1
|
Kahn M. Wnt Signaling in Stem Cells and Cancer Stem Cells: A Tale of Two Coactivators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:209-244. [PMID: 29389517 DOI: 10.1016/bs.pmbts.2017.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt signaling in stem cells plays critical roles in development, normal adult physiology, and disease. In this chapter, we focus on the role of the Wnt signaling pathway in somatic stem cell biology and its critical role in normal tissue homeostasis and cancer. Wnt signaling can both maintain potency and initiate differentiation in somatic stem cells, depending on the cellular and environmental context. Based principally on studies from our lab, we will explain the dichotomous behavior of this signaling pathway in determining stem cell fate decisions, placing special emphasis on the interaction of β-catenin with either of the two highly homologous Kat3 coactivator proteins, CBP and p300. We will also discuss our results, both preclinical and clinical, demonstrating that small molecule modulators of the β-catenin/Kat3 coactivator interaction can be safely utilized to shift the balance between maintenance of potency and initiation of differentiation.
Collapse
Affiliation(s)
- Michael Kahn
- Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
2
|
Guichet PO, Guelfi S, Ripoll C, Teigell M, Sabourin JC, Bauchet L, Rigau V, Rothhut B, Hugnot JP. Asymmetric Distribution of GFAP in Glioma Multipotent Cells. PLoS One 2016; 11:e0151274. [PMID: 26953813 PMCID: PMC4783030 DOI: 10.1371/journal.pone.0151274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.
Collapse
Affiliation(s)
- Pierre-Olivier Guichet
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Sophie Guelfi
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Chantal Ripoll
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Marisa Teigell
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Jean-Charles Sabourin
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Luc Bauchet
- CHU Montpellier, Hopital Gui de Chaulliac, 80, avenue Augustin Fliche, 34295 Montpellier, France
| | - Valérie Rigau
- CHU Montpellier, Hopital Gui de Chaulliac, 80, avenue Augustin Fliche, 34295 Montpellier, France
| | - Bernard Rothhut
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Jean-Philippe Hugnot
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
- Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- * E-mail: ;
| |
Collapse
|
3
|
Thomas PD, Kahn M. Kat3 coactivators in somatic stem cells and cancer stem cells: biological roles, evolution, and pharmacologic manipulation. Cell Biol Toxicol 2016; 32:61-81. [PMID: 27008332 PMCID: PMC7458431 DOI: 10.1007/s10565-016-9318-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
Long-lived somatic stem cells regenerate adult tissues throughout our lifetime. However, with aging, there is a significant deterioration in the function of stem and progenitor cells, which contribute to diseases of aging. The decision for a long-lived somatic stem cell to become activated and subsequently to undergo either a symmetric or an asymmetric division is a critical cellular decision process. The decision to preferentially divide symmetrically or asymmetrically may be the major fundamental intrinsic difference between normal somatic stem cells and cancer stem cells. Based upon work done primarily in our laboratory over the past 15 years, this article provides a perspective on the critical role of somatic stem cells in aging. In particular, we discuss the importance of symmetric versus asymmetric divisions in somatic stem cells and the role of the differential usage of the highly similar Kat3 coactivators, CREB-binding protein (CBP) and p300, in stem cells. We describe and propose a more complete model for the biological mechanism and roles of these two coactivators, their evolution, and unique roles and importance in stem cell biology. Finally, we discuss the potential to pharmacologically manipulate Kat3 coactivator interactions in endogenous stem cells (both normal and cancer stem cells) to potentially ameliorate the aging process and common diseases of aging.
Collapse
Affiliation(s)
- Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, 1450 Biggy Street, NRT 2501, Los Angeles, CA, 90033, USA
| | - Michael Kahn
- USC Center for Molecular Pathways and Drug Discovery, USC Norris Comprehensive Cancer Center, 1450 Biggy Street, NRT 4501, Los Angeles, CA, 90033, USA.
| |
Collapse
|
4
|
Craven CJ. A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules. Theor Biol Med Model 2014; 11:40. [PMID: 25218581 PMCID: PMC4237941 DOI: 10.1186/1742-4682-11-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The various cell types and their relative numbers in multicellular organisms are controlled by growth factors and related extracellular molecules which affect genetic expression pathways. However, these substances may have both/either inhibitory and/or stimulatory effects on cell division and cell differentiation depending on the cellular environment. It is not known how cells respond to these substances in such an ambiguous way. Many cellular effects have been investigated and reported using cell culture from cancer cell lines in an effort to define normal cellular behaviour using these abnormal cells.A model is offered to explain the harmony of cellular life in multicellular organisms involving interacting extracellular substances. METHODS A basic model was proposed based on asymmetric cell division and evidence to support the hypothetical model was accumulated from the literature. In particular, relevant evidence was selected for the Insulin-Like Growth Factor system from the published data, especially from certain cell lines, to support the model. The evidence has been selective in an attempt to provide a picture of normal cellular responses, derived from the cell lines. RESULTS The formation of a pair of coupled cells by asymmetric cell division is an integral part of the model as is the interaction of couplet molecules derived from these cells. Each couplet cell will have a receptor to measure the amount of the couplet molecule produced by the other cell; each cell will be receptor-positive or receptor-negative for the respective receptors. The couplet molecules will form a binary complex whose level is also measured by the cell. The hypothesis is heavily supported by selective collection of circumstantial evidence and by some direct evidence. The basic model can be expanded to other cellular interactions. CONCLUSIONS These couplet cells and interacting couplet molecules can be viewed as a mechanism that provides a controlled and balanced division-of-labour between the two progeny cells, and, in turn, their progeny. The presence or absence of a particular receptor for a couplet molecule will define a cell type and the presence or absence of many such receptors will define the cell types of the progeny within cell lineages.
Collapse
Affiliation(s)
- Cyril J Craven
- Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
5
|
Januschke J, Näthke I. Stem cell decisions: a twist of fate or a niche market? Semin Cell Dev Biol 2014; 34:116-23. [PMID: 24613913 PMCID: PMC4169664 DOI: 10.1016/j.semcdb.2014.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/28/2022]
Abstract
Extrinsic and intrinsic cues that impact on stem cell biology. The importance to establish methods that allow to compare spindle orientation measurements. Mechanisms of centrosome segregation in asymmetrically dividing cells.
Establishing and maintaining cell fate in the right place at the right time is a key requirement for normal tissue maintenance. Stem cells are at the core of this process. Understanding how stem cells balance self-renewal and production of differentiating cells is key for understanding the defects that underpin many diseases. Both, external cues from the environment and cell intrinsic mechanisms can control the outcome of stem cell division. The role of the orientation of stem cell division has emerged as an important mechanism for specifying cell fate decisions. Although, the alignment of cell divisions can dependent on spatial cues from the environment, maintaining stemness is not always linked to positioning of stem cells in a particular microenvironment or `niche'. Alternate mechanisms that could contribute to cellular memory include differential segregation of centrosomes in asymmetrically dividing cells.
Collapse
Affiliation(s)
- Jens Januschke
- Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Inke Näthke
- Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
6
|
Xin HW, Ambe CM, Ray S, Kim BK, Koizumi T, Wiegand GW, Hari D, Mullinax JE, Jaiswal KR, Garfield SH, Stojadinovic A, Rudloff U, Thorgeirsson SS, Avital I. Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division. J Cancer 2013; 4:447-57. [PMID: 23901343 PMCID: PMC3726705 DOI: 10.7150/jca.6896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/30/2013] [Indexed: 01/08/2023] Open
Abstract
Objective: Stem-like cancer cells contribute to cancer initiation and maintenance. Stem cells can self-renew by asymmetric cell division (ACD). ACD with non-random chromosomal cosegregation (ACD-NRCC) is one possible self-renewal mechanism. There is a paucity of evidence supporting ACD-NRCC in human cancer. Our aim was to investigate ACD-NRCC and its potential interactions with the cancer niche (microenvironment) in gastrointestinal cancers. Design: We used DNA double and single labeling approaches with FACS to isolate live cells undergoing ACD-NRCC. Results: Gastrointestinal cancers contain rare subpopulations of cells capable of ACD-NRCC. ACD-NRCC was detected preferentially in subpopulations of cells previously suggested to be stem-like/tumor-initiating cancer cells. ACD-NRCC was independent of cell-to-cell contact, and was regulated by the cancer niche in a heat-sensitive paracrine fashion. Wnt pathway genes and proteins are differentially expressed in cells undergoing ACD-NRCC vs. symmetric cell division. Blocking the Wnt pathway with IWP2 (WNT antagonist) or siRNA-TCF4 resulted in suppression of ACD-NRCC. However, using a Wnt-agonist did not increase the relative proportion of cells undergoing ACD-NRCC. Conclusion: Gastrointestinal cancers contain subpopulations of cells capable of ACD-NRCC. Here we show for the first time that ACD-NRCC can be regulated by the Wnt pathway, and by the cancer niche in a paracrine fashion. However, whether ACD-NRCC is exclusively associated with stem-like cancer cells remains to be determined. Further study of these findings might generate novel insights into stem cell and cancer biology. Targeting the mechanism of ACD-NRCC might engender novel approaches for cancer therapy.
Collapse
Affiliation(s)
- Hong-Wu Xin
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wei C, Bhattaram VK, Igwe JC, Fleming E, Tirnauer JS. The LKB1 tumor suppressor controls spindle orientation and localization of activated AMPK in mitotic epithelial cells. PLoS One 2012; 7:e41118. [PMID: 22815934 PMCID: PMC3399794 DOI: 10.1371/journal.pone.0041118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022] Open
Abstract
Orientation of mitotic spindles plays an integral role in determining the relative positions of daughter cells in a tissue. LKB1 is a tumor suppressor that controls cell polarity, metabolism, and microtubule stability. Here, we show that germline LKB1 mutation in mice impairs spindle orientation in cells of the upper gastrointestinal tract and causes dramatic mislocalization of the LKB1 substrate AMPK in mitotic cells. RNAi of LKB1 causes spindle misorientation in three-dimensional MDCK cell cysts. Maintaining proper spindle orientation, possibly mediated by effects on the downstream kinase AMPK, could be an important tumor suppressor function of LKB1.
Collapse
Affiliation(s)
- Chongjuan Wei
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | | | | | | | | |
Collapse
|
8
|
ABC copolymer silicone surfactant templating for biomimetic silicification. J Colloid Interface Sci 2012; 378:93-9. [DOI: 10.1016/j.jcis.2012.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/05/2012] [Accepted: 04/07/2012] [Indexed: 11/20/2022]
|
9
|
Lv H, Wang JC, Wu KL, Gao X, Wang LC, You L, Chen ZJ. Numb regulates meiotic spindle organisation in mouse oocytes. Reprod Fertil Dev 2010; 22:664-72. [PMID: 20353726 DOI: 10.1071/rd09236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/12/2009] [Indexed: 11/23/2022] Open
Abstract
Numb is an adaptor protein that controls the fate of cells in different species through asymmetrical inheritance by sibling cells during division. It has been investigated extensively in mitosis, mostly in neural progenitor cells, but its function in meiosis remains unknown. The present study was designed to investigate the expression, subcellular localisation and functional roles of Numb during mouse oocyte meiotic maturation. Using real-time polymerase chain reaction and western blotting, we found that the expression of Numb increased from the germinal vesicle (GV) to MII stages. Immunofluorescent staining revealed that Numb was mainly concentrated in the GV before meiosis resumption, aggregated in the vicinity of the chromosomes after GV breakdown and then localised to the spindle poles from prometaphase I to MII. Nocodazole treatment resulted in spindle destruction and Numb diffusion into the cytoplasm. However, Numb appeared at the spindle poles again once the spindles had formed when nocodazole-treated oocytes were washed and cultured for spindle recovery. Depletion of Numb by RNA interference resulted in chromosome misalignment, spindle deformation and even doubled spindle formation. Our results suggest that Numb is critical for spindle organisation during mouse oocytes meiosis. The present study provides evidence of a new function for Numb in addition to its action as a cell fate-determining factor.
Collapse
Affiliation(s)
- H Lv
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Key Laboratory of Reproductive Medicine, Shandong Province, Jinan 250021, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Stem cells, although difficult to define, hold great promise as tools for understanding development and as therapeutic agents. However, as with any new field, uncritical enthusiasm can outstrip reality. In this review, we have listed nine common myths that we believe affect our approach to evaluating stem cells for therapy. We suggest that careful consideration needs to be given to each of these issues when evaluating a particular cell for its use in therapy. Data need to be collected and reported for failed as well as successful experiments and a rigorous scientific approach taken to evaluate the undeniable promise of stem cell biology.
Collapse
Affiliation(s)
- Tim Magnus
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
| | - Ying Liu
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
| | - Graham C Parker
- Children's Research Center of Michigan, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of MichiganDetroit, MI 48201, USA
| | - Mahendra S Rao
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
- Corporate Research Laboratories, Invitrogen Corporation1620 Faraday Avenue, Carlsbad, CA 92008, USA
- Author for correspondence ()
| |
Collapse
|
11
|
Struewing IT, Toborek A, Mao CD. Mitochondrial and nuclear forms of Wnt13 are generated via alternative promoters, alternative RNA splicing, and alternative translation start sites. J Biol Chem 2006; 281:7282-93. [PMID: 16407296 DOI: 10.1074/jbc.m511182200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Wnt proteins play a key role in cell survival, cell proliferation, and cell fate during development. In endothelial cells, we identified the expression of Wnt13A, Wnt13B, and Wnt13C mRNAs, which are generated by alternative promoters and alternative RNA splicing. Wnt13A and Wnt13B proteins differ only in their N-terminal sequences. Wnt13A, a typical Wnt, is N-glycosylated and localized in the endoplasmic reticulum, with only a small fraction being secreted. Wnt13B proteins appear as a protein doublet, L-Wnt13B and S-Wnt13B, which are neither N-glycosylated nor secreted. Wnt13B proteins localized mainly to mitochondria, as demonstrated using detection in mitochondria enriched fractions and colocalization with Mitotracker and HSP60. A nuclear localization was also observed in 20% of Wnt13B-expressing cells. Both the N-terminal hydrophobic stretch (residues 1-17) and alpha-helix (residues 26-50) were the main determinants for Wnt13B mitochondrial targeting. Serial deletions of Wnt13B N-terminal sequences abolished its association with mitochondria and favored instead a nuclear localization. The production of S-Wnt13B was independent of the mitochondrial targeting but dependent on an alternative translation start corresponding to Met(74) in L-Wnt13B. The same translation start is used in Wnt13C mRNA to encode a protein undistinguishable from S-Wnt13B. S-Wnt13B when expressed alone localized to the nucleus like Wnt13C, whereas L-Wnt13B localized to mitochondria. Wnt13 nuclear forms increased the beta-catenin/T-cell factor activity in HEK293 cells and increased apoptosis in bovine aortic endothelial cells. Altogether our results demonstrate that, in addition to alternative promoters and RNA splicing, an alternative translation start in Wnt13B and Wnt13C mRNAs increases the complexity of both human wnt13 expression and functions.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Aorta/metabolism
- Apoptosis
- Blotting, Western
- Cattle
- Cell Line
- Cell Nucleus/metabolism
- Chaperonin 60/chemistry
- DNA Primers/chemistry
- Endothelial Cells/metabolism
- Endothelium, Vascular/metabolism
- Gene Deletion
- Glycoproteins/chemistry
- Glycoproteins/metabolism
- Glycosylation
- Humans
- Immunoprecipitation
- Interleukin-8/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Biosynthesis
- Protein Isoforms
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- RNA/chemistry
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- T-Lymphocytes/metabolism
- Transfection
- Wnt Proteins/chemistry
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Ian T Struewing
- Graduate Center for Nutritional Sciences, University of Kentucky, 900 Limestone Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
12
|
Qin H, Percival-Smith A, Li C, Jia CYH, Gloor G, Li SSC. A novel transmembrane protein recruits numb to the plasma membrane during asymmetric cell division. J Biol Chem 2003; 279:11304-12. [PMID: 14670962 DOI: 10.1074/jbc.m311733200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numb, an evolutionarily conserved cell fate-determining factor, plays a pivotal role in the development of Drosophila and vertebrate nervous systems. Despite lacking a transmembrane segment, Numb is associated with the cell membrane during the asymmetric cell division of Drosophila neural precursor cells and is selectively partitioned to one of the two progeny cells from a binary cell division. Numb contains an N-terminal phosphotyrosine-binding (PTB) domain that is essential for both the asymmetric localization and the fate specification function of Numb. We report here the isolation and characterization of a novel PTB domain-binding protein, NIP (Numb-interacting protein). NIP is a multipass transmembrane protein that contains two PTB domain-binding, NXXF motifs required for the interaction with Numb. In dividing Drosophila neuroblasts, NIP is colocalized to the cell membrane with Numb in a basal cortical crescent. Expression of NIP in Cos-7 cells recruited Numb from the cytosol to the plasma membrane. This recruitment of Numb to membrane by NIP was dependent on the presence of at least one NXXF site. In Drosophila Schneider 2 cells, NIP and Numb were colocalized at the plasma membrane. Inhibition of NIP expression by RNA interference released Numb to the cytosol. These results suggest that a direct protein-protein interaction between NIP and Numb is necessary and sufficient for the recruitment of Numb to the plasma membrane. Recruitment of Numb to a basal cortical crescent in a dividing neuroblast is essential for Numb to function as an intrinsic cell fate determinant.
Collapse
Affiliation(s)
- Hanjuan Qin
- Department of Biochemistry and Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Cytokine and antigen receptor signals play well-characterized roles in promoting the survival and maturation of T and B lymphocyte progenitors through sequential developmental stages. Emerging studies suggest equally important roles for more ancient signaling pathways that evolved prior to the adaptive immune system in jawed vertebrates. In particular, there are at least two essential functions for the highly conserved Notch signaling pathway in lymphocyte development. First, Notch signals are essential for the development of T cell progenitors in the thymus and intestinal epithelium. Second, Notch signals are required to suppress B cell development in the thymus. This review will focus on focus on recent advances in our understanding of how Notch signaling regulates this developmental switch, as well as how Notch might regulate subsequent survival and cell fate decisions in developing T cells.
Collapse
Affiliation(s)
- Cynthia J Guidos
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Room 8104, 555 University Avenue, Ont., Toronto, Canada M5G 1X8.
| |
Collapse
|
14
|
Rogers SL, Rogers GC, Sharp DJ, Vale RD. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 2002; 158:873-84. [PMID: 12213835 PMCID: PMC2173155 DOI: 10.1083/jcb.200202032] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EB1 is an evolutionarily conserved protein that localizes to the plus ends of growing microtubules. In yeast, the EB1 homologue (BIM1) has been shown to modulate microtubule dynamics and link microtubules to the cortex, but the functions of metazoan EB1 proteins remain unknown. Using a novel preparation of the Drosophila S2 cell line that promotes cell attachment and spreading, we visualized dynamics of single microtubules in real time and found that depletion of EB1 by RNA-mediated inhibition (RNAi) in interphase cells causes a dramatic increase in nondynamic microtubules (neither growing nor shrinking), but does not alter overall microtubule organization. In contrast, several defects in microtubule organization are observed in RNAi-treated mitotic cells, including a drastic reduction in astral microtubules, malformed mitotic spindles, defocused spindle poles, and mispositioning of spindles away from the cell center. Similar phenotypes were observed in mitotic spindles of Drosophila embryos that were microinjected with anti-EB1 antibodies. In addition, live cell imaging of mitosis in Drosophila embryos reveals defective spindle elongation and chromosomal segregation during anaphase after antibody injection. Our results reveal crucial roles for EB1 in mitosis, which we postulate involves its ability to promote the growth and interactions of microtubules within the central spindle and at the cell cortex.
Collapse
Affiliation(s)
- Stephen L Rogers
- The Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
15
|
Hardiman KE, Brewster R, Khan SM, Deo M, Bodmer R. The bereft gene, a potential target of the neural selector gene cut, contributes to bristle morphogenesis. Genetics 2002; 161:231-47. [PMID: 12019237 PMCID: PMC1462110 DOI: 10.1093/genetics/161.1.231] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neural selector gene cut, a homeobox transcription factor, is required for the specification of the correct identity of external (bristle-type) sensory organs in Drosophila. Targets of cut function, however, have not been described. Here, we study bereft (bft) mutants, which exhibit loss or malformation of a majority of the interommatidial bristles of the eye and cause defects in other external sensory organs. These mutants were generated by excising a P element located at chromosomal location 33AB, the enhancer trap line E8-2-46, indicating that a gene near the insertion site is responsible for this phenotype. Similar to the transcripts of the gene nearest to the insertion, reporter gene expression of E8-2-46 coincides with Cut in the support cells of external sensory organs, which secrete the bristle shaft and socket. Although bft transcripts do not obviously code for a protein product, its expression is abolished in bft deletion mutants, and the integrity of the bft locus is required for (interommatidial) bristle morphogenesis. This suggests that disruption of the bft gene is the cause of the observed bristle phenotype. We also sought to determine what factors regulate the expression of bft and the enhancer trap line. The correct specification of individual external sensory organ cells involves not only cut, but also the lineage genes numb and tramtrack. We demonstrate that mutations of these three genes affect the expression levels at the bft locus. Furthermore, cut overexpression is sufficient to induce ectopic bft expression in the PNS and in nonneuronal epidermis. On the basis of these results, we propose that bft acts downstream of cut and tramtrack to implement correct bristle morphogenesis.
Collapse
Affiliation(s)
- Kirsten E Hardiman
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | |
Collapse
|
16
|
Vogt RG, Rogers ME, Franco MD, Sun M. A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster inManduca sexta(Lepidoptera) and the organization of OBP genes inDrosophila melanogaster(Diptera). J Exp Biol 2002; 205:719-44. [PMID: 11914382 DOI: 10.1242/jeb.205.6.719] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYInsects discriminate odors using sensory organs called olfactory sensilla, which display a wide range of phenotypes. Sensilla express ensembles of proteins, including odorant binding proteins (OBPs), olfactory receptors (ORs) and odor degrading enzymes (ODEs); odors are thought to be transported to ORs by OBPs and subsequently degraded by ODEs. These proteins belong to multigene families. The unique combinatorial expression of specific members of each of these gene families determines, in part, the phenotype of a sensillum and what odors it can detect. Furthermore, OBPs, ORs and ODEs are expressed in different cell types, suggesting the need for cell–cell communication to coordinate their expression. This report examines the OBP gene family. In Manduca sexta, the genes encoding PBP1Msex and GOBP2Msex are sequenced, shown to be adjacent to one another, and characterized together with OBP gene structures of other lepidoptera and Drosophila melanogaster. Expression of PBP1Msex, GOBP1Msex and GOBP2Msex is characterized in adult male and female antenna and in larval antenna and maxilla. The genomic organization of 25 D. melanogaster OBPs are characterized with respect to gene locus, gene cluster, amino acid sequence similarity, exon conservation and proximity to OR loci, and their sequences are compared with 14 M. sexta OBPs. Sensilla serve as portals of important behavioral information, and genes supporting sensilla function are presumably under significant evolutionary selective pressures. This study provides a basis for studying the evolution of the OBP gene family, the regulatory mechanisms governing the coordinated expression of OBPs, ORs and ODEs, and the processes that determine specific sensillum phenotypes.
Collapse
Affiliation(s)
- Richard G Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 USA.
| | | | | | | |
Collapse
|
17
|
Rivolta MN, Holley MC. Asymmetric segregation of mitochondria and mortalin correlates with the multi-lineage potential of inner ear sensory cell progenitors in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 133:49-56. [PMID: 11850063 DOI: 10.1016/s0165-3806(01)00321-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The sensory epithelia of the inner ear include hair cells and supporting cells that share a common precursor. One possible mechanism involved in the genesis of these cell types is through asymmetric cell division. In this work we have studied asymmetric division of inner ear sensory cell progenitors in vitro in an attempt to understand how the different cell phenotypes are generated. In the search for molecules that will segregate asymmetrically we have found that mitochondria in general, and a mitochondrial protein named mortalin in particular, are asymmetrically segregated during certain cell divisions. In one conditionally immortal cell line (UB/OC-1), which represents a population of committed hair cell precursors, mortalin is uniformly distributed in the cytoplasm and shared equally between sibling cells during division. In another cell line (UB/UE-1), which represents a bipotent, vestibular supporting cell that can produce both neonatal hair cells as well as supporting cells, mortalin segregates asymmetrically. In UB/UE-1, approximately 12% of the cells display an asymmetric distribution of mortalin and mitochondria. The proportion of asymmetric cells increases immediately after the release of the immortalizing gene and before the onset of differentiation. The asymmetric segregation of mortalin in the bipotent cell line and its uniform distribution in a committed, lineage-restricted cell line raises the possibility that it may play a role in cell fate determination.
Collapse
Affiliation(s)
- Marcelo N Rivolta
- Institute of Molecular Physiology, Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | |
Collapse
|
18
|
Colman-Lerner A, Chin TE, Brent R. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 2001; 107:739-50. [PMID: 11747810 DOI: 10.1016/s0092-8674(01)00596-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In Saccharomyces cerevisiae, mothers and daughters have distinct fates. We show that Cbk1 kinase and its interacting protein Mob2 regulate this asymmetry by inducing daughter-specific genetic programs. Daughter-specific expression is due to Cbk1/Mob2-dependent activation and localization of the Ace2 transcription factor to the daughter nucleus. Ectopic localization of active Ace2 to mother nuclei is sufficient to activate daughter-specific genes in mothers. Eight genes are daughter-specific under the tested conditions, while two are daughter-specific only in saturated cultures. Some daughter-specific gene products contribute to cell separation by degrading the cell wall. These experiments define programs of gene expression specific to daughters and describe how those programs are controlled.
Collapse
Affiliation(s)
- A Colman-Lerner
- The Molecular Sciences Institute, 2168 Shattuck Avenue, Berkeley, CA 94704, USA.
| | | | | |
Collapse
|
19
|
Gachet Y, Tournier S, Millar JB, Hyams JS. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 2001; 412:352-5. [PMID: 11460168 DOI: 10.1038/35085604] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The accurate segregation of chromosomes at mitosis depends on a correctly assembled bipolar spindle that exerts balanced forces on each sister chromatid. The integrity of mitotic chromosome segregation is ensured by the spindle assembly checkpoint (SAC) that delays mitosis in response to defective spindle organisation or failure of chromosome attachment. Here we describe a distinct mitotic checkpoint in the fission yeast, Schizosaccharomyces pombe, that monitors the integrity of the actin cytoskeleton and delays sister chromatid separation, spindle elongation and cytokinesis until spindle poles have been properly oriented. This mitotic delay is imposed by a stress-activated mitogen-activated protein (MAP) kinase pathway but is independent of the anaphase-promoting complex (APC).
Collapse
Affiliation(s)
- Y Gachet
- Department of Biology, University College London, Gower Street, London WC1E 6B, UK
| | | | | | | |
Collapse
|
20
|
Abstract
Cell and developmental biology are distinct disciplines with clear differences in emphasis and domains of interest, yet they also share a common historic origin and benefit from an increasingly productive exchange of insights and influences. Our goal in this commentary is to examine the common origin of cell and developmental biology, to explore ways in which they currently interact, and to consider the connections and differences that exist between these two fields.
Collapse
Affiliation(s)
- R E Dawes-Hoang
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, New Jersey 08544, USA.
| | | |
Collapse
|
21
|
Feiguin F, Hannus M, Mlodzik M, Eaton S. The ankyrin repeat protein Diego mediates Frizzled-dependent planar polarization. Dev Cell 2001; 1:93-101. [PMID: 11703927 DOI: 10.1016/s1534-5807(01)00010-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During planar polarization of the Drosophila wing epithelium, the homophilic adhesion molecule Flamingo localizes to proximal/distal cell boundaries in response to Frizzled signaling; perturbing Frizzled signaling alters Flamingo distribution, many cell diameters distant, by a mechanism that is not well understood. This work identifies a tissue polarity gene, diego, that comprises six ankyrin repeats and colocalizes with Flamingo at proximal/distal boundaries. Diego is specifically required for polarized accumulation of Flamingo and drives ectopic clustering of Flamingo when overexpressed. Our data suggest that Frizzled acts through Diego to promote local clustering of Flamingo, and that clustering of Diego and Flamingo in one cell nonautonomously propagates to others.
Collapse
Affiliation(s)
- F Feiguin
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|
22
|
Brewster R, Hardiman K, Deo M, Khan S, Bodmer R. The selector gene cut represses a neural cell fate that is specified independently of the Achaete-Scute-Complex and atonal. Mech Dev 2001; 105:57-68. [PMID: 11429282 DOI: 10.1016/s0925-4773(01)00375-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The peripheral nervous system (PNS) of Drosophila offers a powerful system to precisely identify individual cells and dissect their genetic pathways of development. The mode of specification of a subset of larval PNS cells, the multiple dendritic (md) neurons (or type II neurons), is complex and still poorly understood. Within the dorsal thoracic and abdominal segments, two md neurons, dbd and dda1, apparently require the proneural gene amos but not atonal (ato) or Achaete-Scute-Complex (ASC) genes. ASC normally acts via the neural selector gene cut to specify appropriate sensory organ identities. Here, we show that dbd- and dda1-type differentiation is suppressed by cut in dorsal ASC-dependent md neurons. Thus, cut is not only required to promote an ASC-dependent mode of differentiation, but also represses an ASC- and ato-independent fate that leads to dbd and dda1 differentiation.
Collapse
Affiliation(s)
- R Brewster
- Department of Biology, The University of Michigan, 830 North University, 48109-1048, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
23
|
Giansanti MG, Gatti M, Bonaccorsi S. The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development 2001; 128:1137-45. [PMID: 11245579 DOI: 10.1242/dev.128.7.1137] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientation of the mitotic spindle within the dividing neuroblast, and on the correct positioning of the cleavage plane. In this study we have analyzed the role of centrosomes and astral microtubules in neuroblast spindle orientation and cytokinesis. We examined neuroblast division in asterless (asl) mutants, which, although devoid of functional centrosomes and astral microtubules, form well-focused anastral spindles that undergo anaphase and telophase. We show that asl neuroblasts assemble a normal cytokinetic ring around the central spindle midzone and undergo unequal cytokinesis. Thus, astral microtubules are not required for either signaling or positioning cytokinesis in Drosophila neuroblasts. Our results indicate that the cleavage plane is dictated by the positioning of the central spindle midzone within the cell, and suggest a model on how the central spindle attains an asymmetric position during neuroblast mitosis. We have also analyzed the localization of Miranda during mitotic division of asl neuroblasts. This protein accumulates in morphologically regular cortical crescents but these crescents are mislocalized with respect to the spindle orientation. This suggests that astral microtubules mediate proper spindle rotation during neuroblast division.
Collapse
Affiliation(s)
- M G Giansanti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Universita' di Roma La Sapienza, P.le Aldo Moro 5, Italy
| | | | | |
Collapse
|
24
|
Reinacher-Schick A, Gumbiner BM. Apical membrane localization of the adenomatous polyposis coli tumor suppressor protein and subcellular distribution of the beta-catenin destruction complex in polarized epithelial cells. J Cell Biol 2001; 152:491-502. [PMID: 11157977 PMCID: PMC2196003 DOI: 10.1083/jcb.152.3.491] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2000] [Accepted: 12/13/2000] [Indexed: 02/06/2023] Open
Abstract
The adenomatous polyposis coli (APC) protein is implicated in the majority of hereditary and sporadic colon cancers. APC is known to function as a tumor suppressor through downregulation of beta-catenin as part of a high molecular weight complex known as the beta-catenin destruction complex. The molecular composition of the intact complex and its site of action in the cell are still not well understood. Reports on the subcellular localization of APC in various cell systems have differed significantly and have been consistent with an association with a cytosolic complex, with microtubules, with the nucleus, or with the cortical actin cytoskeleton. To better understand the role of APC and the destruction complex in colorectal cancer, we have begun to characterize and isolate these complexes from confluent polarized human colon epithelial cell monolayers and other epithelial cell types. Subcellular fractionation and immunofluorescence microscopy reveal that a predominant fraction of APC associates tightly with the apical plasma membrane in a variety of epithelial cell types. This apical membrane association is not dependent on the mutational status of either APC or beta-catenin. An additional pool of APC is cytosolic and fractionates into two distinct high molecular weight complexes, 20S and 60S in size. Only the 20S fraction contains an appreciable portion of the cellular axin and small but detectable amounts of glycogen synthase kinase 3beta and beta-catenin. Therefore, it is likely to correspond to the previously characterized beta-catenin destruction complex. Dishevelled is almost entirely cytosolic, but does not significantly cofractionate with the 20S complex. The disproportionate amount of APC in the apical membrane and the lack of other destruction complex components in the 60S fraction of APC raise questions about whether these pools of APC take part in the degradation of beta-catenin, or alternatively, whether they could be involved in other functions of the protein that still must be determined.
Collapse
Affiliation(s)
- Anke Reinacher-Schick
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Barry M. Gumbiner
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| |
Collapse
|
25
|
Abstract
The cell-division cycle is an orchestrated sequence of events that results in the duplication of a cell. In metazoa, cell proliferation is regulated in response to differentiation signals and body-size parameters, which either induce cell duplication or arrest the cell cycle, to ensure that organs develop to the correct size. In addition, the cell cycle may be altered to meet specialized requirements. This can be seen in the rapid cleavage cycles of vertebrates and insects that lack gap phases, in the nested S phases of Drosophila, and in the endocycles of nematodes, insects, plants and mammals that lack mitosis. Here we present the various modes of cell-cycle regulation in metazoa and discuss their possible generation by a combination of universally conserved molecules and new regulatory circuits.
Collapse
Affiliation(s)
- S J Vidwans
- Department of Biochemistry and Biophysics, University of California at San Francisco, California 94143-0448, USA
| | | |
Collapse
|
26
|
Miller KG, Rand JB. A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 2000; 156:1649-60. [PMID: 11102364 PMCID: PMC1461398 DOI: 10.1093/genetics/156.4.1649] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RIC-8 (synembryn) and GOA-1 (G(o)alpha) are key components of a signaling network that regulates neurotransmitter secretion in Caenorhabditis elegans. Here we show that ric-8 and goa-1 reduction of function mutants exhibit partial embryonic lethality. Through Nomarski analysis we show that goa-1 and ric-8 mutant embryos exhibit defects in multiple events that involve centrosomes, including one-cell posterior centrosome rocking, P(1) centrosome flattening, mitotic spindle alignment, and nuclear migration. In ric-8 reduction of function backgrounds, the embryonic lethality, spindle misalignments and delayed nuclear migration are strongly enhanced by a 50% reduction in maternal goa-1 gene dosage. Several other microfilament- and microtubule-mediated events, as well as overall embryonic polarity, appear unperturbed in the mutants. In addition, our results suggest that RIC-8 and GOA-1 do not have roles in centrosome replication, in the diametric movements of daughter centrosomes along the nuclear membrane, or in the extension of microtubules from centrosomes. Through immunostaining we show that GOA-1 (G(o)alpha) localizes to cell cortices as well as near centrosomes. Our results demonstrate that two components of a neuronal signal transduction pathway also play a role in centrosome movements during early embryogenesis.
Collapse
Affiliation(s)
- K G Miller
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
27
|
Abstract
Inactivation of the tumour suppressor p53 is the most common defect in cancer cells. The discovery of its two close relatives, p63 and p73, was therefore both provocative and confounding. Were these new genes tumour suppressors, p53 regulators, or evolutionary spin-offs? Both oncogenic and tumour-suppressor properties have now been attributed to the p53 homologues, perhaps reflecting the complex, often contradictory, protein products encoded by these genes. p63 and p73 are further implicated in many p53-independent pathways, including stem-cell regeneration, neurogenesis and sensory processes.
Collapse
Affiliation(s)
- A Yang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
28
|
Grieder NC, de Cuevas M, Spradling AC. The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 2000; 127:4253-64. [PMID: 10976056 DOI: 10.1242/dev.127.19.4253] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differentiation of the Drosophila oocyte takes place in a cyst of 16 interconnected germ cells and is dependent on a network of microtubules that becomes polarized as differentiation progresses (polarization). We have investigated how the microtubule network polarizes using a GFP-tubulin construct that allows germ-cell microtubules to be visualized with greater sensitivity than in previous studies. Unexpectedly, microtubules are seen to associate with the fusome, an asymmetric germline-specific organelle, which elaborates as cysts form and undergoes complex changes during cyst polarization. This fusome-microtubule association occurs periodically during late interphases of cyst divisions and then continuously in 16-cell cysts that have entered meiotic prophase. As meiotic cysts move through the germarium, microtubule minus ends progressively focus towards the center of the fusome, as visualized using a NOD-lacZ marker. During this same period, discrete foci rich in gamma tubulin that very probably correspond to migrating cystocyte centrosomes also associate with the fusome, first on the fusome arms and then in its center, subsequently moving into the differentiating oocyte. The fusome is required for this complex process, because microtubule network organization and polarization are disrupted in hts(1) mutant cysts, which lack fusomes. Our results suggest that the fusome, a specialized membrane-skeletal structure, which arises in early germ cells, plays a crucial role in polarizing 16-cell cysts, at least in part by interacting with microtubules and centrosomes.
Collapse
Affiliation(s)
- N C Grieder
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | | | |
Collapse
|
29
|
Abstract
The diverse cell types in the nervous system are derived from neural progenitor cells. Neural progenitors can undergo symmetric divisions to expand cell population or asymmetric divisions to generate diverse cell types. Furthermore, neural progenitors must exit the cell cycle in a developmentally regulated manner to allow for terminal differentiation. The patterns of neural progenitor divisions have been characterized in vertebrates and invertebrates. During the course of nervous system development, extrinsic and intrinsic cues dictate the division patterns of neural progenitors by influencing their cell cycle behavior and cellular polarity. The identification in Drosophila of asymmetrically distributed fate determinants, adapter molecules, and polarity organizing molecules that participate in asymmetric neural progenitor divisions should provide points of entry for studying similar asymmetric divisions in vertebrates.
Collapse
Affiliation(s)
- B Lu
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143-0725, USA.
| | | | | |
Collapse
|
30
|
Wodarz A, Ramrath A, Grimm A, Knust E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 2000; 150:1361-74. [PMID: 10995441 PMCID: PMC2150710 DOI: 10.1083/jcb.150.6.1361] [Citation(s) in RCA: 377] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The establishment and maintenance of polarity is of fundamental importance for the function of epithelial and neuronal cells. In Drosophila, the multi-PDZ domain protein Bazooka (Baz) is required for establishment of apico-basal polarity in epithelia and in neuroblasts, the stem cells of the central nervous system. In the latter, Baz anchors Inscuteable in the apical cytocortex, which is essential for asymmetric localization of cell fate determinants and for proper orientation of the mitotic spindle. Here we show that Baz directly binds to the Drosophila atypical isoform of protein kinase C and that both proteins are mutually dependent on each other for correct apical localization. Loss-of-function mutants of the Drosophila atypical isoform of PKC show loss of apico-basal polarity, multilayering of epithelia, mislocalization of Inscuteable and abnormal spindle orientation in neuroblasts. Together, these data provide strong evidence for the existence of an evolutionary conserved mechanism that controls apico-basal polarity in epithelia and neuronal stem cells. This study is the first functional analysis of an atypical protein kinase C isoform using a loss-of-function allele in a genetically tractable organism.
Collapse
Affiliation(s)
- A Wodarz
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
31
|
Zmuda JF, Rivas RJ. Actin filament disruption blocks cerebellar granule neurons at the unipolar stage of differentiation in vitro. JOURNAL OF NEUROBIOLOGY 2000; 43:313-28. [PMID: 10861558 DOI: 10.1002/1097-4695(20000615)43:4<313::aid-neu1>3.0.co;2-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cerebellar granule neurons developing in vitro initially extend a single axon, with the Golgi apparatus and centrosome positioned at the base of this axon and then begin the transition to a bipolar morphology by rotating the Golgi-centrosome to the opposite pole of the cell and extending a secondary axon; granule cells reach a mature, complex morphology by extending multiple, short dendrites by 5-6 days in vitro. (Zmuda and Rivas, 1998. Cell Motil Cytoskel 41:18-38). To test the effects of actin depolymerization on this characteristic pattern of granule cell axonogenesis, cultured granule cells were treated with either cytochalasin D (CD) or latrunculin A (Lat A) to depolymerize filamentous actin. Although actin depolymerization did not inhibit initial axon extension, it prevented the cells from proceeding on to the transitional, bipolar, or complex stages of differentiation, effectively blocking the cells at the unipolar stage of differentiation. Although the Golgi apparatus resided at the base of the axon in nontreated unipolar cells, or at the opposite pole of the cell body in nontreated transitional cells, the Golgi was randomly localized within the cytoplasm of cells that had been treated with either CD or Lat A. These results show that the transition from the unipolar to the bipolar stage and on to more mature stages of granule cell differentiation is dependent on an intact actin cytoskeleton and suggest that the characteristic pattern of granule cell differentiation may be dependent on the repositioning of the Golgi-centrosome during morphological development.
Collapse
Affiliation(s)
- J F Zmuda
- Department of Biology, University of Maryland, College Park, Maryland 20742-4415, USA.
| | | |
Collapse
|
32
|
Tirnauer JS, Bierer BE. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol 2000; 149:761-6. [PMID: 10811817 PMCID: PMC2174556 DOI: 10.1083/jcb.149.4.761] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Barbara E. Bierer
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
33
|
Yu F, Morin X, Cai Y, Yang X, Chia W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 2000; 100:399-409. [PMID: 10693757 DOI: 10.1016/s0092-8674(00)80676-5] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Asymmetric localization is a prerequisite for inscuteable (insc) to function in coordinating and mediating asymmetric cell divisions in Drosophila. We show here that Partner of Inscuteable (Pins), a new component of asymmetric divisions, is required for Inscuteable to asymmetrically localize. In the absence of pins, Inscuteable becomes cytoplasmic and asymmetric divisions of neuroblasts and mitotic domain 9 cells show defects reminiscent of insc mutants. Pins colocalizes with Insc and interacts with the region necessary and sufficient for directing its asymmetric localization. Analyses of pins function in neuroblasts reveal two distinct steps for Insc apical cortical localization: A pins-independent, bazooka-dependent initiation step during delamination (interphase) and a later maintenance step during which Baz, Pins, and Insc localization are interdependent.
Collapse
Affiliation(s)
- F Yu
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- L Shapiro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
35
|
Schober M, Schaefer M, Knoblich JA. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 1999; 402:548-51. [PMID: 10591217 DOI: 10.1038/990135] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Asymmetric cell divisions can be generated by the segregation of determinants into one of the two daughter cells. In Drosophila, neuroblasts divide asymmetrically along the apical-basal axis shortly after their delamination from the neuroectodermal epithelium. Several proteins, including Numb and Miranda, segregate into the basal daughter cell and are needed for the determination of its correct cell fate. Both the apical-basal orientation of the mitotic spindle and the localization of Numb and Miranda to the basal cell cortex are directed by Inscuteable, a protein that localizes to the apical cell cortex before and during neuroblast mitosis. Here we show that the apical localizaton of Inscuteable requires Bazooka, a protein containing a PDZ domain that is essential for apical-basal polarity in epithelial cells. Bazooka localizes with Inscuteable in neuroblasts and binds to the Inscuteable localization domain in vitro and in vivo. In embryos lacking both maternal and zygotic bazooka function, Inscuteable no longer localizes asymmetrically in neuroblasts and is instead uniformly distributed in the cytoplasm. Mitotic spindles in neuroblasts are misoriented in these embryos, and the proteins Numb and Miranda fail to localize asymmetrically in metaphase. Our results suggest that direct binding to Bazooka mediates the asymmetric localization of Inscuteable and connects the asymmetric division of neuroblasts to the axis of epithelial apical-basal polarity.
Collapse
Affiliation(s)
- M Schober
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | |
Collapse
|
36
|
Lu B, Ackerman L, Jan LY, Jan YN. Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol Cell 1999; 4:883-91. [PMID: 10635314 DOI: 10.1016/s1097-2765(00)80218-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Partner of Numb (Pon) colocalizes with the determinant Numb and is required for its proper asymmetric localization in Drosophila. How the asymmetric localization of Pon is accomplished is not well understood. Here, we show that Pon localization takes place at the protein level and that its C-terminal region is necessary and sufficient for asymmetric localization. Fusion of the Pon localization domain with green fluorescent protein (GFP) allowed monitoring of the localization process in living embryos. Upon a neuroblast's entry into mitosis, Pon is recruited from the cytoplasm to the cortex. Cortically recruited Pon can move apically or basally within the two-dimensional confines of the cortex. This movement can occur when myosin motor activity is inhibited. However, the restriction of Pon to the basal cortex requires both actomyosin and Inscuteable.
Collapse
Affiliation(s)
- B Lu
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
37
|
Basham SE, Rose LS. Mutations in ooc-5 and ooc-3 disrupt oocyte formation and the reestablishment of asymmetric PAR protein localization in two-cell Caenorhabditis elegans embryos. Dev Biol 1999; 215:253-63. [PMID: 10545235 DOI: 10.1006/dbio.1999.9447] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The early development of Caenorhabditis elegans embryos is characterized by a series of asymmetric divisions in which the mitotic spindle is repeatedly oriented on the same axis due to a rotation of the nuclear-centrosome complex. To identify genes involved in the control of spindle orientation, we have screened maternal-effect lethal mutants for alterations in cleavage pattern. Here we describe mutations in ooc-5 and ooc-3, which were isolated on the basis of a nuclear rotation defect in the P(1) cell of two-cell embryos. These mutations are novel in that they affect the asymmetric localization of PAR proteins at the two-cell stage, but not at the one-cell stage. In wild-type two-cell embryos, PAR-3 protein is present around the entire periphery of the AB cell and prevents nuclear rotation in this cell. In contrast, PAR-2 functions to allow nuclear rotation in the P(1) cell by restricting PAR-3 localization to the anterior periphery of P(1). In ooc-5 and ooc-3 mutant embryos, PAR-3 was mislocalized around the periphery of P(1), while PAR-2 was reduced or absent. The germ-line-specific P granules were also mislocalized at the two-cell stage. Mutations in ooc-5 and ooc-3 also result in reduced-size oocytes and embryos. However, par-3 ooc double-mutant embryos can exhibit nuclear rotation, indicating that small size per se does not prevent rotation and that PAR-3 mislocalization contributes to the failure of rotation in ooc mutants. We therefore postulate that wild-type ooc-5 and ooc-3 function in oogenesis and in the reestablishment of asymmetric domains of PAR proteins at the two-cell stage.
Collapse
Affiliation(s)
- S E Basham
- Section of Molecular and Cellular Biology, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
38
|
Frasch M. Controls in patterning and diversification of somatic muscles during Drosophila embryogenesis. Curr Opin Genet Dev 1999; 9:522-9. [PMID: 10508697 DOI: 10.1016/s0959-437x(99)00014-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent genetic studies in Drosophila have provided important insights into the pathways determining the formation and diversification of body wall muscles. These pathways control a progressive subdivision of the mesoderm, ultimately leading to the specification of individual cells, the muscle founders, which are endowed with genetic programs capable of generating distinct muscle fibers. A network of activities of transcriptional regulators, signaling pathways, and lineage genes is beginning to emerge which controls successive steps of this muscle patterning and differentiation process.
Collapse
Affiliation(s)
- M Frasch
- Department of Biochemistry and Molecular Biology Mount Sinai School of Medicine Box 1020, New York, New York 10029, USA
| |
Collapse
|
39
|
Schlesinger A, Shelton CA, Maloof JN, Meneghini M, Bowerman B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev 1999; 13:2028-38. [PMID: 10444600 PMCID: PMC316921 DOI: 10.1101/gad.13.15.2028] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a four-cell-stage Caenorhabditis elegans embryo, Wnt signaling polarizes an endoderm precursor called EMS. The polarization of this cell orients its mitotic spindle in addition to inducing endodermal fate in one daughter cell. Reducing the function of Wnt pathway genes, including a newly identified GSK-3beta homolog called gsk-3, disrupts endoderm induction, whereas only a subset of these genes is required for proper EMS mitotic spindle orientation. Wnt pathway genes thought to act downstream of gsk-3 appear not to be required for spindle orientation, suggesting that gsk-3 represents a branch point in the control of endoderm induction and spindle orientation. Orientation of the mitotic spindle does not require gene transcription in EMS, suggesting that Wnt signaling may directly target the cytoskeleton in a responding cell.
Collapse
Affiliation(s)
- A Schlesinger
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | |
Collapse
|
40
|
Nishida H, Morokuma J, Nishikata T. Maternal cytoplasmic factors for generation of unique cleavage patterns in animal embryos. Curr Top Dev Biol 1999; 46:1-37. [PMID: 10417875 DOI: 10.1016/s0070-2153(08)60324-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H Nishida
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
41
|
Tio M, Zavortink M, Yang X, Chia W. A functional analysis of inscuteable and its roles during Drosophila asymmetric cell divisions. J Cell Sci 1999; 112 ( Pt 10):1541-51. [PMID: 10212148 DOI: 10.1242/jcs.112.10.1541] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cellular diversity in the Drosophila central nervous system is generated through a series of asymmetric cell divisions in which one progenitor produces two daughter cells with distinct fates. Asymmetric basal cortical localisation and segregation of the determinant Prospero during neuroblast cell divisions play a crucial role in effecting distinct cell fates for the progeny sibling neuroblast and ganglion mother cell. Similarly asymmetric localisation and segregation of the determinant Numb during ganglion mother cell divisions ensure that the progeny sibling neurons attain distinct fates. The most upstream component identified so far which acts to organise both neuroblast and ganglion mother cell asymmetric divisions is encoded by inscuteable. The Inscuteable protein is itself asymmetrically localised to the apical cell cortex and is required both for the basal localisation of the cell fate determinants during mitosis and for the orientation of the mitotic spindle along the apical/basal axis. Here we define the functional domains of Inscuteable. We show that aa252-578 appear sufficient to effect all aspects of its function, however, the precise requirements for its various functions differ. The region, aa288-497, is necessary and sufficient for apical cortical localisation and for mitotic spindle (re)orientation along the apical/basal axis. A larger region aa288-540 is necessary and sufficient for asymmetric Numb localisation and segregation; however, correct localisation of Miranda and Prospero requires additional sequences from aa540-578. The requirement for the resolution of distinct sibling neuronal fates appears to coincide with the region necessary and sufficient for Numb localisation (aa288-540). Our data suggest that apical localisation of the Inscuteable protein is a necessary prerequisite for all other aspects of its function. Finally, we show that although inscuteable RNA is normally apically localised, RNA localisation is not required for protein localisation or any aspects of inscuteable function.
Collapse
Affiliation(s)
- M Tio
- Institute of Molecular and Cell Biology, National University of Singapore Campus, Singapore 117609
| | | | | | | |
Collapse
|
42
|
|
43
|
|
44
|
Edlund T, Jessell TM. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 1999; 96:211-24. [PMID: 9988216 DOI: 10.1016/s0092-8674(00)80561-9] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T Edlund
- Department of Microbiology, University of Umea, Sweden.
| | | |
Collapse
|