1
|
Michalska B, Dzięgielewski M, Godyń J, Werner T, Bajda M, Karcz T, Szczepańska K, Stark H, Więckowska A, Walczyński K, Staszewski M. 4-Oxypiperidine Ethers as Multiple Targeting Ligands at Histamine H 3 Receptors and Cholinesterases. ACS Chem Neurosci 2024; 15:1206-1218. [PMID: 38440987 PMCID: PMC10958501 DOI: 10.1021/acschemneuro.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 μM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 μM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.
Collapse
Affiliation(s)
- Beata Michalska
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Dzięgielewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Justyna Godyń
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tobias Werner
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anna Więckowska
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Walczyński
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Staszewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
2
|
Staszewski M, Iwan M, Werner T, Bajda M, Godyń J, Latacz G, Korga-Plewko A, Kubik J, Szałaj N, Stark H, Malawska B, Więckowska A, Walczyński K. Guanidines: Synthesis of Novel Histamine H 3R Antagonists with Additional Breast Anticancer Activity and Cholinesterases Inhibitory Effect. Pharmaceuticals (Basel) 2023; 16:ph16050675. [PMID: 37242458 DOI: 10.3390/ph16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
This study examines the properties of novel guanidines, designed and synthesized as histamine H3R antagonists/inverse agonists with additional pharmacological targets. We evaluated their potential against two targets viz., inhibition of MDA-MB-231, and MCF-7 breast cancer cells viability and inhibition of AChE/BuChE. ADS10310 showed micromolar cytotoxicity against breast cancer cells, combined with nanomolar affinity at hH3R, and may represent a promising target for the development of an alternative method of cancer therapy. Some of the newly synthesized compounds showed moderate inhibition of BuChE in the single-digit micromolar concentration ranges. H3R antagonist with additional AChE/BuChE inhibitory effect might improve cognitive functions in Alzheimer's disease. For ADS10310, several in vitro ADME-Tox parameters were evaluated and indicated that it is a metabolically stable compound with weak hepatotoxic activity and can be accepted for further studies.
Collapse
Affiliation(s)
- Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Magdalena Iwan
- Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland
| | - Tobias Werner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Joanna Kubik
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
3
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2016; 67:601-55. [PMID: 26084539 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
4
|
Wittmann HJ, Seifert R, Strasser A. Mathematical analysis of the sodium sensitivity of the human histamine H3 receptor. In Silico Pharmacol 2014; 2:1. [PMID: 27502620 PMCID: PMC4644138 DOI: 10.1186/s40203-014-0001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/28/2014] [Indexed: 11/22/2022] Open
Abstract
Purpose It was shown by several experimental studies that some G protein coupled receptors (GPCR) are sensitive to sodium ions. Furthermore, mutagenesis studies or the determination of crystal structures of the adenosine A2A or δ-opioid receptor revealed an allosteric Na+ binding pocket near to the highly conserved Asp2.50. Within a previous study, the influence of NaCl concentration onto the steady-state GTPase activity at the human histamine H3 receptor (hH3R) in presence of the endogenous histamine or the inverse agonist thioperamide was analyzed. The purpose of the present study was to examine and quantify the Na+-sensitivity of hH3R on a molecular level. Methods To achieve this, we developed a set of equations, describing constitutive activity and the different ligand-receptor equilibria in absence or presence of sodium ions. Furthermore, in order to gain a better understanding of the ligand- and Na+-binding to hH3R on molecular level, we performed molecular dynamic (MD) simulations. Results The analysis of the previously determined experimental steady-state GTPase data with the set of equations presented within this study, reveals that thioperamide binds into the orthosteric binding pocket of the hH3R in absence or presence of a Na+ in its allosteric binding site. However, the data suggest that thioperamide binds preferentially into the hH3R in absence of a sodium ion in its allosteric site. These experimental results were supported by MD simulations of thioperamide in the binding pocket of the inactive hH3R. Furthermore, the MD simulations revealed two different binding modes for thioperamide in presence or absence of a Na+ in its allosteric site. Conclusion The mathematical model presented within this study describes the experimental data regarding the Na+-sensitivity of hH3R in an excellent manner. Although the present study is focused onto the Na+-sensitivity of the hH3R, the resulting equations, describing Na+- and ligand-binding to a GPCR, can be used for all other ion-sensitive GPCRs.
Collapse
Affiliation(s)
- Hans-Joachim Wittmann
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg, 93040, Germany
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Andrea Strasser
- Department of Pharmaceutical and Medicinal Chemistry II, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg, 93040, Germany.
| |
Collapse
|
5
|
Bao X, Jin Y, Liu X, Liao H, Zhang L, Pang T. Synthesis and biological evaluation of XB-1 analogues as novel histamine H3 receptor antagonists and neuroprotective agents. RSC Adv 2014. [DOI: 10.1039/c3ra46392c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
6
|
Del Tredici AL, Ma JN, Piu F, Burstein ES. Identification of the antiarrhythmic drugs amiodarone and lorcainide as potent H3 histamine receptor inverse agonists. J Pharmacol Exp Ther 2013; 348:116-24. [PMID: 24204014 DOI: 10.1124/jpet.113.208892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Use of molecular pharmacology to reprofile older drugs discovered before the advent of recombinant technologies is a fruitful method to elucidate mechanisms of drug action, expand understanding of structure-activity relationships between drugs and receptors, and in some cases, repurpose approved drugs. The H3 histamine receptor is a G-protein-coupled receptor (GPCR) primarily expressed in the central nervous system where among many things it modulates cognitive processes, nociception, feeding and drinking behavior, and sleep/wakefulness. In binding assays and functional screens of the H3 histamine receptor, the antiarrhythmic drugs lorcainide and amiodarone were identified as potent, selective antagonists/inverse agonists of human and rat H3 histamine receptors, with relatively little or no activity at over 20 other monoamine GPCRs, including H1, H2, and H4 receptors. Potent antagonism of H3 receptors was unique to amiodarone and lorcainide of 20 antiarrhythmic drugs tested, representing six pharmacological classes. These results expand the pharmacophore of H3 histamine receptor antagonist/inverse agonists and may explain, in part, the effects of lorcainide on sleep in humans.
Collapse
|
7
|
Levoin N, Labeeuw O, Krief S, Calmels T, Poupardin-Olivier O, Berrebi-Bertrand I, Lecomte JM, Schwartz JC, Capet M. Determination of the binding mode and interacting amino-acids for dibasic H3 receptor antagonists. Bioorg Med Chem 2013; 21:4526-9. [DOI: 10.1016/j.bmc.2013.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 12/28/2022]
|
8
|
1-Phenoxyalkyl-4-[(N,N-disubstitutedamino)alkyl]piperazine derivatives as non-imidazole histamine H3-antagonists. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0090-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Rivara S, Mor M, Bordi F, Silva C, Zuliani V, Vacondio F, Morini G, Plazzi P, Carrupt PALAIN, Testa B. Synthesis and Three-Dimensional Quantitative Structure-Activity Relationship Analysis of H3 Receptor Antagonists Containing a Neutral Heterocyclic Polar Group. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10559610290249539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Receptor-specific functional efficacies of alkyl imidazoles as dual histamine H3/H4 receptor ligands. Eur J Pharmacol 2011; 654:200-8. [DOI: 10.1016/j.ejphar.2010.12.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/18/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
|
11
|
Łażewska D, Kieć-Kononowicz K. Recent advances in histamine H3receptor antagonists/inverse agonists. Expert Opin Ther Pat 2010; 20:1147-69. [DOI: 10.1517/13543776.2010.509346] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Comparison of the pharmacological properties of human and rat histamine H(3)-receptors. Biochem Pharmacol 2010; 80:1437-49. [PMID: 20688049 DOI: 10.1016/j.bcp.2010.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 11/20/2022]
Abstract
Ligand pharmacology of histamine H(3)-receptors is species-dependent. In previous studies, two amino acids in transmembrane domain 3 (TM III) were shown to play a significant role. In this study, we characterized human and rat histamine H(3)-receptors (hH(3)R and rH(3)R, respectively), co-expressed with mammalian G proteins in Sf9 insect cell membranes. We compared a series of imidazole-containing H(3)R ligands in radioligand binding and steady-state GTPase assays. H(3)Rs similarly coupled to Gα(i/o)-proteins. Affinities and potencies of the agonists histamine, N(α)-methylhistamine and R-(α)-methylhistamine were in the same range. Imetit was only a partial agonist. The pharmacology of imetit and proxifan was similar at both species. However, impentamine was more potent and efficacious at rH(3)R. The inverse agonists ciproxifan and thioperamide showed higher potency but lower efficacy at rH(3)R. Clobenpropit was not species-selective. Strikingly, imoproxifan was almost full agonist at hH(3)R, but an inverse agonist at rH(3)R. Imoproxifan was docked into the binding pocket of inactive and active hH(3)R- and rH(3)R-models and molecular dynamic simulations were performed. Imoproxifan bound to hH(3)R and rH(3)R in E-configuration, which represents the trans-isomer of the oxime-moiety as determined in crystallization studies, and stabilized active hH(3)R-, but inactive rH(3)R-conformations. Large differences in electrostatic surfaces between TM III and TM V cause differential orientation of the oxime-moiety of imoproxifan, which then differently interacts with the rotamer toggle switch Trp(6.48) in TM VI. Collectively, the substantial species differences at H(3)Rs are explained at a molecular level by the use of novel H(3)R active-state models.
Collapse
|
13
|
Strasser A. Molecular modeling and QSAR-based design of histamine receptor ligands. Expert Opin Drug Discov 2009; 4:1061-75. [DOI: 10.1517/17460440903264972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Rai BK, Tawa GJ, Katz AH, Humblet C. Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: Application to H3 antagonists. Proteins 2009; 78:457-73. [DOI: 10.1002/prot.22571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Pierson PD, Fettes A, Freichel C, Gatti-McArthur S, Hertel C, Huwyler J, Mohr P, Nakagawa T, Nettekoven M, Plancher JM, Raab S, Richter H, Roche O, Rodríguez Sarmiento RM, Schmitt M, Schuler F, Takahashi T, Taylor S, Ullmer C, Wiegand R. 5-Hydroxyindole-2-carboxylic Acid Amides: Novel Histamine-3 Receptor Inverse Agonists for the Treatment of Obesity. J Med Chem 2009; 52:3855-68. [DOI: 10.1021/jm900409x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Alec Fettes
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Christian Freichel
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | | | - Cornelia Hertel
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Jörg Huwyler
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Peter Mohr
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Toshito Nakagawa
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Matthias Nettekoven
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Jean-Marc Plancher
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Susanne Raab
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Hans Richter
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Olivier Roche
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | | | - Monique Schmitt
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Franz Schuler
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Tadakatsu Takahashi
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Sven Taylor
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Christoph Ullmer
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Ruby Wiegand
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| |
Collapse
|
16
|
Levoin N, Calmels T, Poupardin-Olivier O, Labeeuw O, Danvy D, Robert P, Berrebi-Bertrand I, Ganellin CR, Schunack W, Stark H, Capet M. Refined Docking as a Valuable Tool for Lead Optimization: Application to Histamine H3Receptor Antagonists. Arch Pharm (Weinheim) 2008; 341:610-23. [DOI: 10.1002/ardp.200800042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Sander K, Kottke T, Stark H. Histamine H3 Receptor Antagonists Go to Clinics. Biol Pharm Bull 2008; 31:2163-81. [DOI: 10.1248/bpb.31.2163] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kerstin Sander
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Pharmazeutische Chemie
| | - Tim Kottke
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Pharmazeutische Chemie
| | - Holger Stark
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Pharmazeutische Chemie
| |
Collapse
|
18
|
Schlegel B, Laggner C, Meier R, Langer T, Schnell D, Seifert R, Stark H, Höltje HD, Sippl W. Generation of a homology model of the human histamine H3 receptor for ligand docking and pharmacophore-based screening. J Comput Aided Mol Des 2007; 21:437-53. [PMID: 17668276 DOI: 10.1007/s10822-007-9127-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
The human histamine H(3) receptor (hH(3)R) is a G-protein coupled receptor (GPCR), which modulates the release of various neurotransmitters in the central and peripheral nervous system and therefore is a potential target in the therapy of numerous diseases. Although ligands addressing this receptor are already known, the discovery of alternative lead structures represents an important goal in drug design. The goal of this work was to study the hH(3)R and its antagonists by means of molecular modelling tools. For this purpose, a strategy was pursued in which a homology model of the hH(3)R based on the crystal structure of bovine rhodopsin was generated and refined by molecular dynamics simulations in a dipalmitoylphosphatidylcholine (DPPC)/water membrane mimic before the resulting binding pocket was used for high-throughput docking using the program GOLD. Alternatively, a pharmacophore-based procedure was carried out where the alleged bioactive conformations of three different potent hH(3)R antagonists were used as templates for the generation of pharmacophore models. A pharmacophore-based screening was then carried out using the program Catalyst. Based upon a database of 418 validated hH(3)R antagonists both strategies could be validated in respect of their performance. Seven hits obtained during this screening procedure were commercially purchased, and experimentally tested in a [(3)H]N(alpha)-methylhistamine binding assay. The compounds tested showed affinities at hH(3)R with K ( i ) values ranging from 0.079 to 6.3 muM.
Collapse
Affiliation(s)
- Birgit Schlegel
- Institute of Pharmaceutical Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr 1, 40197, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Roche O, Rodríguez Sarmiento RM. A new class of histamine H3 receptor antagonists derived from ligand based design. Bioorg Med Chem Lett 2007; 17:3670-5. [PMID: 17498953 DOI: 10.1016/j.bmcl.2007.04.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/13/2007] [Accepted: 04/15/2007] [Indexed: 11/21/2022]
Abstract
Design and synthesis of highly potent and selective non-imidazole inverse agonists for the histamine H(3) receptor is described. The study validates a new pharmacophore model based on the merging of two previously described models. It also demonstrates that the removal of the basic center potentially interacting with ASP3.32 and common to both models leads to loss of activity, whereas the replacement of the second basic center by an acceptor retains the potency.
Collapse
Affiliation(s)
- Olivier Roche
- F. Hoffmann-La Roche Ltd, Pharmaceutical Research Basel, Discovery Chemistry, CH-4070 Basel, Switzerland
| | | |
Collapse
|
20
|
Ligneau X, Perrin D, Landais L, Camelin JC, Calmels TPG, Berrebi-Bertrand I, Lecomte JM, Parmentier R, Anaclet C, Lin JS, Bertaina-Anglade V, la Rochelle CD, d'Aniello F, Rouleau A, Gbahou F, Arrang JM, Ganellin CR, Stark H, Schunack W, Schwartz JC. BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, Hydrochloride], a Nonimidazole Inverse Agonist/Antagonist at the Human Histamine H3 Receptor: Preclinical Pharmacology. J Pharmacol Exp Ther 2006; 320:365-75. [PMID: 17005916 DOI: 10.1124/jpet.106.111039] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histamine H3 receptor inverse agonists are known to enhance the activity of histaminergic neurons in brain and thereby promote vigilance and cognition. 1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride (BF2.649) is a novel, potent, and selective nonimidazole inverse agonist at the recombinant human H3 receptor. On the stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate binding to this receptor, BF2.649 behaved as a competitive antagonist with a Ki value of 0.16 nM and as an inverse agonist with an EC50 value of 1.5 nM and an intrinsic activity approximately 50% higher than that of ciproxifan. Its in vitro potency was approximately 6 times lower at the rodent receptor. In mice, the oral bioavailability coefficient, i.e., the ratio of plasma areas under the curve after oral and i.v. administrations, respectively, was 84%. BF2.649 dose dependently enhanced tele-methylhistamine levels in mouse brain, an index of histaminergic neuron activity, with an ED50 value of 1.6 mg/kg p.o., a response that persisted after repeated administrations for 17 days. In rats, the drug enhanced dopamine and acetylcholine levels in microdialysates of the prefrontal cortex. In cats, it markedly enhanced wakefulness at the expense of sleep states and also enhanced fast cortical rhythms of the electroencephalogram, known to be associated with improved vigilance. On the two-trial object recognition test in mice, a promnesiant effect was shown regarding either scopolamine-induced or natural forgetting. These preclinical data suggest that BF2.649 is a valuable drug candidate to be developed in wakefulness or memory deficits and other cognitive disorders.
Collapse
Affiliation(s)
- X Ligneau
- Bioprojet-Biotech, Saint Grégoire, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Airaksinen AJ, Jablonowski JA, van der Mey M, Barbier AJ, Klok RP, Verbeek J, Schuit R, Herscheid JDM, Leysen JE, Carruthers NI, Lammertsma AA, Windhorst AD. Radiosynthesis and biodistribution of a histamine H3 receptor antagonist 4-[3-(4-piperidin-1-yl-but-1-ynyl)-[11C]benzyl]-morpholine: evaluation of a potential PET ligand. Nucl Med Biol 2006; 33:801-10. [PMID: 16934699 DOI: 10.1016/j.nucmedbio.2006.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/11/2006] [Accepted: 05/25/2006] [Indexed: 11/28/2022]
Abstract
The potent histamine H(3) receptor antagonist JNJ-10181457 (1) was successfully labeled with (11)C in a novel one-pot reaction sequence, with high chemical yield (decay-corrected yield, 28+/-8%) and high specific radioactivity (56+/-26 GBq/mumol). The binding of [(11)C]1 to H(3) receptors was studied in vitro in rat brain and in vivo in rats and mice. The in vitro binding of [(11)C]1 in rat coronal brain slices showed high binding in the striatum, and this binding was blocked by histamine and by two known H(3) antagonists, JNJ-5207852 (2) and unlabeled Compound (1), in a concentration-dependent manner. The biodistribution of [(11)C]1 in rats was measured at 5, 10, 30 and 60 min. The uptake of [(11)C]1 in regions rich in H(3) receptors was highest at 30 min, giving 0.98%, 1.41%, 1.28% and 1.72% dose/g for the olfactory bulb, hippocampus, striatum and cerebral cortex, respectively. However, the binding of [(11)C]1 in the rat brain could not be blocked by pretreatment with either Compound (2) (30 min or 24 h pretreatment) or cold Compound (1) (30-min pretreatment). The biodistribution of [(11)C]1 in a second species (Balb/c mice) showed a higher overall uptake of the radioligand with an average brain uptake of 8.9% dose/g. In C57BL/6-H(3)(-/-) knockout mice, a higher brain uptake was also observed. Analyses of metabolites and plasma protein binding were also undertaken. It appeared that [(11)C]1 could not specifically label H(3) receptors in rodent brain in vivo. Possible causes are discussed.
Collapse
Affiliation(s)
- Anu J Airaksinen
- Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Łazewska D, Ligneau X, Schwartz JC, Schunack W, Stark H, Kieć-Kononowicz K. Ether derivatives of 3-piperidinopropan-1-ol as non-imidazole histamine H3 receptor antagonists. Bioorg Med Chem 2006; 14:3522-9. [PMID: 16466921 DOI: 10.1016/j.bmc.2006.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/29/2005] [Accepted: 01/06/2006] [Indexed: 11/16/2022]
Abstract
A series of aliphatic and aromatic ether derivatives of 3-piperidinopropan-1-ol has been prepared by four different methods. The ethers obtained were evaluated for their affinities at recombinant human histamine H3 receptor, stably expressed in CHO-K1 or HEK 293 cells. All compounds investigated show from moderate to high in vitro affinities in the nanomolar concentration range. Selected compounds were investigated under in vivo conditions after oral administration to mice. Some proved to be highly potent and orally available histamine H3 receptor antagonists. The most potent antagonists in this series have been in vitro the 4-(1,1-dimethylpropyl)phenyl ether 19 (hH3R K(i) = 8.4 nM) and in vivo the simple ethyl ether 2 (ED50 = 1.0mg/kg).
Collapse
Affiliation(s)
- Dorota Łazewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
23
|
Lorenzi S, Mor M, Bordi F, Rivara S, Rivara M, Morini G, Bertoni S, Ballabeni V, Barocelli E, Plazzi PV. Validation of a histamine H3 receptor model through structure-activity relationships for classical H3 antagonists. Bioorg Med Chem 2005; 13:5647-57. [PMID: 16085419 DOI: 10.1016/j.bmc.2005.05.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
Histamine H(3) receptor is a G protein-coupled receptor whose activation inhibits the synthesis and release of histamine and other neurotransmitters from nerve endings and is involved in the modulation of different central nervous system functions. H(3) antagonists have been proposed for their potential usefulness in diseases characterized by impaired neurotransmission and they have demonstrated beneficial effects on learning and food intake in animal models. In the present work, a 3D model of the rat histamine H(3) receptor, built by comparative modeling from the crystallographic coordinates of bovine rhodopsin, is presented with the discussion of its ability to predict the potency of known and new H(3) antagonists. A putative binding site for classical, imidazole-derived H(3) antagonists was identified by molecular docking. Comparison with a known pharmacophore model and the binding affinity of a new rigid H(3) antagonist (compound 1, pK(i)=8.02) allowed the characterization of a binding scheme which could also account for the different affinities observed in a recently reported series of potent H(3) antagonists, characterized by a 2-aminobenzimidazole moiety. Molecular dynamics simulations were employed to assess the stability and reliability of the proposed binding mode. Two new conformationally constrained benzimidazole derivatives were prepared and their binding affinity was tested on rat brain membranes; compound 9, designed to reproduce the conformation of a known potent H(3) antagonist, showed higher potency than compound 8, as expected from the binding scheme hypothesized.
Collapse
Affiliation(s)
- Simone Lorenzi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kitbunnadaj R, Hoffmann M, Fratantoni SA, Bongers G, Bakker RA, Wieland K, el Jilali A, De Esch IJP, Menge WMPB, Timmerman H, Leurs R. New high affinity H3 receptor agonists without a basic side chain. Bioorg Med Chem 2005; 13:6309-23. [PMID: 16213736 DOI: 10.1016/j.bmc.2005.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 05/02/2005] [Accepted: 05/06/2005] [Indexed: 11/16/2022]
Abstract
In this study, we replaced the basic amine function of the known histamine H(3) receptor agonists imbutamine or immepip with non-basic alcohol or hydrocarbon moieties. All compounds in this study show a moderate to high affinity for the cloned human H(3) receptor and, unexpectedly, almost all of them act as potent agonists. Moreover, in the alcohol series, we consistently observed an increased selectivity for the human H(3) receptor over the human H(4) receptor, but none of the compounds in this series possess increased affinity and functional activity compared to their alkylamine congeners. In this new series of compounds VUF5657, 5-(1H-imidazol-4-yl)-pentan-1-ol, is the most potent histamine H(3) receptor agonist (pK(i) = 8.0 and pEC(50) = 8.1) with a 320-fold selectivity at the human H(3) receptor over the human H(4) receptor.
Collapse
Affiliation(s)
- Ruengwit Kitbunnadaj
- Leiden/Amsterdam Center of Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Krueger KM, Witte DG, Ireland-Denny L, Miller TR, Baranowski JL, Buckner S, Milicic I, Esbenshade TA, Hancock AA. G protein-dependent pharmacology of histamine H3 receptor ligands: evidence for heterogeneous active state receptor conformations. J Pharmacol Exp Ther 2005; 314:271-81. [PMID: 15821027 DOI: 10.1124/jpet.104.078865] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously reported pharmacological studies using the imidazole-containing histamine H3 receptor ligands GT-2331 (Cipralisant) and proxyfan resulted in a range of classifications (antagonist, agonist, and protean) for these compounds. We examined the role that the signaling system, with particular emphasis on the type of G protein, had on the pharmacology observed for H3 ligands. Ligands were assessed using assays measuring neurotransmitter release, cAMP, and guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding. Whereas clobenpropit and ciproxifan were consistently antagonists, GT-2331, proxyfan, and imetit exhibited differential activity. Although GT-2331 and proxyfan exhibited little agonist activity in neurotransmitter release assays, both demonstrated full agonism relative to (R)-alpha-methylhistamine in cAMP assays. In [35S]GTPgammaS binding assays, GT-2331 and proxyfan demonstrated partial agonism. Imetit showed full agonism in most assays, but it was slightly less efficacious in a neurotransmitter release assay and in [35S]GTPgammaS binding at the human H3 receptor. To further examine these ligands, we coexpressed G alpha16 or chimeric G alpha q/i5 in human embryonic kidney cells expressing the human H3 receptor and assayed intracellular calcium and cAMP levels. GT-2331, proxyfan, and imetit demonstrated full agonism in all assays of cAMP activity. However, in cells expressing G alpha16, they exhibited minimal agonism in calcium mobilization assays, whereas imetit showed partial agonism. When G alpha q/i5 was used, the activity of both GT-2331 and proxyfan increased, whereas imetit became a full agonist. These results demonstrate that GT-2331 and proxyfan's differential pharmacology at the H3 receptor depends on the type of G protein used and provide indirect evidence for differential ligand-bound active states that mediate signaling by the H3 receptor.
Collapse
Affiliation(s)
- Kathleen M Krueger
- Neurosciences Research, Abbott Laboratories, Global Pharmaceutical Research and Development, Abbott Park, IL 60064-6125, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Dvorak CA, Apodaca R, Barbier AJ, Berridge CW, Wilson SJ, Boggs JD, Xiao W, Lovenberg TW, Carruthers NI. 4-Phenoxypiperidines: Potent, Conformationally Restricted, Non-Imidazole Histamine H3Antagonists. J Med Chem 2005; 48:2229-38. [PMID: 15771465 DOI: 10.1021/jm049212n] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two new series of 4-(1-alkyl-piperidin-4-yloxy)-benzonitriles and 4-(1-isopropyl-piperidin-4-yloxy)-benzylamines have been prepared. In vitro activity was determined at the recombinant human H(3) receptor and several members of these new series were found to be potent H(3) antagonists. The present compounds contain a 4-phenoxypiperidine core, which behaves as a conformationally restricted version of the 3-amino-1-propanol moiety common to the many previously described non-imidazole histamine H(3) ligands. One selected member of the new series, 4-[4-(1-isopropyl-piperidin-4-yloxy)-benzyl]-morpholine (13g), was found to be a potent, highly selective H(3) receptor antagonist with in vivo efficacy in a rat EEG model of wakefulness at doses as low as 1 mg/kg sc.
Collapse
Affiliation(s)
- Curt A Dvorak
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Peschke B, Bak S, Hohlweg R, Pettersson I, Refsgaard HHF, Viuff D, Rimvall K. Cinnamic amides of (S)-2-(aminomethyl)pyrrolidines are potent H3 antagonists. Bioorg Med Chem 2004; 12:2603-16. [PMID: 15110842 DOI: 10.1016/j.bmc.2004.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 03/10/2004] [Indexed: 11/29/2022]
Abstract
New imidazole-free H3 antagonists have been found in a series of cinnamic amides of (S)-(aminomethyl)pyrrolidines. The influence of the substituent on the aromatic moiety on the potency and the inhibition of three cytochrome P450 subtypes are also described.
Collapse
Affiliation(s)
- Bernd Peschke
- Protein and Peptide Chemistry, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark.
| | | | | | | | | | | | | |
Collapse
|
29
|
Grassmann S, Apelt J, Ligneau X, Pertz HH, Arrang JM, Ganellin CR, Schwartz JC, Schunack W, Stark H. Search for Histamine H3Receptor Ligands with Combined Inhibitory Potency at HistamineN-Methyltransferase: ω-Piperidinoalkanamine Derivatives. Arch Pharm (Weinheim) 2004; 337:533-45. [PMID: 15476285 DOI: 10.1002/ardp.200400897] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In an effort to design new hybrid compounds with dual properties, i.e. binding affinity at histamine H(3) receptors and inhibitory potency at the catabolic enzyme histamine N(tau)-methyltransferase (HMT), a novel series of 1-substituted piperidine derivatives was synthesized. This alicyclic heterocycle is structurally linked via aminoalkyl spacers of variable lengths to additional aromatic carbo- or hetero-cycles. These new hybrid drugs were pharmacologically evaluated regarding their binding affinities at recombinant human H(3) receptors, stably expressed in CHO cells, and in a functional assay for their inhibitory potencies at rat kidney HMT. All compounds investigated proved to be H(3) receptor ligands with binding affinities in the micro- to nanomolar concentration range despite significant differences in the type of the aromatic moiety introduced. The most potent compound in this series was the quinoline derivative 20 (K(i) = 5.6 nM). Likewise, all new ligands studied showed impressive HMT inhibitory activities. Here, compounds 5, 10, 14 and 18-20 exhibited submicromolar potencies (IC(50) = 0.061-0.56 microM). The aminomethylated quinoline 19 showed almost the same, well balanced nanomolar activities on both targets. In this study, new hybrid compounds with a dual mode biological action were developed. These pharmacological agents are valuable leads for further development and candidates for treatment of histamine-dependent disorders.
Collapse
Affiliation(s)
- Sven Grassmann
- Institut für Pharmazie, Institut für Pharmazie, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vacondio F, Mor M, Silva C, Zuliani V, Rivara M, Rivara S, Bordi F, Plazzi PV, Magnanini F, Bertoni S, Ballabeni V, Barocelli E, Carrupt PA, Testa B. Imidazole H3-antagonists: relationship between structure and ex vivo binding to rat brain H3-receptors. Eur J Pharm Sci 2004; 23:89-98. [PMID: 15324926 DOI: 10.1016/j.ejps.2004.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 05/24/2004] [Accepted: 06/07/2004] [Indexed: 01/16/2023]
Abstract
H3-antagonists possess promising pharmacological effects on awakening, learning and memory, but few data on their access to the central nervous system (CNS) have been reported so far. The purpose of this work was to investigate the relationships between structure and brain penetration of a series of H3-antagonists, using ex vivo binding experiments in rats. H3-antagonists belonging to different chemical classes but all having an imidazole ring, an alkyl spacer, a polar fragment and a lipophilic ending group, were selected among the numerous H3-antagonists recently described by us. Ex vivo binding studies were performed by inhibiting specific [3H]-(R)-alpha-methylhistamine ([3H]-RAMHA) binding to rat cerebral cortical membranes following H3-antagonist peripheral administration. Ionization constants and partition coefficients in n-octanol/water and 1,2-dichloroethane/water were determined by the potentiometric pH-metric method and were compared to the ex vivo binding potencies to analyse structure-property relationships (SPR). In the ex vivo assay, the H3-antagonists showed different potencies (pED50) not correlated to their in vitro H3-receptor binding affinities (pKi). Compound 4a, having a benzothiazol-2-yl-thioethyl chain, showed high ex vivo potency (ED50=1.35 mg kg(-1) i.p.) and a fast brain penetration, eliciting maximal displacement of [3H]-RAMHA already 5 min after i.v. or i.p. administration. Ex vivo binding assays of three compounds, following i.v. and i.p. administration, showed that the observed i.p. ex vivo potencies were not significantly affected by biotransformation. Within the set of compounds, those having a better ability to reach the CNS had a logDoct(7.4) in the range 2-3.5, and a DeltalogPoct-dce < 2. The combined use of two easily measurable physicochemical descriptors, namely logDoct(7.4) (apparent lipophilicity at pH 7.4) and DeltalogPoct-dce (a descriptor of H-bond donor capacity) allowed to model brain permeation of the majority of the compounds examined.
Collapse
Affiliation(s)
- Federica Vacondio
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area delle Scienze 27a, I-43100 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mikó T, Ligneau X, Pertz HH, Arrang JM, Ganellin CR, Schwartz JC, Schunack W, Stark H. Structural variations of 1-(4-(phenoxymethyl)benzyl)piperidines as nonimidazole histamine H3 receptor antagonists. Bioorg Med Chem 2004; 12:2727-36. [PMID: 15110854 DOI: 10.1016/j.bmc.2004.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
Recent bioisoteric replacements in histamine H3 receptor ligands with an exchange of the imidazole moiety by a piperidino group as well as of the trimethylene chain in 4-((3-phenoxy)propyl)-lH-imidazole derivatives (proxifan class) by an alpha,alpha'-xylendiyl linker represents the starting point in the development of 1-(4-(phenoxymethyl)benzyl)piperidines as a new class of nonimidazole histamine H3 receptor antagonists. According to different strategies in optimization of imidazole-containing antagonists the central benzyl phenyl ether moiety was replaced by numerous other polar functionalities. Additionally, the ortho- and meta-analogues of the lead were synthesized to determine the influence of the position of the piperidinomethyl substituent. The new compounds were tested in an in vitro binding assay for their affinities for cloned human H3 receptors stably expressed in CHO-K1 cells and for their oral in vivo potencies brain in a functional screening assay in the brain of mice. Additionally, activities of selected compounds were determined in the guinea-pig ileum functional test model. In contrast to the analogues ortho-substituted compounds all other compounds maintained respectable affinities for the human H3 receptor (-log Ki values 6.3-7.5). Despite the results from other classes of compounds the 4-methyl substituted derivatives generally displayed higher affinities than the corresponding 4-chloro substituted compounds. In vivo only the inverse phenyl benzyl ether (3) showed worthwhile antagonist potencies.
Collapse
Affiliation(s)
- Tibor Mikó
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Choich JA, El-Nabawi A, Silbergeld EK. Evidence of histamine receptors in fish brain using an in vivo [14C]2-deoxyglucose autoradiographic method and an in vitro receptor-binding autoradiographic method. ENVIRONMENTAL RESEARCH 2004; 94:86-93. [PMID: 14643290 DOI: 10.1016/s0013-9351(03)00111-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It was hypothesized that fish possess functioning H1 histamine receptors that have the ability to bind agonists and antagonists specific to the H1 histamine receptor subtype. For these experiments, a combination of a novel, in vivo 2-deoxyglucose method and a standard in vitro autoradiography procedure was utilized. A regional, statistically significant dose response in neurological functioning was observed when fish were exposed to histaminergic agents (i.e., H1 agonists and antagonists), which created the first neurological profile for the H1 histamine receptor in fish brain. The H1 histamine receptor was chosen as a characterization receptor in fish because histamine has been linked to a variety of neurological functions such as the control of arousal, attention, sensory processing, and cognition. Histamine also plays a role in pituitary hormone secretion, appetite control, and, potentially, regulation of vestigular reactivity. In addition, the fish brain is well characterized structurally, and the existence of an H3-like receptor has been documented recently in zebrafish. However, to date there is little detailed information about specific localization and functioning of the H1 histamine receptor in fish.
Collapse
Affiliation(s)
- J A Choich
- Department of Toxicology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | |
Collapse
|
33
|
Yao BB, Sharma R, Cassar S, Esbenshade TA, Hancock AA. Cloning and pharmacological characterization of the monkey histamine H3 receptor. Eur J Pharmacol 2003; 482:49-60. [PMID: 14660004 DOI: 10.1016/j.ejphar.2003.09.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Species differences have been described previously for histamine H(3) receptor pharmacology. Rat selective histamine H(3) receptor ligands such as ciproxifan and A-304121 (2-amino-1-[4-[3-(4-cyclopropanecarbonyl-phenoxy)-propyl]-piperazin-1-yl]-propan-1-one) show over 100-fold selectivity for the rat receptor compared to the human receptor. To date, however, the pharmacology of the cloned monkey histamine H(3) receptor has not been examined. In this study, we cloned the monkey histamine H(3) receptor gene (H(3)R) and evaluated the receptor pharmacology in binding and functional assays. The monkey histamine H(3) receptor is highly homologous to the human receptor with 438 identities in their 445 amino acid sequences, but less homologous to the rat receptor. However, unlike the human or rat, we found no evidence for additional splicing for the monkey H(3)R. Pharmacological analysis indicated that the monkey receptor exhibited similar pharmacological profiles to those of the human receptor, providing critical information for characterizing histamine H(3) receptor ligands in monkey behavioral models.
Collapse
Affiliation(s)
- Betty Bei Yao
- Neuroscience Research, Global Pharmaceutical Research & Development, Abbott Laboratories, R4MN, AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | |
Collapse
|
34
|
Konkimalla VB, Chandra N. Determinants of histamine recognition: implications for the design of antihistamines. Biochem Biophys Res Commun 2003; 309:425-31. [PMID: 12951067 DOI: 10.1016/j.bbrc.2003.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Towards understanding how histamine, a vital neurotransmitter, can perform multiple physiological tasks, an analysis of the different proteins that bind histamine is reported here. Their structural comparison reveals conformational rigidity of histamine. Yet, flexibility in the modes of histamine binding has been observed, which appears to suit specific biological roles of the proteins. These results will be helpful in developing specific antihistamines and also in understanding the pharmacological and toxicological profiles of existing antihistamines.
Collapse
|
35
|
Apodaca R, Dvorak CA, Xiao W, Barbier AJ, Boggs JD, Wilson SJ, Lovenberg TW, Carruthers NI. A new class of diamine-based human histamine H3 receptor antagonists: 4-(aminoalkoxy)benzylamines. J Med Chem 2003; 46:3938-44. [PMID: 12930154 DOI: 10.1021/jm030185v] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
4-(Aminoalkoxy)benzylamines were prepared and screened for in vitro activity at the human histamine H(3) receptor. Some members of this series exhibited subnanomolar binding affinities. Analogues in which one nitrogen atom was replaced with a methine group showed greatly reduced binding affinities. Six members of this series were found to be antagonists in a cell-based model of human histamine H(3) receptor activation. One member of this series, 1-[4-(3-piperidin-1-ylpropoxy)benzyl]piperidine (7b), was found to be a selective and potent human H(3) receptor antagonist.
Collapse
Affiliation(s)
- Richard Apodaca
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, California 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Grassmann S, Apelt J, Sippl W, Ligneau X, Pertz HH, Zhao YH, Arrang JM, Ganellin CR, Schwartz JC, Schunack W, Stark H. Imidazole derivatives as a novel class of hybrid compounds with inhibitory histamine N-methyltransferase potencies and histamine hH3 receptor affinities. Bioorg Med Chem 2003; 11:2163-74. [PMID: 12713826 DOI: 10.1016/s0968-0896(03)00120-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, a novel series of imidazole-containing compounds with dual properties, that is, inhibitory potency at the enzyme histamine N(tau)-methyltransferase (HMT) and antagonist potency at histamine H(3) receptors was designed and synthesized. Pharmacologically, these new hybrid drugs were evaluated in functional assays for their inhibitory potencies at rat kidney HMT and for their antagonist activities on synaptosomes of rat cerebral cortex. For selected compounds, binding affinities at recombinant human histamine H(3) receptors were determined. The first compounds (1-10) of the series proved to be H(3) receptor ligands of high potency at rat synaptosomes or of high binding affinity at human H(3) receptors, respectively, but of only moderate activity as inhibitors of rat kidney HMT. In contrast, aminoquinoline- or tetrahydroacridine-containing derivatives 11-17 also displayed HMT inhibitory potency in the nanomolar concentration range. Preliminary data from molecular modeling investigations showed that the imidazole derivative 15 and the HMT inhibitor quinacrine possess identical binding areas. The most interesting compound (14) is simultaneously a highly potent H(3) receptor ligand (K(i)=4.1nM) and a highly potent HMT inhibitor (IC(50)=24nM), which makes this derivative a valuable pharmacological tool for further development.
Collapse
Affiliation(s)
- Sven Grassmann
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yao BB, Hutchins CW, Carr TL, Cassar S, Masters JN, Bennani YL, Esbenshade TA, Hancock AA. Molecular modeling and pharmacological analysis of species-related histamine H(3) receptor heterogeneity. Neuropharmacology 2003; 44:773-86. [PMID: 12681376 DOI: 10.1016/s0028-3908(03)00056-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Presynaptic histamine H(3) receptors (H(3)R) regulate neurotransmitter release in the central nervous system, suggesting an important role for H(3) ligands in human diseases such as cognitive disorders, sleep disturbances, epilepsy, or obesity. Drug development for many of these human diseases relies upon rodent-based models. Although there is significant sequence homology between the human and rat H(3)Rs, some compounds show distinct affinity profiles. To identify the amino acids responsible for these species disparities, various mutant receptors were generated and their pharmacology studied. The N-terminal portion was shown to determine the species differences in ligand binding since a chimeric H(3)R containing N-terminal human and C-terminal rat receptor sequences exhibited similar pharmacology to the human receptor. Sequence analysis and molecular modeling studies suggested key amino acids at positions 119 and 122 in transmembrane region 3 play important roles in ligand recognition. Mutant receptors changing amino acids 119 or 122 of the human receptor to those in the rat improved ligand binding affinities and functional potencies of antagonist ligands, confirming the significant role that these amino acids play in species-related pharmacological differences. A model has been developed to elucidate the ligand receptor interactions for H(3)Rs, and pharmacological aspects of this model are described.
Collapse
Affiliation(s)
- B B Yao
- Neuroscience Research, Abbott Laboratories, R4MN, AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen J, Liu C, Lovenberg TW. Molecular and pharmacological characterization of the mouse histamine H3 receptor. Eur J Pharmacol 2003; 467:57-65. [PMID: 12706455 DOI: 10.1016/s0014-2999(03)01635-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human, guinea pig and rat histamine H(3) receptors have been investigated at both pharmacological and molecular levels in recent years. Here we report the cloning, molecular, and pharmacological characterization of the mouse histamine H(3) receptor. The amino acid sequence of the mouse histamine H(3) receptor exhibits high homology to rat, guinea pig and human histamine H(3) receptors with 98%, 95%, 94% identities, respectively. The distribution of the mRNA encoding the mouse histamine H(3) receptor was predominant in the brain as detected by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and RNase protection assay. Although several splice forms have been reported for human, guinea pig and rat histamine H(3) receptor mRNAs, we did not detect equivalent isoforms in the mouse in several tissues by either RNase protection assay or robust Polymerase Chain Reaction (PCR) amplifications. Human embryonic kidney (HEK)-293 cells transiently transfected with mouse histamine H(3) receptor cDNA and Gq(i5) exhibited increases of intracellular Ca(2+) in response to histamine and several histamine H(3) receptor agonists. COS-7 (African green monkey kidney) cells transfected with mouse histamine H(3) receptor cDNA showed high affinity binding for histamine H(3) receptor ligands in competition binding assays. The pharmacological comparison of human, guinea pig, rat and mouse histamine H(3) receptors indicated that, as expected, the mouse histamine H(3) receptor exhibited a more similar pharmacological profile to the rat histamine H(3) receptor than to either the human or the guinea pig histamine H(3) receptor. Taken together, these findings allow a further appreciation of the histamine H(3) receptor at the molecular level and provide an additional species to assist in the pharmacological assessment of histamine H(3) receptor function.
Collapse
Affiliation(s)
- Jingcai Chen
- Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | |
Collapse
|
39
|
Mikó T, Ligneau X, Pertz HH, Ganellin CR, Arrang JM, Schwartz JC, Schunack W, Stark H. Novel nonimidazole histamine H3 receptor antagonists: 1-(4-(phenoxymethyl)benzyl)piperidines and related compounds. J Med Chem 2003; 46:1523-30. [PMID: 12672253 DOI: 10.1021/jm021084k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In an extension of very recently published studies on successful imidazole replacements in some series of histamine H(3) receptor antagonists, we report on a new class of lipophilic nonimidazole antagonist having an aliphatic tertiary amino moiety connected to a benzyl template substituted in the 4-position by a phenoxymethyl group. The structural modifications were performed with the intention to avoid possible negative side effects reported for other series of antagonists. The novel compounds combine different characteristics of recently developed histamine H(3) receptor antagonists. The compounds were screened for their affinity in a binding assay for the human histamine H(3) receptor stably expressed in CHO-K1 cells and tested for their in vivo potency in the central nervous system of mice after oral administration. Different substitution patterns on the phenoxy group were used to optimize in vitro and/or in vivo potency leading to some compounds with low nanomolar affinity and high oral in vivo potency. Modifications of the basic piperidino moiety were performed by ring expansion, contraction, and opening. Selected compounds exhibited selectivity in functional assays on isolated organs of guinea-pig for H(3) vs H(1) and H(2) receptors. Unexpectedly, some of the novel antagonists also showed a slight preference for the human histamine H(3) receptor compared to their affinities for the guinea-pig H(3) receptor.
Collapse
Affiliation(s)
- Tibor Mikó
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Filipek S, Teller DC, Palczewski K, Stenkamp R. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:375-97. [PMID: 12574068 PMCID: PMC1351250 DOI: 10.1146/annurev.biophys.32.110601.142520] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) are integral membrane proteins that respond to environmental signals and initiate signal transduction pathways activating cellular processes. Rhodopsin is a GPCR found in rod cells in retina where it functions as a photopigment. Its molecular structure is known from cryo-electron microscopic and X-ray crystallographic studies, and this has reshaped many structure/function questions important in vision science. In addition, this first GPCR structure has provided a structural template for studies of other GPCRs, including many known drug targets. After presenting an overview of the major structural elements of rhodopsin, recent literature covering the use of the rhodopsin structure in analyzing other GPCRs will be summarized. Use of the rhodopsin structural model to understand the structure and function of other GPCRs provides strong evidence validating the structural model.
Collapse
Affiliation(s)
- Slawomir Filipek
- Departments of Biological Structure
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195; ;;
- International Institute of Molecular and Cell Biology and
- Faculty of Chemistry, University of Warsaw, 02-109 Warsaw, Poland;
| | - David C. Teller
- Biochemistry
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195; ;;
| | | | - Ronald Stenkamp
- Departments of Biological Structure
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195; ;;
| |
Collapse
|
41
|
Sasse A, Ligneau X, Rouleau A, Elz S, Ganellin CR, Arrang JM, Schwartz JC, Schunack W, Stark H. Influence of bulky substituents on histamine h(3) receptor agonist/antagonist properties. J Med Chem 2002; 45:4000-10. [PMID: 12190321 DOI: 10.1021/jm020910m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel derivatives of 3-(1H-imidazol-4-yl)propanol were designed on the basis of lead compounds belonging to the carbamate or ether series possessing (partial) agonist properties on screening assays of the histamine H(3) receptor. One pair of enantiomers in the series of alpha-methyl-branched chiral carbamates was stereoselectively prepared in high optical yields. Enantiomeric purity was checked by Mosher amide derivatives of precursors and capillary electrophoresis of the final compounds with trimethyl-beta-cyclodextrin as chiral selector, and was determined to be >/=95%. The novel compounds were investigated in various histamine H(3) receptor assays in vitro and in vivo. Some compounds displayed partial agonist activity on synaptosomes of rat brain cortex, whereas others exhibited antagonist properties only. Selected compounds were investigated in [(125)I]iodoproxyfan binding studies on the human histamine H(3) receptor and showed high affinity in the nanomolar concentration range. Under in vivo conditions after oral administration to mice, some of the compounds exhibited partial or full agonist activity in the brain at low dosages. The (S)-enantiomer of one pair of chiral carbamates (9) proved to be the eutomer; thus, the (S)-enantiomer was selected for further pharmacological studies. In a peripheral in vivo test model in rats, measuring the level of inhibition of capsaicin-induced plasma extravasation, (S)-9 again proved its high oral agonist potency with full intrinsic activity (ED(50) values of 0.07-0.1 mg/kg depending on tissue).
Collapse
Affiliation(s)
- Astrid Sasse
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fox GB, Pan JB, Esbenshade TA, Bitner RS, Nikkel AL, Miller T, Kang CH, Bennani YL, Black LA, Faghih R, Hancock AA, Decker MW. Differential in vivo effects of H3 receptor ligands in a new mouse dipsogenia model. Pharmacol Biochem Behav 2002; 72:741-50. [PMID: 12175472 DOI: 10.1016/s0091-3057(02)00745-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The selective H(3) receptor agonist (R)-alpha-methylhistamine [(R)-alpha-MeHA] stimulates drinking in the adult rat. In the present study, we investigated the role of the H(3) receptor in mediating this behavior in a new dipsogenia model using the CD-1 mouse. In addition, the putative inverse agonists ciproxifan, thioperamide and clobenpropit; the reported antagonist (1R,2R)-4-[2-(5,5-dimethylhex-1-ynyl)cyclopropyl]imidazole (GT-2331); and the putative neutral antagonist/weak partial agonist proxyfan were evaluated for possible differences in pharmacological activity in this new model. Water intake increased over baseline in a dose-related manner following intraperitoneal administration of 80, 160 or 240 micromol/kg (R)-alpha-MeHA, but this effect was dependent on age (P30<P60<P80=P120). [3H]-N-alpha-methylhistamine binding studies showed no change in H(3) receptor density for the whole mouse brain at these ages. All subsequent studies employed P80 mice dosed with 240 micromol/kg (R)-alpha-MeHA. Ciproxifan (0.001-30 micromol/kg), thioperamide (0.01-10 micromol/kg), clobenpropit (0.1-30 micromol/kg) and GT-2331 (0.03-10 micromol/kg) attenuated drinking dose-dependently, blocking the response completely at the highest doses in each case. In contrast, proxyfan (0.001-10 micromol/kg) only partially attenuated drinking elicited by (R)-alpha-MeHA: coadministration of proxyfan and ciproxifan resulted in an attenuation of ciproxifan's effects. This new dipsogenia model provides the first in vivo behavioral evidence for possible pharmacological differences between three putative H(3) receptor inverse agonists, GT-2331 and proxyfan.
Collapse
Affiliation(s)
- Gerard B Fox
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, AP9A, R4N5, Abbott Park, IL 60064-6115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fox GB, Pan JB, Esbenshade TA, Bennani YL, Black LA, Faghih R, Hancock AA, Decker MW. Effects of histamine H(3) receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup. Behav Brain Res 2002; 131:151-61. [PMID: 11844582 DOI: 10.1016/s0166-4328(01)00379-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Histamine H(3) receptor antagonists have been proposed as potentially useful therapeutic agents for the treatment of several disorders including attention deficit, schizophrenia, depression, and Alzheimer's disease. We have developed a repeated acquisition version of an inhibitory avoidance task using spontaneously hypertensive rat (SHR) pups that we believe provides a reproducible measure of the cognitive and attention deficits often characteristic of these disease states, and evaluated two H(3) receptor antagonists. Male SHR, Wistar (WI) and Wistar Kyoto (WKY) rat pups (20--24 days old) were trained to avoid a mild footshock (0.1 mA, 1 s duration), delivered when the pup had transferred from a brightly lit to a darkened compartment. After the first trial, the pup was removed and returned to its home cage. One minute later, the same pup was replaced in the brightly-lit compartment and the training process repeated. A total of five trials were recorded. SHR pups performed significantly more poorly than WI or WKY pups using this training schedule, and SHR pups were used for all subsequent studies. Methylphenidate and ABT-418, both clinically active in attention deficit hyperactivity disorder (ADHD), were tested to validate the model. Methylphenidate (1 and 3 mg/kg s.c.) and ABT-418 (0.03 mg/kg s.c.) significantly improved SHR pup performance. The H(3) receptor antagonists GT-2331 (1 mg/kg s.c.) and ciproxifan (3 mg/kg s.c.), also significantly, and in a dose-related manner, enhanced performance of the SHR pups. (R)-alpha-methylhistamine (3 mg/kg s.c.) blocked the pro-cognitive effects of ciproxifan, suggesting an H(3) receptor site of action for this compound. This model is useful for evaluating the cognition/attention-enhancing potential of H(3) receptor antagonists.
Collapse
Affiliation(s)
- Gerard B Fox
- CNS Diseases Research, Global Pharmaceutical Research and Development, Abbott Laboratories, AP9A D4N5, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|