1
|
|
2
|
Wijgerde M, Karp S, McMahon J, McMahon AP. Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 2005; 286:149-57. [PMID: 16122729 DOI: 10.1016/j.ydbio.2005.07.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/30/2005] [Accepted: 07/17/2005] [Indexed: 02/01/2023]
Abstract
The interaction between bone morphogenetic proteins (BMPs) and their antagonist, Noggin, is critical for normal development. Noggin null mice die at birth with a severely malformed skeleton that is postulated to reflect the activity of unopposed BMP signaling. However, the widespread expression and redundancy of different BMPs have made it difficult to identify a specific role for individual BMPs during mammalian skeletal morphogenesis. Here, we report the effects of modifying Bmp4 dosage on the skeletal development of Noggin mutant mice. The reduction of Bmp4 dosage results in an extensive rescue of the axial skeleton of Noggin mutant embryos. In contrast, the appendicular skeletal phenotype of Noggin mutants was unchanged. Analysis of molecular markers of somite formation and somite patterning suggests that the loss of Noggin results in the formation of small mispatterned somites. Mis-specification and growth retardation rather than cell death most likely account for the subsequent reduction or loss of axial skeletal structures. The severe Noggin phenotype correlates with Bmp4-dependent ectopic expression of Bmp4 in the paraxial mesoderm consistent with Noggin antagonizing an auto-inductive feed-forward mechanism. Thus, specific interactions between Bmp4 and Noggin in the early embryo are critical for establishment and patterning of the somite and subsequent axial skeletal morphogenesis.
Collapse
Affiliation(s)
- Mark Wijgerde
- Department of Molecular and Cellular Biology, The Biolabs, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
3
|
Van Hateren N, Belsham A, Randall V, Borycki AG. Expression of avian Groucho-related genes (Grgs) during embryonic development. Gene Expr Patterns 2005; 5:817-23. [PMID: 15923151 DOI: 10.1016/j.modgep.2005.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 11/19/2022]
Abstract
Groucho-related genes (Grgs) encode transcriptional co-repressors of Lef/Tcf and Hes proteins, which are mediators of Wnt and Notch signalling, respectively. Thus, they are important players in the developmental processes controlled by Wnt and Notch signalling, including lateral inhibition, segmentation and dorso-ventral patterning. We have cloned the avian homologues of Grg genes and examined their expression pattern by whole-mount in situ hybridisation between Hamburger-Hamilton (HH) stages 3 and 24. At HH stage 3, Grg gene expression is detected in the primitive streak and Hensen's node. Later, Grg genes are expressed at high levels in the developing head fold and by HH stage 11, throughout the anterior CNS and in the ventricular zone of the neural tube. In addition, Grg2, Grg4 and Grg5 are expressed in the notochord. In the paraxial mesoderm, Grg genes are activated as soon as somites form. As somites mature, Grg1 and Grg5/AES are expressed predominantly in the medial myotome and dermomyotome, whereas Grg2, Grg3 and Grg4 are expressed throughout the myotome. In HH stage 20 limbs, Grg1, Grg3 and Grg4 transcripts are more abundant in the posterior limb bud, whereas Grg2 and Grg5/AES are expressed throughout. By HH stage 24, Grg1, Grg2 and Grg3 become localized to the dorsal and ventral limb muscle masses, whereas Grg4 and Grg5/AES occupy a more central and ventro-proximal domain, respectively. Overall, our expression data are consistent with a role for Grg genes in Lef/Tcf and Wnt signalling during somitogenesis and with a role in Hes and Notch signalling in neurogenesis.
Collapse
Affiliation(s)
- Nick Van Hateren
- Centre for Developmental Genetics, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
4
|
Bok J, Bronner-Fraser M, Wu DK. Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear. Development 2005; 132:2115-24. [PMID: 15788455 DOI: 10.1242/dev.01796] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An early and crucial event in vertebrate inner ear development is the acquisition of axial identities that in turn dictate the positions of all subsequent inner ear components. Here, we focus on the role of the hindbrain in establishment of inner ear axes and show that axial specification occurs well after otic placode formation in chicken. Anteroposterior (AP) rotation of the hindbrain prior to specification of this axis does not affect the normal AP orientation and morphogenesis of the inner ear. By contrast, reversing the dorsoventral (DV) axis of the hindbrain results in changing the DV axial identity of the inner ear. Expression patterns of several ventrally expressed otic genes such as NeuroD, Lunatic fringe (Lfng) and Six1 are shifted dorsally, whereas the expression pattern of a normally dorsal-specific gene, Gbx2, is abolished. Removing the source of Sonic Hedgehog (SHH) by ablating the floor plate and/or notochord, or inhibiting SHH function using an antibody that blocks SHH bioactivity results in loss of ventral inner ear structures. Our results indicate that SHH, together with other signals from the hindbrain, are important for patterning the ventral axis of the inner ear. Taken together, our studies suggest that tissue(s) other than the hindbrain confer AP axial information whereas signals from the hindbrain are necessary and sufficient for the DV axial patterning of the inner ear.
Collapse
Affiliation(s)
- Jinwoong Bok
- National Institute on Deafness and other Communication Disorders, 5 Research Court, Rockville, MD 20850, USA
| | | | | |
Collapse
|
5
|
Niemann C, Unden AB, Lyle S, Zouboulis CC, Toftgård R, Watt FM. Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11873-80. [PMID: 12917489 PMCID: PMC304101 DOI: 10.1073/pnas.1834202100] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammalian epidermis, the level of beta-catenin signaling regulates lineage selection by stem cell progeny. High levels of beta-catenin stimulate formation of hair follicles, whereas low levels favor differentiation into interfollicular epidermis and sebocytes. In transgenic mouse epidermis, overexpression of beta-catenin leads to formation of hair follicle tumors, whereas overexpression of N-terminally truncated Lef1, which blocks beta-catenin signaling, results in spontaneous sebaceous tumors. Accompanying overexpression of beta-catenin is up-regulation of Sonic hedgehog (SHH) and its receptor, Patched (PTCH/Ptch). In DeltaNLef1 tumors Ptch mRNA is up-regulated in the absence of SHH. We now show that PTCH is up-regulated in both human and mouse sebaceous tumors and is accompanied by overexpression of Indian hedgehog (IHH). In normal sebaceous glands IHH is expressed in differentiated sebocytes and the transcription factor GLI1 is activated in sebocyte progenitors, suggesting a paracrine signaling mechanism. PTCH1 and IHH are up-regulated during human sebocyte differentiation in vitro and inhibition of hedgehog signaling inhibits growth and stimulates differentiation. Overexpression of DeltaNLef1 up-regulates IHH and stimulates proliferation of undifferentiated sebocytes. We present a model of the interactions between beta-catenin and hedgehog signaling in the epidermis in which SHH promotes proliferation of progenitors of the hair lineages whereas IHH stimulates proliferation of sebocyte precursors.
Collapse
Affiliation(s)
- C Niemann
- Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
6
|
Marcelle C, Lesbros C, Linker C. Somite patterning: a few more pieces of the puzzle. Results Probl Cell Differ 2003; 38:81-108. [PMID: 12132400 DOI: 10.1007/978-3-540-45686-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Christophe Marcelle
- University Aix-Marseille II, LGPD, CNRS UMR 6545, Developmental Biology Institute of Marseille, Campus de Luminy, Case 907, 13288 Marseille, France
| | | | | |
Collapse
|
7
|
Abstract
Recent research has demonstrated that not only haemodynamic factors but also genetic programmes control arterial-venous cell fate and blood vessel identity. The identification of arteries and veins was previously based solely on morphological criteria and is now greatly facilitated by specific molecular markers. Moreover, signalling pathways controlling the arterial-venous decision during embryonic development have been outlined for the first time. This review gives an up-to-date overview of differentially expressed genes and the regulatory processes leading to the differentiation of arteries and veins.
Collapse
Affiliation(s)
- Ralf H Adams
- Cancer Research UK-London Research Institute, Vascular Development Laboratory, London, UK.
| |
Collapse
|
8
|
Woda JM, Pastagia J, Mercola M, Artinger KB. Dlx proteins position the neural plate border and determine adjacent cell fates. Development 2003; 130:331-42. [PMID: 12466200 PMCID: PMC4018238 DOI: 10.1242/dev.00212] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.
Collapse
Affiliation(s)
- Juliana M. Woda
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Pastagia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Oral Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Mark Mercola
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Liu W, Li G, Chien JS, Raft S, Zhang H, Chiang C, Frenz DA. Sonic hedgehog regulates otic capsule chondrogenesis and inner ear development in the mouse embryo. Dev Biol 2002; 248:240-50. [PMID: 12167401 DOI: 10.1006/dbio.2002.0733] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Development of the cartilaginous capsule of the inner ear is dependent on interactions between otic epithelium and its surrounding periotic mesenchyme. During these tissue interactions, factors endogenous to the otic epithelium influence the differentiation of the underlying periotic mesenchyme to form a chondrified otic capsule. We report the localization of Sonic hedgehog (Shh) protein and expression of the Shh gene in the tissues of the developing mouse inner ear. We demonstrate in cultures of periotic mesenchyme that Shh alone cannot initiate otic capsule chondrogenesis. However, when Shh is added to cultured periotic mesenchyme either in combination with otic epithelium or otic epithelial-derived fibroblast growth factor (FGF2), a significant enhancement of chondrogenesis occurs. Addition of Shh antisense oligonucleotide (AS) to cultured periotic mesenchyme with added otic epithelium decreases levels of endogenous Shh and suppresses the chondrogenic response of the mesenchyme cells, while supplementation of Shh AS-treated cultures with Shh rescues cultures from chondrogenic inhibition. We demonstrate that inactivation of Shh by targeted mutation produces anomalies in the developing inner ear and its surrounding capsule. Our results support a role for Shh as a regulator of otic capsule formation and inner ear development during mammalian embryogenesis.
Collapse
Affiliation(s)
- W Liu
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The organizer has traditionally been considered the major source of somite-inducing signals. We show here that signaling from the neural plate specifies somite tissue and regulates somite size in the Xenopus gastrula. Ectopic undifferentiated neural tissue induces massive somite expansion at the expense of intermediate and lateral plate mesoderm. Although the early expanded somite expresses muscle-specific markers, only a portion terminally differentiates, suggesting that myotome development requires additional signals. Explant assays demonstrate that neural tissue induces somite-specific marker expression even in the absence of the organizer. Finally, we demonstrate that neural tissue is required for proper somite development because elimination of neural precursors results in pronounced somite reduction. Thus, an important reciprocal interaction exists between somite and neural tissue that is mutually reinforcing and critical for normal embryonic patterning.
Collapse
Affiliation(s)
- F V Mariani
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
11
|
Abstract
Endodermally derived organs of the gastrointestinal and respiratory system form at distinct anterioposterior and dorsoventral locations along the vertebrate body axis. This stereotyped program of organ formation depends on the correct patterning of the endodermal epithelium so that organ differentiation and morphogenesis occur at appropriate positions along the gut tube. Whereas some initial patterning of the endoderm is known to occur early, during germ-layer formation and gastrulation, later signaling events, originating from a number of adjacent tissue layers, are essential for the development of endodermal organs. Previous studies have shown that signals arising from the notochord are important for patterning of the ectodermally derived floor plate of the neural tube and the mesodermally derived somites. This review will discuss recent evidence indicating that signals arising from the notochord also play a role in regulating endoderm development.
Collapse
Affiliation(s)
- O Cleaver
- Department of Molecular and Cellular Biology, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
12
|
Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened Mutants Reveal Redundant Roles for Shh and Ihh Signaling Including Regulation of L/R Asymmetry by the Mouse Node. Cell 2001. [DOI: 10.1016/s0092-8674(01)00385-3] [Citation(s) in RCA: 472] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Schmidt C, Christ B, Maden M, Brand-Saberi B, Patel K. Regulation of Epha4 expression in paraxial and lateral plate mesoderm by ectoderm-derived signals. Dev Dyn 2001; 220:377-86. [PMID: 11307170 DOI: 10.1002/dvdy.1117] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Somitogenesis in all vertebrates involves a mesenchymal to epithelial transition of segmental plate cells. Such a transition involves cells altering their morphology and their adhesive properties. The Eph family of receptor tyrosine kinases has been postulated to regulate cytoskeletal organization. In this study, we show that a receptor belonging to this family, EphA4, is expressed in the segmental plate in a region where cells are undergoing changes in cell shape as a prelude to epithelialization. We have identified the ectoderm covering the somites and the midline ectoderm as sources of signals capable of inducing EphA4. Loss of EphA4 results in cells of irregular morphology and somites fail to form. We also show that when somites fail to develop, expression of EphA4 in the lateral plate is also lost. We suggest that signaling occurs between the somites and the lateral plate mesoderm and provide evidence that retinoic acid is involved in this communication.
Collapse
Affiliation(s)
- C Schmidt
- Institut of Anatomy, University of Freiburg, D-79001 Freiburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Abstract
Appendages, such as wings of a fly or limbs of a vertebrate, are excellent models to study the principles of patterning and morphogenesis. In the adult these structures are used for a variety of behaviors, including locomotion. Although support structures of the adult vertebrate limb are generated within the limb bud, its dynamic elements are derived from the somitic mesoderm and neural tube. Recent studies show that regional patterns set up in the mesenchyme-filled limb bud guide muscle precursors and developing motor axons to their proper location within the limb. Subsequent development of the neuromuscular system is regulated by cell surface interactions between pre-specified muscle fibers and motor axons.
Collapse
Affiliation(s)
- K Sharma
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
15
|
Winter B, Arnold HH. Activated raf kinase inhibits muscle cell differentiation through a MEF2-dependent mechanism. J Cell Sci 2000; 113 Pt 23:4211-20. [PMID: 11069766 DOI: 10.1242/jcs.113.23.4211] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Muscle cell development is dependent on the activity of cell type-specific basic-helix-loop-helix transcription factors, MyoD, Myf-5, myogenin, and MRF4 which collaborate with myocyte enhancer factor 2 proteins to activate muscle-specific gene expression. Growth factors and activated Ras prevent differentiation of myoblasts in culture but the downstream signalling pathways are not well understood. Here, we demonstrate that active Raf kinase (Raf-BxB) completely inhibits myogenic conversion of 10T1/2 cells mediated by Myf-5 and differentiation of L6 myoblasts as indicated by the absence of myotubes, lack of myogenin expression, and markedly reduced expression of myosin heavy chain. However, activated Raf inhibits transcriptional activation by Myf-5 only partially suggesting that other potential targets of Ras/Raf signalling may be involved. Significantly, we observed that elevated Raf kinase activity in L6 muscle cells suppresses the accumulation of MEF2 protein in nuclei, while MEF2 transcription appears unaffected. Moreover, forced expression of MEF2A in 10T1/2 cells rescues MyoD dependent myogenic conversion in the presence of constitutively active Raf kinase and partially restores transactivation of a myogenin promoter-dependent reporter gene in L6 muscle cells containing activated Raf kinase. From these observations we conclude that persistent activation of Raf signalling affects nuclear MEF2 functions which may explain why myogenin expression and myoblast differentiation are inhibited.
Collapse
Affiliation(s)
- B Winter
- Department of Cell and Molecular Biology, University of Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.
| | | |
Collapse
|
16
|
Puri PL, Sartorelli V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol 2000; 185:155-73. [PMID: 11025438 DOI: 10.1002/1097-4652(200011)185:2<155::aid-jcp1>3.0.co;2-z] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Skeletal muscle differentiation is influenced by multiple pathways, which regulate the activity of myogenic regulatory factors (MRFs)-the myogenic basic helix-loop-helix proteins and the MEF2-family members-in positive or negative ways. Here we will review and discuss the network of signals that regulate MRF function during myocyte proliferation, differentiation, and post-mitotic growth. Elucidating the mechanisms governing muscle-specific transcription will provide important insight in better understanding the embryonic development of muscle at the molecular level and will have important implications in setting out strategies aimed at muscle regeneration. Since the activity of MRFs are compromised in tumors of myogenic derivation-the rhabdomyosarcomas-the studies summarized in this review can provide a useful tool to uncover the molecular basis underlying the formation of these tumors.
Collapse
Affiliation(s)
- P L Puri
- Department of Biology, University of California San Diego, La Jolla, California, USA.
| | | |
Collapse
|
17
|
Abstract
We studied the roles of beta-catenin in somitogenesis using immunostaining and antisense experiments in rat embryos. High levels of beta-catenin appeared transiently in the developing rat somites. Initially, beta-catenin accumulation was observed in the core cells of presomitic cell aggregates and then in the lumen of epithelial vesicles. Subsequently, it was confined to the dermomyotomes and their lumen and then the myotomes. High levels of cyclin D1 were observed in the core cells, in the lumen of epithelial vesicles, in myotomes, and in mesenchymal sclerotomes. When embryos were cultured in medium supplemented with beta-catenin antisense oligodeoxynucleotide (ODN), the accumulation of beta-catenin, but not of cyclin D1, in the nascent somites and dermomyotomes was suppressed, while the number of somites was the same as that observed in control embryos. The number of myosin-positive somites and the amount of myosin per somite in embryos treated with the antisense ODN were lower than those in controls. These results suggested that beta-catenin promotes development of myotomal cells during somitogenesis. The function of beta-catenin in the development of myotomes may not be correlated to cyclin D1.
Collapse
Affiliation(s)
- M Matsuda
- Department of Embryology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.
| |
Collapse
|
18
|
Dorman CM, Johnson SE. Activated Raf Inhibits Myogenesis through a Mechanism Independent of Activator Protein 1-mediated Myoblast Transformation. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61533-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Suzuki J, Yamazaki Y, Li G, Kaziro Y, Koide H, Guang L. Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol Cell Biol 2000; 20:4658-65. [PMID: 10848592 PMCID: PMC85875 DOI: 10.1128/mcb.20.13.4658-4665.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In skeletal myoblasts, Ras has been considered to be a strong inhibitor of myogenesis. Here, we demonstrate that Ras is involved also in the chemotactic response of skeletal myoblasts. Expression of a dominant-negative mutant of Ras inhibited chemotaxis of C2C12 myoblasts in response to basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and insulin-like growth factor 1 (IGF-1), key regulators of limb muscle development and skeletal muscle regeneration. A dominant-negative Ral also decreased chemotactic migration by these growth factors, while inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase (MEK) showed no effect. Activation of the Ras-Ral pathway by expression of an activated mutant of either Ras, the guanine-nucleotide dissociation stimulator for Ral, or Ral resulted in increased motility of myoblasts. The ability of Ral to stimulate motility was reduced by introduction of a mutation which prevents binding to Ral-binding protein 1 or phospholipase D. These results suggest that the Ras-Ral pathway is essential for the migration of myoblasts. Furthermore, we found that Ras and Ral are activated in C2C12 cells by bFGF, HGF and IGF-1 and that the Ral activation is regulated by the Ras- and the intracellular Ca(2+)-mediated pathways. Taken together, our data indicate that Ras and Ral regulate the chemotactic migration of skeletal muscle progenitors.
Collapse
Affiliation(s)
- J Suzuki
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Borycki A, Brown AM, Emerson CP. Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites. Development 2000; 127:2075-87. [PMID: 10769232 DOI: 10.1242/dev.127.10.2075] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of the Gli genes during somite formation has been investigated in quail embryos. The Gli genes are a family encoding three related zinc finger transcription factors, Gli1, Gli2 and Gli3, which are effectors of Shh signaling in responding cells. A quail Gli3 cDNA has been cloned and its expression compared with Gli1 and Gli2. These studies show that Gli1, Gli2 and Gli3 are co-activated at the time of somite formation, thus providing a mechanism for regulating the initiation of Shh signaling in somites. Embryo surgery and paraxial mesoderm explant experiments show that each of the Gli genes is regulated by distinct signaling mechanisms. Gli1 is activated in response to Shh produced by the notochord, which also controls the dorsalization of Gli2 and Gli3 following their activation by Wnt signaling from the surface ectoderm and neural tube. This surface ectoderm/neural tube Wnt signaling has both negative and positive functions in Gli2 and Gli3 regulation: these signals repress Gli3 in segmental plate mesoderm prior to somite formation and then promote somite formation and the somite-specific activation of Gli2 and Gli3. These studies, therefore, establish a role for Wnt signaling in the control of Shh signal transduction through the regulation of Gli2 and Gli3, and provide a mechanistic basis for the known synergistic actions of surface ectoderm/neural tube and notochord signaling in somite cell specification.
Collapse
Affiliation(s)
- A Borycki
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, BRBII/III, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
21
|
Brand-Saberi B, Christ B. Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 2000; 48:1-42. [PMID: 10635456 DOI: 10.1016/s0070-2153(08)60753-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the vertebrate embryo, the somites arise from the paraxial mesoderm as paired mesodermal units in a craniocaudal sequence. Segmentation is also the underlying principle of the body plan in annelids and arthropods. Genes controlling segmentation have been identified that are highly conserved in organisms belonging to different phyla. Segmentation facilitates movement and regionalization of the vertebrate body. Its traces in humans are, for example, vertebral bodies, intervertebral disks, ribs, and spinal nerves. Somite research has a history of at least three centuries. Detailed morphological data have accumulated on the development of the avian somite. Especially in connection with the quailchick interspecific marker system, progress was made toward an understanding of underlying mechanisms. At first each somite consists of an outer epithelium and a mesenchymal core. Later, the ventral portion of the somite undergoes de-epithelialization and gives rise to the sclerotome, whereas the dorsal portion forms the dermomyotome. The dermomyotome is the source of myotomal muscle cells and the dermis of the back. It also yields the hypaxial muscle buds at flank level and the myogenic cells invading the limb buds. The dorsal and ventral somitic domains express different sets of developmental control genes, for example, those of the Pax family. During later stages of development, the sclerotomes undergo a new arrangement called "resegmentation" leading to the fusion of the caudal half of one sclerotome with the cranial half of the following sclerotome. Further somitic derivatives include fibroblasts, smooth muscle, and endothelial cells. While sclerotome formation is controlled by the notochord, signals from the dorsal neural tube and ectoderm support the development of the dermomyotome. Myogenic precursor cells for the limb bud are recruited from the dermomyotome by the interaction of c-met with its ligand scatter factor (SF/HGF). In the evolution of metamerism in vertebrates, the first skeletal elements were primitive parts of neural arches, while axial elements developed only later in teleosts as pleurocentra and hypocentra.
Collapse
|
22
|
Tribioli C, Lufkin T. The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 1999; 126:5699-711. [PMID: 10572046 DOI: 10.1242/dev.126.24.5699] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our previous studies in both mouse and human identified the Bapx1 homeobox gene, a member of the NK gene family, as one of the earliest markers for prechondrogenic cells that will subsequently undergo mesenchymal condensation, cartilage production and, finally, endochondral bone formation. In addition, Bapx1 is an early developmental marker for splanchnic mesoderm, consistent with a role in visceral mesoderm specification, a function performed by its homologue bagpipe, in Drosophila. The human homologue of Bapx1 has been identified and mapped to 4p16.1, a region containing loci for several skeletal diseases. Bapx1 null mice are affected by a perinatal lethal skeletal dysplasia and asplenia, with severe malformation or absence of specific bones of the vertebral column and cranial bones of mesodermal origin, with the most severely affected skeletal elements corresponding to ventral structures associated with the notochord. We provide evidence that the failure of the formation of skeletal elements in Bapx1 null embryos is a consequence of a failure of cartilage development, as demonstrated by downregulation of several molecular markers required for normal chondroblast differentiation (α 1(II) collagen, Fgfr3, Osf2, Indian hedgehog, Sox9), as well as a chondrocyte-specific alpha1 (II) collagen-lacZ transgene. The cartilage defects are correlated with failed differentiation of the sclerotome at the time when these cells are normally initiating chondrogenesis. Loss of Bapx1 is accompanied by an increase in apoptotic cell death in affected tissues, although cell cycling rates are unaltered.
Collapse
Affiliation(s)
- C Tribioli
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | |
Collapse
|
23
|
Marcelle C, Ahlgren S, Bronner-Fraser M. In vivo regulation of somite differentiation and proliferation by Sonic Hedgehog. Dev Biol 1999; 214:277-87. [PMID: 10525334 DOI: 10.1006/dbio.1999.9389] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vertebrates, somite differentiation is mediated in part by Sonic Hedgehog (Shh), secreted by the notochord and the floor plate. However, Shh-null mice display close to normal expression of molecular markers for dermomytome, myotome, and sclerotome, indicating that Shh might not be required for their initial induction. In this paper, we have addressed the capacity of Shh to regulate in vivo the expression of the somite differentiation markers Pax-1, MyoD, and Pax-3 after separation of paraxial mesoderm from axial structures. We show that Pax-1, which is lost under these experimental conditions, is rescued by Shh. In contrast, Shh maintains, but cannot induce MyoD expression, while Pax-3 expression is independent of the presence of axial structures or Shh. Finally, we demonstrate that Shh is a potent mitogen for somitic cells, supporting the idea that it may serve to expand subpopulations of cells within the somite.
Collapse
Affiliation(s)
- C Marcelle
- Division of Biology, Beckman Institute 139-74, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
24
|
Noden DM, Marcucio R, Borycki AG, Emerson CP. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev Dyn 1999; 216:96-112. [PMID: 10536051 DOI: 10.1002/(sici)1097-0177(199910)216:2<96::aid-dvdy2>3.0.co;2-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myogenic populations of the avian head arise within both epithelial (somitic) and mesenchymal (unsegmented) mesodermal populations. The former, which gives rise to neck, tongue, laryngeal, and diaphragmatic muscles, show many similarities to trunk axial, body wall, and appendicular muscles. However, muscle progenitors originating within unsegmented head mesoderm exhibit several distinct features, including multiple ancestries, the absence of several somite lineage-determining regulatory gene products, diverse locations relative to neuraxial and pharyngeal tissues, and a prolonged and necessary interaction with neural crest cells. The object of this study has been to characterize the spatial and temporal patterns of early muscle regulatory gene expression and subsequent myosin heavy chain isoform appearance in avian mesenchyme-derived extraocular and branchial muscles, and compare these with expression patterns in myotome-derived neck and tongue muscles. Myf5 and myoD transcripts are detected in the dorsomedial (epaxial) region of the occipital somites before stage 12, but are not evident in the ventrolateral domain until stage 14. Within unsegmented head mesoderm, myf5 expression begins at stage 13.5 in the second branchial arch, followed within a few hours in the lateral rectus and first branchial arch myoblasts, then other eye and branchial arch muscles. Expression of myoD is detected initially in the first branchial arch beginning at stage 14.5, followed quickly by its appearance in other arches and eye muscles. Multiple foci of myoblasts expressing these transcripts are evident during the early stages of myogenesis in the first and third branchial arches and the lateral rectus-pyramidalis/quadratus complex, suggesting an early patterned segregation of muscle precursors within head mesoderm. Myf5-positive myoblasts forming the hypoglossal cord emerge from the lateral borders of somites 4 and 5 by stage 15 and move ventrally as a cohort. Myosin heavy chain (MyHC) is first immunologically detectable in several eye and branchial arch myofibers between stages 21 and 22, although many tongue and laryngeal muscles do not initiate myosin production until stage 24 or later. Detectable synthesis of the MyHC-S3 isoform, which characterizes myofibers as having "slow" contraction properties, occurs within 1-2 stages of the onset of MyHC synthesis in most head muscles, with tongue and laryngeal muscles being substantially delayed. Such a prolonged, 2- to 3-day period of regulatory gene expression preceding the onset of myosin production contrasts with the interval seen in muscles developing in axial (approximately 18 hr) and wing (approximately 1-1.5 days) locations, and is unique to head muscles. This finding suggests that ongoing interactions between head myoblasts and their surroundings, most likely neural crest cells, delay myoblast withdrawal from the mitotic pool. These descriptions define a spatiotemporal pattern of muscle regulatory gene and myosin heavy chain expression unique to head muscles. This pattern is independent of origin (somitic vs. unsegmented paraxial vs. prechordal mesoderm), position (extraocular vs. branchial vs. subpharyngeal), and fiber type (fast vs. slow) and is shared among all muscles whose precursors interact with cephalic neural crest populations. Dev Dyn 1999;216:96-112.
Collapse
Affiliation(s)
- D M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA.
| | | | | | | |
Collapse
|
25
|
Dorman CM, Johnson SE. Activated Raf inhibits avian myogenesis through a MAPK-dependent mechanism. Oncogene 1999; 18:5167-76. [PMID: 10498866 DOI: 10.1038/sj.onc.1202907] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic overexpression of the oncogenic form of Ras is a potent inhibitor of skeletal myogenesis. However, the intracellular signaling pathways that mediate the repressive actions of Ras on myogenic differentiation have yet to be identified. We examined the role of Raf-mediated signaling as a modulator of avian myogenesis. Raf overexpression elicited pronounced effects on both myoblasts and mature myocytes. Most notably, the embryonic chick myoblasts overexpressing a constitutively active form of Raf (RCAS-Raf CAAX or RCAS-Raf BXB) fail to form the large multinucleated myofibers characteristic of myogenic cultures. While residual myofibers were apparent in the RCAS-Raf BXB and RCAS-Raf CAAX infected cultures, these fibers had an atrophic phenotype. The altered morphology is not a result of reinitiation of the myonuclei cell cycle nor is it due to apoptosis. Furthermore, the mononucleated myoblasts misexpressing Raf BXB are differentiation-defective due to overt MAPK activity. Supplementation of the culture media with the MAPK kinase (MEK) inhibitor, PD98059, caused a reversal of the phenotype and allowed the formation of multinucleated myofibers at levels comparable to controls. Our results indicate that the Raf/MEK/MAPK axis is intact in chick myoblasts and that persistent activation of this signaling cascade is inhibitory to myogenesis.
Collapse
Affiliation(s)
- C M Dorman
- Department of Poultry Science, the Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | | |
Collapse
|
26
|
Abstract
Embryonic Xenopus myocytes generate spontaneous calcium (Ca(2+)) transients during differentiation in culture. Suppression of these transients disrupts myofibril organization and the formation of sarcomeres through an identified signal transduction cascade. Since transients often occur during myocyte polarization and migration in culture, we hypothesized they might play additional roles in vivo during tissue formation. We have tested this hypothesis by examining Ca(2+) dynamics in the intact Xenopus paraxial mesoderm as it differentiates into the mature myotome. We find that Ca(2+) transients occur in cells of the developing myotome with characteristics remarkably similar to those in cultured myocytes. Transients produced within the myotome are correlated with somitogenesis as well as myocyte maturation. Since transients arise from intracellular stores in cultured myocytes, we examined the functional distribution of both IP(3) and ryanodine receptors in the intact myotome by eliciting Ca(2+) elevations in response to photorelease of caged IP(3) and superfusion of caffeine, respectively. As in culture, transients in vivo depend on Ca(2+) release from ryanodine receptor (RyR) stores, and blocking RyR during development interferes with somite maturation.
Collapse
Affiliation(s)
- M B Ferrari
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, CA, 92093-0357, USA.
| | | |
Collapse
|
27
|
Vasiliauskas D, Hancock S, Stern CD. SWiP-1: novel SOCS box containing WD-protein regulated by signalling centres and by Shh during development. Mech Dev 1999; 82:79-94. [PMID: 10354473 DOI: 10.1016/s0925-4773(99)00014-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We describe a novel chick WD-protein, cSWiP-1, expressed in somitic mesoderm and developing limb buds as well as in other embryonic structures where Hedgehog signalling has been shown to play a role. Using embryonic manipulations we show that in somites cSWiP-1 expression integrates two signals originating from structures adjacent to the segmental mesoderm: a positive signal from the notochord and a negative signal from intermediate and/or lateral mesoderm. In explant cultures of somitic mesoderm, Shh protein induces cSWiP-1, while a blocking antibody to Shh inhibits the induction of cSWiP-1 by the notochord. These results show that the positive signal from the notochord is mediated by Shh. We also show that in limb buds cSWiP-1 is upregulated by ectopic Shh. This occurs in about the same time period as upregulation of BMP2, placing cSWiP-1 among the earliest markers for the change of limb pattern caused by ectopic Shh. We also describe a human homologue of cSWiP-1 and a mouse gene, mSWiP-2, that is more distantly related to SWiP-1, suggesting that SWiP-1 belongs to a novel subfamily of WD-proteins.
Collapse
Affiliation(s)
- D Vasiliauskas
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
28
|
Meng A, Moore B, Tang H, Yuan B, Lin S. A Drosophila doublesex-related gene, terra, is involved in somitogenesis in vertebrates. Development 1999; 126:1259-68. [PMID: 10021344 DOI: 10.1242/dev.126.6.1259] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila doublesex (dsx) gene encodes a transcription factor that mediates sex determination. We describe the characterization of a novel zebrafish zinc-finger gene, terra, which contains a DNA binding domain similar to that of the Drosophila dsx gene. However, unlike dsx, terra is transiently expressed in the presomitic mesoderm and newly formed somites. Expression of terra in presomitic mesoderm is restricted to cells that lack expression of MyoD. In vivo, terra expression is reduced by hedgehog but enhanced by BMP signals. Overexpression of terra induces rapid apoptosis both in vitro and in vivo, suggesting that a tight regulation of terra expression is required during embryogenesis. Terra has both human and mouse homologs and is specifically expressed in mouse somites. Taken together, our findings suggest that terra is a highly conserved protein that plays specific roles in early somitogenesis of vertebrates.
Collapse
Affiliation(s)
- A Meng
- Institute of Molecular Medicine and Genetics and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Recent studies have elucidated both the mechanism of early formation of diverse muscle fibre types and the matching of diverse populations of motoneurons to their appropriate muscle targets. Highlights include the demonstration that distinct signals are necessary for the formation of several distinct myoblast populations in the vertebrate somite, the identification of motoneuron subtypes, studies of how motoneurons target appropriate muscles, and rapid progress on the Drosophila neuromuscular system. We propose a model in which four classes of decision control the patterning of both motoneurons and muscles.
Collapse
Affiliation(s)
- S M Hughes
- MRC Muscle and Cell Motility Unit Developmental Biology Research Centre The Randall Institute King's College London 26-29 Drury Lane London WC2B 5RL UK.
| | | |
Collapse
|
30
|
Kahane N, Cinnamon Y, Kalcheim C. The cellular mechanism by which the dermomyotome contributes to the second wave of myotome development. Development 1998; 125:4259-71. [PMID: 9753680 DOI: 10.1242/dev.125.21.4259] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown that a subset of early postmitotic progenitors that originates along the medial part of the epithelial somite gives rise to the primary myotome (Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998). Mech. Dev. 74, 59–73). Because of its postmitotic nature, further myotome expansion must be achieved by cell addition from extrinsic sources. Here we investigate the mechanism whereby the dermomyotome contributes to this process. Using several different methods we found that cell addition occurs from both rostral and caudal edges of the dermomyotome, but not directly from its dorsomedial lip (DML). First, labeling of quail embryos with [3H]thymidine revealed a time-dependent entry of radiolabeled nuclei into the myotome from the entire rostral and caudal lips of the dermomyotome, but not from the DML. Second, fluorescent vital dyes were injected at specific sites in the dermomyotome lips and the fate of dye-labeled cells followed by confocal microscopy. Consistent with the nucleotide labeling experiments, dye-labeled myofibers directly emerged from injected epithelial cells from either rostral or caudal lips. In contrast, injected cells from the DML first translocated along the medial boundary, reached the rostral or caudal dermomyotome lips and only then elongated into the myotome. These growing myofibers had always one end attached to either lip from which they elongated in the opposite direction. Third, following establishment of the primary myotome, cells along the extreme dermomyotome edges, but not the DML, expressed QmyoD, supporting the notion that rostral and caudal boundaries generate myofibers. Fourth, ablation of the DML had only a limited effect on myotomal cell number. Thus, cells deriving from the extreme dermomyotome lips contribute to uniform myotome growth in the dorsoventral extent of the myotome. They also account for its expansion in the transverse plane and this is achieved by myoblast addition in a lateral to medial direction (from the dermal to the sclerotomal sides), restricting the pioneer myofibers to the dermal side of the myotome. Taken together, the data suggest that myotome formation is a multistage process. A first wave of pioneers establishes the primary structure. A second wave generated from specific dermomyotome lips contributes to its expansion. Because dermomyotome lip progenitors are mitotically active within the epithelia of origin but exit the cell cycle upon myotome colonization, they can only provide for limited myotome growth and subsequent waves must take over to ensure further muscle development.
Collapse
Affiliation(s)
- N Kahane
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, PO Box 12272, Israel
| | | | | |
Collapse
|
31
|
Kang JS, Mulieri PJ, Miller C, Sassoon DA, Krauss RS. CDO, a robo-related cell surface protein that mediates myogenic differentiation. J Cell Biol 1998; 143:403-13. [PMID: 9786951 PMCID: PMC2132836 DOI: 10.1083/jcb.143.2.403] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1998] [Revised: 09/10/1998] [Indexed: 12/26/2022] Open
Abstract
CDO, a member of the Ig/fibronectin type III repeat subfamily of transmembrane proteins that includes the axon guidance receptor Robo, was identified by virtue of its down-regulation by the ras oncogene. We report here that one prominent site of cdo mRNA expression during murine embryogenesis is the early myogenic compartment (newly formed somites, dermomyotome and myotome). CDO is expressed in proliferating and differentiating C2C12 myoblasts and in myoblast lines derived by treating 10T1/2 fibroblasts with 5-azacytidine, but not in parental 10T1/2 cells. Overexpression of CDO in C2C12 cells accelerates differentiation, while expression of secreted soluble extracellular regions of CDO inhibits this process. Oncogenic Ras is known to block differentiation of C2C12 cells via downregulation of MyoD. Reexpression of CDO in C2C12/Ras cells induces MyoD; conversely, MyoD induces CDO. Reexpression of either CDO or MyoD rescues differentiation of C2C12/Ras cells without altering anchorage-independent growth or morphological transformation. CDO and MyoD are therefore involved in a positive feedback loop that is central to the inverse relationship between cell differentiation and transformation. It is proposed that CDO mediates, at least in part, the effects of cell-cell interactions between muscle precursors that are critical in myogenesis.
Collapse
Affiliation(s)
- J S Kang
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
32
|
Steinbach OC, Ulshöfer A, Authaler A, Rupp RA. Temporal restriction of MyoD induction and autocatalysis during Xenopus mesoderm formation. Dev Biol 1998; 202:280-92. [PMID: 9769179 DOI: 10.1006/dbio.1998.8993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus, the activation of the myogenic determination factors MyoD and Myf-5 in the muscle-forming region of the embryo occurs in response to mesoderm-inducing factors (MIFs). Different members of the FGF, TGF-beta, and Wnt protein families have been implicated in this process, but how MIFs induce the myogenic regulators is not known. For MyoD, the induction process may serve to locally stabilize a transient burst of ubiquitous transcription at the midblastula transition, possibly by triggering MyoD's autocatalytic loop. Here we have sought to distinguish separate activating functions during MyoD induction by analyzing when MyoD responds to different MIF signaling or to MyoD autoactivation. We show that MyoD induction depends on the developmental age of the induced cells, rather than on the type or time point of inducer application. At the permissive time, de novo MyoD induction by Activin requires less than 90 min, arguing for an immediate response, rather than a series of inductive events. MyoD autoactivation is direct, but subject to the same temporal restriction as MyoD induction by MIF signaling. Further evidence implicating MyoD autocatalysis as an essential component of the induction process comes from the observation that both autocatalysis and induction of MyoD are selectively repressed by a dominant-negative MyoD mutant. In summary, our observations let us conclude that MyoD's expression domain in the embryo results from an interplay of timed changes in cellular competence, pleiotropic signaling pathways, and autocatalysis.
Collapse
Affiliation(s)
- O C Steinbach
- Friedrich Miescher Laboratorium, Max Planck-Gesellschaft, Spemannstrasse 37-39, Tübingen, 72076, Germany
| | | | | | | |
Collapse
|
33
|
Hughes SM, Blagden CS, Li X, Grimaldi A. The role of hedgehog proteins in vertebrate slow and fast skeletal muscle patterning. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 163:S7-10. [PMID: 9715744 DOI: 10.1046/j.1365-201x.1998.1630s30s7.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S M Hughes
- Developmental Biology Research Centre, Randall Institute, King's College London, UK.
| | | | | | | |
Collapse
|
34
|
Lauderdale JD, Pasquali SK, Fazel R, van Eeden FJ, Schauerte HE, Haffter P, Kuwada JY. Regulation of netrin-1a expression by hedgehog proteins. Mol Cell Neurosci 1998; 11:194-205. [PMID: 9675051 DOI: 10.1006/mcne.1998.0015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Netrins, a family of growth cone guidance molecules, are expressed both in the ventral neural tube and in subsets of mesodermal cells. In an effort to better understand the regulation of netrins, we examined the expression of netrin-1a in mutant cyclops, no tail, and floating head zebrafish embryos, in which axial midline structures are perturbed. Netrin-1a expression requires signals present in notochord and floor plate cells. In the myotome, but not the neural tube, netrin-1a expression requires sonic hedgehog. In embryos lacking sonic hedgehog, the sonic-you locus, netrin-1a expression is reduced or absent in the myotomes but present in the neural tube. Embryos lacking sonic hedgehog express tiggy-winkle hedgehog in the floor plate, suggesting that, in the neural tube, tiggy-winkle hedgehog can compensate for the lack of sonic hedgehog in inducing netrin-1a expression. Ectopic expression of sonic hedgehog, tiggy-winkle hedgehog, or echidna hedgehog induces ectopic netrin-1a expression in the neural tube, and ectopic expression of sonic hedgehog or tiggy-winkle hedgehog, but not echidna hedgehog, induces ectopic netrin-1a expression in somites. These data demonstrate that in vertebrates netrin expression is regulated by Hedgehog signaling.
Collapse
Affiliation(s)
- J D Lauderdale
- Department of Biology, University of Michigan, Ann Arbor, Michigan, 48109-1048, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mennerich D, Schäfer K, Braun T. Pax-3 is necessary but not sufficient for lbx1 expression in myogenic precursor cells of the limb. Mech Dev 1998; 73:147-58. [PMID: 9622616 DOI: 10.1016/s0925-4773(98)00046-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In vertebrates all skeletal muscles of trunk and limbs are derived from condensations of the paraxial mesoderm, the somites. Limb muscle precursor cells migrate during embryogenesis from somites to limb buds where migration stops and differentiation occurs. We have characterized lbx1 homeobox genes in chicken and mice and found them to be expressed in migrating limb muscle precursor cells in both species. Analysis of splotch mutant mice showed that lbx1 and c-met are differently affected by the lack of Pax-3. Limb buds of splotch (Pax-3 mutant) mice were devoid of lbx1 transcripts, while expression of c-met was still detectable at a low level. The presence of c-met-positive cells in splotch mice entering the limbs indicates that migration of cells from somites to limbs is not entirely dependent on Pax-3. We show that induction of epithelial to mesenchymal transition of Pax-3-positive cells by SF/HGF was not sufficient to induce ectopic lbx-1 expression at the inter-limb level, while ectopic limb formation was able to activate lbx1 expression. We postulate that Pax-3 is necessary for lbx1 expression in the lateral tips of somites but additional, yet unknown signals derived from limb buds are needed to initiate lbx1 expression. The role of limb bud-derived signals involved in targeted muscle precursor cell migration, and lbx1 activation was further confirmed by analysis of explanted somite/limb bud co-cultures in collagen gels.
Collapse
Affiliation(s)
- D Mennerich
- Department of Cell and Molecular Biology, University of Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | | | | |
Collapse
|
36
|
Gredinger E, Gerber AN, Tamir Y, Tapscott SJ, Bengal E. Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J Biol Chem 1998; 273:10436-44. [PMID: 9553102 DOI: 10.1074/jbc.273.17.10436] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The differentiation of muscle cells is controlled by the MyoD family of transcription factors. This family is regulated by extracellular growth factors that transmit largely unknown signals into the cells. Here we show that the activity of extracellular signal-regulated protein kinase (ERK), a kinase that is part of the mitogen-activated protein kinase (MAPK) cascade, is low in myoblasts and is induced with the onset of terminal differentiation of C2 cells. ERK activity is also induced in fibroblasts that were modified to express MyoD, but not in the parental fibroblast cells. Thus, ERK induction is an intrinsic property of muscle cells. A specific MAPK kinase inhibitor (PD098059) that was added to C2 cells partially inhibited the fusion of myoblasts to multinucleated myotubes without affecting the expression of muscle-specific markers. This inhibitor blocked the induction of MyoD expression that normally takes place during terminal differentiation. Two lines of evidence suggest that the MAPK cascade induces the activity of MyoD: 1) the expression of constitutively activated forms of MEK1 or Raf1 enhanced the transcriptional activity of MyoD in 10T1/2 fibroblasts; and 2) the addition of PD098059 to fibroblast cells expressing a conditional MyoD-estrogen fusion protein significantly inhibited the expression of MyoD-responsive genes. Our results indicate that the MAPK pathway is activated in differentiating muscle cells and that it positively regulates the expression and activity of MyoD protein.
Collapse
Affiliation(s)
- E Gredinger
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
37
|
Currie PD, Ingham PW. The generation and interpretation of positional information within the vertebrate myotome. Mech Dev 1998; 73:3-21. [PMID: 9545513 DOI: 10.1016/s0925-4773(98)00036-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
How somitic cells become restricted to the muscle fate has been investigated on a number of levels. Classical embryological manipulations have attempted to define the source of inductive signals that control the formation of the myotome. Recently, these studies have converged with others dissecting the role of secreted proteins in embryonic patterning to demonstrate a role for specific peptides in inducing individual cell types of the myotome. Collectively, these investigations have implicated the products of the Wnt, Hedgehog (Hh) and Bone morphogenetic protein (Bmp) gene families as key myogenic regulators; simultaneously controlling both the initiation of myogenesis and the fate of individual myoblasts.
Collapse
Affiliation(s)
- P D Currie
- Developmental Genetics Section, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
38
|
Borycki AG, Mendham L, Emerson CP. Control of somite patterning by Sonic hedgehog and its downstream signal response genes. Development 1998; 125:777-90. [PMID: 9435297 DOI: 10.1242/dev.125.4.777] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the avian embryo, previous work has demonstrated that the notochord provides inductive signals to activate myoD and pax1 regulatory genes, which are expressed in the dorsal and ventral somite cells that give rise to myotomal and sclerotomal lineages. Here, we present bead implantation and antisense inhibition experiments that show that Sonic hedgehog is both a sufficient and essential notochord signal molecule for myoD and pax1 activation in somites. Furthermore, we show that genes of the Sonic hedgehog signal response pathway, specifically patched, the Sonic hedgehog receptor, and gli and gli2/4, zinc-finger transcription factors, are activated in coordination with somite formation, establishing that Sonic hedgehog response genes play a regulatory role in coordinating the response of somites to the constitutive notochord Sonic hedgehog signal. Furthermore, the expression of patched, gli and gli2/4 is differentially patterned in the somite, providing mechanisms for differentially transducing the Sonic hedgehog signal to the myotomal and sclerotomal lineages. Finally, we show that the activation of gli2/4 is controlled by the process of somite formation and signals from the surface ectoderm, whereas upregulation of patched and activation of gli is controlled by the process of somite formation and a Sonic hedgehog signal. The Sonic hedgehog signal response genes, therefore, have important functions in regulating the initiation of the Sonic hedgehog response in newly forming somites and in regulating the patterned expression of myoD and pax1 in the myotomal and sclerotomal lineages following somite formation.
Collapse
Affiliation(s)
- A G Borycki
- Department of Cell and Developmental Biology, Universityof Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
39
|
Du SJ, Devoto SH, Westerfield M, Moon RT. Positive and negative regulation of muscle cell identity by members of the hedgehog and TGF-beta gene families. J Cell Biol 1997; 139:145-56. [PMID: 9314535 PMCID: PMC2139815 DOI: 10.1083/jcb.139.1.145] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1997] [Revised: 06/25/1997] [Indexed: 02/05/2023] Open
Abstract
We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-beta signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-beta superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-beta signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-beta signals exert competing positive and negative influences on the development of muscle pioneer cells.
Collapse
Affiliation(s)
- S J Du
- Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The dorsal median cells are unique mesodermal cells that reside on the surface of the ventral nerve cord in the Drosophila embryo. The Buttonless homeodomain protein is specifically expressed in these cells and is required for their differentiation. We have determined that proper buttonless gene expression and dorsal median cell differentiation requires signals from underlying CNS midline cells. Thus, dorsal median cells fail to form in single-minded mutants and do not persist in slit mutants. Through analysis of rhomboid mutants and targeted rhomboid expression, we also show that the EGF signaling pathway regulates the number of both the dorsal median cells, as well as a set of mesodermal cells that arise next to the midline and express the single-minded gene. Finally, wingless-patched double mutants exhibit defects in the restriction of dorsal median cells to segment boundaries and alterations in CNS midline cell fates. Taken together, these data define a novel neuroectoderm to mesoderm signaling pathway and suggest that unique mesodermal cell types are specified by a combination of midline and segmental cues.
Collapse
Affiliation(s)
- L Zhou
- Program for Neuroscience and Behavior, University of Massachusetts at Amherst, 01003, USA
| | | | | |
Collapse
|
41
|
Blagden CS, Currie PD, Ingham PW, Hughes SM. Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev 1997; 11:2163-75. [PMID: 9303533 PMCID: PMC275397 DOI: 10.1101/gad.11.17.2163] [Citation(s) in RCA: 275] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The patterning of vertebrate somitic muscle is regulated by signals from neighboring tissues. We examined the generation of slow and fast muscle in zebrafish embryos and show that Sonic hedgehog (Shh) secreted from the notochord can induce slow muscle from medial cells of the somite. Slow muscle derives from medial adaxial myoblasts that differentiate early, whereas fast muscle arises later from a separate myoblast pool. Mutant fish lacking shh expression fail to form slow muscle but do form fast muscle. Ectopic expression of shh, either in wild-type or mutant embryos, leads to ectopic slow muscle at the expense of fast. We suggest that Shh acts to induce myoblasts committed to slow muscle differentiation from uncommitted presomitic mesoderm.
Collapse
Affiliation(s)
- C S Blagden
- Developmental Biology Research Centre, The Randall Institute, King's College London, UK
| | | | | | | |
Collapse
|
42
|
|
43
|
Yun K, Wold B. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 1996; 8:877-89. [PMID: 8939680 DOI: 10.1016/s0955-0674(96)80091-3] [Citation(s) in RCA: 285] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Regulation of skeletal muscle determination and differentiation in vertebrates centers on a core regulatory network which is composed of two families of transcription factors, the MyoD group basic helix-loop-helix (bHLH) muscle regulatory factors (MRFs) and the myocyte enhancer factor 2 (MEF2) group of MADS-box regulators. Members of this network interact with each other genetically and physically, and together they cooperate to positively regulate transcription of downstream muscle-specific differentiation genes. During development, the myogenic network can be activated or repressed in response to patterning signals, some of which have recently been identified. Once activated, the powerful myogenic activity of the core network can be modulated and held in check by a remarkably large group of negative regulators that operate on network components by diverse mechanisms. Recent discoveries highlight extensive parallels between myogenesis and peripheral neurogenesis in the structures of their respective regulatory networks and in the interaction of their bHLH networks with other regulatory circuits. Comparisons with Drosophila indicate that these ensembles of interacting molecular circuits have been highly conserved during evolution.
Collapse
Affiliation(s)
- K Yun
- Biology Division 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
44
|
Spicer DB, Rhee J, Cheung WL, Lassar AB. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 1996; 272:1476-80. [PMID: 8633239 DOI: 10.1126/science.272.5267.1476] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The myogenic basic helix-loop-helix (bHLH) and MEF2 transcription factors are expressed in the myotome of developing somites and cooperatively activate skeletal muscle gene expression. The bHLH protein Twist is expressed throughout the epithelial somite and is subsequently excluded from the myotome. Ectopically expressed mouse Twist (Mtwist) was shown to inhibit myogenesis by blocking DNA binding by MyoD, by titrating E proteins, and by inhibiting trans-activation by MEF2. For inhibition of MEF2, Mtwist required heterodimerization with E proteins and an intact basic domain and carboxyl-terminus. Thus, Mtwist inhibits both families of myogenic regulators and may regulate myotome formation temporally or spatially.
Collapse
Affiliation(s)
- D B Spicer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- A Buonanno
- National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|