1
|
Zuo S, Li C, Sun X, Deng B, Zhang Y, Han Y, Ling Z, Xu J, Duan J, Wang Z, Yu X, Zheng Q, Xu X, Zong J, Tian Z, Shan L, Tang K, Huang H, Song Y, Niu Q, Zhou D, Feng S, Han Z, Wang G, Wu T, Pan J, Feng X. C-JUN overexpressing CAR-T cells in acute myeloid leukemia: preclinical characterization and phase I trial. Nat Commun 2024; 15:6155. [PMID: 39039086 PMCID: PMC11263573 DOI: 10.1038/s41467-024-50485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells show suboptimal efficacy in acute myeloid leukemia (AML). We find that CAR T cells exposed to myeloid leukemia show impaired activation and cytolytic function, accompanied by impaired antigen receptor downstream calcium, ZAP70, ERK, and C-JUN signaling, compared to those exposed to B-cell leukemia. These defects are caused in part by the high expression of CD155 by AML. Overexpressing C-JUN, but not other antigen receptor downstream components, maximally restores anti-tumor function. C-JUN overexpression increases costimulatory molecules and cytokines through reinvigoration of ERK or transcriptional activation, independent of anti-exhaustion. We conduct an open-label, non-randomized, single-arm, phase I trial of C-JUN-overexpressing CAR-T in AML (NCT04835519) with safety and efficacy as primary and secondary endpoints, respectively. Of the four patients treated, one has grade 4 (dose-limiting toxicity) and three have grade 1-2 cytokine release syndrome. Two patients have no detectable bone marrow blasts and one patient has blast reduction after treatment. Thus, overexpressing C-JUN endows CAR-T efficacy in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Middle Aged
- Male
- Female
- Proto-Oncogene Proteins c-jun/metabolism
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Aged
- Adult
- Cell Line, Tumor
- Mice
Collapse
Affiliation(s)
- Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Chuo Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaolei Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Biping Deng
- Cytology Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Yibing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yajing Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhuojun Ling
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jinlong Xu
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jiajia Duan
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Zelin Wang
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Xinjian Yu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Qinlong Zheng
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Xiuwen Xu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jiao Zong
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Zhenglong Tian
- Gobroad Research Center, Gobroad Medical Group, Beijing, China
| | - Lingling Shan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kaiting Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huifang Huang
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanzhi Song
- Department of Bone Marrow Transplantation, Beijing GoBroad Boren Hospital, Beijing, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, China
| | - Guoling Wang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| | - Tong Wu
- Department of Bone Marrow Transplantation, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Yang X, Zeng Q, İnam MG, İnam O, Lin CS, Tezel G. cFLIP in the molecular regulation of astroglia-driven neuroinflammation in experimental glaucoma. J Neuroinflammation 2024; 21:145. [PMID: 38824526 PMCID: PMC11143607 DOI: 10.1186/s12974-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Qun Zeng
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Maide Gözde İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Onur İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Schmid A, Bello C, Becker CFW. Synthesis of N-Glycosylated Soluble Fas Ligand. Chemistry 2024; 30:e202400120. [PMID: 38363216 DOI: 10.1002/chem.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Controlled cell death is essential for the regulation of the immune system and plays a role in pathogen defense. It is often altered in pathogenic conditions such as cancer, viral infections and autoimmune diseases. The Fas receptor and its corresponding membrane-bound ligand (FasL) are part of the extrinsic apoptosis pathway activated in these cases. A soluble form of FasL (sFasL), produced by ectodomain shedding, displays a diverse but still elusive set of non-apoptotic functions and sometimes even serves as a pro-survival factor. To gather more knowledge about the characteristics of this protein and the impact N-glycosylations may have, access to homogeneous posttranslationally modified variants of sFasL is needed. Therefore, we developed a flexible strategy to obtain such homogeneously N-glycosylated variants of sFasL by applying chemical protein synthesis. This strategy can be flexibly combined with enzymatic methods to introduce more complex, site selective glycosylations.
Collapse
Affiliation(s)
- Alanca Schmid
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Claudia Bello
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino FI, Italy
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
4
|
Liu X, Li X, Yu S. CFLAR: A novel diagnostic and prognostic biomarker in soft tissue sarcoma, which positively modulates the immune response in the tumor microenvironment. Oncol Lett 2024; 27:151. [PMID: 38406597 PMCID: PMC10885000 DOI: 10.3892/ol.2024.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Anoikis is highly associated with tumor cell apoptosis and tumor prognosis; however, the specific role of anoikis-related genes (ARGs) in soft tissue sarcoma (STS) remains to be fully elucidated. The present study aimed to use a variety of bioinformatics methods to determine differentially expressed anoikis-related genes in STS and healthy tissues. Subsequently, three machine learning algorithms, Least Absolute Shrinkage and Selection Operator, Support Vector Machine and Random Forest, were used to screen genes with the highest importance score. The results of the bioinformatics analyses demonstrated that CASP8 and FADD-like apoptosis regulator (CFLAR) exhibited the highest importance score. Subsequently, the diagnostic and prognostic value of CFLAR in STS development was determined using multiple public and in-house cohorts. The results of the present study demonstrated that CFLAR may be considered a diagnostic and prognostic marker of STS, which acts as an independent prognostic factor of STS development. The present study also aimed to explore the potential role of CFLAR in the STS tumor microenvironment, and the results demonstrated that CFLAR significantly enhanced the immune response of STS, and exerted a positive effect on the infiltration of CD8+ T cells and M1 macrophages in the STS immune microenvironment. Notably, the aforementioned results were verified using multiplex immunofluorescence analysis. Collectively, the results of the present study demonstrated that CFLAR may act as a novel diagnostic and prognostic marker for STS, and may positively regulate the immune response of STS. Thus, the present study provided a novel theoretical basis for the use of CFLAR in STS diagnosis, in predicting clinical outcomes and in tailoring individualized treatment options.
Collapse
Affiliation(s)
- Xu Liu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
5
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d'Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
6
|
Orgil BO, Purevjav E. Molecular Pathways and Animal Models of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:991-1019. [PMID: 38884766 DOI: 10.1007/978-3-031-44087-8_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiomyopathies are a heterogeneous group of disorders of the heart muscle that ultimately result in congestive heart failure. Rapid progress in genetics, molecular and cellular biology with breakthrough innovative genetic-engineering techniques, such as next-generation sequencing and multiomics platforms, stem cell reprogramming, as well as novel groundbreaking gene-editing systems over the past 25 years has greatly improved the understanding of pathogenic signaling pathways in inherited cardiomyopathies. This chapter will focus on intracellular and intercellular molecular signaling pathways that are activated by a genetic insult in cardiomyocytes to maintain tissue and organ level regulation and resultant cardiac remodeling in certain forms of cardiomyopathies. In addition, animal models of different clinical forms of human cardiomyopathies with their summaries of triggered key molecules and signaling pathways will be described.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
7
|
Pang J, Vince JE. The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Semin Immunol 2023; 70:101832. [PMID: 37625331 DOI: 10.1016/j.smim.2023.101832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The programmed cell death machinery exhibits surprising flexibility, capable of crosstalk and non-apoptotic roles. Much of this complexity arises from the diverse functions of caspase-8, a cysteine-aspartic acid protease typically associated with activating caspase-3 and - 7 to induce apoptosis. However, recent research has revealed that caspase-8 also plays a role in regulating the lytic gasdermin cell death machinery, contributing to pyroptosis and immune responses in contexts such as infection, autoinflammation, and T-cell signalling. In mice, loss of caspase-8 results in embryonic lethality from unrestrained necroptotic killing, while in humans caspase-8 deficiency can lead to an autoimmune lymphoproliferative syndrome, immunodeficiency, inflammatory bowel disease or, when it can't cleave its substrate RIPK1, early onset periodic fevers. This review focuses on non-canonical caspase-8 signalling that drives immune responses, including its regulation of inflammatory gene transcription, activation within inflammasome complexes, and roles in pyroptotic cell death. Ultimately, a deeper understanding of caspase-8 function will aid in determining whether, and when, targeting caspase-8 pathways could be therapeutically beneficial in human diseases.
Collapse
Affiliation(s)
- Jiyi Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Shao Y, Wang Z, Wu J, Lu Y, Chen Y, Zhang H, Huang C, Shen H, Xu L, Fu Z. Unveiling immunogenic cell death-related genes in colorectal cancer: an integrated study incorporating transcriptome and Mendelian randomization analyses. Funct Integr Genomics 2023; 23:316. [PMID: 37789099 DOI: 10.1007/s10142-023-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Immunogenic cell death (ICD), a type of cell death that activates the tumor-specific immune response and thus exerts anti-tumor effects, is an emerging target in tumor therapy, but research on ICD-related genes (ICDGs) in colorectal cancer (CRC) remains limited. This study aimed to identify the CRC-specific ICDGs and explore their potential roles. Through RNA sequencing for tissue samples from CRC patients and integration with The Cancer Genome Atlas (TCGA) data, we identified 33 differentially expressed ICDGs in CRC. We defined the ICD score based on these genes in single-cell data, where a high score indicated an immune-active microenvironment. Additionally, molecular subtypes identified in bulk RNA data showed distinct immune landscapes. The ICD-related signature constructed with machine learning effectively distinguished patients' prognosis. The summary data-based Mendelian randomization (SMR) and colocalization analysis prioritized CFLAR for its positive association with CRC risk. Molecular docking revealed its stable binding with chemotherapeutic drugs like irinotecan. Furthermore, experimental validation confirmed CFLAR overexpression in CRC samples, and its knockdown inhibited tumor cell proliferation. Overall, this study expands the understanding of the potential roles and mechanisms of ICDGs in CRC and highlights CFLAR as a promising target for CRC.
Collapse
Affiliation(s)
- Yu Shao
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Wu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hengyang Shen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Abstract
The nanoscale properties of nanomaterials, especially nanoparticles, including size, shape, and surface charge, have been extensively studied for their impact on nanomedicine. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest to manipulate the chirality of nanomaterials to enhance their biomolecular interactions and improve nanotherapeutics. Chiral nanostructures are currently more prevalently used in biosensing and diagnostic applications owing to their distinctive physical and optical properties, but they hold great promise for use in nanomedicine. In this Review, we first discuss stereospecific interactions between chiral nanomaterials and biomolecules before comparing the synthesis and characterization methods of chiral nanoparticles and nanoassemblies. Finally, we examine the applications of chiral nanotherapeutics in cancer, immunomodulation, and neurodegenerative diseases and propose plausible mechanisms in which chiral nanomaterials interact with cells for biological manipulation. This Review on chirality is a timely reminder of the arsenal of nanoscale modifications to boost research in nanotherapeutics.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
- Institute of Health Innovation and Technology, National University of Singapore, Singapore 117599
- Tissue Engineering Program, National University of Singapore, Singapore 117510
| |
Collapse
|
10
|
Chaumont L, Collet B, Boudinot P. Protein kinase double-stranded RNA-dependent (PKR) in antiviral defence in fish and mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104732. [PMID: 37172664 DOI: 10.1016/j.dci.2023.104732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms of the innate immune system. Upon binding of viral double stranded RNA, a viral Pattern Associated Molecular Pattern (PAMP), PKR gets activated and phosphorylates the eukaryotic initiation factor 2α (eIF2α) resulting in a protein shut-down that limits viral replication. Since its discovery in the mid-seventies, PKR has been shown to be involved in multiple important cellular processes including apoptosis, proinflammatory and innate immune responses. Viral subversion mechanisms of PKR underline its importance in the antiviral response of the host. PKR activation pathways and its mechanisms of action were previously identified and characterised mostly in mammalian models. However, fish Pkr and fish-specific paralogue Z-DNA-dependent protein kinase (Pkz) also play key role in antiviral defence. This review gives an update on the current knowledge on fish Pkr/Pkz, their conditions of activation and their implication in the immune responses to viruses, in comparison to their mammalian counterparts.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
11
|
Kuehnle N, Osborne SM, Liang Z, Manzano M, Gottwein E. CRISPR screens identify novel regulators of cFLIP dependency and ligand-independent, TRAIL-R1-mediated cell death. Cell Death Differ 2023; 30:1221-1234. [PMID: 36801923 PMCID: PMC10154404 DOI: 10.1038/s41418-023-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). PEL cell lines require expression of the cellular FLICE inhibitory protein (cFLIP) for survival, although KSHV encodes a viral homolog of this protein (vFLIP). Cellular and viral FLIP proteins have several functions, including, most importantly, the inhibition of pro-apoptotic caspase 8 and modulation of NF-κB signaling. To investigate the essential role of cFLIP and its potential redundancy with vFLIP in PEL cells, we first performed rescue experiments with human or viral FLIP proteins known to affect FLIP target pathways differently. The long and short isoforms of cFLIP and molluscum contagiosum virus MC159L, which are all strong caspase 8 inhibitors, efficiently rescued the loss of endogenous cFLIP activity in PEL cells. KSHV vFLIP was unable to fully rescue the loss of endogenous cFLIP and is therefore functionally distinct. Next, we employed genome-wide CRISPR/Cas9 synthetic rescue screens to identify loss of function perturbations that can compensate for cFLIP knockout. Results from these screens and our validation experiments implicate the canonical cFLIP target caspase 8 and TRAIL receptor 1 (TRAIL-R1 or TNFRSF10A) in promoting constitutive death signaling in PEL cells. However, this process was independent of TRAIL receptor 2 or TRAIL, the latter of which is not detectable in PEL cell cultures. The requirement for cFLIP is also overcome by inactivation of the ER/Golgi resident chondroitin sulfate proteoglycan synthesis and UFMylation pathways, Jagunal homolog 1 (JAGN1) or CXCR4. UFMylation and JAGN1, but not chondroitin sulfate proteoglycan synthesis or CXCR4, contribute to TRAIL-R1 expression. In sum, our work shows that cFLIP is required in PEL cells to inhibit ligand-independent TRAIL-R1 cell death signaling downstream of a complex set of ER/Golgi-associated processes that have not previously been implicated in cFLIP or TRAIL-R1 function.
Collapse
Affiliation(s)
- Neil Kuehnle
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Scout Mask Osborne
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Ziyan Liang
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Mark Manzano
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Li H, Li L, Qiu X, Zhang J, Hua Z. The interaction of CFLAR with p130Cas promotes cell migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119390. [PMID: 36400248 DOI: 10.1016/j.bbamcr.2022.119390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
CASP8 and FADD Like Apoptosis Regulator (CFLAR) is a key anti-apoptotic regulator for resistance to apoptosis mediated by Fas and TRAIL. In addition to its anti-apoptotic function, CFLAR is also an important mediator of tumor growth. High level of CFLAR expression correlates with a more aggressive tumor. However, the mechanism of CFLAR signaling in malignant progression is not clear. Here we report a novel CFLAR-associated protein p130Cas, which is a general regulator of cell growth and cell migration. CFLAR-p130Cas association is mediated by the DED domain of CFLAR and the SD domain of p130Cas. Immunofluorescence observation showed that CFLAR had the colocalization with p130Cas at the focal adhesion of cell membrane. CFLAR overexpression promoted p130Cas phosphorylation and the formation of focal adhesion complex. Moreover, the enhancement of cell migration induced by CFLAR overexpression was obviously inhibited by p130Cas siRNA. In silico analysis on human database suggests high expressions of CFLAR or/and p130Cas are associated with poor prognosis of patients with lung cancer. Together, our results suggest a new mechanism for CFLAR involved in tumor development via association with p130Cas.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Luqi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xun Qiu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; School of Biopharmacy, China Pharmaceutical University, Nanjing, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China.
| |
Collapse
|
13
|
Zhang Y, Jin T, Dou Z, Wei B, Zhang B, Sun C. The dual role of the CD95 and CD95L signaling pathway in glioblastoma. Front Immunol 2022; 13:1029737. [PMID: 36505426 PMCID: PMC9730406 DOI: 10.3389/fimmu.2022.1029737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of CD95, a cell surface death receptor, to its homologous ligand CD95L, transduces a cascade of downstream signals leading to apoptosis crucial for immune homeostasis and immune surveillance. Although CD95 and CD95L binding classically induces programmed cell death, most tumor cells show resistance to CD95L-induced apoptosis. In some cancers, such as glioblastoma, CD95-CD95L binding can exhibit paradoxical functions that promote tumor growth by inducing inflammation, regulating immune cell homeostasis, and/or promoting cell survival, proliferation, migration, and maintenance of the stemness of cancer cells. In this review, potential mechanisms such as the expression of apoptotic inhibitor proteins, decreased activity of downstream elements, production of nonapoptotic soluble CD95L, and non-apoptotic signals that replace apoptotic signals in cancer cells are summarized. CD95L is also expressed by other types of cells, such as endothelial cells, polymorphonuclear myeloid-derived suppressor cells, cancer-associated fibroblasts, and tumor-associated microglia, and macrophages, which are educated by the tumor microenvironment and can induce apoptosis of tumor-infiltrating lymphocytes, which recognize and kill cancer cells. The dual role of the CD95-CD95L system makes targeted therapy strategies against CD95 or CD95L in glioblastoma difficult and controversial. In this review, we also discuss the current status and perspective of clinical trials on glioblastoma based on the CD95-CD95L signaling pathway.
Collapse
Affiliation(s)
- Yanrui Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Taian Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Boxing Wei
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Buyi Zhang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Buyi Zhang, ; Chongran Sun,
| | - Chongran Sun
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China,*Correspondence: Buyi Zhang, ; Chongran Sun,
| |
Collapse
|
14
|
Bai ZQ, Ma X, Liu B, Huang T, Hu K. Solution structure of c-FLIP death effector domains. Biochem Biophys Res Commun 2022; 617:1-6. [PMID: 35688044 DOI: 10.1016/j.bbrc.2022.05.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
The formation of death-inducing signaling complex (DISC) and death effector domain (DED) filament initiates extrinsic apoptosis. Recruitment and activation of procaspase-8 at the DISC are regulated by c-FLIP. The interaction between c-FLIP and procaspase-8 is mediated by their tandem DEDs (tDED). However, the structure of c-FLIPtDED and how c-FLIP interferes with procaspase-8 activation at the DISC remain elusive. Here, we solved the monomeric structure of c-FLIPtDED (F114G) at near physiological pH by solution nuclear magnetic resonance (NMR). Structural superimposition reveals c-FLIPtDED (F114G) adopts a structural topology similar to that of procaspase-8tDED. Our results provide a structural basis for understanding how c-FLIP interacts with procaspase-8 and the molecular mechanisms of c-FLIP in regulating cell death.
Collapse
Affiliation(s)
- Zhi-Qiang Bai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201, Yunnan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201, Yunnan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
16
|
The role of caspases as executioners of apoptosis. Biochem Soc Trans 2021; 50:33-45. [PMID: 34940803 DOI: 10.1042/bst20210751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.
Collapse
|
17
|
Aging whole blood transcriptome reveals candidate genes for SARS-CoV-2-related vascular and immune alterations. J Mol Med (Berl) 2021; 100:285-301. [PMID: 34741638 PMCID: PMC8571664 DOI: 10.1007/s00109-021-02161-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
Abstract The risk of severe COVID-19 increases with age as older patients are at highest risk. Thus, there is an urgent need to identify how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with blood components during aging. We investigated the whole blood transcriptome from the Genotype-Tissue Expression (GTEx) database to explore differentially expressed genes (DEGs) translated into proteins interacting with viral proteins during aging. From 22 DEGs in aged blood, FASLG, CTSW, CTSE, VCAM1, and BAG3 were associated with immune response, inflammation, cell component and adhesion, and platelet activation/aggregation. Males and females older than 50 years old overexpress FASLG, possibly inducing a hyperinflammatory cascade. The expression of cathepsins (CTSW and CTSE) and the anti-apoptotic co-chaperone molecule BAG3 also increased throughout aging in both genders. By exploring single-cell RNA-sequencing data from peripheral blood of SARS-CoV-2-infected patients, we found FASLG and CTSW expressed in natural killer cells and CD8 + T lymphocytes, whereas BAG3 was expressed mainly in CD4 + T cells, naive T cells, and CD14 + monocytes. In addition, T cell exhaustion was associated with increased expression of CCL4L2 and DUSP4 over blood aging. LAG3, PDCD1, TIGIT, VCAM1, HLA-DRA, and TOX also increased in individuals aged 60–69 years old; conversely, the RGS2 gene decreased with aging. We further identified a distinct gene expression profile associated with type I interferon signaling following blood aging. These results revealed changes in blood molecules potentially related to SARS-CoV-2 infection throughout aging, emphasizing them as therapeutic candidates for aggressive clinical manifestation of COVID-19. Key messages • Prediction of host-viral interactions in the whole blood transcriptome during aging. • Expression levels of FASLG, CTSW, CTSE, VCAM1, and BAG3 increase in aged blood. • Blood interactome reveals targets involved with immune response, inflammation, and blood clots. • SARS-CoV-2-infected patients with high viral load showed FASLG overexpression. • Gene expression profile associated with T cell exhaustion and type I interferon signaling were affected with blood aging. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02161-4.
Collapse
|
18
|
Zhang Y, Huang K, Zhang Y, Han T, Li L, Ruan C, Sun YH, Shi W, Han W, Wu SQ, Song J, Liu J, Han J. A unique death pathway keeps RIPK1 D325A mutant mice in check at embryonic day 10.5. PLoS Biol 2021; 19:e3001304. [PMID: 34437534 PMCID: PMC8389420 DOI: 10.1371/journal.pbio.3001304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumor necrosis factor receptor-1 (TNFR1) signaling, apart from its pleiotropic functions in inflammation, plays a role in embryogenesis as deficiency of varieties of its downstream molecules leads to embryonic lethality in mice. Caspase-8 noncleavable receptor interacting serine/threonine kinase 1 (RIPK1) mutations occur naturally in humans, and the corresponding D325A mutation in murine RIPK1 leads to death at early midgestation. It is known that both the demise of Ripk1D325A/D325A embryos and the death of Casp8-/- mice are initiated by TNFR1, but they are mediated by apoptosis and necroptosis, respectively. Here, we show that the defects in Ripk1D325A/D325A embryos occur at embryonic day 10.5 (E10.5), earlier than that caused by Casp8 knockout. By analyzing a series of genetically mutated mice, we elucidated a mechanism that leads to the lethality of Ripk1D325A/D325A embryos and compared it with that underlies Casp8 deletion-mediated lethality. We revealed that the apoptosis in Ripk1D325A/D325A embryos requires a scaffold function of RIPK3 and enzymatically active caspase-8. Unexpectedly, caspase-1 and caspase-11 are downstream of activated caspase-8, and concurrent depletion of Casp1 and Casp11 postpones the E10.5 lethality to embryonic day 13.5 (E13.5). Moreover, caspase-3 is an executioner of apoptosis at E10.5 in Ripk1D325A/D325A mice as its deletion extends life of Ripk1D325A/D325A mice to embryonic day 11.5 (E11.5). Hence, an unexpected death pathway of TNFR1 controls RIPK1 D325A mutation-induced lethality at E10.5.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kai Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuxia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Tao Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lang Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chenchen Ruan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ye-hsuan Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenke Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Su-qin Wu
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
| | - Jing Song
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
| | - Jun Liu
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
- Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
19
|
Tomaipitinca L, Petrungaro S, D'Acunzo P, Facchiano A, Dubey A, Rizza S, Giulitti F, Gaudio E, Filippini A, Ziparo E, Cecconi F, Giampietri C. c-FLIP regulates autophagy by interacting with Beclin-1 and influencing its stability. Cell Death Dis 2021; 12:686. [PMID: 34238932 PMCID: PMC8266807 DOI: 10.1038/s41419-021-03957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/18/2023]
Abstract
c-FLIP (cellular FLICE-like inhibitory protein) protein is mostly known as an apoptosis modulator. However, increasing data underline that c-FLIP plays multiple roles in cellular homoeostasis, influencing differently the same pathways depending on its expression level and isoform predominance. Few and controversial data are available regarding c-FLIP function in autophagy. Here we show that autophagic flux is less effective in c-FLIP−/− than in WT MEFs (mouse embryonic fibroblasts). Indeed, we show that the absence of c-FLIP compromises the expression levels of pivotal factors in the generation of autophagosomes. In line with the role of c-FLIP as a scaffold protein, we found that c-FLIPL interacts with Beclin-1 (BECN1: coiled-coil, moesin-like BCL2-interacting protein), which is required for autophagosome nucleation. By a combination of bioinformatics tools and biochemistry assays, we demonstrate that c-FLIPL interaction with Beclin-1 is important to prevent Beclin-1 ubiquitination and degradation through the proteasomal pathway. Taken together, our data describe a novel molecular mechanism through which c-FLIPL positively regulates autophagy, by enhancing Beclin-1 protein stability.
Collapse
Affiliation(s)
- Luana Tomaipitinca
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.,Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Simonetta Petrungaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus Pvt Ltd, Kushinagar, 274203, India.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Federico Giulitti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Elio Ziparo
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark.,Department of Pediatric Hemato-Oncology and Cell and Gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, 00143, Italy.,Department of Biology, University of Tor Vergata, Rome, 00133, Italy
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
20
|
Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:biom11040499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
|
21
|
Gregory-Ksander M, Marshak-Rothstein A. The FasLane to ocular pathology-metalloproteinase cleavage of membrane-bound FasL determines FasL function. J Leukoc Biol 2021; 110:965-977. [PMID: 33565149 DOI: 10.1002/jlb.3ri1220-834r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fas ligand (FasL) is best known for its ability to induce cell death in a wide range of Fas-expressing targets and to limit inflammation in immunoprivileged sites such as the eye. In addition, the ability of FasL to induce a much more extensive list of outcomes is being increasingly explored and accepted. These outcomes include the induction of proinflammatory cytokine production, T cell activation, and cell motility. However, the distinct and opposing functions of membrane-associated FasL (mFasL) and the C-terminal soluble FasL fragment (sFasL) released by metalloproteinase cleavage is less well documented and understood. Both mFasL and sFasL can form trimers that engage the trimeric Fas receptor, but only mFasL can form a multimeric complex in lipid rafts to trigger apoptosis and inflammation. By contrast, a number of reports have now documented the anti-apoptotic and anti-inflammatory activity of sFasL, pointing to a critical regulatory function of the soluble molecule. The immunomodulatory activity of FasL is particularly evident in ocular pathology where elimination of the metalloproteinase cleavage site and the ensuing increased expression of mFasL can severely exacerbate the extent of inflammation and cell death. By contrast, both homeostatic and increased expression of sFasL can limit inflammation and cell death. The mechanism(s) responsible for the protective activity of sFasL are discussed but remain controversial. Nevertheless, it will be important to consider therapeutic applications of sFasL for the treatment of ocular diseases such as glaucoma.
Collapse
Affiliation(s)
- Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann Marshak-Rothstein
- Department of Medicine/Rheumatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
22
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Maiese A, De Matteis A, Bolino G, Turillazzi E, Frati P, Fineschi V. Hypo-Expression of Flice-Inhibitory Protein and Activation of the Caspase-8 Apoptotic Pathways in the Death-Inducing Signaling Complex Due to Ischemia Induced by the Compression of the Asphyxiogenic Tool on the Skin in Hanging Cases. Diagnostics (Basel) 2020; 10:diagnostics10110938. [PMID: 33198065 PMCID: PMC7696535 DOI: 10.3390/diagnostics10110938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
The FLICE-inhibitory protein (c-FLIPL) (55 kDa) is expressed in numerous tissues and most abundantly in the kidney, skeletal muscles and heart. The c-FLIPL has a region of homology with caspase-8 at the carboxy-terminal end which allows the molecule to assume a tertiary structure similar to that of caspases-8 and -10. Consequently, c-FLIPL acts as a negative inhibitor of caspase-8, preventing the processing and subsequent release of the pro-apoptotic molecule active form. The c-FLIP plays as an inhibitor of apoptosis induced by a variety of agents, such as tumor necrosis factor (TNF), T cell receptor (TCR), TNF-related apoptosis inducing ligand (TRAIL), Fas and death receptor (DR). Increased expression of c-FLIP has been found in many human malignancies and shown to be involved in resistance to CD95/Fas and TRAIL receptor-induced apoptosis. We wanted to verify an investigative protocol using FLIP to make a differential diagnosis between skin sulcus with vitality or non-vital skin sulcus in hanged subjects and those undergoing simulated hanging (suspension of the victim after murder). The study group consisted of 21 cases who died from suicidal hanging. The control group consisted of traumatic or natural deaths, while a third group consisted of simulated hanging cases. The reactions to the Anti-FLIP Antibody (Abcam clone-8421) was scored for each section with a semi-quantitative method by means of microscopic observation carried out with confocal microscopy and three-dimensional reconstruction. The results obtained allow us to state that the skin reaction to the FLIP is extremely clear and precise, allowing a diagnosis of unequivocal vitality and a very objective differentiation with the post-mortal skin sulcus.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Giorgio Bolino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
| | - Paola Frati
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Vittorio Fineschi
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
- Correspondence:
| |
Collapse
|
24
|
Smyth P, Sessler T, Scott CJ, Longley DB. FLIP(L): the pseudo-caspase. FEBS J 2020; 287:4246-4260. [PMID: 32096279 PMCID: PMC7586951 DOI: 10.1111/febs.15260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Possessing structural homology with their active enzyme counterparts but lacking catalytic activity, pseudoenzymes have been identified for all major enzyme groups. Caspases are a family of cysteine‐dependent aspartate‐directed proteases that play essential roles in regulating cell death and inflammation. Here, we discuss the only human pseudo‐caspase, FLIP(L), a paralog of the apoptosis‐initiating caspases, caspase‐8 and caspase‐10. FLIP(L) has been shown to play a key role in regulating the processing and activity of caspase‐8, thereby modulating apoptotic signaling mediated by death receptors (such as TRAIL‐R1/R2), TNF receptor‐1 (TNFR1), and Toll‐like receptors. In this review, these canonical roles of FLIP(L) are discussed. Additionally, a range of nonclassical pseudoenzyme roles are described, in which FLIP(L) functions independently of caspase‐8. These nonclassical pseudoenzyme functions enable FLIP(L) to play key roles in the regulation of a wide range of biological processes beyond its canonical roles as a modulator of cell death.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Tamas Sessler
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
25
|
Meynier S, Rieux-Laucat F. FAS and RAS related Apoptosis defects: From autoimmunity to leukemia. Immunol Rev 2019; 287:50-61. [PMID: 30565243 DOI: 10.1111/imr.12720] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
The human adaptive immune system recognizes almost all the pathogens that we encounter and all the tumor antigens that may arise during our lifetime. Primary immunodeficiencies affecting lymphocyte development or function therefore lead to severe infections and tumor susceptibility. Furthermore, the fact that autoimmunity is a frequent feature of primary immunodeficiencies reveals a third function of the adaptive immune system: its self-regulation. Indeed, the generation of a broad repertoire of antigen receptors (via a unique strategy of random somatic rearrangements of gene segments in T cell and B cell receptor loci) inevitably creates receptors with specificity for self-antigens and thus leads to the presence of autoreactive lymphocytes. There are many different mechanisms for controlling the emergence or action of autoreactive lymphocytes, including clonal deletion in the primary lymphoid organs, receptor editing, anergy, suppression of effector lymphocytes by regulatory lymphocytes, and programmed cell death. Here, we review the genetic defects affecting lymphocyte apoptosis and that are associated with lymphoproliferation and autoimmunity, together with the role of somatic mutations and their potential involvement in more common autoimmune diseases.
Collapse
Affiliation(s)
- Sonia Meynier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
26
|
Modulation of the extrinsic cell death signaling pathway by viral Flip induces acute-death mediated liver failure. Cell Death Dis 2019; 10:878. [PMID: 31754092 PMCID: PMC6872756 DOI: 10.1038/s41419-019-2115-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
During viral infections viruses express molecules that interfere with the host-cell death machinery and thus inhibit cell death responses. For example the viral FLIP (vFLIP) encoded by Kaposi’s sarcoma-associated herpesvirus interacts and inhibits the central cell death effector, Caspase-8. In order to analyze the impact of anti-apoptotic viral proteins, like vFlip, on liver physiology in vivo, mice expressing vFlip constitutively in hepatocytes (vFlipAlbCre+) were generated. Transgenic expression of vFlip caused severe liver tissue injury accompanied by massive hepatocellular necrosis and inflammation that finally culminated in early postnatal death of mice. On a molecular level, hepatocellular death was mediated by RIPK1-MLKL necroptosis driven by an autocrine TNF production. The loss of hepatocytes was accompanied by impaired bile acid production and disruption of the bile duct structure with impact on the liver-gut axis. Notably, embryonic development and tissue homeostasis were unaffected by vFlip expression. In summary our data uncovered that transgenic expression of vFlip can cause severe liver injury in mice, culminating in multiple organ insufficiency and death. These results demonstrate that viral cell death regulatory molecules exhibit different facets of activities beyond the inhibition of cell death that may merit more sophisticated in vitro and in vivo analysis.
Collapse
|
27
|
Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: A double-edged sword in hepatocarcinogenesis. J Cell Physiol 2019; 234:14734-14742. [PMID: 30741410 DOI: 10.1002/jcp.28249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Nuclear factor-κB (NF-κB), a family of master regulated dimeric transcription factors, signaling transduction pathways are active players in the cell signaling that control vital cellular processes, including cell growth, proliferation, differentiation, apoptosis, morphogenesis, angiogenesis, and immune responses. Nevertheless, aberrant regulation of the NF-κB signaling pathways has been associated with a significant number of human cancers. In fact, NF-κB acts as a double-edged sword in the vital cellular processes and carcinogenesis. This review provides an overview on the modulation of the NF-κB signaling pathways by proteins of hepatitis B and C viruses. One of the major NF-κB events that are modulated by these viruses is the induction of hepatocellular carcinoma. Given the central function of NF-κB in carcinogenesis, it has turned out to be a considerable therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farid Azizi Jalalian
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
28
|
Kreckel J, Anany MA, Siegmund D, Wajant H. TRAF2 Controls Death Receptor-Induced Caspase-8 Processing and Facilitates Proinflammatory Signaling. Front Immunol 2019; 10:2024. [PMID: 31555268 PMCID: PMC6727177 DOI: 10.3389/fimmu.2019.02024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) knockout (KO) cells were generated to investigate the role of TRAF2 in signaling by TNFR1 and the CD95-type death receptors (DRs) TRAILR1/2 and CD95. To prevent negative selection effects arising from the increased cell death sensitivity of TRAF2-deficient cells, cell lines were used for the generation of the TRAF2 KO variants that were protected from DR-induced apoptosis downstream of caspase-8 activation. As already described in the literature, TRAF2 KO cells displayed enhanced constitutive alternative NFκB signaling and reduced TNFR1-induced activation of the classical NFκB pathway. There was furthermore a significant but only partial reduction in CD95-type DR-induced upregulation of the proinflammatory NFκB-regulated cytokine interleukin-8 (IL8), which could be reversed by reexpression of TRAF2. In contrast, expression of the TRAF2-related TRAF1 protein failed to functionally restore TRAF2 deficiency. TRAF2 deficiency resulted furthermore in enhanced procaspase-8 processing by DRs, but this surprisingly came along with a reduction in net caspase-8 activity. In sum, our data argue for (i) a non-obligate promoting function of TRAF2 in proinflammatory DR signaling and (ii) a yet unrecognized stabilizing effect of TRAF2 on caspase-8 activity.
Collapse
Affiliation(s)
- Jennifer Kreckel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mohammed A Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Division of Genetic Engineering and Biotechnology, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Luebke T, Schwarz L, Beer YY, Schumann S, Misterek M, Sander FE, Plaza-Sirvent C, Schmitz I. c-FLIP and CD95 signaling are essential for survival of renal cell carcinoma. Cell Death Dis 2019; 10:384. [PMID: 31097685 PMCID: PMC6522538 DOI: 10.1038/s41419-019-1609-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most-prominent tumor type of kidney cancers. Resistance of renal cell carcinoma (RCC) against tumor therapy is often owing to apoptosis resistance, e.g., by overexpression of anti-apoptotic proteins. However, little is known about the role of the apoptosis inhibitor c-FLIP and its potential impact on death receptor-induced apoptosis in ccRCC cells. In this study, we demonstrate that c-FLIP is crucial for resistance against CD95L-induced apoptosis in four ccRCC cell lines. Strikingly, downregulation of c-FLIP expression by short hairpin RNA (shRNA)interference led to spontaneous caspase activation and apoptotic cell death. Of note, knockdown of all c-FLIP splice variants was required to induce apoptosis. Stimulation of ccRCC cells with CD95L induced NF-κB and MAP kinase survival pathways as revealed by phosphorylation of RelA/p65 and Erk1/2. Interestingly, CD95L surface expression was high in all cell lines analyzed, and CD95 but not TNF-R1 clustered at cell contact sites. Downstream of CD95, inhibition of the NF-κB pathway led to spontaneous cell death. Surprisingly, knockdown experiments revealed that c-FLIP inhibits NF-κB activation in the context of CD95 signaling. Thus, c-FLIP inhibits apoptosis and dampens NF-κB downstream of CD95 but allows NF-κB activation to a level sufficient for ccRCC cell survival. In summary, we demonstrate a complex CD95-FLIP-NF-κB-signaling circuit, in which CD95-CD95L interactions mediate a paracrine survival signal in ccRCC cells with c-FLIP and NF-κB both being required for inhibiting cell death and ensuring survival. Our findings might lead to novel therapeutic approaches of RCC by circumventing apoptosis resistance.
Collapse
Affiliation(s)
- Tobias Luebke
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Lisa Schwarz
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Yan Yan Beer
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Sabrina Schumann
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Maria Misterek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Frida Ewald Sander
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Carlos Plaza-Sirvent
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Ingo Schmitz
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany. .,Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
30
|
Greene S, Patel P, Allen CT. How patients with an intact immune system develop head and neck cancer. Oral Oncol 2019; 92:26-32. [PMID: 31010619 DOI: 10.1016/j.oraloncology.2019.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Although the adaptive immune system can detect and eliminate malignant cells, patients with intact and fully functional immune systems develop head and neck cancer. How is this paradox explained? Manuscripts published in the English language from 1975 to 2018 were reviewed using search inputs related to tumor cell antigenicity and immunogenicity, immunodominance, cancer immunoediting and genomic alterations present within carcinomas. Early in tumor development, T cell responses to immunodominant antigens may lead to the elimination of cancer cells expressing these antigens and a tumor composed to tumor cells expressing only immunorecessive antigens. Conversely, other tumor cells may acquire genomic or epigenetic alterations that result in an antigen processing or presentation defect or other inability to be detected or killed by T cells. Such T cell insensitive tumor cells may also be selected for in a progressing tumor. Tumors harboring subpopulations of cells that cannot be eliminated by T cells may require non-T cell-based treatments, such as NK cell immunotherapies. Recognition of such tumor cell populations within a heterogeneous cancer may inform the selection of treatment for HNSCC in the future.
Collapse
Affiliation(s)
- Sarah Greene
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Priya Patel
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
31
|
Delgado ME, Brunner T. The many faces of tumor necrosis factor signaling in the intestinal epithelium. Genes Immun 2019; 20:609-626. [DOI: 10.1038/s41435-019-0057-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023]
|
32
|
Han M, Hu R, Ma J, Zhang B, Chen C, Li H, Yang J, Huang G. Fas Signaling in Dendritic Cells Mediates Th2 Polarization in HDM-Induced Allergic Pulmonary Inflammation. Front Immunol 2018; 9:3045. [PMID: 30619373 PMCID: PMC6308134 DOI: 10.3389/fimmu.2018.03045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/10/2018] [Indexed: 01/17/2023] Open
Abstract
Fas-Fas ligand (FasL) signaling plays an important role in the development of allergic inflammation, but the cellular and molecular mechanisms are still not well known. By using the bone marrow-derived dendritic cell (BMDC) transfer-induced pulmonary inflammation model, we found that house dust mite (HDM)-stimulated FAS-deficient BMDCs induced higher Th2-mediated allergic inflammation, associated with increased mucus production and eosinophilic inflammation. Moreover, FAS-deficient BMDCs promoted Th2 cell differentiation upon HDM stimulation in vitro. Compared to wild-type BMDCs, the Fas-deficient BMDCs had increased ERK activity and decreased IL-12 production upon HDM stimulation. Inhibition of ERK activity could largely increase IL-12 production, consequently restored the increased Th2 cytokine expression of OT-II CD4+ T cells activated by Fas-deficient BMDCs. Thus, our results uncover an important role of DC-specific Fas signaling in Th2 differentiation and allergic inflammation, and modulation of Fas signaling in DCs may offer a useful strategy for the treatment of allergic inflammatory diseases.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Otolaryngology-Head and Neck Surgery, Center for Allergic and Inflammatory Diseases, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Ma
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohua Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ce Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Huabin Li
- Department of Otolaryngology-Head and Neck Surgery, Center for Allergic and Inflammatory Diseases, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jun Yang
- Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
33
|
Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, Sartoris S, Solito S, Mandruzzato S, Vascotto F, Hippen KL, Mondanelli G, Grohmann U, Piro G, Carbone C, Melisi D, Lawlor RT, Scarpa A, Lamolinara A, Iezzi M, Fassan M, Bicciato S, Blazar BR, Sahin U, Murray PJ, Bronte V. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun 2018; 9:5193. [PMID: 30518925 PMCID: PMC6281604 DOI: 10.1038/s41467-018-07654-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Immunosuppression is a hallmark of tumor progression, and treatments that inhibit or deplete monocytic myeloid-derived suppressive cells could promote anti-tumor immunity. c-FLIP is a central regulator of caspase-8-mediated apoptosis and necroptosis. Here we show that low-dose cytotoxic chemotherapy agents cause apoptosis linked to c-FLIP down-regulation selectively in monocytes. Enforced expression of c-FLIP or viral FLIP rescues monocytes from cytotoxicity and concurrently induces potent immunosuppressive activity, in T cell cultures and in vivo models of tumor progression and immunotherapy. FLIP-transduced human blood monocytes can suppress graft versus host disease. Neither expression of FLIP in granulocytes nor expression of other anti-apoptotic genes in monocytes conferred immunosuppression, suggesting that FLIP effects on immunosuppression are specific to monocytic lineage and distinct from death inhibition. Mechanistically, FLIP controls a broad transcriptional program, partially by NF-κB activation. Therefore, modulation of FLIP in monocytes offers a means to elicit or block immunosuppressive myeloid cells. Signaling and transcriptional regulation of MDSC activity remains largely undefined. Here the authors show that monocytic MDSC immunosuppression is triggered by c-FLIP and requires NFκB, implicate this axis in cancer prognosis and response to therapy, and employ ectopic FLIP to treat immunopathology.
Collapse
Affiliation(s)
- Alessandra Fiore
- Department of Medicine, Section of Immunology, University of Verona, Verona, 37134, Italy.,Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, 37134, Italy.
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, 37134, Italy
| | - Sara Sandri
- Department of Medicine, Section of Immunology, University of Verona, Verona, 37134, Italy
| | - Giulio Fracasso
- Department of Medicine, Section of Immunology, University of Verona, Verona, 37134, Italy
| | - Rosalinda Trovato
- Department of Medicine, Section of Immunology, University of Verona, Verona, 37134, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, 37134, Italy
| | - Samantha Solito
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, 35124, Italy
| | - Susanna Mandruzzato
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, 35124, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, 35124, Italy
| | - Fulvia Vascotto
- TRON-Translational Oncology, University Medical Center of Johannes Gutenberg University, Mainz, 55131, Germany
| | - Keli L Hippen
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Geny Piro
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, 37134, Italy.,Department of Medicine, Laboratory of Oncology and Molecular Therapy, University of Verona, Verona, 37134, Italy
| | - Carmine Carbone
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, 37134, Italy
| | - Davide Melisi
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, 37134, Italy
| | - Rita T Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, 37134, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, 37134, Italy.,Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), University G. D'Annunzio of Chieti-Pescara, Chieti, 66100, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), University G. D'Annunzio of Chieti-Pescara, Chieti, 66100, Italy
| | - Matteo Fassan
- Department of Medicine-DIMED, University of Padova, Padova, 35124, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Ugur Sahin
- TRON-Translational Oncology, University Medical Center of Johannes Gutenberg University, Mainz, 55131, Germany.,University Medical Center of the Johannes Gutenberg University, Mainz, 55131, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, 55131, Germany
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| | - Vincenzo Bronte
- Department of Medicine, Section of Immunology, University of Verona, Verona, 37134, Italy.
| |
Collapse
|
34
|
Dabaja MZ, Lima EDO, de Oliveira DN, Guerreiro TM, Melo CFOR, Morishita KN, Lancellotti M, Ruiz ALTG, Goulart G, Duarte DA, Catharino RR. Metabolic alterations induced by attenuated Zika virus in glioblastoma cells. Cell Biosci 2018. [DOI: 10.1186/s13578-018-0243-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
35
|
Caspase-8: A Novel Target to Overcome Resistance to Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123798. [PMID: 30501030 PMCID: PMC6320982 DOI: 10.3390/ijms19123798] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Caspase-8 was originally identified as a central player of programmed cell death triggered by death receptor stimulation. In that context, its activity is tightly regulated through several mechanisms, with the best established being the expression of FLICE-like inhibitory protein (FLIP) family proteins and the Src-dependent phosphorylation of Caspase-8 on Tyr380. Loss of apoptotic signaling is a hallmark of cancer and indeed Caspase-8 expression is often lost in tumors. This event may account not only for cancer progression but also for cancer resistance to radiotherapy and chemotherapy. Intriguingly, other tumors, such as glioblastoma, preferentially retain Caspase-8 expression, and high levels of Caspase-8 expression may correlate with a worse prognosis, suggesting that in this context this protease loses its apoptotic activity and gains additional functions. Using different cellular systems, it has been clearly shown that in cancer Caspase-8 can exhibit non-canonical functions, including promotion of cell adhesion, migration, and DNA repair. Intriguingly, in glioblastoma models, Caspase-8 can promote NF-κB-dependent expression of several cytokines, angiogenesis, and in vitro and in vivo tumorigenesis. Overall, these observations suggest that some cancer cells may hijack Caspase-8 function which in turn promote cancer progression and resistance to therapy. Here we aim to highlight the multiple functions of Caspase-8 and to discuss whether the molecular mechanisms that modulate the balance between those functions may be targeted to dismantle the aberrant activity of Caspase-8 and to restore its canonical apoptotic functionality.
Collapse
|
36
|
Humphreys L, Espona-Fiedler M, Longley DB. FLIP as a therapeutic target in cancer. FEBS J 2018; 285:4104-4123. [PMID: 29806737 DOI: 10.1111/febs.14523] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
One of the classic hallmarks of cancer is disruption of cell death signalling. Inhibition of cell death promotes tumour growth and metastasis, causes resistance to chemo- and radiotherapies as well as targeted agents, and is frequently due to overexpression of antiapoptotic proteins rather than loss of pro-apoptotic effectors. FLIP is a major apoptosis-regulatory protein frequently overexpressed in solid and haematological cancers, in which its high expression is often correlated with poor prognosis. FLIP, which is expressed as long (FLIP(L)) and short (FLIP(S)) splice forms, achieves its cell death regulatory functions by binding to FADD, a critical adaptor protein which links FLIP to the apical caspase in the extrinsic apoptotic pathway, caspase-8, in a number of cell death regulating complexes, such as the death-inducing signalling complexes (DISCs) formed by death receptors. FLIP also plays a key role (together with caspase-8) in regulating another form of cell death termed programmed necrosis or 'necroptosis', as well as in other key cellular processes that impact cell survival, including autophagy. In addition, FLIP impacts activation of the intrinsic mitochondrial-mediated apoptotic pathway by regulating caspase-8-mediated activation of the pro-apoptotic Bcl-2 family member Bid. It has been demonstrated that FLIP can not only inhibit death receptor-mediated apoptosis, but also cell death induced by a range of clinically relevant chemotherapeutic and targeted agents as well as ionizing radiation. More recently, key roles for FLIP in promoting the survival of immunosuppressive tumour-promoting immune cells have been discovered. Thus, FLIP is of significant interest as an anticancer therapeutic target. In this article, we review FLIP's biology and potential ways of targeting this important tumour and immune cell death regulator.
Collapse
Affiliation(s)
- Luke Humphreys
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - Margarita Espona-Fiedler
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
37
|
The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. J Clin Immunol 2018; 38:558-568. [PMID: 29911256 DOI: 10.1007/s10875-018-0523-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023]
Abstract
The autoimmune lymphoproliferative syndrome (ALPS) is a non-malignant and non-infectious uncontrolled proliferation of lymphocytes accompanied by autoimmune cytopenia. The genetic etiology of the ALPS was described in 1995 by the discovery of the FAS gene mutations. The related apoptosis defect accounts for the accumulation of autoreactive lymphocytes as well as for specific clinical and biological features that distinguish the ALPS-FAS from other monogenic defects of this apoptosis pathway, such as FADD and CASPASE 8 deficiencies. The ALPS-FAS was the first description of a monogenic cause of autoimmunity, but its non-Mendelian expression remained elusive until the description of somatic and germline mutations in ALPS patients. The recognition of these genetic diseases brought new information on the role of this apoptotic pathway in controlling the adaptive immune response in humans.
Collapse
|
38
|
Yi F, Frazzette N, Cruz AC, Klebanoff CA, Siegel RM. Beyond Cell Death: New Functions for TNF Family Cytokines in Autoimmunity and Tumor Immunotherapy. Trends Mol Med 2018; 24:642-653. [PMID: 29880309 DOI: 10.1016/j.molmed.2018.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Originally discovered as an inducer of apoptosis, the TNF-family receptor Fas (CD95, APO-1, TNFRSF6) has more recently been found to have functions beyond cell death, including T cell co-stimulation and promoting terminal differentiation of CD4+ and CD8+ T cells. Other TNF family members also discovered as apoptosis inducers, such as TRAIL (APO-2L, TNFSF10), can promote inflammation through caspase-8. Surprisingly, non-apoptotic signaling through Fas can protect from the autoimmunity seen in Fas deficiency independently from the cell death inducing functions of the receptor. Non-apoptotic Fas signaling can induce tumor cell growth and migration, and impair the efficacy of T cell adoptive immunotherapy. Blocking of non-apoptotic functions of these receptors may be a novel strategy to regulate autoimmunity and inflammation, and enhance antitumor immunity.
Collapse
Affiliation(s)
- Fei Yi
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Frazzette
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065 USA; Parker Institute for Cancer Immunotherapy, MSKCC, New York, NY, 10065 USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Gupta S, Su H, Agrawal S, Gollapudi S. Molecular changes associated with increased TNF-α-induced apoptotis in naïve (T N) and central memory (T CM) CD8+ T cells in aged humans. Immun Ageing 2018; 15:2. [PMID: 29387134 PMCID: PMC5775550 DOI: 10.1186/s12979-017-0109-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Progressive T cell decline in aged humans is associated with a deficiency of naïve (TN) and central memory (TCM) T cells. We have previously reported increased Tumor necrosis factor-α (TNF-α)-induced apoptosis in TN and TCM T cells in aged humans; however, the molecular basis of increased apoptosis remains to be defined. Since expression of TNF receptors (TNFRs) was reported to be comparable in young and aged, we investigated signaling events downstream of TNFRs to understand the molecular basis of increased TNF-α-induced apoptosis in aged TN and TCM CD8+ cells. RESULTS The expression of TRAF-2 and RIP, phosphorylation of JNK, IKKα/β, and IκBα, and activation of NF-κB activation were significantly decreased in TN and TCM CD8+ cells from aged subjects as compared to young controls. Furthermore, expression of A20, Bcl-xL, cIAP1, and FLIP-L and FLIP-S was significantly decreased in TN and TCM CD8+ cells from aged subjects. CONCLUSIONS These data demonstrate that an impaired expression/function of molecules downstream TNFR signaling pathway that confer survival signals contribute to increased apoptosis of TN and TCM CD8+ cells in aged humans.
Collapse
Affiliation(s)
- Sudhir Gupta
- Program in Primary Immunodeficiency and Aging, Division of Basic and Clinical Immunology, University of California, Irvine, USA
- Division of Basic and Clinical Immunology, Medical Sci. I, C-240, University of California at Irvine, Irvine, CA 92697 USA
| | - Houfen Su
- Program in Primary Immunodeficiency and Aging, Division of Basic and Clinical Immunology, University of California, Irvine, USA
| | - Sudhanshu Agrawal
- Program in Primary Immunodeficiency and Aging, Division of Basic and Clinical Immunology, University of California, Irvine, USA
| | - Sastry Gollapudi
- Program in Primary Immunodeficiency and Aging, Division of Basic and Clinical Immunology, University of California, Irvine, USA
| |
Collapse
|
40
|
Brands RC, Scheurer MJJ, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Apoptosis-sensitizing activity of birinapant in head and neck squamous cell carcinoma cell lines. Oncol Lett 2018; 15:4010-4016. [PMID: 29467909 DOI: 10.3892/ol.2018.7783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Inhibitor of apoptosis proteins, which are overexpressed in head and neck squamous cell carcinoma (HNSCC), may cause therapeutic resistance. Using SMAC mimetic compounds, including birinapant, to degrade and/or inhibit these proteins and sensitize apoptosis may enhance therapies in HNSCC. Fas expression was analyzed in nine HNSCC cell lines and one keratinocyte cell line via flow cytometry. These cell lines were treated with Fas ligand-Fc (FasL) and birinapant, a bivalent SMAC mimetic, in mono and combination therapies. Cytotoxicity was measured using a crystal violet assay. Annexin V assay was performed for detection of apoptosis. The treatment efficacy of mono and combination therapies was statistically analyzed. Nonlinear regression analysis was performed to determine the inhibitory concentration (IC10) of birinapant. Fas expression was detected in each cell line tested. Mono treatment with FasL revealed minor to no apoptotic effects in the majority of the cell lines. Crystal violet and Annexin V staining revealed increased apoptosis rates for all cell lines following incubation with birinapant in mono treatment. Combination treatment with FasL and birinapant (IC10) revealed additional and synergistic effects in eight out of the ten cell lines. To the best of our knowledge, the present study provided the first evidence of the apoptosis-sensitizing activity of combination treatment with FasL and birinapant in HNSCC cell lines.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97080 Würzburg, Germany
| | - Mario J J Scheurer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
41
|
Chang PY, Kuo TM, Chen PK, Lin YZ, Hua CH, Chen YC, Ko YC. Arecoline N-Oxide Upregulates Caspase-8 Expression in Oral Hyperplastic Lesions of Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10197-10205. [PMID: 29092399 DOI: 10.1021/acs.jafc.7b03999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Areca nut is strongly associated with oral squamous cell carcinoma (OSCC) occurrence. Arecoline N-oxide (ANO), a metabolite of the areca alkaloid arecoline, exhibits an oral fibrotic effect in NOD/SCID mice. Caspase-8, a cysteine protease encoded by the CASP8 gene, is a central mediator in the extrinsic apoptotic pathway via death receptors. Deregulation of caspase-8 in OSCC has been reported. This study investigates the regulation of caspase-8 in ANO-induced oral squamous epithelial hyperplasia that represents the initial highly proliferative stage of oral carcinogenesis. CASP8 somatic mutations were identified from whole-exome sequencing of OSCC samples. Immunohistochemical staining showed upregulation of caspase-8 in ANO-induced hyperplasia of both NOD-SCID and C57BL/6 mice. Levels of expression of CASP8, APAF-1, BAX, and BAD increased in ANO-treated DOK cells. Co-localization of increased caspase-8 and PCNA levels was detected in ANO-induced hyperplastic lesions, whereas no co-localization among γ-H2A.X, caspase-3, and upregulated caspase-8 was observed. The findings indicate that upregulation of caspase-8 is involved in cell proliferation rather than apoptosis during the initial stage of ANO-mediated oral tumorigenesis.
Collapse
Affiliation(s)
- Pei-Ying Chang
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung, Taiwan
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital , Taichung, Taiwan
| | - Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
| | - Po-Ku Chen
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
| | - You-Zhe Lin
- Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital , Taichung, Taiwan
| | - Yuan-Chien Chen
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital , Taichung, Taiwan
- School of Dentistry, China Medical University , Taichung, Taiwan
| | - Ying-Chin Ko
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung, Taiwan
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan
| |
Collapse
|
42
|
Kiser JN, Neupane M, White SN, Neibergs HL. Identification of genes associated with susceptibility to Mycobacterium avium ssp. paratuberculosis (Map) tissue infection in Holstein cattle using gene set enrichment analysis-SNP. Mamm Genome 2017; 29:539-549. [PMID: 29185027 DOI: 10.1007/s00335-017-9725-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Multiple genome-wide association analyses have investigated susceptibility to bovine paratuberculosis, but few loci have been identified across independent cattle populations. A SNP-based gene set enrichment analysis (GSEA-SNP) allows expanded identification of genes with moderate effects on a trait through the enrichment of gene sets instead of identifying only few loci with large effects. Therefore, the objective of this study was to identify genes that were moderately associated with Mycobacterium avium ssp. paratuberculosis (Map) tissue infection using GSEA-SNP in Holstein cattle from the Pacific Northwest (PNW; n = 205) and from the PNW and Northeast (PNW+NE; n = 245) which were previously genotyped with the Illumina BovineSNP50 BeadChip. The GSEA-SNP utilized 4389 gene sets from five databases. For each annotated gene in the UMD3.1 assembly (n = 19,723), the most significant SNP within each gene and its surrounding region (10 kb up- and downstream) was selected as a proxy for that gene. Any gene set with a normalized enrichment score > 2.5 was considered enriched. Thirteen gene sets (8 PNW GSEA-SNP; 5 PNW+NE) were enriched in these analyses and all have functions that relate to nuclear factor kappa beta. Nuclear factor kappa beta is critical to gut immune responses, implicated in host immune responses to other mycobacterial diseases, and has established roles in inflammation as well as cancer. Gene sets and genes moderately associated with Map infection could be used in genomic selection to allow producers to select for less susceptible cattle, lower the prevalence of the disease, and reduce economic losses.
Collapse
Affiliation(s)
- J N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - M Neupane
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - S N White
- USDA-ARS Animal Disease Research Unit, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - H L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
43
|
Guégan JP, Legembre P. Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J 2017; 285:809-827. [PMID: 29032605 DOI: 10.1111/febs.14292] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
Abstract
CD95 (also known as Fas) is a member of the tumor necrosis factor receptor (TNFR) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance. Mutations in this receptor are associated with a loss of apoptotic signaling and have been detected in an autoimmune disorder called autoimmune lymphoproliferative syndrome (ALPS) type Ia, which shares some clinical features with systemic lupus erythematosus (SLE). In addition, deletions and mutations of CD95 have been described in many cancers, which led researchers to initially classify this receptor as a tumor suppressor. More recent data demonstrate that CD95 engagement evokes nonapoptotic signals that promote inflammation and carcinogenesis. Transmembrane CD95L (m-CD95L) can be cleaved by metalloproteases, releasing a soluble ligand (s-CD95L). Soluble and membrane-bound CD95L show different stoichiometry (homotrimer versus multimer of homotrimers, respectively), which differentially affects CD95-mediated signaling through molecular mechanisms that remain to be elucidated. This review discusses the biological roles of CD95 in light of recent experiments addressing how a death receptor can trigger both apoptotic and nonapoptotic signaling pathways.
Collapse
Affiliation(s)
- Jean-Philippe Guégan
- Centre Eugène Marquis, INSERM U1242-COSS, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.,Université de Rennes-1, Rennes, France
| | - Patrick Legembre
- Centre Eugène Marquis, INSERM U1242-COSS, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.,Université de Rennes-1, Rennes, France
| |
Collapse
|
44
|
Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem Toxicol 2017; 109:102-122. [PMID: 28842267 DOI: 10.1016/j.fct.2017.08.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
Abstract
Garcinia mangostana L. (Clusiaceae) is a tropical tree native to Southeast Asia known as mangosteen which fruits possess a distinctive and pleasant taste that has granted them the epithet of "queen of the fruits". The seeds and pericarps of the fruit have a long history of use in the traditional medicinal practices of the region, and beverages containing mangosteen pulp and pericarps are sold worldwide as nutritional supplements. The main phytochemicals present in the species are isoprenylated xanthones, a class of secondary metabolites with multiple reports of biological effects, such as antioxidant, pro-apoptotic, anti-proliferative, antinociceptive, anti-inflammatory, neuroprotective, hypoglycemic and anti-obesity. The diversity of actions displayed by mangosteen xanthones shows that these compounds target multiple signaling pathways involved in different pathologies, and place them as valuable sources for developing new drugs to treat chronic and degenerative diseases. This review article presents a comprehensive update of the toxicological findings on animal models, and the preclinical anticancer, analgesic, neuroprotective, antidiabetic and hypolipidemic effects of G. mangostana L. extracts and its main isolates. Pharmacokinetics, drug delivery systems and reports on dose-finding human trials are also examined.
Collapse
Affiliation(s)
- Berenice Ovalle-Magallanes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Dianelena Eugenio-Pérez
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
45
|
Huang QQ, Birkett R, Doyle RE, Haines GK, Perlman H, Shi B, Homan P, Xing L, Pope RM. Association of Increased F4/80 high Macrophages With Suppression of Serum-Transfer Arthritis in Mice With Reduced FLIP in Myeloid Cells. Arthritis Rheumatol 2017; 69:1762-1771. [PMID: 28511285 DOI: 10.1002/art.40151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/09/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Macrophages are critical in the pathogenesis of rheumatoid arthritis (RA). We recently demonstrated that FLIP is necessary for the differentiation and/or survival of macrophages. We also showed that FLIP is highly expressed in RA synovial macrophages. This study was undertaken to determine if a reduction in FLIP in mouse macrophages reduces synovial tissue macrophages and ameliorates serum-transfer arthritis. METHODS Mice with Flip deleted in myeloid cells (Flipf/f LysMc/+ mice) and littermate controls were used. Arthritis was induced by intraperitoneal injection of K/BxN serum. Disease severity was evaluated by clinical score and change in ankle thickness, and joints were examined by histology and immunohistochemistry. Cells were isolated from the ankles and bone marrow of the mice and examined by flow cytometry, real-time quantitative reverse transcriptase-polymerase chain reaction, or Western blotting. RESULTS In contrast to expectations, Flipf/f LysMc/+ mice developed more severe arthritis early in the clinical course, but peak arthritis was attenuated and the resolution phase more complete than in control mice. Prior to the induction of serum-transfer arthritis, the number of tissue-resident macrophages was reduced. On day 9 after arthritis induction, the number of F4/80high macrophages in the joints of the Flipf/f LysMc/+ mice was not decreased, but increased. FLIP was reduced in the F4/80high macrophages in the ankles of the Flipf/f LysMc/+ mice, while F4/80high macrophages expressed an antiinflammatory phenotype in both the Flipf/f LysMc/+ and control mice. CONCLUSION Our observations suggest that reducing FLIP in macrophages by increasing the number of antiinflammatory macrophages may be an effective therapeutic approach to suppress inflammation, depending on the disease stage.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert Birkett
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Renee E Doyle
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Harris Perlman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bo Shi
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Philip Homan
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lianping Xing
- University of Rochester Medical Center, Rochester, New York
| | - Richard M Pope
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
46
|
Lafont E, Kantari-Mimoun C, Draber P, De Miguel D, Hartwig T, Reichert M, Kupka S, Shimizu Y, Taraborrelli L, Spit M, Sprick MR, Walczak H. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J 2017; 36:1147-1166. [PMID: 28258062 PMCID: PMC5412822 DOI: 10.15252/embj.201695699] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ubiquitin ligase which catalyses the generation of linear ubiquitin linkages de novo LUBAC is a crucial component of various immune receptor signalling pathways. Here, we show that LUBAC forms part of the TRAIL-R-associated complex I as well as of the cytoplasmic TRAIL-induced complex II In both of these complexes, HOIP limits caspase-8 activity and, consequently, apoptosis whilst being itself cleaved in a caspase-8-dependent manner. Yet, by limiting the formation of a RIPK1/RIPK3/MLKL-containing complex, LUBAC also restricts TRAIL-induced necroptosis. We identify RIPK1 and caspase-8 as linearly ubiquitinated targets of LUBAC following TRAIL stimulation. Contrary to its role in preventing TRAIL-induced RIPK1-independent apoptosis, HOIP presence, but not its activity, is required for preventing necroptosis. By promoting recruitment of the IKK complex to complex I, LUBAC also promotes TRAIL-induced activation of NF-κB and, consequently, the production of cytokines, downstream of FADD, caspase-8 and cIAP1/2. Hence, LUBAC controls the TRAIL signalling outcome from complex I and II, two platforms which both trigger cell death and gene activation.
Collapse
Affiliation(s)
- Elodie Lafont
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Chahrazade Kantari-Mimoun
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Peter Draber
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Diego De Miguel
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Torsten Hartwig
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Matthias Reichert
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Sebastian Kupka
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Yutaka Shimizu
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Maureen Spit
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Martin R Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGMBH), Heidelberg, Germany
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
47
|
Stephan M, Edelmann B, Winoto-Morbach S, Janssen O, Bertsch U, Perrotta C, Schütze S, Fritsch J. Role of caspases in CD95-induced biphasic activation of acid sphingomyelinase. Oncotarget 2017; 8:20067-20085. [PMID: 28223543 PMCID: PMC5386744 DOI: 10.18632/oncotarget.15379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/24/2017] [Indexed: 12/04/2022] Open
Abstract
Acid sphingomyelinase (A-SMase) plays an important role in the initiation of CD95 signaling by forming ceramide-enriched membrane domains that enable clustering and activation of the death receptors. In TNF-R1 and TRAIL-R1/R2 signaling, A-SMase also contributes to the lysosomal apoptosis pathway triggered by receptor internalization. Here, we investigated the molecular mechanism of CD95-mediated A-SMase activation, demonstrating that A-SMase is located in internalized CD95-receptosomes and is activated by the CD95/CD95L complex in a biphasic manner.Since several caspases have been described to be involved in the activation of A-SMase, we evaluated expression levels of caspase-8, caspase-7 and caspase-3 in CD95-receptosomes. The occurrence of cleaved caspase-8 correlated with the first peak of A-SMase activity and translocation of the A-SMase to the cell surface which could be blocked by the caspase-8 inhibitor IETD.Inhibition of CD95-internalization selectively reduced the second phase of A-SMase activity, suggesting a fusion between internalized CD95-receptosomes and an intracellular vesicular pool of A-SMase. Further analysis demonstrated that caspase-7 activity correlates with the second phase of the A-SMase activity, whereas active caspase-3 is present at early and late internalization time points. Blocking caspases-7/ -3 by DEVD reduced the second phase of A-SMase activation in CD95-receptosomes suggesting the potential role of caspase-7 or -3 for late A-SMase activation.In summary, we describe a biphasic A-SMase activation in CD95-receptosomes indicating (I.) a caspase-8 dependent translocation of A-SMase to plasma membrane and (II.) a caspase-7 and/or -3 dependent fusion of internalized CD95-receptosomes with intracellular A-SMase-containing vesicles.
Collapse
Affiliation(s)
- Mario Stephan
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bärbel Edelmann
- Department of Hematology and Oncology, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Uwe Bertsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
48
|
Martínez I, Oliveros JC, Cuesta I, de la Barrera J, Ausina V, Casals C, de Lorenzo A, García E, García-Fojeda B, Garmendia J, González-Nicolau M, Lacoma A, Menéndez M, Moranta D, Nieto A, Ortín J, Pérez-González A, Prat C, Ramos-Sevillano E, Regueiro V, Rodriguez-Frandsen A, Solís D, Yuste J, Bengoechea JA, Melero JA. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens. Front Microbiol 2017; 8:276. [PMID: 28298903 PMCID: PMC5331050 DOI: 10.3389/fmicb.2017.00276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here.
Collapse
Affiliation(s)
- Isidoro Martínez
- Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | | | - Isabel Cuesta
- Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Jorge de la Barrera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Vicente Ausina
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Badalona, Institut d' Investigació Germans Trias i Pujol, Universitat Autònoma de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Cristina Casals
- Departmento de Bioquímica y Biología Molecular I, Universidad ComplutenseMadrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Alba de Lorenzo
- Departmento de Bioquímica y Biología Molecular I, Universidad ComplutenseMadrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Belén García-Fojeda
- Departmento de Bioquímica y Biología Molecular I, Universidad ComplutenseMadrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Universidad Pública de Navarra-GobNavarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Mar González-Nicolau
- Fundación de Investigación Sanitaria de las Islas Baleares, Instituto de Investigación Sanitaria de PalmaPalma, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Badalona, Institut d' Investigació Germans Trias i Pujol, Universitat Autònoma de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Margarita Menéndez
- Instituto de Química Física Rocasolano (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - David Moranta
- Fundación de Investigación Sanitaria de las Islas Baleares, Instituto de Investigación Sanitaria de PalmaPalma, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Amelia Nieto
- Centro Nacional de Biotecnología (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Alicia Pérez-González
- Centro Nacional de Biotecnología (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Cristina Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Badalona, Institut d' Investigació Germans Trias i Pujol, Universitat Autònoma de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Elisa Ramos-Sevillano
- Centro de Investigaciones Biológicas (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Verónica Regueiro
- Fundación de Investigación Sanitaria de las Islas Baleares, Instituto de Investigación Sanitaria de PalmaPalma, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Ariel Rodriguez-Frandsen
- Centro Nacional de Biotecnología (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - Dolores Solís
- Instituto de Química Física Rocasolano (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - José Yuste
- Centro de Investigaciones Biológicas (CSIC)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - José A Bengoechea
- Fundación de Investigación Sanitaria de las Islas Baleares, Instituto de Investigación Sanitaria de PalmaPalma, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
49
|
c-FLIP Expression in Foxp3-Expressing Cells Is Essential for Survival of Regulatory T Cells and Prevention of Autoimmunity. Cell Rep 2017; 18:12-22. [DOI: 10.1016/j.celrep.2016.12.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
|
50
|
Zhang J, Jiang HY, Zhang LK, Xu WL, Qiao YT, Zhu XG, Liu W, Zheng QQ, Hua ZC. C-FLIP L Modulated Wnt/β-Catenin Activation via Association with TIP49 Protein. J Biol Chem 2016; 292:2132-2142. [PMID: 28028178 DOI: 10.1074/jbc.m116.753251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/05/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular FLICE-like inhibitory protein (c-FLIPL) is a key inhibitory protein in the extrinsic apoptotic pathway. Recent studies showed that c-FLIPL could translocate into the nucleus and might be involved in the Wnt signaling pathway. The nuclear function of c-FLIPL was still unclear. Here we found a novel c-FLIPL-associated protein TIP49, which is a nuclear protein identified as a cofactor in the transcriptional regulation of β-catenin. They had co-localization in the nucleus and the DED domain of c-FLIPL was required for the association with TIP49. By performing ChIP experiments, C-FLIPL was detected in the ITF-2 locus and facilitated TIP49 accumulation in the formation of complexes at the T-cell-specific transcription factor site of human ITF-2 promoter. When TIP49 knockdown, c-FLIPL-driven Wnt activation, and cell proliferation were inhibited, suggesting that a role of nuclear c-FLIPL involved in modulation of the Wnt pathway was in a TIP49-dependent manner. Elevated expression of c-FLIPL and TIP49 that coincided in human lung cancers were analyzed in silico using the Oncomine database. Their high expressions were reconfirmed in six lung cancer cell lines and correlated with cell growth. The association of c-FLIPL and TIP49 provided an additional mechanism involved in c-FLIPL-mediated functions, including Wnt activation.
Collapse
Affiliation(s)
- Jing Zhang
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and .,the Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, Jiangsu, People's Republic of China
| | - Heng-Yi Jiang
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Lin-Kai Zhang
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Wen-Ling Xu
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Yi-Ting Qiao
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Xu-Guo Zhu
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Wan Liu
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Qian-Qian Zheng
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Zi-Chun Hua
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and .,the Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, Jiangsu, People's Republic of China
| |
Collapse
|