bioavailability of polycyclic aromatic hydrocarbons (PAHs) from soil and hay matrices in lactating goats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5352-5357. [PMID: 19480408 DOI: 10.1021/jf9003797] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This experiment was aimed at determining the bioavailability of three polycyclic aromatic hydrocarbons (PAHs) in goats: phenanthrene, pyrene, and benzo[a]pyrene. A Latin square design procedure was carried out involving three alpine lactating goats and three PAH-contaminated matrices (soil, hay, and oil as a control). Milk and urine samples were collected to assess PAH and hydroxy-PAH excretion kinetics and to compare the carry-over rates for the different matrices. PAHs were found to be excreted mainly in urine; metabolite concentrations were about 20 times higher in urine than in milk. 1-Hydroxypyrene was the major metabolite in both body fluids (8000 ng/mL urine and 450 ng/mL milk); it may be considered as a valuable indicator of the ruminant exposure to PAHs. Apparent absorption of PAHs estimated by the metabolite excretion in urine and milk reached 34% for pyrene from soil, and the bioavailability of soil-bound PAHs was found to be similar to the bioavailability of PAHs from the other matrices.
Collapse
|
28
|
Grova N, Prodhomme EJF, Schellenberger MT, Farinelle S, Muller CP. Modulation of carcinogen bioavailability by immunisation with benzo[a]pyrene-conjugate vaccines. Vaccine 2009; 27:4142-51. [PMID: 19406187 DOI: 10.1016/j.vaccine.2009.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/06/2009] [Accepted: 04/21/2009] [Indexed: 11/19/2022]
Abstract
Benzo[a]pyrene (B[a]P) conjugate vaccines based on ovalbumin, tetanus toxoid and diphtheria toxoid (DT) as carrier proteins were developed to investigate the effect of specific antibodies on the bioavailability of this ubiquitous carcinogen and its metabolites. After metabolic activation of this prototype carcinogen, B[a]P forms DNA adducts which initiate chemical carcinogenesis. B[a]P-DT conjugate induced the most robust immune response. The antibodies reacted not only with B[a]P but also with the proximate carcinogen 7,8-diol-B[a]P. Antibodies modulated the bioavailability of B[a]P and its metabolic activation in a dose-dependent manner by sequestration in the blood. Our results showed that this immune prophylactic strategy influences the pharmacokinetic of B[a]P and further studies to investigate their effects on chemical carcinogenesis are warranted.
Collapse
Affiliation(s)
- Nathalie Grova
- Institute of Immunology, LNS/CRP-Santé, Grand Duchy of Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
29
|
Fouzy ASM, Desouky HM, Ghazi YA, Hammam AM. Some clinico and histopathological changes in female goats experimentally exposed to dioxin. Pak J Biol Sci 2009; 10:1213-20. [PMID: 19069919 DOI: 10.3923/pjbs.2007.1213.1220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Female Baladi goats were used for investigating the toxicological effects of dioxin. Each animal in the treated group was given an oral dose of 4 mL of stock standard solution of dioxin (labelled and native congeners) diluted in 5 mL distilled water (1/3 of LD50) for three times with 2 days interval and slaughtered 16 days post treatment. Blood and tissue samples were taken and subjected for haemogram, biochemical and pathological studies as well as for determination of dioxin residues. Results revealed that exposure of female goats to dioxin induced anemia, leucocytopenia, neutropenia and eosinophilia with non significant increases in activities of serum ALT and AST as compared with untreated group. Meanwhile, activity of ALP and BUN concentration were significantly increased. Histopathological examination showed degenerative and necrotic changes associated with inflammatory reaction in liver and kidney, in addition to cystic glandular hyperplasia and adenomyosis in uterus. In ovarian tissue, marked decrease ofpreantral follicles together with cystic atretic follicle were noticed. The average percentage residues ofpg WHO-TEQ values for dioxins (PCDDs and PCDFs) in liver, kidney, mammary gland, uterus and milk after oral dose were 0.013, 0.0012, 0.0012, 0.009 and 0.0012%, respectively. It was concluded that oral exposure to dioxin in female goats induced adverse effects on liver and kidney. Dioxins had estrogenic like effect as indicated by uterine and ovarian histopathological changes.
Collapse
Affiliation(s)
- A S M Fouzy
- Food Toxicology and Contaminants, National Research Centre, Giza, Egypt
| | | | | | | |
Collapse
|
30
|
Rey-Salgueiro L, García-Falcón MS, Martínez-Carballo E, González-Barreiro C, Simal-Gándara J. The use of manures for detection and quantification of polycyclic aromatic hydrocarbons and 3-hydroxybenzo[a]pyrene in animal husbandry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 406:279-286. [PMID: 18793795 DOI: 10.1016/j.scitotenv.2008.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/28/2008] [Accepted: 07/31/2008] [Indexed: 05/26/2023]
Abstract
PAHs from a polluted atmosphere are generally transferred to plants by particle-phase deposition on the waxy leaf cuticle or by uptake in the gas phase through stomata. Thus, they are also present in ingredients for animal feed. Generally, toxic substances are metabolized before or after absorption through the intestinal tract. This is the case of 3-hydroxybenzo[a]pyrene, which can be found free or in its glucuronide and/or sulphate conjugate forms. This article develops a procedure to monitor the carry-over of PAHs from feed to food of animal origin based on the analysis of animal manure. Eleven PAHs and 3-hydroxybenzo[a]pyrene were measured in four animal manures (cow, horse, rabbit and pig) by liquid chromatography with fluorescence detection. benzo[a]pyrene, benzo[b]fluoranthene and benzo[k]fluoranthene were found in all the selected samples, but their total levels were not alarming (benzo[a]pyrene equivalents (microg/kg)<3.1). 3-hydroxybenzo[a]pyrene was quantified in all the samples exempting rabbit manure. The highest total PAH levels were detected in cow manure (9.0 microg/kg), while the highest 3-OH-B[a]P level was determined in horse samples (13 microg/kg).
Collapse
Affiliation(s)
- Ledicia Rey-Salgueiro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | | | | | | | | |
Collapse
|
31
|
Korchowiec B, Corvis Y, Viitala T, Feidt C, Guiavarch Y, Corbier C, Rogalska E. Interfacial approach to polyaromatic hydrocarbon toxicity: phosphoglyceride and cholesterol monolayer response to phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene. J Phys Chem B 2008; 112:13518-31. [PMID: 18834169 DOI: 10.1021/jp804080h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interactions of phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene (polyaromatic hydrocarbons) with model phospholipid membranes were probed using the Langmuir technique. The lipid monolayers were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, 1,2-dipalmitoyl-sn-glycero-3-phosphoserine, 1,2-myristoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and cholesterol. Surface pressure and electrical surface potential were measured on mixed phospholipid/PAH monolayers spread on a pure water subphase. The morphology of the mixed monolayers was followed with Brewster angle microscopy. Polarization-modulation infrared reflection-absorption spectroscopy spectra obtained on DPPE/benzo[a]pyrene showed that the latter interacts with the carbonyl groups of the phospholipid. On the other hand, the activity of phospholipase A2 toward DLPC used as a probe to locate benzo[a]pyrene in the monolayers indicates that the polyaromatic hydrocarbons are not accessible to the enzyme. The results obtained show that all PAHs studied affect the properties of the pure lipid, albeit in different ways. The most notable effects, namely, film fluidization and morphology changes, were observed with benzo[a]pyrene. In contrast, the complexity of mixed lipid monolayers makes the effect of PAHs difficult to detect. It can be assumed that the differences observed between PAHs in monolayers correlate with their toxicity.
Collapse
Affiliation(s)
- Beata Korchowiec
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. Romana Ingardena 3, 30-060 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
32
|
Polycyclic Aromatic Hydrocarbons in Food - Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.724] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Li Z, Sandau CD, Romanoff LC, Caudill SP, Sjodin A, Needham LL, Patterson DG. Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. ENVIRONMENTAL RESEARCH 2008; 107:320-31. [PMID: 18313659 DOI: 10.1016/j.envres.2008.01.013] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/06/2007] [Accepted: 01/16/2008] [Indexed: 05/22/2023]
Abstract
Urinary monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs) are a class of PAH metabolites used as biomarkers for assessing human exposure to PAHs. The Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey (NHANES) uses OH-PAHs to establish reference range concentrations for the US population, and to set benchmarks for future epidemiologic and biomonitoring studies. For the years 2001 and 2002, 22 OH-PAH metabolites were measured in urine specimens from 2748 NHANES participants. Percentages of samples with detectable levels ranged from nearly 100% for metabolites of naphthalene, fluorene, phenanthrene, and pyrene, to less than 5% for metabolites from parent compounds with higher molecular weight such as chrysene, benzo[c]phenanthrene, and benz[a]anthracene. The geometric mean for 1-hydroxypyrene (1-PYR)--the most commonly used biomarker for PAH exposure--was 49.6 ng/L urine, or 46.4 ng/g creatinine. Children (ages 6-11) generally had higher levels than did adolescents (ages 12-19) or adults (ages 20 and older). Model-adjusted, least-square geometric means for 1-PYR were 87, 53 and 43 ng/L for children, adolescents (ages 12-19) and adults (ages 20 years and older), respectively. Log-transformed concentrations for major detectable OH-PAHs were significantly correlated with each other. The correlation coefficients between 1-PYR and other metabolites ranging from 0.17 to 0.63 support the use of 1-PYR as a useful surrogate representing PAH exposure.
Collapse
Affiliation(s)
- Zheng Li
- Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 Buford Highway, F53 Atlanta, GA 30341, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Grova N, Feidt C, Monteau F, Le Bizec B, Rychen G. TRANSFER OF PHENANTHRENE AND ITS HYDROXYLATED METABOLITES TO MILK, URINE AND FAECES. Polycycl Aromat Compd 2008. [DOI: 10.1080/10406630801938468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- N. Grova
- a UR AFPA, INPL-INRA-UHP BP 172- 54500 Vandoeuvre lès Nancy , France
| | - C. Feidt
- a UR AFPA, INPL-INRA-UHP BP 172- 54500 Vandoeuvre lès Nancy , France
| | - F. Monteau
- b Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire de Nantes , France
| | - B. Le Bizec
- b Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire de Nantes , France
| | - G. Rychen
- a UR AFPA, INPL-INRA-UHP BP 172- 54500 Vandoeuvre lès Nancy , France
| |
Collapse
|
35
|
Chahin A, Guiavarc'h YP, Dziurla MA, Toussaint H, Feidt C, Rychen G. 1-Hydroxypyrene in milk and urine as a bioindicator of polycyclic aromatic hydrocarbon exposure of ruminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:1780-1786. [PMID: 18271539 DOI: 10.1021/jf072757g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Urinary 1-hydroxypyrene (1-OH-pyrene) is now largely considered to be a valuable biomarker of exposure of man and animals to pyrene and other polycyclic aromatic hydrocarbons (PAHs). However, from a practical and agronomic standpoint, the question remains whether such biomarking capability still holds when 1-OH-pyrene is analyzed in milk produced by ruminants. To assess this hypothesis, four goats were daily submitted to three different amounts of pyrene oral ingestion, together with phenanthrene and benzo(a)pyrene (1, 7, and 49 mg/day during 1 week each). An HPLC-fluorometric analysis of 1-OH-pyrene in milk revealed a perfect correlation between pyrene doses and 1-OH-pyrene detected in milk, thus fully confirming the biomarking capability of 1-OH-pyrene and providing information on its transfer coefficient toward milk. Transfer equations such as the ones found in the present study could be used as a valuable and practical risk assessment tool in (i) the accurate monitoring of exposure of ruminants to pyrene and (ii) the evaluation of occupational and environmental exposure of ruminants to PAH mixtures.
Collapse
Affiliation(s)
- Abir Chahin
- Research Unit on Animal and Functionality of Animal Products (UR AFPA), Nancy University--Institut National de la Recherche Agronomique, ENSAIA, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
36
|
Jurjanz S, Rychen G. In vitro bioaccessibility of soil-bound polycyclic aromatic hydrocarbons in successive digestive compartments in cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8800-5. [PMID: 17880154 DOI: 10.1021/jf0708950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ruminants, which have a central place in the food chain, ingest soil that may contain pollutants. The bioaccessibility of three different polycyclic aromatic hydrocarbon compounds from soil was studied using an in vitro model based on the digestive tract of cows. For this purpose, pasture soil was spiked with (14)C radio-labeled compounds, aged, and then exposed to conditions which simulated the digestive compartments of the rumen, abomasum, and intestines. Our results show that aging generally reduced the bioaccessibility of all the compounds tested. Total bioaccessibilty in the first digestive compartment, i.e., the rumen, depended on the considered compound: elevated for phenanthrene (17-24%), moderate for pyrene (6.6-8.1%), and low for benzo[ a]pyrene (2.3-3.6%). Bioaccessibility was very low in abomasal acidity (generally <2%) and intestinal colloids (<8%). The liquid phases of intestinal medium successfully extracted compounds from freshly contaminated soil (25-28%), but the bioaccessibilty dropped markedly after aging (17% for phenanthrene and <9% for the more lipophylic compounds). Total bioaccessibilty in this in vitro model ranged from 11% for benzo[ a]pyrene in aged soil to 58% for phenanthrene in freshly contaminated soil, and the bioaccessibility of this latter compound was always higher compared to pyrene or benzo[ a]pyrene. Residual soil contained around half of the initial load, the highest residual levels being of benzo[ a]pyrene, which confirms the observed bioaccessibility.
Collapse
Affiliation(s)
- Stefan Jurjanz
- INPL-INRA, UR Animal et Fonctionnalités des Produits Animaux, ENSAIA de Nancy, BP 172, 2 avenue de la Forêt de Haye, 54505 Vandoeuvre cedex, France.
| | | |
Collapse
|
37
|
Lapole D, Rychen G, Grova N, Monteau F, Le Bizec B, Feidt C. Milk and Urine Excretion of Polycyclic Aromatic Hydrocarbons and Their Hydroxylated Metabolites After a Single Oral Administration in Ruminants. J Dairy Sci 2007; 90:2624-9. [PMID: 17517702 DOI: 10.3168/jds.2006-806] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to establish the transfer of phenanthrene, pyrene, and benzo[a]pyrene and their major hydroxylated metabolites to milk and to urine after a single oral administration (100 mg per animal of each compound) in 4 lactating goats. Detection and identification of the analytes (native compounds, 1-OH pyrene, 3-OH phenanthrene, 3-OH benzo[a]pyrene) were achieved using gas chromatography-mass spectrometry. Benzo[a]pyrene, phenanthrene, and pyrene were rapidly detected in the plasma stream, whereas 1-OH pyrene and 3-OH phenanthrene appeared later in plasma. These data suggest that pyrene and phenanthrene are progressively metabolized within the organism. Recovery rates of pyrene and phenanthrene in milk over a 24-h period appeared to be very low (0.014 and 0.006%, respectively), whereas the transfer rates of their corresponding metabolites were significantly higher: 0.44% for 1-OH pyrene and 0.073% for 3-OH phenanthrene. Recovery rates in urine were found to be higher (1 to 10 times) than recovery rates in milk. The 1-OH pyrene was found to be the main metabolite in urine as well as in milk. Thus, as has been established for humans, 1-OH pyrene could be considered as a marker of ruminant exposure to polycyclic aromatic hydrocarbons. Because 1-OH pyrene and 3-OH phenanthrene were measured in milk (unlike their corresponding native molecules), metabolites of polycyclic aromatic hydrocarbons should be taken into consideration when evaluating the safety of milk. Benzo[a]pyrene and 3-OH benzo[a]pyrene were (less than 0.005%) transferred to milk and urine in very slight amounts. This very limited transfer rate of both compounds suggests a low risk of exposure by humans to benzo[a]pyrene or its major metabolite from milk or milk products.
Collapse
Affiliation(s)
- D Lapole
- UR AFPA, INPL-UHP-INRA, 2 avenue de la forêt de Haye, BP 172, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
38
|
Lutz S, Feidt C, Monteau F, Rychen G, Le Bizec B, Jurjanz S. Effect of exposure to soil-bound polycyclic aromatic hydrocarbons on milk contaminations of parent compounds and their monohydroxylated metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:263-8. [PMID: 16390209 DOI: 10.1021/jf0522210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of this study was to determine the transfer kinetics of soil-bound polycyclic aromatic hydrocarbons to milk in lactating cows. Soil (500 g/day) fortified with fluorene (104 microg/g dry soil), phenanthrene (82 microg/g), pyrene (78 microg/g), and benzo[a]pyrene (33 microg/g) was administered to three dairy cows via a rumen cannulas for 28 consecutive days. Parent compounds and their major metabolites in milk were measured using gas chromatography-mass spectrometry. Secretion of parent compounds in milk did not increase significantly (P > 0.05) over the control values measured before supply. Target monohydroxylated metabolites were not detected in control samples, but 2-hydroxy fluorene, 3-hydroxy phenanthrene, and 1-hydroxy pyrene were present in milk by the second day of dosing. The highest concentrations of metabolites in milk (31-39 ng/mL) were for 1-hydroxy pyrene at days 7 and 14 of dosing. The observed plateaus for 3-hydroxy phenanthrene and 2-hydroxy fluorene were lower (respectively, 0.69 and 2.79 ng/mL) but significantly increased in comparison to the control samples. Contrarily, 3-hydroxy benzo[a]pyrene was not detected in milk at any sampling time. These results suggested a notable metabolism of the parent compounds after their extraction from soil during the digestive transfer. Thus, the metabolization of fluorene and pyrene can lead to higher concentrations of metabolites than of parent compounds in milk. Despite the absence of a significant transfer of parent PAHs to milk, the appearance of metabolites raises the questions of their impact on human health.
Collapse
Affiliation(s)
- Sophie Lutz
- Laboratoire Sciences Animales, INPL-INRA, BP 172, 2 Avenue de la Forêt-de-Haye, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 2005; 23:301-33. [PMID: 15513831 DOI: 10.1080/10915810490517063] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a family of toxicants that are ubiquitous in the environment. These contaminants generate considerable interest, because some of them are highly carcinogenic in laboratory animals and have been implicated in breast, lung, and colon cancers in humans. These chemicals commonly enter the human body through inhalation of cigarette smoke or consumption of contaminated food. Of these two pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs have been published, factors affecting the accumulation of PAHs in the diet, their absorption following ingestion, and strategies to assess risk from exposure to these hydrocarbons following ingestion have received much less attention. This review, therefore, focuses on concentrations of PAHs in widely consumed dietary ingredients along with gastrointestinal absorption rates in humans. Metabolism and bioavailability of PAHs in animal models and the processes, which influence the disposition of these chemicals, are discussed. The utilitarian value of structure and metabolism in predicting PAH toxicity and carcinogenesis is also emphasized. Finally, based on intake, disposition, and tumorigenesis data, the exposure risk to PAHs from diet, and contaminated soil is presented. This information is expected to provide a framework for refinements in risk assessment of PAHs from a multimedia exposure perspective.
Collapse
Affiliation(s)
- Aramandla Ramesh
- Department of Pharmacology, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Cavret S, Feidt C, Le Roux Y, Laurent F. Short Communication: Study of Mammary Epithelial Role in Polycyclic Aromatic Hydrocarbons Transfer to Milk. J Dairy Sci 2005; 88:67-70. [PMID: 15591368 DOI: 10.3168/jds.s0022-0302(05)72663-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Food would appear to be one of the main routes for animal and human contamination with polycyclic aromatic hydrocarbons (PAH). Many studies have shown the presence of PAH in milk and dairy products, suggesting that these foods can represent a part of this contamination. Our work aimed at defining, in vitro, the mammary barrier role in PAH transfer to milk. MAC T cells were cultivated on permeable filters to measure transepithelial permeability of 14C labeled benzo[a]pyrene (BaP), pyrene (Pyr), and phenanthrene (Phen), which differed in their physicochemical properties. The results showed that only 2 molecules, Phen and Pyr, were able to cross mammary cell layers. Phenanthrene radioactivity appeared more quickly in apical media, and its level after a 6-h exposure was 1.3 times higher than for Pyr and 7.7 times higher than for BaP. These findings suggested that mammary epithelium could play a key role in the selective transfer of PAH from food to milk.
Collapse
Affiliation(s)
- S Cavret
- ISARA-Lyon, F-6902 Lyon, France.
| | | | | | | |
Collapse
|