1
|
Martins Â, Gouveia D, Cardoso A, Carvalho C, Silva C, Coelho T, Gamboa Ó, Ferreira A. Functional Neurorehabilitation in Dogs with an Incomplete Recovery 3 Months following Intervertebral Disc Surgery: A Case Series. Animals (Basel) 2021; 11:ani11082442. [PMID: 34438900 PMCID: PMC8388785 DOI: 10.3390/ani11082442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary A non-invasive neurorehabilitation multimodal protocol (NRMP) may be applicable to chronic T3-L3 dogs 3 months after undergoing surgery for acute Intervertebral Disc Disease (IVDD) Hansen type I; this protocol has been shown to be safe, feasible, and potentially effective at improving ambulation in both open field score (OFS) 0 and OFS 1 dogs. The specific sample population criteria limit the number of dogs included, mainly due to owners withdrawing over time. Thus, the present case series study aimed to demonstrate that an NRMP could contribute to a functional treatment possibly based on synaptic and anatomic reorganization of the spinal cord. Abstract This case series study aimed to evaluate the safety, feasibility, and positive outcome of the neurorehabilitation multimodal protocol (NRMP) in 16 chronic post-surgical IVDD Hansen type I dogs, with OFS 0/DPP− (n = 9) and OFS 1/DPP+ (n = 7). All were enrolled in the NRMP for a maximum of 90 days and were clinically discharged after achieving ambulation. The NRMP was based on locomotor training, functional electrical stimulation, transcutaneous electrical spinal cord stimulation, and 4-aminopyridine (4-AP) pharmacological management. In the Deep Pain Perception (DPP)+ dogs, 100% recovered ambulation within a mean period of 47 days, reaching OFS ≥11, which suggests that a longer period of time is needed for recovery. At follow-up, all dogs presented a positive evolution with voluntary micturition. Of the DPP− dogs admitted, all achieved a flexion/extension locomotor pattern within 30 days, and after starting the 4-AP, two dogs were discharged at outcome day 45, with 78% obtaining Spinal Reflex Locomotion (SRL) and automatic micturition within a mean period of 62 days. At follow-up, all dogs maintained their neurological status. After the NRMP, ambulatory status was achieved in 88% (14/16) of dogs, without concurrent events. Thus, an NRMP may be an important therapeutic option to reduce the need for euthanasia in the clinical setting.
Collapse
Affiliation(s)
- Ângela Martins
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1300-477 Lisboa, Portugal
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
- Correspondence:
| | - Débora Gouveia
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
| | - Ana Cardoso
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Carla Carvalho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Cátia Silva
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Tiago Coelho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| | - António Ferreira
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| |
Collapse
|
2
|
Martins Â, Gouveia D, Cardoso A, Viegas I, Gamboa Ó, Ferreira A. A Comparison Between Body Weight-Supported Treadmill Training and Conventional Over-Ground Training in Dogs With Incomplete Spinal Cord Injury. Front Vet Sci 2021; 8:597949. [PMID: 34277746 PMCID: PMC8280520 DOI: 10.3389/fvets.2021.597949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
In human medicine there was no evidence registered of a significant difference in recovery between body weight-supported treadmill training (BWSTT) and conventional over-ground (COGI). There isn't any similar study in veterinary medicine. Thus, this study aimed to compare the locomotor recovery obtained in incomplete SCI (T11–L3 Hansen type I) post-surgical dogs following BWSTT or COGI protocols, describing their evolution during 7 weeks in regard to OFS classifications. At admission, dogs were blindly randomized in two groups but all were subjected to the same protocol (underwater treadmill training) for the first 2 weeks. After, they were divided in the BWSTT group (n = 10) and the COGI group (n = 10) for the next 2 weeks, where they performed different training. In both groups locomotor training was accompanied by functional electrical stimulation (FES) protocols. Results reported statistically significant differences between all OFS evaluations time-points (p < 0.001) and between the two groups (p < 0.001). In particular with focus on T1 to T3 a two-way repeated measures ANOVA was performed and similar results were obtained (p = 0.007). Functional recovery was achieved in 90% (17/19) of all dogs and 100% recovered bladder function. The BWSTT group showed 100% (10/10) recovery within a mean time of 4.6 weeks, while the COGI group had 78% (7/9) within 6.1 weeks. Therefore, BWSTT leads to a faster recovery with a better outcome in general.
Collapse
Affiliation(s)
- Ângela Martins
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal.,Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal.,CIISA-Centro Interdisciplinar de Investigação em Saúde Animal-Faculty of Veterinary Medicine, Lisboa, Portugal
| | - Débora Gouveia
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Inês Viegas
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - António Ferreira
- CIISA-Centro Interdisciplinar de Investigação em Saúde Animal-Faculty of Veterinary Medicine, Lisboa, Portugal.,Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
3
|
Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J, Chew J, Utheim TP, Huang XA, Yu H, Malik MTA, Anzak N, Chen DF. IGFBPL1 Regulates Axon Growth through IGF-1-mediated Signaling Cascades. Sci Rep 2018; 8:2054. [PMID: 29391597 PMCID: PMC5794803 DOI: 10.1038/s41598-018-20463-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
Activation of axonal growth program is a critical step in successful optic nerve regeneration following injury. Yet the molecular mechanisms that orchestrate this developmental transition are not fully understood. Here we identified a novel regulator, insulin-like growth factor binding protein-like 1 (IGFBPL1), for the growth of retinal ganglion cell (RGC) axons. Expression of IGFBPL1 correlates with RGC axon growth in development, and acute knockdown of IGFBPL1 with shRNA or IGFBPL1 knockout in vivo impaired RGC axon growth. In contrast, administration of IGFBPL1 promoted axon growth. Moreover, IGFBPL1 bound to insulin-like growth factor 1 (IGF-1) and subsequently induced calcium signaling and mammalian target of rapamycin (mTOR) phosphorylation to stimulate axon elongation. Blockage of IGF-1 signaling abolished IGFBPL1-mediated axon growth, and vice versa, IGF-1 required the presence of IGFBPL1 to promote RGC axon growth. These data reveal a novel element in the control of RGC axon growth and suggest an unknown signaling loop in the regulation of the pleiotropic functions of IGF-1. They suggest new therapeutic target for promoting optic nerve and axon regeneration and repair of the central nervous system.
Collapse
Affiliation(s)
- Chenying Guo
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yingqian Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kissauo Tchedre
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Christian Antolik
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jie Ma
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Justin Chew
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Pritzker School of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Tor Paaske Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, 0407, Oslo, Norway
| | - Xizhong A Huang
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Oncology Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, 02138, USA
| | - Honghua Yu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Muhammad Taimur A Malik
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Nada Anzak
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Guys, Kings & St Thomas' School of Medicine, Hodgkin Building, Guy's Campus, King's College London, London, UK
| | - Dong Feng Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
- Boston VA Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA.
| |
Collapse
|
4
|
Suzuki T, Akimoto M, Imai H, Ueda Y, Mandai M, Yoshimura N, Swaroop A, Takahashi M. Chondroitinase ABC Treatment Enhances Synaptogenesis between Transplant and Host Neurons in Model of Retinal Degeneration. Cell Transplant 2017; 16:493-503. [PMID: 17708339 DOI: 10.3727/000000007783464966] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although recent studies revealed chondroitinase ABC (ChABC), an enzyme that degrades chondroitin sulfate proteoglycans, promotes CNS regeneration in vivo, the usefulness of its application for transplantation is not clear. We investigated if treatment with ChABC can promote synapse formation between graft and host neurons following retinal transplantation. Dissociated retinal cells were prepared from neonatal Nrl-GFP transgenic mice in which rod photoreceptors and their progenitor cells are labeled with GFP. Each cell suspension with or without ChABC (Nrl/ChABC group and Nrl group, respectively) was injected subretinally into the eyes of mice following chemically induced photoreceptor degeneration. The survival and functional integration of the transplanted photoreceptors were examined by histologically and electrophysio-logically. Up to 4 weeks after transplantation, almost all the grafted GFP+ photoreceptor cells were widely distributed at the outer margin of the host retina where the photoreceptor layer was located originally. In the Nrl/ChABC group, 33.6% of the GFP+ photoreceptors elaborated neurites horizontally or vertically, and 4.6% elaborated neurites toward the retina. These neurites extended over the glial seal at the graft–host interface, and established synaptic contacts with neurons in the host retina as determined by confocal microscopy and three-dimensional analysis. Although 30.7% cells (p = 0.68) elaborated neurites in the Nrl group, only 1.2% cells (p < 0.05) projected neurites towards the host tissue and synaptic contacts were rare. Our results illustrate the potential utility of ChABC for enhancing synaptogenesis between transplanted neurons and host retina.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Opthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Petrosyan TR, Gevorkyan OV, Chavushyan VA, Meliksetyan IB, Hovsepyan AS, Manvelyan LR. Effects of bacterial melanin on motor recovery and regeneration after unilateral destruction of Substantia Nigra pars compacta in rats. Neuropeptides 2014; 48:37-46. [PMID: 24176246 DOI: 10.1016/j.npep.2013.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/13/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
We examined the potential neuroprotective action of bacterial melanin (BM) in rats after unilateral destruction of Substantia Nigra pars compacta (SNc) dopaminergic neurons. 24 rats were initially trained to an instrumental conditioned reflex (ICR) and then subjected to unilateral electrolytic destruction of SNc. Unilateral deficit in balancing hindlimb movements was observed in all rats after the destruction. On the next day after the destruction part of the animals (n=12) was intramuscularly injected with BM solution at the concentration 6 mg/ml (0.17 g/kg). The other 12 operated rats served as a control group. On the second day after the operation the testing of instrumental conditioned reflex was resumed in both groups. Comparison of recovery periods for the ICR in both groups showed that recovery of the reflex and balancing hindlimb movements in melanin treated rats took place in three postoperative testing days, whereas in control group the recovery was not complete after 23 testing days. Electrophysiological study was conducted in 12 intact rats to show the effects of BM on the activity of SNc neurons. The firing rate of neurons was significantly increased by the BM injection. Morpho-histochemical study of brain sections was conducted after the completion of behavioral experiments. In melanin injected rats the study revealed absence of destruction or electrode trace in Substantia Nigra pars compacta of melanin injected rats. BM stimulates regeneration and microcirculation in SNc. Increased electrical activity of SN neurons and regenerative efforts induced by BM accelerate motor recovery after unilateral SNc destruction.
Collapse
Affiliation(s)
- T R Petrosyan
- Department of Kinesiology, Armenian State Institute of Physical Education, Yerevan, Armenia.
| | - O V Gevorkyan
- Orbeli Institute of Physiology, NAS, Yerevan, Armenia
| | | | | | | | - L R Manvelyan
- Orbeli Institute of Physiology, NAS, Yerevan, Armenia
| |
Collapse
|
6
|
Abstract
A major challenge in repairing the injured spinal cord is to assure survival of damaged cells and to encourage regrowth of severed axons. Because neurotrophins are known to affect these processes during development, many experimental approaches to improving function of the injured spinal cord have made use of these agents, particularly Brain derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT-3). More recently, neurotrophins have also been shown to affect the physiology of cells and synapses in the spinal cord. The effect of neurotrophins on circuit performance adds an important dimension to their consideration as agents for repairing the injured spinal cord. In this chapter we discuss the role of neurotrophins in promoting recovery after spinal cord injury from both a structural and functional perspective.
Collapse
Affiliation(s)
- Vanessa S Boyce
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | | |
Collapse
|
7
|
Tu Q, Pang L, Wang L, Zhang Y, Zhang R, Wang J. Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth. ACS APPLIED MATERIALS & INTERFACES 2013; 5:13188-13197. [PMID: 24313218 DOI: 10.1021/am4042004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neurodegenerative diseases or acute injuries of the nervous system always lead to neuron loss and neurite damage. Thus, the development of effective methods to repair these damaged neurons is necessary. The construction of biomimetic materials with specific physicochemical properties is a promising solution to induce neurite sprouting and guide the regenerating nerve. Herein, we present a simple method for constructing biomimetic graphene oxide (GO) composites by covalently bonding an acetylcholine-like unit (dimethylaminoethyl methacrylate, DMAEMA) or phosphorylcholine-like unit (2-methacryloyloxyethyl phosphorylcholine, MPC) onto GO surfaces to enhance neurite sprouting and outgrowth. The resulting GO composites were characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis spectrometry, scanning electron microscopy, and contact angle analyses. Primary rat hippocampal neurons were used to investigate nerve cell adhesion, spreading, and proliferation on these biomimetic GO composites. GO-DMAEMA and GO-MPC composites provide the desired biomimetic properties for superior biocompatibility without affecting cell viability. At 2 to 7 days after cell seeding was performed, the number of neurites and average neurite length on GO-DMAEMA and GO-MPC composites were significantly enhanced compared with the control GO. In addition, analysis of growth-associate protein-43 (GAP-43) by Western blot showed that GAP-43 expression was greatly improved in biomimetic GO composite groups compared to GO groups, which might promote neurite sprouting and outgrowth. All the results demonstrate the potential of DMAEMA- and MPC-modified GO composites as biomimetic materials for neural interfacing and provide basic information for future biomedical applications of graphene oxide.
Collapse
Affiliation(s)
- Qin Tu
- College of Science and ‡College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.
Collapse
Affiliation(s)
- Jacqueline Y. Tyler
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
9
|
Petrosyan T. Bacterial Melanin Favors Regeneration after Motor Tract and Peripheral Nerve Damage. ACTA ACUST UNITED AC 2013. [DOI: 10.11131/2013/100014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- T. Petrosyan
- Department of Kinesiology, Armenian State Institute of Physical Education Alex Manukyan 11, Yerevan, Armenia 0070
| |
Collapse
|
10
|
Shimosaka M, Ujjal K. Bhawal. bFGF Upregulates the Expression of NGFR in PC12 Cells. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Ul Haq I, Gururaj AK. Remarkable recovery in an infant presenting with extensive perinatal cervical cord injury. BMJ Case Rep 2012; 2012:bcr2012007533. [PMID: 23230249 PMCID: PMC4544264 DOI: 10.1136/bcr-2012-007533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cervical-cord damage is a complication of a difficult delivery, and results in spinal shock with flaccidity progressing to spastic paralysis. Conventionally, outlook for such patients is extremely poor and most will recover only slightly from quadriplegia and autonomic dysfunction. Here, we report a case in which the extent of damage considerably contrasted with the outcome and recovery. A full-term baby girl born by difficult vaginal delivery displayed bilateral flaccid paralysis of the lower limbs with absent spontaneous movements, weakness of both upper limbs, hyporeflexia in all limbs and axial hypotonia. MRI of cervicothoracic spine exhibited raised signal intensity in the dorsal aspects of C7 to T1 signifying myelopathy. MRI at 4 months revealed a near-total transection of the cervical cord. However, at 6 months, the child could move all lower limbs independently with a marked increase in power. There was no spasticity, wasting or incontinence. Reflexes had also returned.
Collapse
Affiliation(s)
- Israr Ul Haq
- Department of Paediatric Neurology, Latifa Hospital, Dubai, United Arab Emirates.
| | | |
Collapse
|
12
|
Johnstone AL, Reierson GW, Smith RP, Goldberg JL, Lemmon VP, Bixby JL. A chemical genetic approach identifies piperazine antipsychotics as promoters of CNS neurite growth on inhibitory substrates. Mol Cell Neurosci 2012; 50:125-35. [PMID: 22561309 DOI: 10.1016/j.mcn.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/23/2012] [Accepted: 04/20/2012] [Indexed: 01/22/2023] Open
Abstract
Injury to the central nervous system (CNS) can result in lifelong loss of function due in part to the regenerative failure of CNS neurons. Inhibitory proteins derived from myelin and the astroglial scar are major barriers for the successful regeneration of injured CNS neurons. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration-promoting compounds, we used F05-induced gene expression profiles to query the Broad Institute Connectivity Map, a gene expression database of cells treated with >1300 compounds. Despite no shared chemical similarity, F05-induced changes in gene expression were remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). In contrast to antipsychotics of other structural classes, PhAPs promoted neurite growth of CNS neurons challenged with two different glial derived inhibitory substrates. Our pharmacological studies suggest a mechanism whereby PhAPs promote growth through antagonism of calmodulin signaling, independent of dopamine receptor antagonism. These findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest that clinically approved antipsychotic compounds may be repurposed for use in CNS injured patients.
Collapse
Affiliation(s)
- Andrea L Johnstone
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1400 NW 12th Ave, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
13
|
Neuroprotective action of bacterial melanin in rats after corticospinal tract lesions. PATHOPHYSIOLOGY 2012; 19:71-80. [DOI: 10.1016/j.pathophys.2011.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/21/2011] [Accepted: 12/06/2011] [Indexed: 11/22/2022] Open
|
14
|
Hoffman N, Parker D. Interactive and individual effects of sensory potentiation and region-specific changes in excitability after spinal cord injury. Neuroscience 2011; 199:563-76. [DOI: 10.1016/j.neuroscience.2011.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 01/10/2023]
|
15
|
Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, Schmidt CE. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng 2011; 8:046033. [PMID: 21753237 DOI: 10.1088/1741-2560/8/4/046033] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Mellough CB, Cho S, Wood A, Przyborski S. Neurite formation by neurons derived from adult rat hippocampal progenitor cells is susceptible to myelin inhibition. Neurochem Int 2011; 59:333-40. [DOI: 10.1016/j.neuint.2011.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 12/09/2022]
|
17
|
Yucel D, Kose GT, Hasirci V. Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes. Biomacromolecules 2010; 11:3584-91. [DOI: 10.1021/bm1010323] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deniz Yucel
- METU, Central Laboratory, Molecular Biology and Biotechnology R&D Center, METU, BIOMAT, Departments of Biotechnology and Biological Sciences, Biotechnology Research Unit, 06531 Ankara, Turkey, and Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Gamze Torun Kose
- METU, Central Laboratory, Molecular Biology and Biotechnology R&D Center, METU, BIOMAT, Departments of Biotechnology and Biological Sciences, Biotechnology Research Unit, 06531 Ankara, Turkey, and Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Vasif Hasirci
- METU, Central Laboratory, Molecular Biology and Biotechnology R&D Center, METU, BIOMAT, Departments of Biotechnology and Biological Sciences, Biotechnology Research Unit, 06531 Ankara, Turkey, and Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| |
Collapse
|
18
|
Immune responses following mouse peripheral nerve xenotransplantation in rats. J Biomed Biotechnol 2009; 2009:412598. [PMID: 19829758 PMCID: PMC2761006 DOI: 10.1155/2009/412598] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/24/2009] [Indexed: 02/07/2023] Open
Abstract
Xenotransplantation offers a potentially unlimited source for tissues and organs for transplantation, but the strong xenoimmune responses pose a major obstacle to its application in the clinic. In this study, we investigate the rejection of mouse peripheral nerve xenografts in rats. Severe intragraft mononuclear cell infiltration, graft distension, and necrosis were detected in the recipients as early as 2 weeks after mouse nerve xenotransplantation. The number of axons in xenografts reduced progressively and became almost undetectable at week 8. However, mouse nerve xenotransplantation only led to a transient and moderate increase in the production of Th1 cytokines, including IL-2, IFN-gamma, and TNF-alpha. The data implicate that cellular immune responses play a critical role in nerve xenograft rejection but that further identification of the major effector cells mediating the rejection is required for developing effective means to prevent peripheral nerve xenograft rejection.
Collapse
|
19
|
Abstract
Longitudinal magnetic resonance imaging (MRI) was performed in normal and spinal cord (SC)-injured rodents. A fast technique based on polar B-spline snake was developed to extract the SC contour from the MR images in order to estimate the cord atrophy. Based on pooled data from all of the imaging studies, the extracted contours correlated well with manually defined contours. Results from the injured group showed cord atrophy shortly after the contusion injury. The maximum amount of atrophy (9.7% +/- 3.5% decrease in the cross-sectional area (CSA)) occurred mainly at the epicenter around 14 days postinjury. The caudal and rostral segments in the injured group did not exhibit significant atrophy compared to the normal controls. The MRI-based atrophy measurements obtained in injured cords are consistent with previous histological findings.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
20
|
Iarikov DE, Kim BG, Dai HN, McAtee M, Kuhn PL, Bregman BS. Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury. J Neurotrauma 2007; 24:690-702. [PMID: 17439351 DOI: 10.1089/neu.2006.0172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional deficits following spinal cord injury (SCI) result from a disruption of corticofugal projections at the lesion site. Not only direct regeneration of the severed axons but also anatomical re-organization of spared corticofugal pathways can reestablish connections between the supraspinal and spinal motor centers. We have previously shown that delayed transplantation of fetal spinal cord tissue and neurotrophin administration by two weeks after SCI supported recovery of forelimb function in adult rats. The current study determined whether the same intervention enhances plasticity of corticofugal fibers at the midbrain and spinal cord level. Anterograde tracing of the left corticorubral fibers revealed that the animals with transplants and neurotrophins (BDNF or NT-3) increased the extent of the traced fibers crossing to the right red nucleus (RN), of which the axons are spared by a right cervical overhemisection lesion. More neurons in the left motor cortex were recruited by the treatment to establish connections with the right RN. The right corticorubral projections also increased the density of midline crossing fibers to the axotomized left RN in response to transplants and neurotrophins. Transplants plus NT-3, but not BDNF, significantly increased the amount of spared corticospinal fibers in the left dorsolateral funiculus at the spinal level both rostral and caudal to the lesion. These results suggest that corticofugal projections retain the capacity until at least two weeks after injury to undergo extensive reorganization along the entire neuraxis in response to transplants and neurotrophins. Targeting anatomical plasticity of corticofugal projections may be a promising strategy to enhance functional recovery following incomplete SCI.
Collapse
Affiliation(s)
- Dmitri E Iarikov
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
21
|
Dinh P, Bhatia N, Rasouli A, Suryadevara S, Cahill K, Gupta R. Transplantation of preconditioned Schwann cells following hemisection spinal cord injury. Spine (Phila Pa 1976) 2007; 32:943-9. [PMID: 17450067 DOI: 10.1097/01.brs.0000261408.61303.77] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Chronically compressed sciatic nerve segments were transplanted to hemisected spinal cord injured rats. Histologic evaluation and behavior functional outcomes were tested after 6 weeks following surgery. OBJECTIVE To evaluate the outcome of preconditioned peripheral nerves as a permissive environment in axonal regeneration of the injured spinal cord. SUMMARY OF BACKGROUND DATA Schwann cells have been used to facilitate a permissive environment for the injured spinal cord to regenerate. Previous experiments have shown compressive mechanical stress to be important in stimulating the regenerative behavior of Schwann cells. Transplantation of highly permissive Schwann cell-enriched peripheral nerve grafts may enhance regeneration in spinal cord injury. METHODS Adult Sprague-Dawley rats (n = 24) were used to create a hemisection injury of the spinal cord. At 1-week postinjury creation, the spinal cords were reexposed for all animals. Peripheral nerve grafts were obtained from rat sciatic nerve, either untreated or subjected to mechanical compression for 2 weeks with nonconstrictive tubing. Transplantation of grafts was performed after a resection of the glial scar. Functional outcome was measured using the Basso, Beattie, Bresnahan Locomotor Rating Score and footprint analysis. Tract tracing of descending and ascending spinal cord tracts was performed at 6 weeks after surgery for histologic evaluation of axonal regeneration. RESULTS Preconditioned transplants had significantly higher Basso, Beattie, Bresnahan Scores versus hemisection alone in the late postoperative period (P < 0.05). They also had significantly less foot exorotation and base of support when compared to nonconditioned transplants. Histologic analysis showed increased regeneration at lesional sites for preconditioned transplants versus control group (P < 0.05). CONCLUSIONS Functional recovery after hemisection injury improved significantly in the late postoperative period with transplantation of preconditioned peripheral nerve. Preconditioned grafts also exhibit sustained axonal regeneration at and past the lesional site in histologic analysis. Further investigation with later time points is warranted.
Collapse
Affiliation(s)
- Paul Dinh
- University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Rossignol S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos Trans R Soc Lond B Biol Sci 2006; 361:1647-71. [PMID: 16939980 PMCID: PMC1664667 DOI: 10.1098/rstb.2006.1889] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review discusses some aspects of plasticity of connections after spinal injury in adult animal models as a basis for functional recovery of locomotion. After reviewing some pitfalls that must be avoided when claiming functional recovery and the importance of a conceptual framework for the control of locomotion, locomotor recovery after spinal lesions, mainly in cats, is summarized. It is concluded that recovery is partly due to plastic changes within the existing spinal locomotor networks. Locomotor training appears to change the excitability of simple reflex pathways as well as more complex circuitry. The spinal cord possesses an intrinsic capacity to adapt to lesions of central tracts or peripheral nerves but, as a rule, adaptation to lesions entails changes at both spinal and supraspinal levels. A brief summary of the spinal capacity of the rat, mouse and human to express spinal locomotor patterns is given, indicating that the concepts derived mainly from work in the cat extend to other adult mammals. It is hoped that some of the issues presented will help to evaluate how plasticity of existing connections may combine with and potentiate treatments designed to promote regeneration to optimize remaining motor functions.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
23
|
Kim BG, Dai HN, Lynskey JV, McAtee M, Bregman BS. Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats. J Comp Neurol 2006; 497:182-98. [PMID: 16705682 PMCID: PMC2570641 DOI: 10.1002/cne.20980] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transplantation of growth-permissive cells or tissues was used to bridge a lesion cavity and induce axonal growth in experimental spinal cord injury (SCI). Axonal interactions between host and transplant may be affected by upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) following various transplantation strategies. The extent of axonal growth and functional recovery after transplantation of embryonic spinal cord tissue decreases in adult compared to neonatal host. We hypothesized that CSPGs contribute to the decrease in the extent to which transplant supports axonal remodeling and functional recovery. Expression of CSPGs increased after overhemisection SCI in adult rats but not in neonates. Embryonic spinal cord transplant was surrounded by CSPGs deposited in host cord, and the interface between host and transplant seemed to contain a large amount of CSPGs. Intrathecally delivered chondroitinase ABC (C'ase) improved recovery of distal forelimb usage and skilled motor behavior after C4 overhemisection injury and transplantation in adults. This behavioral recovery was accompanied by an increased amount of raphespinal axons growing into the transplant, and raphespinal innervation to the cervical motor region was promoted by C'ase plus transplant. Moreover, C'ase increased the number of transplanted neurons that grew axons to the host cervical enlargement, suggesting that degradation of CSPGs supports remodeling not only of host axons but also axons from transplanted neurons. Our results suggest that CSPGs constitute an inhibitory barrier to prevent axonal interactions between host and transplant in adults, and degradation of the inhibitory barrier can potentiate transplant-mediated axonal remodeling and functional recovery after SCI.
Collapse
Affiliation(s)
- Byung G Kim
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
24
|
Chen XY, Carp JS, Chen L, Wolpaw JR. Sensorimotor Cortex Ablation Prevents H-Reflex Up-Conditioning and Causes a Paradoxical Response to Down-Conditioning in Rats. J Neurophysiol 2006; 96:119-27. [PMID: 16598062 DOI: 10.1152/jn.01271.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Operant conditioning of the H-reflex, a simple model for skill acquisition, requires the corticospinal tract (CST) and does not require other major descending pathways. To further explore its mechanisms, we assessed the effects of ablating contralateral sensorimotor cortex (cSMC). In 22 Sprague–Dawley rats, the hindlimb area of left cSMC was ablated. EMG electrodes were implanted in the right soleus muscle and a stimulating cuff was placed around the right posterior tibial nerve. When EMG remained in a specified range, nerve stimulation just above the M response threshold elicited the H-reflex. In control mode, no reward occurred. In conditioning mode, reward occurred if H-reflex size was above (HRup mode) or below (HRdown mode) a criterion value. After exposure to the control mode for ≥10 days, each rat was exposed for another 50 days to the control mode, the HRup mode, or the HRdown mode. In control and HRup rats, final H-reflex size was not significantly different from initial H-reflex size. In contrast, in HRdown rats, final H-reflex size was significantly increased to an average of 136% of initial size. Thus like recent CST transection, cSMC ablation greatly impaired up-conditioning. However, unlike recent CST transection, cSMC produced a paradoxical response to down-conditioning: the H-reflex actually increased. These results confirm the critical role of cSMC in H-reflex conditioning and suggest that this role extends beyond producing essential CST activity. Its interactions with ipsilateral SMC or other areas contribute to the complex pattern of spinal and supraspinal plasticity that underlies H-reflex conditioning.
Collapse
Affiliation(s)
- Xiang Yang Chen
- Wadsworth Center, Laboratory of Nervous System Disorders, New York State Department of Health and State University of New York, Albany, NY 12201-0509, USA.
| | | | | | | |
Collapse
|
25
|
Zhang N, Zhang C, Wen X. Fabrication of semipermeable hollow fiber membranes with highly aligned texture for nerve guidance. J Biomed Mater Res A 2006; 75:941-9. [PMID: 16123975 DOI: 10.1002/jbm.a.30495] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to improve the guidance potential of a nerve entubulation bridging device, highly aligned textures were formed on the inner surface of semipermeable hollow fiber membranes (HFMs) during the wet phase inversion process. By precisely controlling the fabrication parameters, such as polymer solution flow rate, coagulant solution flow rate, and the air-gap distance, also called drop height, different-sized aligned grooves can be fabricated on the inner surface of HFMs. Preliminary studies using in vitro dorsal root ganglion (DRG) regeneration assay showed that both the alignment and outgrowth rate of regenerating axons increased significantly on HFMs with aligned textures compared to those on HFMs with a smooth inner surface. Studies in progress are evaluating axonal outgrowth and regeneration using in vivo sciatic-nerve and spinal-cord-injury models.
Collapse
Affiliation(s)
- Ning Zhang
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
26
|
Santos-Benito FF, Muñoz-Quiles C, Ramón-Cueto A. Long-Term Care of Paraplegic Laboratory Mammals. J Neurotrauma 2006; 23:521-36. [PMID: 16629634 DOI: 10.1089/neu.2006.23.521] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repair of spinal cord injuries (SCIs) is still a major clinical challenge. Several attempts have been made to find a cure for this condition in experimental animals that could be extrapolated to humans. A key for success seems the availability of optimum animal models for testing different therapies. Complete spinal cord lesion in mammals is considered the most accurate injury model. In addition, long-term survival of animals seems more appropriate, as this increases the efficacy of the repair strategies. However, paraplegic animals require special care and treatment for proper longterm maintenance, and to date, there are no published protocols. This lack of available information has discouraged scientists from working with this injury model. Over the past 7 years, we have tested the repair efficacy of olfactory ensheathing glia in paraplegic rats for survival periods of more than 8 months. To keep these animals healthy for this long time, we adapted and administered treatments used in people with paraplegia. These same protocols (developed for rodents in our group) are being applied to paraplegic monkeys. In this review, we provide an overview of the proper handling and care of paraplegic adult laboratory mammals for long periods. This information might help other groups to optimize the outcome obtained and to better evaluate the prospect of a given experimental repair strategy. In addition, the use of human treatments in paraplegic animals provides a more realistic model for a later transfer to the clinical arena.
Collapse
Affiliation(s)
- Fernando Fidel Santos-Benito
- Laboratory of Neural Regeneration, Institute of Biomedicine, Spanish Council for Scientific Research (CSIC), Valencia, Spain
| | | | | |
Collapse
|
27
|
Trivedi AA, Igarashi T, Compagnone N, Fan X, Hsu JYC, Hall DE, John CM, Noble-Haeusslein LJ. Suitability of allogeneic sertoli cells for ex vivo gene delivery in the injured spinal cord. Exp Neurol 2006; 198:88-100. [PMID: 16387298 DOI: 10.1016/j.expneurol.2005.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 01/21/2023]
Abstract
Cell-based gene delivery for gene therapy offers the advantages of long-term stable expression of proteins without the safety concerns associated with viral vectors. However, issues of immune rejection prevent the widespread use of allogeneic cell implants. In this study, we determine if Sertoli cells, known for their immune privileged status, are suitable vehicles for allogeneic cell-based gene delivery into the injured spinal cord. As proof of concept, Sertoli cells were modified with recombinant adenovirus expressing enhanced green fluorescent protein (eGFP) or a human trophic factor, neurotrophin-3 (hNT-3), and eGFP. Genetically modified Sertoli cells retained their immunosuppressive ability in vitro, based upon lymphocyte proliferation assays, and were capable of generating biologically relevant levels of NT-3. Similarly, modified, allogeneic cells, implanted into the acutely injured spinal cord, reduced the early inflammatory response while producing significant levels of hNT-3 for at least 3 days after grafting. Moreover, these cells survived for at least 42 days after implantation in the injured cord. Together, these results demonstrate that Sertoli cells function in immunomodulation, can be engineered to produce bioactive molecules, and show long-term survival after implantation into the hostile environment of the acutely injured spinal cord. Such long-term survival represents an important first step toward developing an optimal cell-based delivery system that generates sustained expression of a therapeutic molecule.
Collapse
Affiliation(s)
- Alpa A Trivedi
- MandalMed, Inc., 2645 Ocean Avenue, Suite 302, San Francisco, CA 94132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pallini R, Vitiani LR, Bez A, Casalbore P, Facchiano F, Di Giorgi Gerevini V, Falchetti ML, Fernandez E, Maira G, Peschle C, Parati E. Homologous Transplantation of Neural Stem Cells to the Injured Spinal Cord of Mice. Neurosurgery 2005; 57:1014-25; discussion 1014-25. [PMID: 16284571 DOI: 10.1227/01.neu.0000180058.58372.4c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Murine neural stem cells (NSCs) were homografted onto the injured spinal cord (SC) to assess their potential to improve motor behavior, to differentiate as neurons, and to establish synapse-like contacts with the descending axonal paths of the host. In addition, we investigated whether transduced NSCs over-expressing vascular endothelial growth factor might exert any angiogenetic effect in the injured SC. METHODS NSCs derived from mouse embryos were transduced to express either green fluorescent protein or vascular endothelial growth factor. The cells were engrafted in mice where an extended dorsal funiculotomy had been performed at the T8-T9 level. At intervals from 4 to 12 weeks after grafting, motor behavior was assessed using an open field locomotor scale and footprint analysis. At the same time points, the SC was studied by conventional histology, immunohistochemistry, and fluorescence microscopy. The interactions between the grafted NSCs and descending axonal paths were investigated using anterogradely transported fluorescent axonal tracers. RESULTS By the 12-week time point, mice engrafted with NSCs significantly improved both their locomotor score on open field test and their base of support on footprint analysis. Histological studies showed that green fluorescent protein-positive NSCs survived as long as 12 weeks after grafting, migrated from the grafting site with a tropism toward the lesion, and either remained undifferentiated or differentiated into the astrocytic phenotype without neuronal or oligodendrocytic differentiation. Interestingly, the NSC-derived astrocytes expressed vimentin, suggesting that these cells differentiated as immature astrocytes. The tips of severed descending axonal paths came adjacent to grafted NSCs without forming synapse-like structures. When genetically engineered to over-express vascular endothelial growth factor, the grafted NSCs significantly increased vessel density in the injured area. CONCLUSION In the traumatically injured mice SC, NSC grafting improves motor recovery. Although differentiation of engrafted NSCs is restricted exclusively toward the astrocytic phenotype, the NSC-derived astrocytes show features that are typical of the early phase after SC injury when the glial scar is still permissive to regenerating axons. The immature phenotype of the NSC-derived astrocytes suggests that these cells might support neurite outgrowth by the host neurons. Thus, modifying the glial scar with NSCs might enhance axonal regeneration in the injured area. The use of genetically engineered NSCs that express trophic factors appears to be an attractive tool in SC transplantation research.
Collapse
Affiliation(s)
- Roberto Pallini
- Department of Neurosurgery, Laboratory for Neural Stem Cells, Center for Research on Regeneration of the Nervous System, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cho KS, Yang L, Lu B, Ma HF, Huang X, Pekny M, Chen DF. Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 2005; 118:863-72. [PMID: 15731004 PMCID: PMC1351228 DOI: 10.1242/jcs.01658] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At a certain point in development, axons in the mammalian central nervous system lose their ability to regenerate after injury. Using the optic nerve model, we show that this growth failure coincides with two developmental events: the loss of Bcl-2 expression by neurons and the maturation of astrocytes. Before postnatal day 4, when astrocytes are immature, overexpression of Bcl-2 alone supported robust and rapid optic nerve regeneration over long distances, leading to innervation of brain targets by day 4 in mice. As astrocytes matured after postnatal day 4, axonal regeneration was inhibited in mice overexpressing Bcl-2. Concurrent induction of Bcl-2 and attenuation of reactive gliosis reversed the failure of CNS axonal re-elongation in postnatal mice and led to rapid axonal regeneration over long distances and reinnervation of the brain targets by a majority of severed optic nerve fibers up to 2 weeks of age. These results suggest that an early postnatal downregulation of Bcl-2 and post-traumatic reactive gliosis are two important elements of axon regenerative failure in the CNS.
Collapse
Affiliation(s)
- Kin-Sang Cho
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Liu Yang
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Bin Lu
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Hong Feng Ma
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Xizhong Huang
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Milos Pekny
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, Medicinaregatan 9A, SE-413 90 Göteborg, Sweden
- Authors for correspondence (e-mail: ; )
| | - Dong Feng Chen
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Authors for correspondence (e-mail: ; )
| |
Collapse
|
30
|
Hasegawa K, Chang YW, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 2005; 193:394-410. [PMID: 15869942 DOI: 10.1016/j.expneurol.2004.12.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 11/18/2004] [Accepted: 12/10/2004] [Indexed: 11/20/2022]
Abstract
Radial glial cells are neural stem cells (NSC) that are transiently found in the developing CNS. To study radial glia, we isolated clones following immortalization of E13.5 GFP rat neurospheres with v-myc. Clone RG3.6 exhibits polarized morphology and expresses the radial glial markers nestin and brain lipid binding protein. Both NSC and RG3.6 cells migrated extensively in the adult spinal cord. However, RG3.6 cells differentiated into astroglia slower than NSC, suggesting that immortalization can delay differentiation of radial glia. Following spinal cord contusion, implanted RG3.6 cells migrated widely in the contusion site and into spared white matter where they exhibited a highly polarized morphology. When injected immediately after injury, RG3.6 cells formed cellular bridges surrounding spinal cord lesion sites and extending into spared white matter regions in contrast to GFP fibroblasts that remained in the lesion site. Behavioral analysis indicated higher BBB scores in rats injected with RG3.6 cells than rats injected with fibroblasts or medium as early as 1 week after injury. Spinal cords transplanted with RG3.6 cells or dermal fibroblasts exhibited little accumulation of chondroitin sulfate proteoglycans (CSPG) including NG2 proteoglycans that are known to inhibit axonal growth. Reduced levels of CSPG were accompanied by little accumulation in the injury site of activated macrophages, which are a major source of CSPG. However, increased staining and organization of neurofilaments were found in injured rats transplanted with RG3.6 cells suggesting neuroprotection or regrowth. The combined results indicate that acutely transplanted radial glia can migrate to form bridges across spinal cord lesions in vivo and promote functional recovery following spinal cord injury by protecting against macrophages and secondary damage.
Collapse
Affiliation(s)
- Koichi Hasegawa
- W. M. Keck Center for Collaborative Neuroscience, 604 Allison Road, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The lack of axonal growth after injury in the adult central nervous system (CNS) is due to several factors including the formation of a glial scar, the absence of neurotrophic factors, the presence of growth-inhibitory molecules associated with myelin and the intrinsic growth-state of the neurons. To date, three inhibitors have been identified in myelin: Myelin-Associated Glycoprotein (MAG), Nogo-A, and Oligodendrocyte-Myelin glycoprotein (OMgp). In previous studies we reported that MAG inhibits axonal regeneration by high affinity interaction (K(D) 8 nM) with the Nogo66 receptor (NgR) and activation of a p75 neurotrophin receptor (p75NTR)-mediated signaling pathway. Similar to other axon guidance molecules, MAG is bifunctional. When cultured on MAG-expressing cells, dorsal root ganglia neurons (DRG) older than post-natal day 4 (PND4) extend neurites 50% shorter on average than when cultured on control cells. In contrast, MAG promotes neurite outgrowth from DRG neurons from animals younger than PND4. The response switch, which is also seen in retinal ganglia (RGC) and Raphe nucleus neurons, is concomitant with a developmental decrease in the endogenous neuronal cAMP levels. We report that artificially increasing cAMP levels in older neurons can alter their growth-state and induce axonal growth in the presence of myelin-associated inhibitors.
Collapse
Affiliation(s)
- Marco Domeniconi
- Hunter College of City University of New York, Department of Biological Sciences, 695 Park Avenue Room 807N, New York, NY 10021, USA
| | | |
Collapse
|
32
|
Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. ACTA ACUST UNITED AC 2005; 49:48-64. [PMID: 15960986 DOI: 10.1016/j.brainresrev.2004.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 09/29/2004] [Accepted: 11/29/2004] [Indexed: 02/04/2023]
Abstract
Owing to the profound impact of nervous system damage, extensive studies have been carried out aimed at facilitating axonal regeneration following injury. Tissue engineering, as an emerging and rapidly growing field, has received extensive attention for nervous system axonal guidance. Numerous engineered substrates containing oriented extracellular matrix molecules, cells or channels have displayed potential of supporting axonal regeneration and functional recovery. Most attempts are focused on seeking new biomaterials, new cell sources, as well as novel designs of tissue-engineered neuronal bridging devices, to generate safer and more efficacious neuronal tissue repairs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Bioengineering, Clemson University, BSB# 303, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
33
|
Feng SQ, Kong XH, Guo SF, Wang P, Li L, Zhong JH, Zhou XF. Treatment of spinal cord injury with co-grafts of genetically modified Schwann cells and fetal spinal cord cell suspension in the rat. Neurotox Res 2005; 7:169-77. [PMID: 15639807 DOI: 10.1007/bf03033785] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fetal spinal cord cells, Schwann cells and neurotrophins all have the capacity to promote repair of injured spinal cord in animal models. To explore the possibility of using these approaches to treat clinical patients, we have examined whether a combination of these protocols produces functional and anatomical improvement. The spinal cords of adult rats (n=16) were injured with a modified New York University (NYU) device (10 gram.5cm). One week after injury, the injured cords were injected with Dulbecco-modified Eagles Medium (DMEM, control group), or fetal spinal cord cell suspension (FSCS) plus nerve growth factor (NGF) gene-modified Schwann cells (SC) and brain-derived neurotrophic factor (BDNF) gene-modified SC (treatment group). The rats were subjected to BBB (Basso, Beattie, Bresnahan, Exp. Neurol. 139:244, 1996) behavioral tests. Anterograde tracing of corticospinal tract was performed before sacrifice 3 months after the treatment. The results showed that the combination treatment elicited a robust growth of corticospinal axons within and beyond the injury site. A dramatic functional recovery in the treatment group was observed compared with the control group. We conclude that the combination of FSCS with genetically modified Schwann cells over-expressing NGF and BDNF was an effective protocol for the treatment of severe spinal cord injury.
Collapse
Affiliation(s)
- Shi-Qing Feng
- Department of Orthopaedic, Tianjin Medical University Hospital, Tianjin, 300052, P.R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Setoguchi T, Nakashima K, Takizawa T, Yanagisawa M, Ochiai W, Okabe M, Yone K, Komiya S, Taga T. Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Exp Neurol 2004; 189:33-44. [PMID: 15296834 DOI: 10.1016/j.expneurol.2003.12.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 08/23/2003] [Accepted: 12/11/2003] [Indexed: 11/19/2022]
Abstract
Spontaneous recovery after spinal cord injury is limited. Transplantation of neural precursor cells (NPCs) into lesioned adult rat spinal cord results in only partial functional recovery, and most transplanted cells tend to differentiate predominantly into astrocytes. In order to improve functional recovery after transplantation, it is important that transplanted neural precursor cells appropriately differentiate into cell lineages required for spinal cord regeneration. In order to modulate the fate of transplanted cells, we advocate transplanting gene-modified neural precursor cells. We demonstrate that gene modification to inhibit bone morphogenetic protein (BMP) signaling by noggin expression promoted differentiation of neural precursor cells into neurons and oligodendrocytes, in addition to astrocytes after transplantation. Furthermore, functional recovery of the recipient mice with spinal cord injury was observed when noggin-expressing neural precursor cells were transplanted. These observations suggest that gene-modified neural precursor cells that express molecules involved in cell fate modulation could improve central nervous system (CNS) regeneration.
Collapse
Affiliation(s)
- Takao Setoguchi
- Department of Cell Fate Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0081, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences.
Collapse
Affiliation(s)
- Paul J Reier
- College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
36
|
Cellular transplantation strategies for spinal cord injury and translational neurobiology. Neurotherapeutics 2004. [DOI: 10.1007/bf03206629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
37
|
Azanchi R, Bernal G, Gupta R, Keirstead HS. Combined demyelination plus Schwann cell transplantation therapy increases spread of cells and axonal regeneration following contusion injury. J Neurotrauma 2004; 21:775-88. [PMID: 15253804 DOI: 10.1089/0897715041269696] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several cell populations have been shown to provide a permissive environment for axonal extension following transplantation to injury sites. The limited spread of transplanted cells from implantation sites in the mature CNS, and the superior substrate and trophic environment that they provide, likely contribute to the fact that few transplantation-based therapies have elicited axonal extension beyond the transplant. The aim of this study was to determine whether (1) regions of demyelination cranial and caudal to a spinal cord injury site would improve the spread of Schwann cells transplanted into the site of injury, and (2) whether this combination therapy was associated with improved anatomical regeneration. Three days following contusion injury, anti-galactocerebroside antibodies plus complement proteins were injected into the dorsal column cranial and caudal to the injury site, resulting in complete and well defined regions of demyelination that extended 8 mm either side of the injury site. One day later, naïve Schwann cells in suspension were injected into the contusion site. Transplanted Schwann cells homogeneously redistributed throughout the contusion site and the adjacent regions of demyelination cranial and caudal to the contusion site, providing a long-distance prospective path for repair that was free of myelin and contained transplanted cells. Animals that received demyelination plus transplantation therapy, but not untreated or single-treatment groups, exhibited robust axonal regeneration beyond the contusion site within the treated dorsal column. Axonal regeneration in these animals was not associated with an improvement in locomotor ability. These findings suggest that this combination therapy may overcome a central limitation of transplant strategies in which the permissive environment provided remains at the implantation site.
Collapse
Affiliation(s)
- Roya Azanchi
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, College of Medicine, University of California at Irvine, 92697-4292, USA
| | | | | | | |
Collapse
|
38
|
ben-Aaron M. Topological aspects of axonal regeneration. Med Hypotheses 2004; 61:597-600. [PMID: 14592794 DOI: 10.1016/s0306-9877(03)00241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fibers making up any sensory system in the spinal cord come from the same cells as do the fibers in peripheral nerves yet severed nerve fibers in the adult spinal cord do not regenerate but damaged peripheral nerves - those in the extremities - do heal themselves. Why should spinal cord regeneration even be an issue, why should an inhibiting protein have evolved to prevent it and what causes this protein to be expressed? From a holistic perspective, an answer to this conundrum shows that these questions are intertwined, and suggests that: (1) The model of the neurons as 'wires' is too simplistic. (2) In humans, the 'map' of individual connections is (topologically, at least) locally variable, though the overall global topology and 'functionality' of each normal spinal cord is constant. Both of these issues have to be addressed if functional restoration is to be achieved.
Collapse
|
39
|
Rosenzweig ES, McDonald JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol 2004; 17:121-31. [PMID: 15021237 DOI: 10.1097/00019052-200404000-00007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW In this review, we have documented some current research trends in rodent models of spinal cord injury. We have also catalogued the treatments used in studies published between October 2002 and November 2003, with special attention given to studies in which treatments were delayed for at least 4 days after injury. RECENT FINDINGS Most spinal cord injury studies are performed with one of three general injury models: transection, compression, or contusion. Although most treatments are begun immediately after injury, a growing number of studies have used delayed interventions. Mice and the genetic tools they offer are gaining in popularity. Some researchers are setting their sights beyond locomotion, to issues more pressing for people with spinal cord injury (especially bladder function and pain). SUMMARY Delayed treatment protocols may extend the window of opportunity for treatment of spinal cord injury, whereas continued progress in the prevention of secondary cell death will reduce the severity of new cases. The use of mice will hopefully accelerate progress towards useful regeneration in humans. Researchers must improve cross-study comparability to allow balanced decisions about potentially useful treatments.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | | |
Collapse
|
40
|
Abstract
Nitric oxide (NO) has been demonstrated to act as a signaling molecule during neuronal development, but its precise function is unclear. Here we investigate whether NO might function at the neuronal growth cone to affect growth cone motility. We have previously demonstrated that growth cones of identified neurons from the snail Helisoma trivolvis show a rapid and transient increase in filopodial length in response to NO, which was regulated by soluble guanylyl cyclase (sGC) [S. Van Wagenen and V. Rehder (1999) J. Neurobiol., 39, 168-185]. Because in vivo studies have demonstrated that growth cones have longer filopodia and advance more slowly in regions where pathfinding decisions are being made, this study aimed to establish whether NO could function as a combined 'slow-down and search signal' for growth cones by decreasing neurite outgrowth. In the presence of the NO donor NOC-7, neurites of B5 neurons showed a concentration-dependent effect on neurite outgrowth, ranging from slowing at low, stopping at intermediate and collapsing at high concentrations. The effects of the NO donor were mimicked by directly activating sGC with YC-1, or by increasing its product with 8-bromo-cGMP. In addition, blocking sGC in the presence of NO with NS2028 blocked the effect of NO, suggesting that NO affected outgrowth via sGC. Ca2+ imaging of growth cones with Fura-2 indicated that [Ca2+]i increased transiently in the presence of NOC-7. These results support the hypothesis that NO can function as a potent slow/stop signal for developing neurites. When coupled with transient filopodia elongation, this phenomenon emulates growth cone searching behavior.
Collapse
Affiliation(s)
- Kevin R Trimm
- Department of Biology, Georgia State University, Atlanta, GA 30303-3088, USA
| | | |
Collapse
|
41
|
Nakamura M, Houghtling RA, MacArthur L, Bayer BM, Bregman BS. Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neurol 2003; 184:313-25. [PMID: 14637102 DOI: 10.1016/s0014-4886(03)00361-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is likely that the environment within the injured spinal cord influences the capacity of fetal spinal cord transplants to support axonal growth. We have recently demonstrated that fetal spinal cord transplants and neurotrophin administration support axonal regeneration after spinal cord transection, and that the distance and amount of axonal growth is greater when these treatments are delayed by several weeks after injury. In this study, we sought to determine whether differences in inflammatory mediators exist between the acutely injured spinal cord and the spinal cord after a second injury and re-section, which could provide a more favorable environment for the axonal re-growth. The results of this study show a more rapid induction of transforming growth factor (TGF) beta1 mRNA expression in the re-injured spinal cord than the acutely injured spinal cord and an attenuation of proinflammatory cytokine mRNA expression. Furthermore, there was a rapid recruitment of activated microglia/macrophages in the degenerating white matter rostral and caudal to the injury but fewer within the lesion site itself. These findings suggest that the augmentation of TGFbeta-1 gene expression and the attenuation of pro-inflammatory cytokine gene expression combined with an altered distribution of activated microglia/macrophages in the re-injured spinal cord might create a more favorable milieu for transplants and axonal regrowth as compared to the acutely injured spinal cord.
Collapse
Affiliation(s)
- Masaya Nakamura
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | |
Collapse
|
42
|
Gillon RS, Cui Q, Dunlop SA, Harvey AR. Effects of immunosuppression on regrowth of adult rat retinal ganglion cell axons into peripheral nerve allografts. J Neurosci Res 2003; 74:524-32. [PMID: 14598296 DOI: 10.1002/jnr.10788] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Analysis of the effectiveness of allografts and immunosuppression in the repair of nerve defects in the adult peripheral nervous system (PNS) has a long experimental and clinical history. There is little information, however, on the use of allografts in peripheral nerve (PN) transplantation into the injured central nervous system (CNS). We assessed the ability of PN allografts (from Dark-Agouti rats) to support regeneration of adult rat retinal ganglion cell (RGC) axons in immunosuppressed host Lewis rats. PN allografts were sutured onto intraorbitally transected optic nerves. Three weeks after grafting, regenerating RGC axon numbers were determined using retrograde fluorescent labelling, and total axons within PN grafts were assessed using pan-neurofilament immunohistochemistry. In the absence of immunosuppression, PN allografts contained few axons and there were very few labelled RGC. These degenerate grafts contained many T cells and macrophages. Systemic (intraperitoneal) application of the immunosuppressants cyclosporin-A or FK506 reduced cellular infiltration into allografts and resulted in extensive axonal regrowth from surviving RGCs. The average number of RGCs regenerating axons into immunosuppressed allografts was not significantly different from that seen in PN autografts in rats sham-injected with saline. Many pan-neurofilament-positive axons, a proportion of which were myelinated, were seen in immunosuppressed allografts, particularly in proximal regions of the grafts toward the optic nerve-PN interface. This study demonstrates that PN allografts can support axonal regrowth in immunosuppressed adult hosts, and points to possible clinical use in CNS repair.
Collapse
Affiliation(s)
- Russell S Gillon
- School of Anatomy and Human Biology, The Western Australian Institute for Medical Research, The University of Western Australia, Crawley, Perth, Australia
| | | | | | | |
Collapse
|
43
|
Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 2003. [PMID: 14507981 DOI: 10.1523/jneurosci.23-25-08808.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Injury-induced self-destructive processes cause significant functional loss after incomplete spinal cord injury (SCI). Cellular elements of both the innate (macrophage) and the adaptive (T-cell) immune response can, if properly activated and controlled, promote post-traumatic regrowth and protection after SCI. Dendritic cells (DCs) trigger activation of effector and regulatory T-cells, providing a link between the functions of the innate and the adaptive immune systems. They also initiate and control the body's response to pathogenic agents and regulate immune responses to both foreign and self-antigens. Here we show that post-injury injection of bone marrow-derived DCs pulsed with encephalitogenic or nonencephalitogenic peptides derived from myelin basic protein, when administered (either systemically or locally by injection into the lesion site) up to 12 d after the injury, led to significant and pronounced recovery from severe incomplete SCI. No significant protection was seen in DC recipients deprived of mature T-cells. Flow cytometry, RT-PCR, and proliferation assays indicated that the DCs prepared and used here were mature and immunogenic. Taken together, the results suggest that the DC-mediated neuroprotection was achieved via the induction of a systemic T-cell-dependent immune response. Better preservation of neural tissue and diminished formation of cysts and scar tissue accompanied the improved functional recovery in DC-treated rats. The use of antigen-specific DCs may represent an effective way to obtain, via transient induction of an autoimmune response, the maximal benefit of immune-mediated repair and maintenance as well as protection against self-destructive compounds.
Collapse
|
44
|
Soto I, Marie B, Baro DJ, Blanco RE. FGF-2 modulates expression and distribution of GAP-43 in frog retinal ganglion cells after optic nerve injury. J Neurosci Res 2003; 73:507-17. [PMID: 12898535 DOI: 10.1002/jnr.10673] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basic fibroblast growth factor (bFGF or FGF-2) has been implicated as a trophic factor that promotes survival and neurite outgrowth of neurons. We found previously that application of FGF-2 to the proximal stump of the injured axon increases retinal ganglion cell (RGC) survival. We determine here the effect of FGF-2 on expression of the axonal growth-associated phosphoprotein (GAP)-43 in retinal ganglion cells and tectum of Rana pipiens during regeneration of the optic nerve. In control retinas, GAP-43 protein was found in the optic fiber layer and in optic nerve; mRNA levels were low. After axotomy, mRNA levels increased sevenfold and GAP-43 protein was significantly increased. GAP-43 was localized in retinal axons and in a subset of RGC cell bodies and dendrites. This upregulation of GAP-43 was sustained through the period in which retinal axons reconnect with their target in the tectum. FGF-2 application to the injured nerve, but not to the eyeball, increased GAP-43 mRNA in the retina but decreased GAP-43 protein levels and decreased the number of immunopositive cell bodies. In the tectum, no treatment affected GAP-43 mRNA but FGF-2 application to the axotomized optic nerve increased GAP-43 protein in regenerating retinal projections. We conclude that FGF-2 upregulates the synthesis and alters the distribution of the axonal growth-promoting protein GAP-43, suggesting that it may enhance axonal regrowth.
Collapse
Affiliation(s)
- Ileana Soto
- Department of Anatomy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | | |
Collapse
|
45
|
Abstract
Advances in medical and rehabilitative care now allow the 10-12,000 individuals who suffer spinal cord injuries each year in the United States to lead productive lives of nearly normal life expectancy, so that the numbers of those with chronic injuries will approximate 300,000 at the end of the next decade. This signals an urgent need for new treatments that will improve repair and recovery after longstanding injuries. In the present report we consider the characteristics of the chronically injured spinal cord that make it an even more challenging setting in which to elicit regeneration than the acutely injured spinal cord and review the treatments that have been designed to enhance axon growth. When applied in the first 2 weeks after experimental spinal cord injury, transplants, usually in combination with supplementary neurotrophic factors, and possibly modifications of the inhibitory central nervous system environment, have produced limited long-distance axon regeneration and behavioral recovery. When applied to injuries older than 4 weeks, the same treatments have almost invariably failed to overcome the obstacles posed by the neurons' diminished capacity for regeneration and by the increasing hostility to growth of the terrain at and beyond the injury site. Novel treatments that have stimulated regeneration after acute injuries have not yet been applied to chronic injuries. A therapeutic strategy that combines rehabilitation training and pharmacological modulation of neurotransmitters appears to be a particularly promising approach to increasing recovery after longstanding injury. Identifying patients with no hope of useful recovery in the early days after injury will allow these treatments to be administered as early as possible.
Collapse
Affiliation(s)
- John D Houle
- Department of Anatomy and Neurobiology, University of Arkansas for Medical Science, Little Rock, AR 72205, USA.
| | | |
Collapse
|
46
|
Donnerer J. Regeneration of primary sensory neurons. Pharmacology 2003; 67:169-81. [PMID: 12595748 DOI: 10.1159/000068405] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2002] [Accepted: 11/13/2002] [Indexed: 11/19/2022]
Abstract
Primary sensory neurons have an inherent capacity for regeneration of their cut, crushed, or chemically lesioned axons. This capacity is displayed to a much greater extent after lesions of the peripheral axons than after lesions of their centrally directed axons. Additionally, the surrounding tissue determines to a significant extent the degree of recovery: whereas the peripheral nerve tissue provides neurotrophic support and a favorable environment for axonal growth, the central terminals of primary sensory neurons face a non-permissive and inhibitory glial tissue. Mechanical lesions of the peripheral axons of dorsal root ganglion (DRG) sensory neurons can be repaired by the intrinsic regenerative capacity of the neuron itself, when outgrowing axons from the proximal stump are able to transverse the tissue scar and reach the distal stump of the nerve. Bridging the gap with an autologous nerve graft or a short artificial graft filled with nerve growth factor (NGF) can improve recovery. Neurotoxic lesions of the axon terminals are effectively recovered by intermittent local or systemic NGF injections. A recovery from a diabetic sensory neuropathy probably requires the continuous delivery of NGF or additional neurotrophic factors. A recovery from a dorsal rhizotomy or from a dorsal column lesion can possibly be achieved by the concomitant transgene-mediated overexpression of neurotrophins, the transformation of the DRG neuron cells to a competence for regrowth, and the counteraction of the growth-inhibitory nature of the central nervous system tissue.
Collapse
Affiliation(s)
- Josef Donnerer
- Institute of Experimental and Clinical Pharmacology, University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
47
|
Santos-Benito FF, Ramón-Cueto A. Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system. ANATOMICAL RECORD. PART B, NEW ANATOMIST 2003; 271:77-85. [PMID: 12619089 DOI: 10.1002/ar.b.10015] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A therapy to treat injuries to the central nervous system (CNS) is, to date, a major clinical challenge. The devastating functional consequences they cause in human patients have encouraged many scientists to search, in animal models, for a repair strategy that could, in the future, be applied to humans. However, although several experimental approaches have obtained some degree of success, very few have been translated into clinical trials. Traumatic and demyelinating lesions of the spinal cord have attracted several groups with the same aim: to find a way to promote axonal regeneration, remyelination, and functional recovery, by using a simple, safe, effective, and viable procedure. During the past decade, olfactory ensheathing glia (OEG) transplantation has emerged as a very promising experimental therapy to promote repair of spinal cords, after different types of injuries. Transplants of these cells promoted axonal regeneration and functional recovery after partial and complete spinal cord lesions. Moreover, olfactory ensheathing glia were able to form myelin sheaths around demyelinated axons. In this article, we review these recent advances and discuss to what extent olfactory ensheathing glia transplantation might have a future as a therapy for different spinal cord affections in humans.
Collapse
|
48
|
Cui Q, Pollett MA, Symons NA, Plant GW, Harvey AR. A new approach to CNS repair using chimeric peripheral nerve grafts. J Neurotrauma 2003; 20:17-31. [PMID: 12614585 DOI: 10.1089/08977150360517155] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have examined whether transplanted freeze-thawed peripheral nerve (PN) sheaths repopulated ex vivo with purified adult Schwann cells (SCs) support the regeneration of adult rat retinal ganglion cell (RGC) axons. Cultured adult SCs were derived from donor rats or from the host animals themselves. We also transplanted PN sheaths filled with neonatal SCs or donor adult olfactory ensheathing glia (OEG). 100,000 cells were injected into 1.5-cm lengths of freeze-thawed PN. After 2 days in culture, repopulated PN segments were grafted onto the transected optic nerve of adult Fischer rats. Three weeks later, 6% fluorogold (FG) was applied to distal PN. Retrogradely labeled RGCs were counted in retinal wholemounts and PN grafts were processed for immunohistochemistry. As expected, there was no RGC axon regeneration in cell-free grafts. Regrowth was also absent in neonatal SC- and adult OEG-filled grafts, which contained only small numbers of surviving donor cells. Many cells were, however, seen in adult SC repopulated PN grafts, intermingled with pan-neurofilament(+) and GAP-43(+) fibers. SCs were aligned along the grafts and were S-100(+), p75(+). Ultrastructurally, SCs were associated with myelinated and unmyelinated axons. Hundreds of FG-labeled RGCs were seen in retinas of rats with congeneic or allogeneic PN sheaths repopulated with either donor or autologous (host-derived) adult SCs. Intraocular CNTF injections significantly increased the number of regenerating RGCs in donor and autologous adult SC groups. The use of chimeric grafts to bridge CNS tissue defects could provide a clinical alternative to using multiple PN autografts, the harvesting of which would exacerbate peripheral dysfunction in already injured patients.
Collapse
Affiliation(s)
- Qi Cui
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Perth, Australia.
| | | | | | | | | |
Collapse
|
49
|
Reier PJ, Golder FJ, Bolser DC, Hubscher C, Johnson R, Schrimsher GW, Velardo MJ. Gray matter repair in the cervical spinal cord. PROGRESS IN BRAIN RESEARCH 2002; 137:49-70. [PMID: 12440359 DOI: 10.1016/s0079-6123(02)37007-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paul J Reier
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Box 100244, Gainesville, FL 32610-0244, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Schwartz M, Hauben E. T cell-based therapeutic vaccination for spinal cord injury. PROGRESS IN BRAIN RESEARCH 2002; 137:401-6. [PMID: 12440382 DOI: 10.1016/s0079-6123(02)37031-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal cord injury results in a massive loss of neurons, due not only to the direct effects of the primary injury but also to self-destructive processes triggered by the insult. Our group has recently reported that traumatic injury of the central nervous system (CNS) spontaneously evokes a purposeful T cell-mediated autoimmune response that reduces the injury-induced degeneration in the CNS; in its absence, the outcome of the injury is worse. Using a rat model of spinal cord contusion, we show here that this autoimmune protection can be induced and/or boosted by post-traumatic immunization with CNS myelin-associated self antigens such as myelin basic protein (MBP). In an attempt to reduce the risk of pathogenic autoimmunity while retaining the benefit of the immunization, we immunized spinally injured rats with MBP-derived peptides with attenuated pathogenic properties created by replacement of one amino acid in the T cell receptor-binding site. Immunization with these altered peptide ligands immediately after spinal cord contusion resulted in a significant improvement in recovery, assessed by locomotor activity in an open field. The feasibility of T cell-based vaccination, as opposed to vaccination mediated by antibodies for the treatment of nerve trauma, is further suggested by the relatively rapid onset of the T cell response following immunization. Such cell-mediated therapy is not only a way to evoke and boost a physiological remedy; it also has the advantage of being mediated by mobile cells, which can produce a variety of neurotrophic factors and cytokines in accordance with the tissue needs. T cells can also regulate other immune cells in a way that favors tissue maintenance and repair.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|